美章网 精品范文 统计学的论文范文

统计学的论文范文

前言:我们精心挑选了数篇优质统计学的论文文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。

统计学的论文

第1篇

关键词:统计学教学模式EXCEL

引言

进入21世纪,随着我国市场化步伐的加快,社会对新知识的需求日益增加,无论是国民经济管理,还是公司企业乃至个人的经营、投资决策,都越来越依赖于数量分析,依赖于统计方法,统计方法已成为管理、经贸、金融等许多学科领域科学研究的重要方法。

一、《统计学》课程教学面临的挑战

1.1内容日益丰富。长期以来,在我国存在两门相互独立的统计学——数理统计学和社会经济统计学,分别隶属于数学学科和经济学学科。统计学是一门通用方法论的科学,是一种定量认识问题的工具。统计方法只有与具体的实质性学科相结合,才能够发挥出其强大的数量分析功效。这些分支学科的存在主要不是为了发展统计方法,而是为了解决实质性学科研究中的有关定量分析问题,统计方法是在这一应用过程中得以完善和发展的。随着大统计学思想的建立和统计学在实质学科中的应用的需要,大多数学校和老师在财经类专业的本、专科专业《统计学》教学过程中,除了保留社会经济统计学原理中仍有现实意义的内容,如统计学的研究对象方法、统计的基本概念、统计数据的搜集整理、平均及变异指标、总量指标、相对指标、抽样调查、时间序列、统计指数等;同时也系统的充实了统计推断的内容,如:统计数据的分布特征、假设检验、方差分析、相关与回归分析、统计决策等。

1.2学生的学习难度加大。首先、结合《统计学》的课程特点——概念多而且概念之间的关系十分复杂、公式多且计算有一定难度等。如果学生不做必要的课外阅读、练习和实践活动,是很难理解和掌握的。对于财经类专业的本、专科专业的学生来说,由于其本专业的课程体系要求,使得学生的数学或者数理统计的基础不是特别好,对于专科学生来说更不用说,推断统计将是他们学习的困难。

1.3教师的教学难度加大。授课内容越来越丰富;课程难度太大可能导致学生兴趣下降;传统教学方法的主要目的是让学生了解、掌握知识,其一成不变的教学内容和模式,学生味同嚼蜡,学生只是被动地吸收知识,最后得到的效果就是使其不思进取缺乏新意。高等教育扩招后,大多数学校,授课班级学生人数越来越多,一个教师跨越不同专业授课。这要求授课教师必须深刻领会授课内容的核心和相互关系,学会控制和驾驭课堂教学,注重统计学在不同专业领域的具体应用等等。教师和学生之间不再只是简单的知识“单向”传递,而是师生之间思想、心得、智慧的“双向”交流,教师和学生都承担了更多的教与学的责任。

二、《统计学》教学的发展趋势分析

2.1统计学从数学技巧转向数据分析的训练。在计算机及计算机网络非常普及的今天,统计计算技术不再是统计学教学的重点了。统计思想、统计应用才应该是重点。现代统计方法的实际应用离不开现代信息处理技术。统计软件的使用,不仅使统计数据的计算和显示变得简单、准确,而且使统计教学由繁琐抽象变得简单轻松、由枯燥乏味变得趣味盎然。所以,在统计教学过程中,大量的内容只需要给学生讲清楚统计基本思想、计算的原理和正确应用的条件、正确解读计算的结果,而对大量复杂具体的计算可以交给计算机去完成。注重引导学生运用所学知识来解决实际问题,给学生多做一些教学案例,教学案例与教科书上的例题不同,例题的作用是单一的、有限的,通过例题只是掌握和熟练所学的统计方法及计算公式,而案例的作用是多方面的,它让学生了解了分析问题的思路,要解决什么问题,如何解决,应用什么理论和方法,需要什么数据,怎样解读计算结果,并根据分析结果,提出针对性的对策和措施,训练学生综合运用所学知识去解决实际问题的能力,激发学生学习的兴趣和求知的欲望。

2.2通过统计实践学习统计。它要求统计教师不仅要融会贯通统计理论和方法,而且要对案例中问题的解决思路和方法有熟练的把握。在教学中学生是主角,教师起引导作用,针对不同的统计教学案例,教师只有事先亲自采用各种方法进行计算和分析,才能对学生使用哪些统计方法和统计分析软件进行计算和分析提出建议,并对学生采用不同的分析方法和得到的分析结果作出比较透明的比较和评价。通过课堂现场教学,引导学生利用课余时间完成项目,利用假期时间,通过参加学校组织的某些团队、小组或自己组织去开展一些与专业有关的活动,全方位地激发学生的学习兴趣、培养学生的专业能力、方法能力和社会能力。

三、基于EXCEL的《统计学》教学设想

如何从烦琐的数理统计技巧转向数据处理的训练,教师的导向是第一位的,必须选择容易获得而且普及性比较强的统计分析软件,并在课堂教学和引导学生实践中广泛采用。

3.1微软公司开发的EXCEL软件无疑是我们最好的选择专业的统计分析软件SPSS、SAS、BMDP、SYSTAT其功能固然强大,统计分析的专业性、权威性不可否认,但是对于没有开设统计学专业的院校这些软件并不常用,微软公司开发的EXCEL软件作为一款优秀的表格软件,其提供的统计分析功能虽然比不上专业统计软件,但它比专业统计软件易学易用,便于掌握。对于《统计学》这门课程而言,利用EXCEL提供的统计函数和分析工具,结合电子表格技术,已能满足统计方面的要求。

3.2基于EXCEL的《统计学》教学设想

3.2.1在教学内容上,依据EXCEL的函数功能、电子表格功能、数据分析功能,结合统计学原理的基本理论和方法,对统计数据的搜集主要强调统计报表制度,在EXCEL环境应该更注重抽样推断,EXCEL提供的随机抽样工具使得抽样调查不再是十分复杂的技术,统计图也可以被广泛运用于对数据的描述。

3.2.2案例教学成为《统计学》课程的重要内容。案例教学法不仅可以将理论与实际紧密联系起来,使学生在课堂上就能接触到大量的实际问题,而且对提高学生综合分析和解决实际问题的能力大有帮助。结合学生所学专业精选案例教学,比如对于金融专业的学生可以设计用几何平均数计算投资的平均收益率、运用标志变异指标考察投资组合的风险大小等。对于经管专业的学生,精选抽样推断、假设检验、方差分析对于控制产品质量,经营决策等方面的案例,深入浅出地介绍这些方法的基本思想、并用EXCEL进行分析。

3.2.3改革考试方式和内容,合理评定学生成绩。对于《统计学原理》的考试,多年以来一直沿用闭卷笔试的方式。这种考试方式对于保证教学质量,维持正常的教学秩序起到了一定的作用,但也存在着缺陷。在过去的《统计学》教学中,基本运算能力被认为是首要的培养目标,教科书中的各种例题主要是向学生展示如何运用公式进行计算。这样导致了学生在学习《统计学》课程的过程中,为应付考试把精力过多的花在了概念、公式的死记硬背上。这与财经类专业培养新世纪高素质的经济管理人才是格格不入的。为此,需要对《统计学》考试进行了改革,主要包括两个方面:一是考试内容与要求不仅体现出《统计学》的基本知识和基本运算以及推理能力,还注重了学生各种能力的考查,尤其是创新能力。二是考试模式不居一格,除了普遍采用的闭卷考试外,还在教学中用讨论、答辩和小论文的方式进行考核,采取灵活多样的考试组织形式。学生成绩的测评根据学生参与教学活动的程度、学习过程中提交的读书报告、上机操作和卷面考试成绩等综合评定。这样,可以引导学生在学好基础知识的基础上,注重技能训练与能力的培养。

参考文献:

[1]谢安邦.高等教育学[M].北京:高等教育出版社.1999.

[2]贾俊平.统计学[M].北京:中国人民大学出版社.2000.

第2篇

【论文摘要】所谓统计思想,就是在统计实际工作、统计学理论的应用研究中,必须遵循的基本理念和指导思想。统计思想主要包括均值思想、变异思想、估计思想、相关思想、拟合思想、检验思想等思想。文章通过对统计思想的阐释,提出关于统计思想认识的三点思考。

一、关于统计学

统计学是一门实质性的社会科学,既研究社会生活的客观规律,也研究统计方法。统计学是继承和发展基础统计的理论成果,坚持统计学的社会科学性质,使统计理论研究更接近统计工作实际,在国家和社会得到广泛发展。

二、统计学中的几种统计思想

2.1统计思想的形成

统计思想不是天然形成的,需要经历统计观念、统计意识、统计理念等阶段。统计思想是根据人类社会需求的变化而开展各种统计实践、统计理论研究与概括,才能逐步形成系统的统计思想。

2.2比较常用的几种统计思想

所谓统计思想,就是统计实际工作、统计学理论及应用研究中必须遵循的基本理念和指导思想。统计思想主要包括:均值思想、变异思想、估计思想、相关思想、拟合思想、检验思想。现分述如下:

2.2.1均值思想

均值是对所要研究对象的简明而重要的代表。均值概念几乎涉及所有统计学理论,是统计学的基本思想。均值思想也要求从总体上看问题,但要求观察其一般发展趋势,避免个别偶然现象的干扰,故也体现了总体观。

2.2.2变异思想

统计研究同类现象的总体特征,它的前提则是总体各单位的特征存在着差异。统计方法就是要认识事物数量方面的差异。统计学反映变异情况较基本的概念是方差,是表示“变异”的“一般水平”的概念。平均与变异都是对同类事物特征的抽象和宏观度量。

2.2.3估计思想

估计以样本推测总体,是对同类事物的由此及彼式的认识方法。使用估计方法有一个预设:样本与总体具有相同的性质。样本才能代表总体。但样本的代表性受偶然因素影响,在估计理论对置信程度的测量就是保持逻辑严谨的必要步骤。

2.2.4相关思想

事物是普遍联系的,在变化中,经常出现一些事物相随共变或相随共现的情况,总体又是由许多个别事务所组成,这些个别事物是相互关联的,而我们所研究的事物总体又是在同质性的基础上形成。因而,总体中的个体之间、这一总体与另一总体之间总是相互关联的。

2.2.5拟合思想

拟合是对不同类型事物之间关系之表象的抽象。任何一个单一的关系必须依赖其他关系而存在,所有实际事物的关系都表现得非常复杂,这种方法就是对规律或趋势的拟合。拟合的成果是模型,反映一般趋势。趋势表达的是“事物和关系的变化过程在数量上所体现的模式和基于此而预示的可能性”。

2.2.6检验思想

统计方法总是归纳性的,其结论永远带有一定的或然性,基于局部特征和规律所推广出来的判断不可能完全可信,检验过程就是利用样本的实际资料来检验事先对总体某些数量特征的假设是否可信。

2.3统计思想的特点

作为一门应用统计学,它从数理统计学派汲取新的营养,并且越来越广泛的应用数学方法,联系也越来越密切,但在统计思想的体现上与通用学派相比,还有着自己的特别之处。其基本特点能从以下四个方面体现出:(1)统计思想强调方法性与应用性的统一;(2)统计思想强调科学性与艺术性的统一;(3)统计思想强调客观性与主观性的统一;(4)统计思想强调定性分析与定量分析的统一。

三、对统计思想的一些思考

3.1要更正当前存在的一些不正确的思想认识

英国著名生物学家、统计学家高尔顿曾经说过:“统计学具有处理复杂问题的非凡能力,当科学的探索者在前进的过程中荆棘载途时,唯有统计学可以帮助他们打开一条通道”。但事实并非这么简单,因为我们所面临的现实问题可能要比想象的复杂得多。此外,有些人认为方法越复杂越科学,在实际的分析研究中,喜欢简单问题复杂化,似乎这样才能显示其科学含量。其实,真正的科学是使复杂的问题简单化而不是追求复杂化。与此相关联的是,有些人认为只有推断统计才是科学,描述统计不是科学,并延伸扩大到只有数理统计是科学、社会经济统计不是科学这样的认识。这种认识是极其错误的,至少是对社会经济统计的无知。比利时数学家凯特勒不仅研究概率论,并且注重于把统计学应用于人类事物,试图把统计学创建成改良社会的一种工具。经济学和人口统计学中的某些近代概念,如GNP、人口增长率等等,均是凯特勒及其弟子们的遗产。

3.2要不断拓展统计思维方式

统计学是以归纳推理或归纳思维为主要的逻辑方式的。众所周知,逻辑推理方式主要有两种:归纳推理和演绎推理。归纳推理是基于观测到的数据信息(尤其是不完全甚至劣质的信息)去产生新的知识或去验证一个假设,即以所掌握的数据信息为依据,归纳得出具有一般特征的结论。归纳推理是要在数据信息的基础上透过偶然性去发现必然性。演绎推理是对统计认识能力的深化,尤其是在根据必然性去研究和认识偶然性方面,具有很大的作用。

3.3深化对数据分析的认识

任何统计研究都离不开数据分析。因为这是得到统计研究结论的必要环节。虽然统计分析的形式随时代的推移而变化着,但是“从数据中提取一切信息”或者“归纳和揭示”作为统计分析的目的却一直没有改变。对统计数据分析的原因有以下三个方面:一是基于同样的数据会得出不同、甚至相反的分析结论;二是我们所面对的分析数据有时是缺损的或存在不真实性;三是我们所面对的分析数据有时则又是海量的,让人无从下手。虽然统计数据分析已经经历了描述性数据分析(DDA)、推断性数据分析(IDA)和探索性数据分析(EDA)等阶段,分析的方法技术已经有了质的飞跃,但与人类不断提高的要求相比,存在的问题似乎也越来越多。所以,我们必须深化对数据分析的认识,围绕“准确解答特定问题并且从数据中获取一切有效信息”这一目的,不断拓展研究思路,继续开展数据分析方法技术的研究。

参考文献:

[1]陈福贵.统计思想雏议[J]北京统计,2004,(05).

[2]庞有贵.统计工作及统计思想[J]科技情报开发与经济,2004,(03).

第3篇

合理的试验设计与统计处理的可信度存在直接联系,研究者在编写医学论文时应对医学研究设计方法进行说明。在进行试验设计时应遵循随机、对照、均衡和重复四大原则。在进行试验设计的时候通常会涉及到研究对象的选择,研究对象的分组及选择合理的检测指标三个方面的内容。医学论文就是通过对样本的研究来进行推断总体,找出其共性,得出结论。因此研究者在选择研究对象时应注意选择样本应具有一定数量,能反映出该事物的规律性特征,但又应注意例数不能太多,以免造成不必要的浪费。其选择的原则就是在保证试验结果可靠性的前提下选择最少的样本例数。研究者在选择样本对象后应对其基本特征进行详细的描述,比如患者的年龄、性别、病理分期、疾病诊断的标准等。此外在试验中所用到的试剂、仪器的型号、规格等都应作出说明,以供读者借鉴和做出判断。选定好研究对象后就要对其进行分组。在进行分组时研究者一般遵循统计学中的“随机分配”、“设立对照”以及“均衡”、“重复”的原则。随机化原则是提高组间均衡性的一个重要手段,也是资料分析时进行统计推断的前提。有对照才有比较,在进行组间比较时,应确定好处理因素与实验效应的关系。均衡性则是要使得对结果产生影响的非处理因素尽可能保持一致,这样才能保证对照的结果让人信服。观察实验效应的指标主要有主观指标与客观指标。正所谓主观指标就是通过问答的方式调查受试者自己判断的主观感受;而客观指标则是通过仪器来检验和测量所得出的结果。在进行试验设计时应选择客观性较强、高灵敏性和精确性的指标。

二、统计学方法的选择

统计学方法的正确选择是直接影响到论文结论可信度的重要依据,因此研究者在编写论文时应注意选择合适的统计学方法。不同的统计学方法应用的范围不同。研究者在编写医学论文时常根据论文研究的目的、资料类型、试验设计的方案、样品大小、水平数、特定条件、数据分布特征以及综合分析等来选择对应的统计方法,同时还要根据专业知识与资料的实际情况,结合统计学原则,灵活地选择。当定性资料正态分布时,研究者一般用均数和标准差来表示统计描述指标;当定性资料不符合正态分布时,则可选用中位数及级差来表示;当定量资料正态分布且组间方差齐时一般选用参数法,反之则选用非参数法。t检验一般适用于小样本(n<50)的定量资料且方差齐的两组数据之间的比较。其特点是在均方差不知道的情况下,可以检验样本平均数的显著性,大样本(n≥50)采用u检验;多个样本均数两两比较则用方差分析,如差异有统计学意义,可采用q检验;Dunnett检验则适用于多个实验组与一个对照组均数的比较。定性资料中,表现为互不相容的类别或属性,分为二分类和多类反应,如治疗结果为显著和好转的人数等,该种资料可选用字检验,大样本(n≥50)时采用u检验。如:患者的治疗结果评定为痊愈、显著有效、好转、无效或死亡。该种资料可选用秩和检验或u检验。总之,不论论文中选用的是哪种统计学方法,都要计算出检验值,然后再根据统计量值来判定P值的大小,结论一般描述为“差异有(无)统计学意义”。

三、常见统计学方法的误用分析及对策

1.统计方法误用。

最常见统计方法误用是对等级资料进行比较时应用秩和检验而误用卡方检验。例如:在评价采取不同治疗方法的两组急性脑血管病患者疗效中,治疗组显著有效、有效、无效三种分型分别为15例、10例、8例,对照组分别为14例、11例、9例。本资料例数较少,应选用等级比较的秩和检验,而有些作者却认为只要是率的比较就可以采用字检验。研究者在选择统计学方法时应根据相应的原则,对文章研究目的、资料类型、样品大小、水平数、数据分布特征等进行综合分析后,再来选择对应的统计方法。

2.选用检验方法错误。

在有些论文中,作者常将本应用方差分析和q检验的误用t检验。t检验一般适用于小样本(n<50)定量资料且方差齐的两组数据之间的比较,而方差分析及q检验主要用于对多个样本均数进行比较,几种不同治疗或处理方法等的同时比较。例如:在讨论中、西以及中西医结合治疗急性脑血管病时,两组患者的年龄、病程、病情严重程度等差别均无统计学意义,比较三组患者的一些指标变化。组间多重比较应用q检验,但文中作者采用的是t检验,对三组均数进行两两比较。这不仅造成了资料的利用率低,也增加了假阳性的概率,降低了试验结果的可信度。

四、结论表述中的统计学应用