美章网 精品范文 电磁辐射的测量范文

电磁辐射的测量范文

前言:我们精心挑选了数篇优质电磁辐射的测量文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。

电磁辐射的测量

第1篇

【关键词】电磁辐射;环境质量;污染源;防治对策

环境污染可分为物质流污染和能量流污染两大类。物质流污染物进入环境使大气、水的质量变坏,并进而影响到土壤和食品。能量流污染同样会使环境质量变坏,并进而影响到人体健康。电磁辐射是一种重要的能量流污染。电磁辐射按其来源可分为天然和人工两大类。现在环境中的电磁辐射主要来自人工辐射,天然辐射相对人工电磁辐射可以忽略不计。人工电磁辐射来自广播、电视、雷达发射设施、通信系统、电牵引系统、电器与电子设备及电磁能在工业、科学、医疗中的应用设备。

1电磁辐射影响环境质量的主要污染源

1.1通信系统

随着移动电话用户的增多,移动通信公司必然要建设更多的移动通信发射基站来扩大容量。移动通信基站的建设要求一定的高度,但是城市中的高层建筑物必定是有限的,随着高层建筑物顶部的空间被全部占用,越来越多的基站建在了5、6层高的居民楼顶上。再由于高层空间和选址的限制,有的建筑物上同时建有三家移动通信公司的基站。在泰州市就发现有的建筑物顶上同时建有联通公司、移动通信公司和世纪公司(CDMA)的基站。有的虽然没有建在同一个建筑物上,但是距离也很近,这必然要增加环境中的电磁辐射水平。虽然基站的发射功率并不大,一般只有十几瓦,但是基站的分布密度大,而且是24h连续发射的,有的基站距居民很近,所以移动通信基站对电磁辐射环境质量的贡献是不可忽视的。以泰州市联通移动通信公司为例,泰州市行政区域内共有基站399个,分布在市区的有144个,其中距居民不超过50m的就有38个,据联通公司上报的材料中得知,最近,有的基站就建在居民楼群中,已经引起了当地居民的关注。

1.2 声音、广播、电视发射系统由于接收机(无论是声音还是电视)的数量十分庞大,一个大城市中可能超过千万台。如果采取提高接收机灵敏度(像移动通信那样)的方法保证信号接收,从总体上看是十分不经济的。此外,由于电磁环境中的电磁噪声广泛存在,而声音广播与电视广播的接收带宽又都较宽(如调频广播带宽200kHz,我国PAL―D彩色电视广播带宽6.5MHz),如接收机灵敏度过高,很容易使信噪比降低,影响信号质量。所以在广播中都是采用高发射功率、低接收灵敏度的方案。例如,对于彩色电视接收机,在75Q阻抗输入条件下,图像通道噪波限制灵敏度:VHF频段250IxV,UHF频段350IxV;短波调幅广播接收机为一二百微伏;调频广播接收机为数十微伏(而移动通信接收机的灵敏度高达1IxV左右)。由于以上原因,广播发射机的功率都很大。对于中波、短波声音广播发射台,由于考虑到占地面积大,要求周围无高大建筑,以及电磁环境问题,所以多设置在城市郊区,周围人口密度不大。同时,由于中、短波广播的服务范围很大,也不存在把发射天线设置在市内的需要。由于发射天线所处之地,地广人稀,所以中、短波广播发射台对电磁环境的污染不是主要问题。同样原因,短波通信发射台也与短波广播发射台情况类似。中波一般不用于干线通信。调频声音广播的频段87.5~108MHz,我国电视广播的频率为共分为5个频段。由于在这些频段里,电磁波主要以空间波的形式呈直线传播,并且受高楼等建筑物的遮挡或反射。所以如要求服务范围较大,并且不偏向城市的某一部分,则必需提高发射天线塔的高度,而且天线塔的位置也应选在城市的较中心地区。这些位置周围往往人口稠密,加上发射功率较大,这使得调频、电视发射塔成为城市居民与电磁环境工作者关心的焦点之一。

1.3高压输(变)电系统

由于现在许多高压输电线路已经采用地缆形式,所以这里主要讨论高压变电系统。随着城市的发展建设,许多以前远离居民区的变电站已经被居民楼包围,再由于随着人民生活水平的提高,各种家用电器基本普及,这必然要造成城市用电量的增加,在城市中就要增加高压变电站的建设。而且随着送电压的增加,所造成的工频电磁场强和电磁干扰也越来越严重。值得注意的是我国电力部门已决定,220kV与110kV变电站将逐渐由城市的郊区转移到市区,以降低配电线路的损耗。500kV超高压线路建设规模正在不断扩大,超高压线路正逐渐成为电力系统的主干网络,基于我国人口众多,且人口和负荷都比较集中的国情,500kV线路进入城市近郊的人口密集区已不可避免。以泰州市为例,今年就要在市区新建220kV变电站5座。在郊区新建500kV变电站2座。高压变电站产生电磁辐射主要有电晕放电、绝缘子放电电磁噪声及其周围产生的工频电场。

2电磁辐射环境的防治对策

为了既能合理、有效地使用电磁辐射,又能保护环境,人们在产生或伴有电磁辐射的项目建设过程中应该采取预防为主的政策,建议在城市电磁辐射环境保护中应做好以下工作:

2.1产生或伴有电磁辐射项目建设单位应做好辐射的防护工作。建设单位在达到电磁辐射环境保护标准的前提下,应遵循“可合理达到尽量低”的原则,在建设地点的选择时应考虑尽量远离居民区,在建设工艺和仪器设备的选择等方面尽量减少电磁辐射的产生。

2.2进行有关电磁辐射基本知识和电磁辐射环境保护的宣传工作,使公众正确对待电磁辐射,既使公众认识到电磁辐射在人们日常生活、工作中所起的作用,又使公众能科学、有效地防护电磁辐射,避免公众对电磁辐射产生不必要的误解和恐慌。

2.3严格执行政策法规。严格执行国家规定的电磁辐射污染防治的政策法规是对各类电磁辐射源进行有效管理的前提。环境保护管理部门应严格遵守和执行《电磁辐射防护规定》和《电磁辐射环境保护管理办法》,认真履行建设项目环境保护审批手续,对污染严重、工艺设备落后、资源浪费和生态破坏严重的电磁辐射建设项目与设备,要禁止建设或者购置。

2.4电磁辐射控制技术的应用。应用控制电磁辐射的技术措施是防治电磁辐射污染的重要途径。(1)电磁屏蔽技术。电磁屏蔽技术的应用之一就是对高频电磁场的屏蔽,而且在抗干扰辐射方面,屏蔽是最好的措施。(2)高频接地。高频接地的作用是将屏蔽体(或屏蔽部件)内由于感应生成的射频电流迅速导入大地,使屏蔽体(或屏蔽部件)本身不致再成为射频的二次辐射源,从而保证屏蔽作用的高效率。(3)滤波技术。滤波是抑制电磁干扰的最有效手段之一。线路滤波的作用就是要保证有信号通过,并阻截无用信号通过。(4)植物绿化。一些树木对电磁能量有吸收作用,在电磁场区,大面积种植树木,增加电波在媒介中的传播衰减,从而防止人体受电磁辐射的影响。(5)使用电磁辐射防护材料。在建筑、交通、包装、衣着等很多方面,避免使用增强电磁辐射的材料如金属材料,它会增强电磁辐射作用,因此要合理使用电磁辐射防护材料,利用其对电磁辐射的吸收或反射特性,可大大衰减电磁场场强。

结束语

伴随着电磁技术带给我们巨大收益的同时,电磁辐射也充斥着我们的空间,破坏了良好的电磁生态环境,构成现代社会新的“隐形杀手”。因此对其研究分析,并提出防治对策具有重要的现实意义。

参考文献

第2篇

关键词:移动通信基站;电磁辐射;广播;监测

DOI:10.16640/ki.37-1222/t.2017.11.149

1 引言

随着移动通信网络规模的扩大和用户数量的增加,移动通信基站的数量不断增加。公众在充分享受现代通信设备为生活带来的便捷的同时,遍布各地的移动通信基站所产生的电磁辐射是否威胁人体健康,也逐渐成为各个运营商和公众争论的焦点。[1]公众对移动通信基站周边电磁环境安全性的关注、焦虑、冲突及相关投诉逐年上升。

但应注意的是,由于中、短波广播具有影响范围广、发射功率大、场强大的特征,且大中型城市普遍都有大型的中波广播发射台,中、短波广播是城市电磁辐射环境的主要贡献源之一。非选频测量仪很可能在测量基站电磁信号的同时也测到了中短波广播台信号,导致最终测值比基站电磁信号场强值偏高[2]。若基站监测时不区别、排除中短波信号的干扰,依照基站限值对包含中短波信号的基站电磁辐射监测值进行安全性评价,最终可能会得到基站电磁辐射水平不合格的错误结论。

2 监测方法

2.1 信号监测

实时监测当前测量环境中移动通信基站信号是否存在干扰信号,该干扰信号包括:中波信号或者短波信号;选取包括中短波频段和基站频段的综合电场探头,使该综合电场探头连接监测仪主机,得到综合电磁辐射监测仪;将综合电磁辐射监测仪垂直架设,使综合电磁辐射监测仪中的综合电场探头和监测仪主机的连线垂直于地面,记录该综合电磁辐射监测仪的垂直场强数据监测值;将综合电磁辐射监测仪水平架设,使综合电磁辐射监测仪中的综合电场探头和监测仪主机的连线平行于地面,记录综合电磁辐射监测仪的水平场强数据监测值;根据垂直场强数据监测值与水平场强数据监测值的变化幅度,监测当前测量环境中是否存在中短波信号。

2.2 干扰信号的判断

在监测到当前测量环境中存在移动通信基站信号的干扰信号时,分别测量当前测量环境中包含移动通信基站信号和干扰信号的综合场强以及干扰信号的干扰场强;计算垂直场强数据监测值与水平场强数据监测值的变化幅度;当水平场强数据监测值大于垂直场强数据监测值以及水平场强数据监测值存在任意一方向的最大值,且变化幅度大于设定阈值时,判定当前测量环境中存在短波信号;当垂直场强数据监测值大于水平场强数据监测值,且变化幅度大于设定阈值时,判定当前测量环境中存在中波信号;当变化幅度小于设定阈值时,判定当前测量环境中不存在中波信号和短波信号。其中,综合电磁辐射监测仪和专用电磁辐射监测仪均为非选频式宽带辐射测量仪。测量时采用绝缘支撑架;该绝缘支撑架用于架设综合电磁辐射监测仪和专用电磁辐射监测仪,以采集当前测量环境中的场强值;其中,绝缘支撑架包括:三脚架或者绝缘延伸杆。

2.3 干扰信号的监测

如果当前环境中存在中短波信号,则选取包括中短波频段的专用电场探头,使专用电场探头连接监测仪主机,得到专用电磁辐射监测仪;将专用电磁辐射监测仪垂直架设,使专用电磁辐射监测仪中的专用电场探头和监测仪主机的连线垂直于地面,记录专用电磁辐射监测仪的垂直短波场强数据监测值;将专用电磁辐射监测仪水平架设,使专用电磁辐射监测仪中的专用电场探头和监测仪主机的连线平行于地面,记录专用电磁辐射监测仪的水平中波场强数据监测值。

2.4 计算与评价

根据综合场强和干扰场强,计算移动通信基站电磁辐射场强,在监测到当前测量环境中存在中波信号时,选取综合电磁辐射监测仪的水平场强数据监测值作为中波综合场强测量值;在监测到当前测量环境中存在短波信号时,选取综合电磁辐射监测仪的垂直场强数据监测值作为短波综合场强测量值。其中,根据综合场强和干扰场强,计算移动通信基站电磁辐射场强,分别按照以下公式计算移动通信基站电磁辐射场强:

其中,Eb表示移动通信基站电磁辐射场;E1表示中波综合场强测量值;Em表示水平中波场强数据监测值。

其中,Eb表示移动通信基站电磁辐射场强;E2表示短波综合场强测量值;Es表示垂直短波场强数据监测值。

将计算得到的移动通信基站电磁辐射场强与标准场强限值进行比较,得到比较结果。根据得到的比较结果,评价移动通信基站电磁辐射场强是否符合国家电磁环境控制限值要求。

3 小结

本文介绍的移动通信基站电磁辐射的监测方法,与现有技术相比,其能够实现简单、快速、低成本地甄别基站监测过程中中短波广播的影响,减少检测人员工作量;并且,利用现有仪器及频段差异特性,通过间接计算得到基站准确测值,降低了监测成本;同时,排除了中短波信号的干扰以及中短波信号错误参与基站安全性评价,实现了准确、客观地评价通信基站单项照射剂量。

参考文献:

第3篇

【关键词】电磁辐射污染;环境评价;监督;管理

跨入21世纪人类在享受电磁技术带来现代化生活的同时,也受到电磁辐射产生威胁和危害。电磁辐射无处不在与我们“形影相随”,当它的能量超过一定限度造成污染,而电磁污染是一种不易被人感知且危害置后的能量流。如何评价和判定电磁污染,进而防范和控制其不良影响和危害,正是本文主要讨论的内容。

1 电磁污染的主要危害

在电子电路中任何交变电路都会向其周围空间放射电磁能,形成交变电磁场。交变电磁场中,变化的电磁场与磁场交替地产生,由近及远以一定的速度在空间传播,形成电磁波。在电磁波向外传播的过程中会有电磁能输送出去,这种现象称为电磁辐射[1]。电磁辐射分为天然和人为电磁辐射两类。人类在进化过程中,已适应天然电磁辐射,因此,环境保护所关注的电磁辐射主要是人为的电磁辐射。有指人类活动所产生脉冲放电、工频交变磁场、射频电磁的辐射[2],主要来源无线电广播、电视、微波通信、电力、铁路、民航指挥塔及飞机等各种射频设备发射的电磁波。频率范围宽广,影响区域较大,能危害近场区的人员。

1.1 电磁辐射对信号接收的干扰

射频强电磁辐射,可以造成通信信息失误或中断;铁路自控信号失误;飞机飞行误航;甚至造成导弹与人造卫星失控,电磁辐射会对有线通信设备产生干扰。

1.2 强电系统对弱电系统的干扰和危险影响

对广播、电视、通信系统构成极大的威胁,使图像、信号失真;使电子仪器、精密仪器不能正常工作。

1.3 空间电磁场对人体健康的影响

表现在损害中枢神经系统,头部长期受电磁辐射影响后,轻则引起失眠多梦、头痛头昏、疲劳无力、记忆力减退、易怒、抑郁等神经衰弱症,重则使大脑皮细胞活动能力减弱,并造成脑损伤;非热效应能减少眼部血流量,引发视觉障碍,导致视觉疲劳和不舒适;长期接触低强度微波的人和同龄正常人相比,体液与细胞免疫指标中的免疫球蛋白降低,使体液与细胞免疫能力下降。

2 电磁辐射环境评价标准和卫生标准

2.1 我国目前已颁布的电磁环境评价的标准

主要有《高压架空送电线、变电站无线电干扰测量方法》GB 7349-2002;《电磁辐射防护规定》GB 8702-88;《辐射环境保护管理导则》HJ/T 10.2-1996;《500kV超高压送变电工程电磁辐射环境影响评价技术规范》HJ/T 24-1998。

2.2 我国电磁辐射卫生标准及防护规定

2.2.1 《环境电磁波卫生标准》(GB 9175─88)

以电磁波辐射强度及其频段特性对人体可能引起潜在性不良影响的阈值为界,将环境电磁波容许辐射强度标准分为二级。

一级标准小于5V/m为安全区,在该环境电磁波强度下长期居住、工作、生活的一切人群,不会受到任何有害影响。

二级标准为中间区,在该环境电磁波强度下长期居住、工作和生活的一切人群可能引起潜在性不良反应;在此区内可建造工厂和机关,但不许建造居民住宅、学较、医院和疗养院等,已建造的必须采取适当的防护措施。

超过二级标准(12V/m)地区,对人体可带来有害影响;在此区内可作绿化或种植农作物,但禁止建造居民住宅及人群经常活动的一切公共设施,已有这些建筑应采取措施。

2.2.2 《电磁辐射防护规定》

国际非电离协会为了对公众有着良好的保护,比吸收率(SAR)取0.08w/kg剂量值制定国际标准。我国的《电磁辐射防护规定》标准进一步严格,规定在一天24h内,任意连续6min按全身平均的比吸收率(SAR)应小于0.02w/kg,相应于频率30M-3000MHz段电场强度限值为12V/m,为了更进一步加强管理,我国设定了普通项目环境影响评价管理值为5.4V/m,对应卫生标准中的一级标准为5V/m。

3 电磁污染源调查与环境监测

3.1 调查目的

为了快速开展治理工作,切实保护环境,造福人类,对电磁污染进行调查研究,有利于找准污染源和电磁污染分布规律,为评价和污染防治提供依据。

3.2 调查内容及程序

电磁辐射对生物体作用与场强、频率、作用时间与作用周期、与辐射源的间距、振荡性质、作业现场环境温度和湿度等因素有关。电磁场的生物效应随频率的加大而递增,危害程度微波>超短波>短波>长波;脉冲波>连续波[3]。所以首先调查主要射频设备的分布使用情况、发射频率范围和额定功率,周围现场环境、人口分布等情况;再进行布点与监测,电磁污染源产生的场可分为近场和远场,衡量场的大小用电场强度E和磁场强度H。在近场区(与源的距离小于波长的约1/6),E与H之间无固定关系,必须分别加以考虑;当与源的距离大于波长的约1/6的远场区域,E与H的比值波阻抗为定值,测量了电场,就可以得到磁场数据,每个测量部位应有五次读数可求出平均场强值;根据各操作位置的电场强度、磁场强度和功率密度按《电磁辐射防护规定》标准进行比较、评价,并绘制辐射图;进行综合分析后得出结论。

3.3 电磁辐射环境监测的主要任务是:

(1)对环境中电磁辐射水平进行监测;

(2)对污染源进行监督性监测;

(3)为征收排污费或处理电磁辐射污染环境案件提供监测数据;

(4)为编制电磁辐射环境影响报告书(表)和编写环境质量报告书提供有关监测资料,进行有关电磁辐射环境保护的监测;

(5)对环境保护设施竣工验收的各环境保护设施进行监测。

3.4 电磁污染源监测方法

监测方法:根据不同目的,为调查辐射源周围环境电磁波辐射强度,及其分布规律,常以辐射源为中心,在不同方位取点的方式进行测量,简称点测;为全面调查某地区环境电磁波的背景值及按人口调查居民人群所受辐射强度的测量简称面测。还有近区场强的测量和远区场强的测量。

测量仪器:可使用各向同性响应或有方向性电场探头或磁场探头的宽带辐射测量仪。近区场强仪、超高频近区场强测量仪、远场仪与干扰仪、微波漏能测试仪。

测量位置:辐射体附近的固定哨位值班位置及各辅助设施(计算机房、供电室等)作业人员经常操作的位置,测量部位距地面0.5m、1.0m、1.7m三个部位。

测量时间:在电磁污染源正常工作时间内进行测量,每个测点连续测5次,每次测量时间不应小于15s,并读取稳定状态的最大值。若测量读数起伏较大时,应适当延长测量时间等。

环境条件:应符合行业标准和仪器标准中规定的使用条件。测量记录表应注明环境温度、相对湿度。

4 环境电磁污染的监督管理

任何单位和个人在从事电磁辐射的活动时,严格执行《中华人民共和国环境保护法》、《电磁辐射环境保护管理办法》、《电磁辐射防护规定》等相关的法规,电磁发射设备必须严格按照国家无线电管理委员会批准的频率范围和额定功率运行;设备和屏蔽体的结构的合理设计,元件与布线要合理;实行电磁屏蔽、接地等技术衰减源辐射或泄漏;制定防护措施,认真做好预测和测量并根据相关标准的限值确定电磁辐射危害区域,实行防护墙的设置距离应使墙外的电磁辐射被衰减到安全值;在可能产生危害的地方,应确保辐射危险警告标志的设置和使用;不仅需要设置永久性标志,而且在雷达辐射时还应该在某些区域,设置临时性禁止通行的标志;接受环境保护部门对其电磁辐射环境保护工作的监督管理和检查,做好各项电磁辐射活动污染环境的防治工作。

除加强对现有电磁辐射污染源的管理外,对新建、扩建的电磁设备严格按环境管理程序进行申报、登记、环境评价和验收。从事电磁辐射活动的单位和个人,必须对电磁辐射活动可能造成的环境影响进行评价,编制环境影响报告书(表),并按规定的程序报相应环境保护行政主管部门审批[4]。电磁辐射建设项目和设备环境影响报告书(表)确定需要配套建设的防治电磁辐射污染环境的保护设施,必须严格执行环境保护设施“三同时”制度。

5 结论和建议

管理部门加强电磁兼容性设计审查与管理,认真做好危害预测与分析;对本地区的新建电磁辐射设施的选址应合理规划、科学布局;对产生电磁辐射设备尽量避开人口稠密的区域;对于那些不得不安装在城区的设备,应当采取有效的防护措施避免电磁辐射污染的产生。

加强立法和执法监督,建立和健全电磁辐射建设项目的环境影响评价和审批制度。重点抓好城市市区和市郊的卫星地面站、移动通信、集群专业网通信、发射台站的审批验收工作和监督工作。

加强电磁辐射污染的环境监测工作。地市级辐射监测站对城市居住区进行重点监测和污染源普查,为电磁辐射污染的防治处理工作提供方向。

广泛开展宣传教育,大力普及电磁辐射对环境污染及危害的知识,让社会参与监督,调动各相关部门的积极性,控制和减少环境电磁辐射污染和突发事件产生。

【参考文献】

[1]李雅轩,袁秀英,刘南平.电磁辐射对人体的危害及预防[J].工业安全与环保,2003,29(9):22-24.

[2]王剑,陈强,杨起俊.电磁辐射污染及防治[J].山东环境,2000(1):42.

第4篇

[关键词]家用电器;电磁辐射;预防措施

中图分类号:F426.61 文献标识码:A 文章编号:1009-914X(2016)15-0022-01

前言:家用电器种类较多,对于不同家用电器辐射的研究不仅可以使人们更好地认识和了解电磁辐射的产生,然后针对性地采取防护措施。为了更详细地研究家用电器辐射的产生,本文通过对于一些家用电器电磁辐射的实际测量,根据各类家用电器的不同辐射程度以及强度给出一些指导性的防护措施,尽可能减少电磁辐射对于人体健康的危害。

1.家用电器的电磁辐射的基本知识

1.1 电磁辐射的产生途径以及来源

通过对各类家用电器电磁辐射的实际测量之后,我们可以发现不管是体积较大的冰箱还是手机、收音机类的小型电气设备,其都会或多或少地产生电磁辐射。这些电磁辐射可以分为电离式辐射和非电离式辐射,由于其质量、体积以及能量的不同,这些电磁辐射对于人体的影响又有所不同。一般来说,家用电器辐射的主要来源有电视机、手机或移动电话、微波炉以及电脑等等。其中,电视机电磁辐射主要来自于其电子显像管,电视机在形成图像时,电子显像管需要产生能量较高的电子束,在实际扫描过程中就会产生X射线以及其他电磁波,虽然这类辐射的数量较小,但是其对于人体眼球的危害还是存在的。电磁炉作为人们日常使用的电气设备,其主要是通过电磁感应从而产生涡流,致使锅底变热而工作的。在日常生活中,由于电磁炉功率较大,所以其产生的电磁辐射也会随之增加,如果在不采取任何保护措施情况下,一旦照射剂量大到一定值之后,人体就会产生热量,这对人体也会间接产生危害。

1.2 电磁辐射对人体产生的危害

不管是体积较小的家用电器还会大型家用电器,人体与其之间的距离直接决定了电磁辐射对人体危害的程度。一般来说,当人体与家用电器之间的距离越短,人体受到电磁辐射的危害更多,通过数据研究我们可以发现,当人体长期处于电磁辐射较为严重的区域,自身生物组织就会产生电解质的振动,间接产生涡流导致自身组织的产热,体温就会有所上升,组织器官由于温度的上升就会产生一些不良反应,长期处于电磁辐射区域的人体在各个系统的调解与恢复方面都会存在一定的问题。具体表现为神经系统上的精神不集中、头晕头痛等,免疫系统上就会出现免疫能力降低,对于疾病的防范程度有所降低,生殖系统上会出现生殖细胞不活跃等等问题。电磁辐射对人体危害较为明显,只有通过必要的防护措施才能较好地保护人体,所以我们应该认识电磁辐射的基本知识,做好防护措施以减少由于电磁辐射对于人体产生的危害。一般电磁波分为两个等级,射频电磁波的频率一般为30 MHz~3000 MHz,在这个范围内的标准限值为400 mw/cm2。常见家用电器电磁射频一般在30 MHz一下,其属于低频辐射。实际测量表明, 正在使用的电磁炉正前方 0.1m 处磁场强度达8.70μT,即使远离到0.3m以外, 也有1.00μT 。

1.3 电磁辐射对于人体的作用原理

电磁辐射作用人体的主要方式有两种,其中包括热效应以及非热效应作用方式。人体细胞的原子和分子从微观角度来看,其既是电介质,同时也是磁介质。

根据研究我们可以发现,当电介质处于在电场中就会产生极化现象,而磁介质在磁场中又会产生磁化现象,所以当人体长期处于电磁辐射中,人体细胞中的分子与原子就会反复极化和磁化,而极化和磁化又会导致人体细胞分子间的摩擦,所以就会导致热能的产生。同时当电介质长期处于电场中时,人体局部就会产生涡流现象,这就会导致人体发热。非热效应主要是电磁辐射对于人体系统的破坏和损伤,当人体长期处于电磁辐射中,细胞活跃程度就会有所降低,人体就会出现类似于头晕、头痛、记忆力下降等等问题。

2.电磁辐射预防措施的研究

2.1 针对家用电器的预防措施

各类家用电器电磁辐射的源头和辐射方式具有不同的特点,电视机产生电磁辐射的主要来源是其显像管,通过电子束的投射就会间接产生X射线,微波炉辐射方式主要是通过微波辐射的方式。针对家用电器电磁辐射的研究要从源头着手,所以我们要对于家用电器辐射进行妥善处理,及时采取预防措施。电视机、电冰箱以及空调等家用电器由于其与人们的生活密切相关,所以其辐射量的大小直接决定了其对于人体的危害,生产厂家在设计家用电器时要严格控制电磁辐射量,电器的辐射程度要根据国家标准进行制定。针对家用电器电磁辐射的预防不仅仅包含电器的设计阶段,在具体使用时,使用者也要采取相应的预防措施,例如在家用电器的放置地点要合理挑选,选购者在选择时一定要选择符合国家标准的家用电器。一般来说,家用电器不能扎堆放置,要保持一定的距离,当然,电器种类的不同,其电磁辐射量也会产生一定的出入。超标的、扎堆放置的家用电器对于人体会产生严重危害,当然,消费者在购置家用电器之后,一定要仔细浏览电器使用说明书,详细了解此电器电磁辐射对于人体的危害以及防护措施。例如在使用微波炉时,其主要辐射来源于炉门的电磁辐射外泄,所以在具体使用时,使用者一定要保持微波炉的门缝的卫生以及安全,当微波炉长期不使用时,一定要关闭电源,减少因为待机而产生不必要的电磁辐射。

2.2 家用电器使用者的预防措施研究

家用电器由于与使用者长期处于一个环境,所以针对家用电器使用者对于电磁辐射的预防具有非常重要的意义。家用电器使用者在使用家用电器时一定要严格按照家用电器的使用手册操作,同时避免长时间地与家用电器进行接触,例如在使用电脑或电视时,人体一定要与其保持适当的距离,在使用时间上也要进行严格地控制,一般来说时间最好在1个小时之内比较好,在长时间地学习与工作之后,使用者一定要进行休息。在卫生方面,使用者在使用家用电器时由于各类荧光屏的照射可能会出现皮肤方面的问题,同时荧光屏也会产生大量的静电,所以在人体表面就会出现大量的灰尘,因此,家用电器使用者要及时洗脸洗手,保持个人的卫生。在家用电器长期处于不使用的状态时,家用电器一定要及时关闭,不能一直使其保持待机状态,较弱的磁场有时也会产生辐射的积累。当然,家用电器使用者的健康一定要从自身做起,使用者要合理饮食,保持健康的生活方式,这样在免疫方面才能具有一定的能力。

2.3 掌握电磁辐射的测量方法

为了进一步地使家用电器使用者掌握电磁辐射的相关知识,在家用电器实际使用中,使用者也要能掌握一定的电磁辐射的测量方法。家用电器一般包括电视、电冰箱、空调等,其特殊性又决定了其对于人体的危害很难察觉,所以掌握并了解电磁辐射的测量方法对于使用的健康保护具有非常重要的意义。电磁波一般分为两种,其中包括射频电磁波以及工频电磁波,而射频电磁波的频率主要在30 MHz一3000 MHz,家用电器的辐射频率一般在在30 MHz以下,其属于低频辐射。在实际电磁辐射的测量方法上,我们一般分为3类,其中有TC-1160,LZT-1120和NBM-550。不同的测量方法对于电磁辐射的测量值又会产生一定的出入,所以正确的测量又具有非常重要的影响。

3.总结

随着社会经济的不断发展,家用电器逐渐称为现代人们的必要生活工具,由于家用电器其本身的电磁辐射的影响,其对于人体的危害具有非常重要的研究价值。因此,家用电器使用者必须严格按照标准使用电器,做好自我保护最减少电磁辐射对于人体的危害。

参考文献

第5篇

【关键词】移动通信基站;环境影响;电磁辐射强度;话务量

【分类号】:TN929.5;X591

移动电话给人们带来无限的沟通便利和办公高效率,为满足人们的通信需求,必须大量的建设基站,增加覆盖面积,而基站运行时其发射天线向周围空间发射电磁波,使周围电磁辐射场强度增高,会对周围环境造成电磁辐射影响。 随着人们环保意识的增强,移动电话基站的电磁辐射成为人们越来越关心的问题。

1 电磁环境与电磁辐射

电磁环境EME是指存在于给定场所的所有电磁现象的总和,它包括自然的和人为的,有源的(直射波)和无源的(反射波),静态的和动态的,它是由不同频率(f)的电场(E)、磁场(H)组成。变化的电场与磁场交替在空间传播,这种通过空间传播的、有用的或不希望有的电磁能量称为电磁辐射。电磁辐射可能引起装置、设备或系统性能降低或对有生命或无生命的物质产生损害作用,这种现象称为电磁辐射污染。

2 移动通信基站的电磁辐射

基站天线按照方向性可以分为全向天线和定向天线。全向天线在水平方向图上表现为360°,都均匀辐射。全向天线在移动通信系统中一般应用于郊县大区制的站型,覆盖范围较大。定向天线在水平方向图上表现为一定角度范围辐射,一般应用于城区小区制的站型,覆盖范围小,用户密度大,频率利用率高。天线的发射能力通常用天线增益来表示,相同输入功率的条件下,天线在某方向某点产生的功率密度与理想点源同一点产生的功率密度的比值,通常用dBi表示。

3 基站天线电磁辐射对环境的影响

为了解移动通信基站电磁辐射对环境的影响,我们通过现场监测的方法对此进行研究。本次我们选取的GSM网定向移动基站均位于山东省某城市中心区域,运行状况正常且话务量较大。

3.1 监测布点

按照《辐射环境保护管理导则―电磁辐射监测仪器和方法》(HJ/T10.2-1996)[1]、《移动通信基站电磁辐射环境监测方法》(试行)[2]的布设原则,在天线主瓣方向距离天线楼顶投影点5m、10m、15m、20m、30m、50m的水平及垂直距离上布设点位。

3.2 监测方法

依据《辐射环境保护管理导则―电磁辐射监测仪器和方法》(HJ/T10.2-1996)[1]、《移动通信基站电磁辐射环境监测方法》(试行)[2]的要求进行,监测仪器距离地面高度1.7m。在基站正常工作时间内进行测量,监测频率为每个监测点位1次/h。每个监测点每次连续测5次,每次测量时间不小于15秒,并读取稳定状态下的最大值,若测量读数起伏较大时,则适当延长测量时间。

3.3 标准

《电磁辐射防护规定》 ( GB8702- 88) 中公众总的受照射剂量限值规定。在每天24h 内, 电磁辐射场的场量参数在任意连续6min 内的平均值应满足下列要求。频率范围: 30~3000 MHz, 电场强度: 12v/m, 功率密度: 0.4W/m2。

《电磁辐射环境影响评价方法和标准》(HJ/T10.3-1996)中规定,为使公众受到的总照射剂量小于GB8702-88的规定值,对单个项目的影响必须限制在GB8702-88限值的若干分之一。在评价时,对于国家环境保护总局负责审批的大型项目可取GB8702-88中场强限值的1/ ,或功率密度限值的1/2。其他项目则取场强限值的1/ ,或功率密度限值的1/5作为评价标准。因此本次单个GSM/TD-SCDMA基站电磁辐射功率密度评价标准为0.08W/m2,电场强度评价标准值为5.4V/m。

3.4 监测仪器

EMR-300电磁辐射分析仪,测量频率范围100kHz~3GHz。

3.5 监测时段 8:00~20:00。

3.6 监测结果

定向GSM基站采用三扇区,每个扇区天线夹角多为120度,我们将正北扇区标记为A扇区,顺时针方向,依次标记为B扇区和C扇区。监测结果见表1。

表1 某市移动通信基站现场监测结果

序号 基站名称 高度(m) 扇区 测量位置(m) 测量结果(×10-4W/m2) 测点说明

1 1号站 18 A 5 7 地面测点

A 10 11 地面测点

A 15 9 地面测点

A 20 21 地面测点

A 20 80 居民楼302室

A 20 531 居民楼502室

A 20 1295 居民楼602室

A 30

A 50

2 2号站 20 C 5 11 地面测点

C 10 12 地面测点

C 15 47 地面测点

C 20 46 地面测点

C 20 45 居民楼202室

C 20 143 居民楼502室

C 30 39 地面测点

C 50 18 地面测点

3 3号站 25 B 5 5 地面测点

B 10 5 地面测点

B 15 23 地面测点

B 20 26 地面测点

B 30 61 地面测点

第6篇

关键词:移动通信 电磁辐射 现状调查

中图分类号:TN929.53 文献标志码:A 文章编号:1674-098X(2014)05(a)-0067-02

1 调查方法

1.1 调查对象和时间

本次调查选择了乌鲁木齐市市区40个正常运行移动通信基站进行电磁辐射水平监测。以上基站分布在乌鲁木齐市天山区、沙依巴克区、高新(新市区)、水磨沟区、米东区和经济技术开发区(头屯河区)等主要城区。调查时间为2014年2月。

1.2 典型基站的选取原则

典型基站的选取遵循以下两个原则:(1)基站所处环境的不同状况,如住宅区、商业区、学校、医院等;(2)基站不同的架设方式,如楼顶抱杆、楼顶支架、铁塔、美化塔等。

1.3 监测仪器

本次监测使用的仪器为德国Narda Safety Test Solutions公司生产的NBM-550电磁分析仪,该仪器为综合场强仪,仪器在检定有效期内。仪器参数见(表1)。

1.4 监测方法及布点

依据HJ/T10.2-1996《辐射环境保护管理导则-电磁辐射监测仪器和方法》[1]和《移动通信基站电磁辐射环境监测方法(试行)》[2]等相关标准规范的要求进行监测。监测点位分为地面测点(按不同距离)和敏感建筑物室内测点(按不同层高),以基站发射天线为中心,沿其主辐射方向,按照间隔10 m布设监测点,依次监测至50 m处,测量距地1.7 m处的功率密度;当主辐射方向50 m内有敏感建筑物时,在建筑物室内布点。

1.5 数据处理

每个监测点连续测量5次,每次测量时间不小于15 s,读取稳定状态的最大值。取5个测量数据的平均值作为该点的监测结果。

1.6 评价标准

《电磁辐射防护规定》[3](GB8702- 88)中要求,电磁辐射公众照射导出限值应不超过40 μw・cm-2,同时要满足《辐射环境保护管理导则-电磁辐射环境影响评价方法和标准》[4](HJ/T10.3-1996)中规定的:单个项目电磁辐射管理限值应不超过8 μw・cm-2要求,本次调查执行8 μw・cm-2的评价标准。

2 调查结果

监测结果统计见表2和表3。

3 数据分析

从监测数据看,乌鲁木齐市市区移动通信基站地面电磁辐射水平最大值为0.005~3.474 μw・cm-2;敏感建筑物室内电磁辐射水平为0.059~1.224 μw・cm-2。所有监测点位的功率密度均低于《辐射环境保护管理导则-电磁辐射环境影响评价方法和标准》(HJ/T10.3-1996)中单个项目电磁辐射管理值8 μw・cm-2的评价标准。

4 结语

目前,乌鲁木齐市市区移动通信基站电磁辐射水平符合国家规定的限值标准,不会对周围环境产生电磁辐射污染,也不会对人们产生电磁辐射危害。

参考文献

[1] HJ/T10.2-1996,辐射环境保护管理导则-电磁辐射监测仪器和方法[S].

[2] 移动通信基站电磁辐射环境监测方法(试行),环发[2007]114号,国家环境保护总局[S].

第7篇

Abstract: The measurement scheme of public exposure to environmental electromagnetic radiation of Yan'an city was designed, and the electromagnetic radiation database system was based by using Visual Foxpro 6 database software for measurement result, finally analyses the measuring data.

关键词: 电磁辐射;辐射场;数据库

Key words: electromagnetic radiation;radiation field;database

中图分类号:TP39 文献标识码:A 文章编号:1006-4311(2013)07-0210-02

0 引言

随着科学技术的发展,电磁辐射广泛应用于广播、电视、通迅等领域,推动了科学技术的发展和人类进步,但是电气电子设备的大量使用使人类生存空间的电磁场强度迅速增大,过量的电磁辐射会危害人体健康,电磁辐射被认定为造成公害的主要污染物之一[1]。我国许多大中城市也相继展开了对城市市区电磁辐射的调查研究工作。本文笔者在2012年也对延安市区公众暴露电磁辐射进行测量,并建立了延安市区电磁辐射数据库系统。

1 电磁辐射的测量

1.1 测量仪器 工作人员运用先进的PMM8053P非选频式电磁辐射分析仪,实地测量延安市市区公众暴露环境电磁辐射水平。具体运行情况由PAD及相关测控软件进行控制,并与探头和光电数据处理器连接,操作方便,以国内相关标准为依据对射频进行采样测量。用PMM8053P分析仪进行实地测量的过程中,PAD和多种频段的测量探头可以配合使用。采用EP2330S射频探头,将测量精度设定为0.3V/m,对包括手机基站、电磁炉、微波炉、电视、电台和广播等多种频段进行实测,以达到环境监测的基本要求。

1.2 测量布点方案及结果 本次针对延安市区公众暴露环境的测量,依据“一般电磁环境”布点方法进行布点[2]。延安市区的地貌环境比较复杂,长、宽布局非常特殊,城区四面环山,平均宽度大致为0.5Km,地域狭长,河流、公路并行,公路两侧人口分布比较集中。在4条公路主干线上布设测量点,各点间距设计为1Km,将城区划分成多个小方格,测量点就设在每个方格的中心点上,更换不同探头测量了不同频率范围的场强值,最后用非选频探头直接读出测试点的综合场强值。综合场强测量结果见表1。

2 数据库建立

微软公司于1998年推出了Visual Foxpro 6.0可视化数据库管理系统。该系统是基于Windows操作系统而设计出的小型数据库应用系统,它的面向对象程序设计与使用对象的操作要求更为贴近。通过Visual Foxpro 6.0来设置数据库结构,具体内容包括:①数据库结构设计;②数据表结构及关系设计;③表单设计;④查询设计;⑤菜单结构设计;⑥主程序的编制;⑦通过项目管理器编写应用程序并建立用户界面;⑧系统测试。项目管理器属一种组织工具,它能按既定顺序及逻辑关系来组织系统文件,工作人员通过它运用可视化的方法途径来管理数据表单及数据库。设计该数据库结构时,先组建项目文件“dcfs.pjx”,将系统文件存储于“dcfs”目录中,并根据“data”“form”“class”“report”“others”等文件类型进行分类储存,直观、明朗地展示出了整个开发流程。

在下文中,笔者将一个测量点的实测数据作为分析对象,对数据库结构及其构建过程进行详细说明。首先,建立一个项目文件“dcfs.pjx”在其中建立数据库“dcfsl.dbc”并建立表“dcfssjl.dbf”、“cqypltl.dbf”,电磁辐射数据表1与场强与频率曲线图表1分别通过这两个数据表表示。在表“dcfssjl.dbf”中加入字段;测量点,温度,湿度,频率范围,辐射强度,备注。对字段的宽度、类型进行设置后建立测量点的主关键字。同样在表“cqypltl.dbf”中加入字段:测量点,场强与频率曲线,设测量点为主关键字,接下来在数据库“dcfs1.dbc”中通过关键字测量点按照一一对应的顺序建立“dcfssjl.dbf”、“cqypltl.dbf”两个数据表,同时按要求设置参照完整性,一个比较完整的数据库“dcfsl.dbc”便由此产生。根据上述编程模式,用相同的办法就能在项目文件中建立其他测量点的电磁辐射数据表和场强与频率曲线图;再参照已建成的数据库完善数据浏览表、数据查询表和数据维护表,使系统具有数据显示、数据更新、数据查询以及数据维护等功能。

3 数据分析

《环境电磁波卫生标准》(GB 9175-88)公众暴露导出限值标准规定,一级(安全区)电场强度小于5V/m,二级(中间区)电场强度小于12V/m[3]。本次设定的测量点总数为38个,A4点测得的综合场强数据在所有测点中是最大的,最大值是6.458V/m。工作人员进行实地勘察后发现,广播电视转播站、通信基站就设在A4测点的周边,这是该测点综合场强达到最大值的主要原因。即使如此,但该点数值仍低于二级限值。A8、C1、D1测量点的测量值大于1小于2.3,且这三点都集中在延安市中心,说明延安市中心的综合场强较其它区域高,但仍低于一级限值。此次实测数据表明,目前延安城区整体的公众暴露电磁辐射环境较为清洁。

参考文献:

[1]庄振明,谢咏梅等.南京市城区电磁辐射水平调查[J].中国辐射卫生,2008(2).

第8篇

关键词:电磁辐射;环境监管;策略探析

电磁辐射既是一种资源也是一种环境污染物,而且还具有较强的隐蔽性能,从而也就让环境监管难度变得更加困难。在我国,主要是运用双轨监督和分级审批的方式来应对豁免水平之上的电磁辐射体,也就是借助于国家和省级环境保护相关部门进行审批,监督权交由行业主管部门来实施。有关基站电磁辐射具有一定的特点,如果处理不当,不仅会造成非常严重的污染危害,而且也会给我国的经济发展造成严重损失。

一、有关基站电磁辐射特点

移动通信基站天线大都是呈现一种均匀的平面阵、直线阵或者圆阵,在有效组成成分当中,基本半波振子扮演了极为重要的角色。通常情况下,将2D2/λ的距离作为天线近场距离远场的分界判定准则,当中“D”表示天线尺寸的最大值。工程上900MHzGSM是最为典型的一种基站定向天线,以此为例,远、近场分界距离大致在10米,因此,基站天线一般情况下都是处在天线的近场内天面上。从环境保护视角上来看,移动通信基站远场电磁辐射水平最为常用的是理论预测方法,但基于近常评估期间,使用的最为普遍的测量方法为现场测量方法。针对理论预算完成相应的计算工作时,通常是用微波远场轴向功率密度计算公式加以计算。由于计算公式的复杂程度较高,本文不对其进行详述。如果根据一般角度分析,基于GSM以及WCDMA等系统进行基站远场电磁辐射水平估算过程中,通常采取的方法为天线轴向电磁辐射水平测量;而针对于TD-SCDMA系统基站时,由于其自身具备智能天线,与此同时还不存在固定模式的发射方位;因此,基于系统满负载监测过程中,以及多波束赋形监测过程中,通常会采取估算电磁辐射水平的方法[1]。若以较为典型的GSM、CDMA基站为例,它的电磁辐射水平、高差以及水平距离之间的关系为:离天线水平距离15m以外的区域电磁辐射水平小于《电磁辐射防护规定(GB8702-1988)》中0.03~3GHz频段公众照射功率密度导出限值40W/cm2,随着高差的增加,上述距离逐渐减小。此外,据相关的调查显示,广东广州市主城区域移动通信基站周边,基于公共区域,电磁辐射水平通常是百分之八十;但处于0.80W/cm2内,大致为94%,则在4.0W/cm2以内。介于此,我们能够看出,移动通信基站周围环境中电磁辐射水平并不是很高。

二、有关基站电磁辐射防护与环境监管的策略探析

首先,一般情况下,公共场所和居民楼相对比下,前者天面借助于加锁。设立警示牌,而且还有专人管理等方法,通过这些方法能够有效的预防群众进入到天面中,相对于居民楼天面而言,公共场所天面群众的活动可能性要小很多[2]。介于此,在架设基站的时候,应该更加倾向于选择公共场所。因为基站天线周围都会伴随着非常高的电磁辐射水平且都是在天面上集中,而居民楼天面所处地区很多居民都能够轻易到达,所以针对于高于电磁辐射水平管理目标值的相关基站,应在整改时尽可能的不借助于加锁的方式,而应该借助于基站发射功率来约束天线的架设位置、角度以及高度等,从而让公众能够到达的天面区域中所存在的电磁辐射水平在管理目标值内。其次,对存在较高电磁辐射水平的天面各个监测点位的站点,应该对其周围的电磁辐射源进行着重调查,并及时实施分频测量;针对于共建共享站,倘若存在基于监测点位当中的电磁辐射水平要远远高于项目管理所设定的目标值的情况下,那么则需针对天面上每一个基站的信息进行深入分析、评估,进一步明确分频测量方法及成果。第三,要明确的要求验收基于验收环节,需明确的内容包括:(1)时基站变更的数量;(2)是不是属于共建共享站;(3)天线属于何种类型,天线采取何种架设方式;(4)基站所处区域的类型以及基站变更的发射机参数类型以及应如何处理未验收的站等方面;严格规范典型站的抽测比例和典型站的选取原则。第四,针对基站发射功率来说,基于环评以及验收批复过程中,需明确的是绝对不可高于核准功率。倘若需对天线角度进行调整,并对相关功率进行调整,则需做好该基站环境的电磁辐射水平的检测工作,并交由相关的环境保护机构进行备案和记录。第五,从基站的建设性质的视角上来看,尤其是对界定扩建、改建以及技术改造等进行明确的过程中,将对基站的各个参数进行填写的过程中,应该保证参数的规范性和正确性,在改建或扩建基站的过程中,应该在基站信息表中记录好改建或扩建之前的基站信息。最后,要详细的解释室内基站和微蜂窝基站分布的原因,并明确给出能否可以将其设为评价对象,如果需要评价,则应该严格的规定它的监测和评价内容;倘若对室内分布基站完成了相对应的评估,同时对微蜂窝基站完成了相对应的评估,那么基于验收监测期间,应该明确规定是否需要对其进行验收,如需验收,验收方法选择哪一种[3]。

三、小结

随着当下相关基站的迅速发展,人们在对其所带来的便利进行享受的同时,也更加重视电磁辐射对环境和人体健康所带来的危害。因此,只有国家或省级环境保护相关机构对电磁辐射水平做到严格监测,在建设、规划和维护相关基站的过程中,严格规范电磁辐射防护措施的实施工作,落实贯彻环境保护意识,才能让公众和环境得到更好的保护。

作者:吴俊 单位:成都理工大学核技术与自动化工程学院

参考文献:

[1]张艳春,晁晓会,耿德军,贺金龙,彭燕,吴永红,李志慧,高艳,李雨,张成岗.复杂电磁环境作业人员对电磁相关知识的认识情况分析[J].军事医学,2014,01:57-61.

第9篇

关键词:TD-SCDMA 基站辐射 智能天线 安全防护

中图分类号:TN929.5 文献标识码:A 文章编号:1007-9416(2013)07-0041-02

1 引言

随着移动通信的快速发展,城市内的移动通信基站分布越来越密集,人们一方面为了保证通话质量,希望基站越多越好,另一方又担心基站辐射问题,移动通信基站电磁辐射已经成为公众关注的焦点。目前,国内外对GSM基站的电磁辐射研究已经积累了相当多的经验和研究成果[1-3],TD-SCDMA是建立在我国自主知识产权基础上的3G技术标准,其研究尚未在国际上铺展开来,国内对其电磁辐射的理论研究较少,尚不成熟。TD-SCDMA基站采用的通信技术与GSM基站具有较大的差别,其中智能天线是影响TD-SCDMA基站电磁辐射的主要因素之一,通过研究智能天线不同下倾角、挂高情况下,基站周围辐射场的变化规律,找出降低电磁辐射场强的方法,为环保管理部门提供理论及科学依据,具有现实的意义。

2 传统电磁辐射预测模型的修正

我国对基站电磁辐射的研究相对较晚,但是关于电磁辐射环境问题得到社会高度重视。目前,我国的电磁辐射环境监测主要依据国家环境保护局的国标《电磁辐射防护规定》(GB8702-88)和卫生部的国标《环境电磁波卫生标准》(GB9175-88)等标准。其中,《辐射环境保护管理导则——电磁辐射环境影响评价方案与标准》[4](HJ/T103-1996)中提供了电磁辐射预测模型公式,可以对基站电磁辐射进行理论估算,公式如下:

式中,Pd为远场轴向功率密度,W;P为设备功率,W;G为天线最大辐射方向的功率增益,r为测量位置与天线轴向距离。

参照公式(1),环境保护部门在管理过程中,通过对TD-SCDMA基站周围电磁辐射值的测量,发现理论预测值与实际监测值差异较大,表明传统的电磁辐射预测模型不再适用于TD-SCDMA制式,该现象的存在还有可能引起公众对电磁辐射更大的恐慌,长此以往也不利于环保部门开展工作及社会和谐发展。

智能天线相较于传统天线,最大的特点是方向图可控,实现了对移动台的定位。针对TD-SCDMA制式中智能天线的使用,对公式(1)进行修正[5]:

其中为垂直面上与天线轴向的夹角,为水平面上与天线轴向的夹角。为归一化功率方向函数(天线轴向时,其值取1)。经修正,式(2)也可以计算远场区非轴向的功率密度。

在实际环境中使用的天线均安装在较高的位置,并有一定的下倾角,为此需对天线的辐射模型进行进一步的修正。设天线的挂高为H,下倾角为θt,那么距离天线的任意水平距离时,可以得到此时该点偏离天线主瓣主轴方向的角度θz为:,当测量点距离天线的水平距离大于天线主轴与水平面交点的距离r0时,说明观测点所在位置已偏离天线主瓣,天线辐射随r的增大显著减小,故可忽略不计。

3 TD-SCDMA基站电磁辐射的分布特征

TD-SCDMA智能天线的波束分为广播波束和业务波束,广播波束实现了对整个小区的覆盖,业务波束则针对移动用户形成定向跟踪波束。

下面针对8单元均匀线阵形成的定向波束对TD-SCDMA基站周围电磁辐射分布进行仿真分析。

3.1 不同高差h的辐射分布特征

距天线轴向水平间距d=5m;垂直方向距离地面的高度,即高差h(m)。高差h不同时,TD-SCDMA基站周围的电磁辐射分布预测曲线图如图1。

由图可知,小于10m的近场范围内(天线口径取1.2m时,近远场分界线为19.3~19.4m),电磁场变化复杂,波动较大。由于天线主瓣及旁瓣、楼层的阻挡、吸收等因素的影响,电磁辐射值先呈现增大趋势,出现最大值后迅速衰减,并趋于背景值。

3.2 不同水平间距d的辐射分布特征

距天线轴向水平间距d(m),高差h=8m。水平间距不同时,TD-SCDMA基站周围的电磁辐射分布预测曲线图如图2。

由图可知,基站电磁辐射值随着轴向测试点d的增大而增大,出现最大值后呈指数衰减趋势,28m左右趋于背景值水平。

3.3 不同下倾角θt的辐射分布特征

距天线轴向水平间距d=5m;高差h=8m。下倾角不同时,TD-SCDMA基站周围的电磁辐射分布预测曲线图如图2。

由图可知,近场区范围内同一测量点,基站电磁辐射值随着天线下倾角的增大而增大,出现最大值后呈指数衰减趋势,迅速趋于背景值水平。

4 仿真结果分析

参照GB8702-1988中规定,TD-SCDMA基站的公众照射导出限值应小于0.08W/m2,通过修正后的电磁辐射预测公式仿真可知,基站电磁辐射水平随距离呈指数衰减,安全防护距离约为28m左右。

5 电磁防护措施

由上述研究分析可知,可以通过改变天线俯仰角,或提高天线挂高等措施使得电磁辐射迅速衰减至背景值,还能进一步减小安全防护距离。对于不能对天线进行改变的楼顶或铁塔天线可以进行楼顶关闭或设置警告栏等管理措施。

6 结语

上述预测值为理想条件下的TD-SCDMA基站电磁辐射的理论预测值,实际基站周围的辐射环境相对复杂,受到环境、功控、基站设备配置等因素的影响,后期研究应将话务量、传播损耗、天线增益等因素考虑在内,使预测更符合实际环境。准确的电磁辐射预测模型可对移动通信工程建设提供科学指导,为电磁辐射环境评价提供有力证据,做到预防为主,防治结合,具有重要指导性意义,也将是下一阶段电磁环境保护的工作重点。

参考文献

[1]张海鸥,潘超,夏远芬,王圣,田立泉.移动通信基站电磁辐射时空分布及衰减特征[J].电力环境保护,2009.25(4):55-57.

[2]赵玉峰.现代环境中的电磁污染[M].北京:电子工业出版社,2003:2-4.

[3]林少龙,蔡贤生.移动通信基站天线设置与电磁辐射影响分析[J].中国无线电,2005(05):38-39.

第10篇

【关键词】输电线路;电磁辐射;环境影响

0.前言

近年来,随着我国城镇化进程的推进和城市用电量的增多,高压输变电设施开始引入城区并不断的增多。由于对相关知识的缺乏,使得生活在高压输变电设施附近的人们对其产生的电磁辐射产生一定的恐惧性,高压输电线路所产生的工频电场强度、工频磁场越来越引起人们的重视。本文结合江苏某输电线路工程实例,测量及分析了110kV架空输电线路和110kV电缆输电线路运行中所产生的电磁辐射对环境的影响。提出相应的电磁辐射污染防治措施与建议,为同类电磁项目建设提供科学依据,减少人们对高压线下生活的恐惧心理。

1.输变电工程电磁辐射相关标准

参照《500kV超高压送变电工程电磁辐射环境影响评价技术规范》(HJ/T24-1998)标准执行:①居民区工频电场评价标准为4kV/m;②公众 全天辐射的工频限值为80A/m(0.1mT) ( 国际辐射保护协会对公众全天辐射时的工频限值)。

2.110kV架空输电线路和110kV电缆输电线路实测结果

2.1 110kV架空输电线路实测结果

选取南通地区110kV架空线路进行测量,该线路采用双回同相序架设,导线型号为LGJ-300/25。自线路走廊中心投影开始,垂直线路方向,间距5m布设监测点位,测至距线路走廊中心投影50m处,监测线路周围离地高度1.5m处工频电场、工频磁场。测量期间天气晴好,满足监测规范的要求。监测时线路距离地面高度为20m,线路I电压为113kV,电流为158A;线路II电压为111kV,电流为149A。

110kV架空输电线路下方工频电场、工频磁场监测结果

2.2 110kV电缆输电线路实测结果

选取南通地区110kV电缆线路进行测量。自线路走上方投影开始,垂直线路方向,间距5m布设监测点位,测至距线路上方投影50m处,监测线路周围离地高度1.5m处工频电场、工频磁场。测量期间天气晴好,满足监测规范的要求。监测时线路I电压为110kV,电流为123A;线路II电压为113kV,电流为147A。

110kV电缆输电线路上方工频电场、工频磁场监测结果

2.3测量结果分析

测量结果表明,110kV架空输电线路塔间断面所有测点处工频电场为7.65×10-3kV/m~1.12kV/m,工频磁场(合成量)为3.34×10-5mT~4.69×10-4mT,工频电场最大值出现在距线路走廊中心投影5m处,之后随着距离的增大呈迅速递减趋势,工频磁场最大值出现在线路走廊中心投影处,之后随着距离的增大呈迅速递减趋势,所测工频电场和工频磁场值均符合《500kV超高压送变电工程电磁辐射环境影响评价技术规范》(HJ/T24-1998)中工频电场4kV/m和工频磁场0.1mT的推荐限值要求。

110kV电缆线路各测点工频电场为

空间的电场很容易被导电物质所屏蔽和削弱(即使该物质不是良导电性的),建筑物、树木等都可以使空间电场畸变,并削弱其遮蔽空间或邻近范围内的电场,因此电缆线路周围的工频电场很小。

3.结论和建议

(1)110kV架空输电线路和110kV电缆输电线路运行中所产生的工频电场和工频磁场均符合《500kV超高压送变电工程电磁辐射环境影响评价技术规范》(HJ/T24-1998)中工频电场4kV/m和工频磁场0.1mT的推荐限值要求,同时,高压输电线路的电磁场辐射强度随着距离的增大而迅速减少。采用电缆线路和架空线路,前者产生的工频电场远小于后者,二者产生的工频磁场无明显差别。

(2)建议在高压输电线路选择路径时,尽量远离环境敏感区;位于城区的输电线路尽量入地敷设;输电线路设计施工时要严格按照相关的规定、 规范进行,保证线路架设高度,增大导线与地面的距离,以降低地面感应辐射强度。

【参考文献】

[1]《500kV超高压送变电工程电磁辐射环境影响评价技术规范》(HJ/T24-1998).

[2]HJ/T10.3-1996,辐射环境保护管理导则-电磁辐射环境影响评价方法与标准[S].

第11篇

【关键词】移动基站环境安全电磁辐射模型软件仿真

一、引言

随着通信需求量的增加,为保证整个网络的信号覆盖和通信质量,兴建了大量的基站,这同时增加了环境中电磁辐射水平,引起了社会对电磁辐射对公众健康的影响的广泛关注。因此,探究基站电磁辐射对环境及公众健康的影响意义重大。对于处于不同的地形地貌、环境、地区等的不同类型的基站天线,电磁辐射也各不相同,实地测量费时费力,需要对于具体移动通信基站天线辐射的电磁场值的大小和分布情况,才能研究电磁污染程度,从而确定通信基站选址是否合适。本文从理论数值计算方面分析和研究,模拟基站天线电磁辐射过程。实用软件进行仿真,节省更多的人力,物力,财力。更高效,合理,全面的建立基站。此模型的建立与推广应用对通信基站的辐射环境管理,设计建设,环境影响预测和评估具有重要指导意义,对诚城市可持续发展,城市电磁辐射环境规划和保护具有现实意义和深刻影响。

二、国家颁布的技术标准

国家环境保护局、卫生部颁发了《公众照射导出限值》(GB8702-88)与《环境电磁波容许辐射强度分级标准》(GB9175-88)两个主要技术标准,并颁布了《电磁辐射防护规定》、《环境电磁波卫生标准》两项技术标准。1997年3月,又国家环境保护18号令及《电磁辐射环境保护管理办法》等。

中华人民共和国国家标准“电磁辐射防护规定”(GB8702-88)规定:在一天24小时内,电磁辐射场量在任意连续6 min内的平均值应满足(30~3000MHz):

职业照射≤2W/m2=200滋w/cm2

公众照射≤0.4W/m2=40滋w/cm2

三、模型建立

3.1电磁辐射模型一:理论预测模型

自由空间是指一种理想、均匀的、各项同性的介质空间,当电磁波在该介质中传播时,不发生反射、折射、散射和吸收现象,只存在电磁波能量扩散而引起的传播损耗。

电磁波在自由空间中的传播损耗公式为:

Ls=32.45+20lgr(Km)+20lgf(MHz)

式中:Ls―――电磁波在自由空间的损耗;r―――天线轴向与被测点的直线距离;f―――电磁波的频率;

测试点实际接收的电磁波接受功率为:

从表四的预测结果中看出,当远场轴向距离为14.63m时,符合国家一级标准,功率密度已下降到0.08W/m2以下。

两个模型得到的安全距离大致吻合,也就是说,当场点距离大于14.63m以后,都符合国家一级标准,移动基站的电磁辐射不会对环境造成危害。

四、软件仿真

在实际操作中,模型的计算比较繁琐,而将理论模型导入软件,制出专门分析移动基站电磁辐射的软件,便于我们对移动基站的选址、估算。

我们利用VC++中MFC应用程序框架制作软件进行仿真,将上述两个模型导入软件中,系统自动计算,只有当两个模型的求解值都满足国家一级标准时才输出可以建立基站。

在图3中输入相应参数。

参考文献

[1]黄云飞,黄美美. 900MHz移动通信系统基站电磁辐射对环境的影响,2010

[2]马海卫,庞新新,刘振.移动通信基站电磁辐射特点及水平[会议论文],2004

[3],徐辉.认识移动通信基站电磁辐射特点,保护环境,实现移动通信的可持续发展[会议论文],2003

[4]王亚民,张永富,张金明.移动通信基站电磁辐射环境监测布点的讨论[期刊论文],2002

[5]张海鸥.移动通信基站的电磁辐射仿真模拟及应用[学位论文],2010

第12篇

【关键词】移动通信基站 电磁辐射 话务负荷 GSM TD-SCDMA

1 引言

对于蜂窝移动通信系统电磁辐射环境影响的评估与分析,一般都以基站的最大发射功率为基础进行计算,计算结果通常高于实际电磁辐射水平。GB8702-88《电磁辐射防护规定》对于公众导出限值和职业导出限值则是以平均值的形式给出的。实际上,移动通信系统电磁辐射属于低强度的电磁辐射(

由于现有蜂窝移动通信系统采用TDMA、CDMA等多址技术,其平均发射功率与话务负荷是密切相关的。本文将结合GSM和TD-SCDMA的技术特点,对话务负荷与基站电磁辐射的关系进行分析。

2 话务波动对电磁辐射的影响分析

2.1 分析思路

基站的话务负荷反映了对基站信道资源的占用情况,一定呼损(GoS)下的话务负荷与信道资源之间通常采用Erlang B公式来描述。假定基站在基本信道单元(对于GSM系统是时隙,对于TD-SCDMA系统是码道)上的发射功率是不变的,那么从平均功率的角度来看,小区的辐射功率与信道占用情况成正相关关系,即占用的信道单元越多,电磁辐射功率越大。因此,通过信道资源的占用情况可以把话务负荷与小区辐射功率联系起来。

2.2 GSM基站话务波动对电磁辐射的影响

GSM是一个FDMA与TDMA的混合接入系统,即在频域上以200kHz作为一个频点(载波),对于每个载波,在时域上划分为8个时间片(时隙),每个用户呼叫时需要占用一个物理信道,也就是一个时隙,直到通话完,才释放所占用的信道资源。

对于网络中某一个特定的GSM基站,它的小区数以及每个小区的载频数是确定的。以单载频为例,每个载频有8个物理信道,即信道0~7(时隙0~7)。

以下分两种极端的情况分别估算小区单载频配置时的发射功率:

(1)单载频(设单载频最大功率发射43dBm,即20w),当没有业务时,只有时隙0在发送广播信息,其他7个时隙空闲(无用户),则此时平均发射功率最小:(Pav)min=20/8=2.5w,即机柜顶输出的平均功率为2.5w。

(2)单载频,0~7时隙都被占用,不考虑系统的不连续发射、对业务信道功率控制等机制,则此时平均发射功率达到最大:(Pav)max=20×8/8=20w,即机柜顶输出的平均功率为20w。

因此,单载频配置下的基站机柜顶输出功率波动范围为2.5w~20w,即34dBm~43dBm。假设综合增益(天线增益减去馈线、接头等相关损耗)为G,那么天线发射功率的波动范围为(34+G)dBm~(43+G)dBm,可知单载频配置下的电磁辐射功率密度的波动范围在9dB以内。

根据话务量与信道资源占用关系(Erlang B公式),可以将信道占用映射到话务量(假设GoS=2%),则可建立话务量与机柜顶功率之间的关系,如图1:

2.2TD-SCDMA基站话务波动对电磁辐射的影响

在TD-SCDMA系统中,对于每一个常规时隙,它又有16个码道,因为TD-SCDMA系统是TDMA和CDMA混合接入系统。对于话音业务,一个用户需要占用两个码道,也就是说一个常规下行时隙最多能同时容纳8个话音用户,即一个常规下行时隙有8个信道。

以下分两种极端的情况分别估算小区单载波配置时的发射功率:

(1)当没有业务的情况下,只有TS0时隙的广播信道和DwPTS发射,则整个帧周期内,发射信号的时间比例如下:

上式中数值单位为码片,864为常规时隙TS0所包含的码片数,16表示TS0中保护域(GP)所占码片数,保护域不发射功率;96表示DwPTS信道所占码片总数,32表示DwPTS信道保护域所占码片数;分母6400为TD-SCDMA子帧所包含码片总数。

TD-SCDMA目前一般采用BBU+RRU组网,RRU每通道最大功率为2w,则当没有业务时,实际的每通道平均发射功率为:(Pav)min=2×0.1425=0.285(w)=24.5(dBm)。

(2)考虑3个上行、3个下行时隙配置,下行时隙都被占用,则整个帧周期内,发射信号的时间比例如下:

这样,由于每通道最大功率按2w计算,则实际的每通道输出功率为:(Pav)max=(Pav)min+2×0.4075=1.1(w)=30.4(dBm)。

因此,单载频配置下的基站发射功率波动范围为0.285w~1.1w,即24.5dBm~30.4dBm。假设综合增益为G,那么天线发射功率的波动范围为(24.5+G)dBm~(30.4+G)dBm。可见对于在离基站天线一定距离的特定位置,在单载频配置下的电磁辐射功率密度的波动范围在6dB以内。

根据话务量与信道资源占用关系,可以得到小区单载频时话务量与RRU单通道平均功率之间的关系,如图2:

3 测试验证

3.1 测试方法

本研究中采用了环保部门电磁辐射测量的常用测量仪器――宽带辐射测量仪EMR-300综合场强仪,在某地移动运营商GSM和TD-SCDMA网中选择典型基站进行了话务负荷对电磁辐射的影响测试。测试基本方法如下:

(1)对于GSM系统,在选定站点的小区天线主瓣方向一定距离处(建议10~15米之间),架设电磁辐射测量仪EMR-300,设置ERM-300为自动监测模式,开始进行自动数据记录,并记录测试开始时间;连续测试12小时以上,停止数据记录,并记录结束时间;在EMR-300的浏览模式下,提取数据,并通过网管后台提取被测小区在测试时间段内的话务统计数据,以备分析。

(2)对TD-SCDMA基站,考虑测试时用户较少,话务波动性不明显,需通过手机拨打加载产生话务波动场景,在高、中、低负载下分别进行电磁辐射的测试,观察并记录各情况下的电磁辐射水平。

3.2 测试结果

(1)GSM系统测试结果

为了体现话务变化对电磁辐射功率密度的影响,对测量时段得到的电磁辐射功率密度及对应时段内被测小区的话务负荷进行关联分析,如图3所示:

可见,一天内的功率密度变化趋势与一天内话务量变化趋势大体相同,话务量越大,功率密度相对越大,电磁辐射也越大(但最大值也远低于国家环境管理目标值),这与理论分析的结果是比较吻合的。

(2)TD-SCDMA系统测试结果

为了反映话务波动对TD-SCDMA系统的影响,对被测基站进行了加载测试。测试选取到天线不同距离的点,分别在无呼叫、同时4个语音呼叫、同时2个视频呼叫和同时4个视频呼叫4种场景进行电磁辐射的测量,测试结果如表1所示:

从表1可以看到,在同一距离,随着负载的增加,话务量增大,功率密度逐渐增大;在天线水平主瓣方向,随着离天线的距离增大,功率密度变小。但即使在高负载时,在主瓣方向距离天线1m的情况下,其电磁辐射水平也远小于环境管理目标值8μw/cm2。这与理论极限分析的结果相差较大,经分析应与TD基站的快速功率控制机制有关:受测试现场条件所限,拨打测试的手机离天线比较近(15米左右),这样在通信过程中,基站通过功率控制,将以较低的功率发射,从而导致电磁辐射水平的下降。

4 小结

本文从理论上阐明了移动通信基站话务负荷对电磁辐射的影响机理,通过系统信道资源的占用,将GSM、TD-SCDMA基站的电磁辐射与其话务负荷联系起来,话务负荷越大,电磁辐射水平越高,电磁辐射水平随话务的波动而波动。通过选择实际基站进行了验证测试,结果表明,移动通信站点周围环境的电磁辐射水平随话务的变化有明显的波动:在低话务时段,电磁辐射水平处于一个很低的水平;而在高话务时段,电磁辐射水平有明显的上升。不过在人经常活动区域,电磁辐射水平在高话务时段仍然是远远低于国家环境管理目标值的。在进行移动通信基站的电磁辐射环境影响分析或评价时,有必要考虑话务负荷的因素,以得到更加科学、全面的评价结果。

参考文献

[1]GB8702-88. 电磁辐射防护规定[S]. 1988.

[2]国家环保总局,信产部. 移动通信基站电磁辐射环境监测方法(试行)[S]. 2007.

[3]曹兆进,张洪桥,李双黎. 中国射频微波电磁辐射生物学效应研究(综述)[C]. 北京: 99北京电磁辐射与健康国际研讨会,1999: 7-25.

第13篇

关键词:通信基站 美化天线 电磁辐射水平 污染防治

前言

近年来,随着移动通信业的迅猛发展,移动用户数量飞速增长,通信基站的建设数量逐年增加。从城市的高层办公写字楼到普通的小区住宅楼,移动通信发射天线随处可见。通信基站的天线是电磁波向周围环境发射窗口,同时也是环境电磁辐射的源头,引发潜在的电磁辐射污染问题。的基站天线常常与周边环境格格不入,影响城市景观,更有可能引发公众对通信基站电磁辐射的过度心理恐惧和担忧,最终导致居民对基站运营商投诉的激增。因而,城市景观问题与公众担忧已经成为了通信基站建设运行过程中两个敏感议题。为了解决这两大问题,美化天线应运而生,并逐步受到广泛应用。

美化天线也称为“伪装天线”,即在不影响天线正常功能的情况下,采用损耗小、反射少的非金属材料对天线本身的外表进行装饰,或是在天线外部加装美化罩,使天线与楼宇及周边环境相和谐,进而达到美化的目的[1]。美化天线的应用在一定程度上还减少了公众对基站电磁辐射的心理恐惧和抵触情绪,减少了公众与基站运营商之间的纠纷,为社会和谐做出了贡献。然而,由于缺乏对美化天线的电磁辐射水平的系统分析研究,天线的美化并不能从根本上消除公众对基站电磁辐射污染的担忧,仍有不少居民对美化后的基站进行投诉。此外,美化天线的隐蔽性及多样性也增加了辐射环境监管的难度,若监管不善,可能会加剧基站对周边环境的电磁辐射污染。本文通过对各种典型环境敏感区域内不同类型的美化天线类型周围的电磁辐射水平进行监测分析,以揭示不同类型美化天线周围电磁辐射水平,并在此基础上提出美化天线周围电磁辐射污染防治措施及管理措施。

1 常见美化天线的介绍

常见的美化天线一般采用外罩罩住天线 ,根据外罩的外形特点可以将美化天线分成以下几种[2]:

(1)方(圆)柱型

一般可做成方柱型或圆柱型立在楼顶天面的面源或者楼梯堡的天面上,高度约为2~4m,外观的颜色与楼面颜色相似。该类型的美化天线也是目前实际应用最广泛的一种。

(2)排气管型

排气管型美化天线,多应用于高层居民小区或商业区楼房天面之上,外观颜色以白色为主,结构与尺寸与真实的排气管一致,一般高度为高出天面2m。

(3)变色龙型

为了符合楼房外墙装饰颜色,外表跟外墙的颜色、花纹一致。可以根据天线的实际尺寸和数量做成需要的造型,如半圆形、方形及椭圆形等,既能满足通信信号覆盖,又不影响城市建筑的景观。

(4)空调机型

空调机型美化天线一般根据安装天线的尺寸及数量,可以选择做成4匹或6匹的室外空调机外型,主要应用于人群比较密集的居民生活小区内或者是商业区。由于空调机型天线的高度有限(一般不超过5m),为了达到尽可能大的覆盖范围,一般安装在信号覆盖区域内的最高楼层天面或者挂在外墙上。

(5)灯杆型

灯杆型美化天线适用于商业区、交通道路两旁,立于街边的高度一般为6~25m,可用于街道的信号覆盖;放在楼顶的天面上的高度一般为6~10m,可以用于普通的住宅小区或商业区环境中。

(6)水箱型

一般常见于旧城区普通居民楼上或者乡村,可做成高达6m的水箱型,馈线用PVC管包装入水箱中,从外部看像水管,与居民放置在屋顶的太阳能水箱相似。

(7)美化树型

一般用于风景区、公园、居民区的花园或周边的山上以及厂房较多的工业园区或者新开发区的路边绿化带等等。外表看上去像一棵树,隐藏在绿色植物当中,可以根据周围的环境做成合适的高度。可以和周围的风景形成一致,既不破风景又能达到有效的信号覆盖。

2 电磁辐射环境质量标准

根据我国的国家标准《电磁环境控制限值》(GB8702-2014)[3]中的表1规定,频率在30~3000MHz之间,公众曝露限值为:电场强度12V/m,功率密度0.4W/m2(40μW/cm2)。《辐射环境保护管理导则―电磁环境影响评价与方法》(HJ10.3-1996)对单个项目的影响必须控制在GB8702-1998(GB8702-2014《磁环境控制限值》自2015年1月1日起实施后替代GB8702-88)限值的若干分之一[4])。因此单个基站的管理目标值选取GB8702-2014《电磁环境控制限值》中相应频段功率密度限值的1/5,即0.08 W/m2(8μW/cm2)。

3 移动基站美化天线周围电磁辐射水平实测

3.1 监测方法

3.1.1 监测布点

本研究选取广东省内位于各种典型环境敏感区域内7种不同类型的美化基站21个(具体见表1),对基站美化天线周围的电磁辐射水平进行现场测量。依据《移动通信基站电磁辐射环境监测方法》(试行)(环发[2007]114号)[5]规定进行监测布点,基站电磁辐射水平监测点位优先布设在公众可以到达距离天线的最近处,原则上设在天线主瓣方向内。防护区内如有敏感目标,则通过巡测找出辐射水平较高的测点,如无敏感目标,则在天线前方50m内选取代表向监测点。对于发射天线架设在楼顶的基站,在楼顶公众可活动范围内布设监测点位。点位选择应设法避免或尽量减少周围偶发的其他辐射源干扰。

3.1.2 监测时间、频次及环境条件

移动通信的电磁辐射与基站发射功率、天线增益、频率以及话务量密切相关。话务量指在特定时间段内呼叫次数与每次呼叫平均占用时间的乘积,通常随着话务量的升高,基站实际发射功率会增大,因而产生的电磁辐射也会有所增强[6]。故监测时间为移动通信基站正常工作时话务量的高峰时间段,即一天内的8:00~20: 00。监测在无雪、无雨、无雾、无冰雹的天气条件下进行,同时记录下现场环境温度和相对湿度。

每个监测点位应进行连续5次电场强度测定,每次测量时间不少于15s,并读取稳定状态下的最大值。

3.1.3 监测仪器

现场监测采用仪器为德国Narda公司生产的EMR-300型综合场强仪,该仪器配备18C型探头。仪器响应频率为100kHz~3GHz,量程为0.20~400V/m,检测限为0.20V/m。

3.1.4 测量频段与数据处理

测量选取的美化基站为中国电信CDMA2000,发射频段为870-880MHz。CDMA基站天线的辐射近场与远场的界限大约是8 m,测量选取的美化基站周围公众可达到范围属于电磁辐射的远场,在远场中功率密度与电场强度的关系式为:Pd=E2/377,因此在远场中,通过电场强度的测量即可求得功率密度。

3.2 结果与分析

3.2.1不同类型美化天线周围电磁辐射水平

基站的电磁辐射水平不仅会受到周围地理、环境条件的影响,还可能与天线的形式结构有关。为此,本研究对21个位于典型环境功能区内(包括居住、医疗卫生、文化教育、科研、行政办公区等)不同类型的美化基站周围电磁辐射电场强度进行测量,并重点关注以发射天线为中心、半径50m范围内可能受到影响的居民和人群,结果见表1。监测结果表明,位于不同环境敏感区域内7种常见美化天线基站正常运行时,周边50m范围内可到达区域环境功率密度在0.01~7.17μW/cm2之间,低于《电磁环境控制限值》中规定的30~3000 MHz频率范围内公众曝露限值0.4W/m2(40μW/cm2)。同时也满足单个移动通信基站运行对周围电磁辐射环境影的管理限值0.08W/m2(8μW/cm2)。测量所选择的7种类型美化天线有6中常用于公众关注的居民区,测量结果表明其周围50m范围内公众可到达范围满足文献[3]中规定的公众曝露限值。

3.2.2 典型美化基站周围电磁辐射水平分析

方柱型美化天线因其外部美化罩可以装饰成墙体的颜色而与周围景观形成一致,在美化基站中得到广泛的应用,常用于各种环境敏感功能区域如:居住、文化教育、医疗卫生区、行政办公区、科研区等。为了进一步探究美化基站周围电磁场的分布特性,本研究选取位于河源市东源县滨江花园10层居民楼天面的方柱型美化基站作为典型基站。对该基站周围50m范围内公众可到达区域进行了详细测测量,采用巡测的方式,找到公众活动区域内电磁辐射最大点位,14个监测位点的分布如图1所示。该基站周围电磁辐射环境监测结果见表2。

从图1中可以看出监测点位覆盖了公众可到达的离天线最近、高差最小的区域。表2中美化天线周围电磁环境辐射监测结果看以看出该基站周围50m范围内电磁环境辐射功率密度范围为0.01~5.25μW/cm2,其中功率密度最大点位出现在天线架设天面与天线水平距离11m垂直距离6m处(点位2#)。结合图1与表2可知,天线主瓣方向(监测点位为1#、8#、9#、10#)区域内的功率密度高于天线副瓣(2#、7#)区域,且离天线水平距离越远、高差越大的区域功率密度越小。以上结果表明该基站美化天线周围50m范围内功电磁辐射率密度均低于文献[3]中规定的公众曝露限值。

4 美化天线的利与弊

4.1 美化天线的有利方面

美化天线的发展和推广在一定程度上是因为公众的环保意识的加强及对城市景观要求的提高,对环保以及经济发展有很大的积极意义。主要表面为三个方面:①美化天线具有的仿生、掩蔽的特征使得基站与其所在的周围环境能很好的融合在一起,避免了普通天线杂乱架设对城市及乡村景观的负面影响;②天线为基站的外置部分,美化天线的采用会减少基站天线对公众的视觉冲击,能够在保障通信的覆盖与质量的同时,避免了居民对天线辐射的过分恐惧和抵触,减少了居民心理负担,有利于基站的建设运行[7];③对于运营商来说,美化天线采用分体拆装结构,体积小,运输、安装更加简便,水平转角可调且调整方便,节省运行费用。

4.2 美化天线的不利方面

虽然美化天线具有多方面的优点,但是从环境保护和保障公众知情角度来说也存在不可忽视的弊端,集中表现在四个方面:①某些运营商使用美化天线只是为了降低公众对移动通信基站建设运行的关注度,进而损害了公众的环境权益和知情权;②美化天线种类繁多、隐蔽性较强,伪装成生活中常见的各种实物,增加了环境保护部门辐射环境监管难度;③由于美化天线外部加有美化罩,在环境保护部门日常监管、抽查测量电磁辐射水平时很难准确判断天线主瓣方向、安装位置及天线的数量等关系辐射环境影响的因素,也难以确定基站电磁环境辐射重点监测范围;④有可能激发公众更强烈的抵触情绪,比如,美化天线在建设及运行的过程中未充分做好与公众的沟通工作,公众获知美化天线的存在后,情绪更加激动,处理不当反而会激化公众与基站运营商之间的矛盾。

5 美化天线使用原则与电磁环境污染防治对策

5.1 美化天线架设原则

5.1.1 推荐性使用原则

在风景名胜区、旅游景区、公园、小区周边的花园等对环境质量要求较高的地方,推荐建设美化天线,以保持上述区域的景观协调,减小普通天线对公众视觉的冲击,使天线能更好的融入周边的环境。

5.1.2 限制性使用原则

在楼房密集或楼层较低的居民区及作为公众经常活动区域的天面等限制性使用美化天线,因为美化天线本身具有的架设高度低、隐蔽性等特点,在上述区域架设时公众经常活动区域容易出现超标情况。

5.2 美化天线的电磁污染防治对策

1、优化基站选址,首先应先调查当地的电磁辐射环境背景情况,避免在电磁辐射环境背景值较高的地方建立基站;其次尽量选择共用设施的楼房上而避开私人居民楼,应该尽量选择公众不能经常到达的天面或者非公众居住建筑物,尽可能避免影响周围公众的活动;第三,还应该避免在同一个天面架设过多的天线,防止由于场强的叠加,使该天面的电磁辐射水平高于超过管理目标值;第四,对于架设在楼顶的基站,应加强通往该楼顶的通道管理并在通往天线处悬挂警示牌[8]。

2、合理选取美化天线的主瓣方向,安装时尽量使天线的主瓣方向避开公众活动区域;市区基站应避免天线主瓣方向非安全距离前方处有高大楼房,以免其受到较大的电磁辐射影响而产生不必要的民事纠纷。

3、在美化天线周围张贴电磁辐射警示标识并划定一定方位的限制公众活动区域,以防止公众因不知道美化天线的存在而靠近,受到不必要的辐射。

4、加强监督与管理工作,通信基站的运营商不得随意提高基站的发射功率,应尽可能地降低基站的发射功率,以确保天面的电磁辐射水平低于目标管理值;基站正常运行时,环境保护监管部门应不定期电磁辐射环境抽测检查,保证天面上的电磁辐射水平满足国家标准。

5、运营商应委托有电磁辐射检测资质的单位或企业每年抽取一定比例的美化基站进行电磁辐射检测并建立电磁环境检测数据档案,以及时发现电磁辐射环境问题。

6、明确针对于美化天线基站环境影响评及验收阶段的公众参与要求。美化天线的“隐蔽性”引发公众环境知情权等相关问题。从短期看,其隐蔽性有助于基站的建设,但如果处理不当势必会导致严重的群众环境事件,因此,及早主动处理沟通才能发挥美化天线的景观优势而避免其负面影响的积累。而环境影响评价及验收阶段的公众参与的主动沟通、协调可从根本上解决环境问题的积累。

6 结语

美化天线建设已被广泛采纳,在通信基站建设中所占的比例也逐年升高,运行效果良好,既起到了美化环境的作用又达到了移动信号覆盖的目的。本研究对21个位于各种环境敏感区域内不同类型的美化天线类型周围电磁辐射进行现场检测,结果表明:美化天线周围50m范围内的公众可到达区域环境电磁辐射功率密度在0.01~7.17μW/cm2之间,典型的方柱型美化基站周围50m范围内的公众可到达区域环境电磁辐射功率密度在0.01~5.25μW/cm2之间,均低于《电磁环境控制限值》(GB8702-2014)中规定的30~3000MHz频率范围内公众曝露限值40μW/cm2,天线主瓣方向区域内的功率密度高于天线副瓣区域,且离天线水平距离越远、高差越大的区域功率密度越小。但是美化天线仍存在许多不足之处,需要把握美化天线的使用原则,从基站选址到正常运行都要做好各面的环保工作,并保证环评阶段、验收阶段的公众参与制度,与公众多方面沟通协调,只有这样美化天线才能体现真正的“美”。

【参考文献】

[1] 杜岳华. 美化天线在通信基站中的应用[J]. 中国新通信, 2015, 1: 6.

[2] 李峥嵘. 浅谈移动通信基站天线的美化与隐藏[J]. 大众科技, 2010, 4: 59~60.

[3] 环境保护部. GB8702-2014 电磁环境控制限值[S]. 北京:中国环境出版社, 2015.

[4]国家环保总局. HJ/10.3-1996辐射环境保护管理导则 电磁辐射环境影响评价方法与标准 [S]. 1996.

[5]《移动通信基站电磁辐射环境监测方法》(试行)(环发[2007]114号).

[6] 林.移动通信基站电磁辐射影响与话务量关系分析[J]. 信息科学与应用,2014,18: 51~54.

第14篇

关键词:电磁辐射;家用电器;健康

继水源污染、空气污染和噪声污染之后,电磁辐射已成为当今社会第四大环境污染源。人长时间处于较强的电磁辐射之中,就会出现如心率不起、血压改变和失眠、健忘等生理反应,甚至使人的身体器官发生癌变。因此,很多人甚至到了谈“电”色变的程度,家里的什么电器都不敢碰,生怕沾染了电磁辐射。

那么,什么是电磁辐射呢?电磁辐射对人体健康又有哪些影响呢?电磁辐射又称电子烟雾,是由空间共同移送的电能量和磁能量所组成,而该能量是由电荷移动所产生。电磁辐射是一种复合的电磁波,以相互垂直的电场和磁场随时间的变化而传递能量。换句话说,所有的电子电路都会产生电磁辐射。

当然,人体对电磁辐射是有一定的抵抗力的。一般认为电磁辐射在10V/m或0.4μT以下时,对人体健康不构成危害。那么,我们常用的家用电器产生的电磁辐射是否会超过这个值呢?

1、手机

现代生活中人几乎处处离不开手机,所有首先来谈谈手机的电磁辐射。经过检测,手机在不同状态下辐射值是不一样的。开机7.65V/m,关机4.25V/m,待机0.62V/m,接收短信5.96V/m,发送短信5.43V/m 上网2.65V/m,接通前9.26V/m,接通瞬间26.84V/m,通话期间 1.48V/m。由此可见,在拨打手机的接通瞬间,手机的电磁辐射是最强的,而当接通以后,其辐射值会逐渐降低到一个相对稳定的状态。因此,在拨打电话时,最好是先现拨号码,然后把手机拿在手里,等电话接通了在把它移到头部附近。另外,如果能够使用耳机接打电话,也可以增加手机和头部的距离,从而减少手机辐射对人健康的影响。

2、电脑

随着科技的发展,电脑作为一种高科技的办公设备,已经逐渐走进千家万户,成为人们家中不可或缺的家用电器。很多人喜欢上网、打游戏、聊天、看电视、斗地主等等,在电脑前一坐就是好几个小时。

经过测量,电脑的各个部分都会产生电磁辐射但并不相同。映像管显示器(CRT)1.00μT,液晶显示器(LCD)0.11μT,电脑主机正面0.17μT,电脑主机后面0.46μT。低音炮音响0.63μT,普通鼠标0.1μT,普通键盘0.11μT,无线鼠标0.53μT,无线键盘0.96μT,无线路由器 0.15μT。

通过比较可以发现,映像管显示器(CRT)的辐射是最高的如果你家中还用的是老式映像管显示器的话,还是尽快换成液晶的吧。如果必须要用映像管显示器(CRT),一定保持显示器和人的距离在30厘米以上。电脑主机的机箱要密封严,它的机箱外壳有很好的防辐射功能。过去有些人为了让电脑散热更好,而将机箱外壳拆开,让主机的内部零件着工作,这样会成倍增加辐射。由于机箱后面的辐射很高,人没事不要长时间站在那。低音炮音响的辐射也比较大,最好不要摆放在电脑桌上,放在桌子下面可以减少对人的影响。至于最后的无线键盘和鼠标,检测的是它们正上方的辐射,而无线键盘和鼠标的下面密封还是比较严的,泄露出来的电磁辐射也很少,一般不会危害健康。

3、电视机

现在家里的电视机基本上也都换成液晶的了,其电磁辐射类似于电脑屏幕。不过人们看电视时的距离一般要比看电脑屏幕远得多,所收到的电磁辐射也要小得多。所以,即便长时间看电视,也不会积累太多的电磁辐射。不过长时间看电视还是对视力有损害的。

4、电磁炉

以前大家做饭用煤,后来慢慢换成了液化气或管道煤气。如今,随着电力资源的使用越发广泛,越来越多的家庭开始适用电磁炉烹饪美食,尤其是和亲朋好友围坐在一起用电磁炉吃火锅是再爽不过了。可是有人说电磁炉的电磁辐射很强,会对周围一圈人都有辐射。事实是如此吗?

通过测量,电磁炉附近的电磁辐射为19.74μt,看上去很高。但是,把检测仪移动到距离电磁炉20cm处,其数值就下降为5.49μt。再把检测仪移动到距离电磁炉40cm处,其辐射值仅为0.32μt。

如果是在灶台上烹饪食品,人一般不会离电磁炉很近。即便是吃火锅,由于习惯上在火锅周围还要摆放菜品和餐具,其距离也要在40cm以上。所以,电磁炉的电磁辐射并不会对人体健康不利。

现在市面上还有一种电陶炉的东西,经常打着“无辐射”的幌子跟电磁炉竞争。其实电陶炉辐射虽然低,但绝对不是无辐射。而且由于加热原理的不同,导致电陶炉工作时自身产生大量热量,在是烧水,炒菜或者吃火锅,电陶炉的效率要比电磁炉差好多。不过电陶炉也有不挑材料和可以无烟烧烤等优点,可以说各有千秋,消费者可以按需要取舍。

5、微波炉

随着生活的节奏的越来越快,微波炉开始走进了千家万户。它的名字里就带着“波”,使许多人觉的它肯定会产生很多电磁波,电磁辐射也一定很强。

经测量,电磁炉的正面电磁辐射为3.93μT,距离电磁炉正面30cm处2.43μT,距离60cm处0.27μT。而距离电磁炉正面70cm以上则完全检测不到电磁辐射。

电磁炉的电磁辐射泄漏容易发生在门缝处,如果你担心受到电磁辐射,在开启电磁炉后就迅速与电磁炉保持一定距离,就不会受到电磁辐射的影响。

除此以外,电冰箱、音响、电暖器、电水壶、吸尘器等也会产生电磁辐射,但也都远远低于限定值。现在我们已经列举了这么多家用电器,发现它们的电磁辐射都不大,对人体健康的影响很小,那是不是说家用电器不会产生强的电磁辐射呢?当然不是,而且这些产生强电磁辐射的恰恰是那些不起眼小家电。

6、电吹风

不要小看电吹风,一个1000W的电吹风,工作时的电磁辐射居然高达3.5μT,是电脑屏幕的3倍多。而且由于电吹风工作时是正对着头的,它的辐射强度可想而知。

好在人点电脑前能坐一个小时,但绝不会用电吹风吹一个小时。顶多3-5分钟把头发吹干就停下来了,使得电吹风对人的影响还不至于太大。真正对人体健康危害最大的是下面的设备

7、电热毯

电热毯工作时的电磁辐射大约是400毫高斯,也就是4μT,比电吹风还要多。更可怕的是,当人躺在电热毯上时,两者之间的距离为0。像前面提到的几种电器,都可以通过增大距离来减少电磁辐射,但这方法对电热毯完全无效。更严重的是,有些人喜欢冬天开着电热毯睡觉,使得身体接受电磁辐射的时间也无限延长,很容易诱发各种身体身体疾病。轻者头痛、头晕、上火、发烧,重者呼吸困难,甲状腺机能抑制,皮肤肾上腺功能障碍,甚至有产生白血病的可能。

所以,在使用电热毯时,一定要在睡觉前将其关闭,以免发生人长时间处于电磁辐射的情况。另外,即使人不在床上,也不要长时间开着电热毯,容易诱发火灾等事故。

综上所述,家用电器的电磁辐射确实是存在的,但并没有那么严重。只要我们合理的使用家用电器,并养成良好的生活习惯和卫生习惯,家用电器就不会我们的健康造成影响,而会使我们的生活变得更加温馨和舒适。

参考文献

[1] 张月芳等,电磁辐射污染及其防护技术,2010

第15篇

摘要:

X波段测波雷达在海洋观测领域具有重要的应用价值,但其电磁辐射带来的影响也愈发值得关注。通过对X波段雷达工作特点进行分析,提出了使用频谱分析仪和对数周期天线组成测量系统的电磁辐射测试方案。参照国家标准对国家海洋局南澳、遮浪海洋环境监测站的X波段测波雷达电磁辐射功率密度进行了测量和分析,结果表明:X波段测波雷达对环境危害小,对公众安全性好。同时解释了短时曝露限值的含义,提出了要加强员工安全教育的建议。

关键词:

X波段测波雷达;电磁辐射测量;功率密度;频谱分析仪

X波段测波雷达是一种基于船用X波段导航雷达,利用海面回波图像分析波浪参数的遥感观测设备[1]。X波段测波雷达支持多个厂家不同型号的X波段雷达,以国家海洋局引进MIROS公司的WAVEX系统为例,其中X波段雷达使用的谷野雷达型号为FR-2127BB,天线型号为XN24AF,其主要参数如表1所示。该雷达发射功率较高,其瞬时功率可达到25kW,在波浪观测时一般为连续工作,因此其电磁辐射对人存在一定危险性,有必要对其辐射强度开展现场测量和分析。

1电磁辐射测量原理

在电磁辐射测量中,通常用功率密度来衡量电磁辐射的强弱。功率密度是描述单位时间内通过单位面积的电磁波能量的物理量,它是无线电计量中的一个重要参数[2]。要完成对X波段测波雷达电磁辐射的测量,需要根据其工作特点对测量仪器进行对比选型并使用合理的计算方法,从而获得其功率密度。

1.1仪器选型测量电磁辐射通常采用场强仪,但由于场强仪没有频率信息,在周边有其他设备时不容易判断辐射来源和占用频段。频谱仪可以用来测量所需频段的频谱信息,在进行测量时配以相应频段的天线便可组成测试系统。频谱仪优点在于能够直接对某一频段的信号进行测量,从而避免其它频段干扰信号带来的影响。测量设备选用Agilent公司生产的N9918A[3]型频谱仪;选用德国Annoni公司生产的HyperLog60100型对数周期天线,该天线在出厂时已经过专业校准,其天线频率与天线系数[4]的对应关系如表2所示。天线与频谱仪的连接馈线选用1m长专用射频电缆,经测试可知其在X波段雷达工作频段的线缆损耗约为0dB。

1.2计算方法

1.2.1X波段雷达输出的峰值功率与平均功率由雷达原理可知,雷达发射机的输出功率可分为峰值功率Pt和平均功率Pav,二者关系。

1.2.2频谱仪测量值与功率密度的关系频谱仪对信号的测量数值以功率(单位:dBm)或电压(单位:dBuV)的形式给出,若想获得对功率密度的测量结果,需要进行一定的公式换算和推导[6-7],其过程如下(各物理量的单位以下标形式给出):

2环境辐射分析

2.1环境控制限值2014年9月国家环境保护部和国家质量监督检验检疫总局了GB8702-2014“电磁环境控制限值”,代替GB8702-88“电磁辐射防护规定”和GB9175-88“环境电磁波卫生标准”。虽然旧标准中“适用于一切人群经常居住和活动场所的环境电磁辐射”[9-10]改为“公众曝露”[11],但是一般认为该限值规定的是居民区、学校、企事业单位等区域的电磁辐射限值。X波段导航雷达工作频率9410MHz,新标准中该频段的控制限值计算方法如表3所示,经计算得出其限值为1.25W/m2,由新标准中的定义可知,该限值是任意6min内的方均根值。此外,对于脉冲电磁波,其功率密度的瞬时峰值不应超过表3中所列限制的1000倍。对于X波段雷达,其峰值功率密度限制为1250W/m2。

2.2现场测量

2.2.1南澳海洋站测量结果南澳海洋站X波段雷达架设在海洋站的楼顶,气象观测场紧邻雷达,雷达天线高度与人体高度相仿,雷达安装位置和其中一个测量点位置如图1(a)。由于测试设备与雷达距离较近,为防止突发强信号对设备造成损坏,关闭了前置放大器功能,此时频谱仪的噪底为-70dBm,将频谱仪的检波方式设置为RMS(方均根值)。经测试,确定将中心频率设置为9410MHz,经过20min的测量后频谱仪的频谱及读数已基本没有变化,由图1(b)可知其平均功率为-37.4dBm,结合表2和公式可知,其平均功率密度和峰值功率密度分别为6.166×10-4W/m2和2.88W/m2。

2.2.2遮浪海洋站测量结果该站测波雷达安装位置距地面不小于10m,现场的一个测量点在距离雷达位置约36m,测量天线高度与正常人身高一致,约1.7~1.8m。由于测试设备与雷达距离比较远,为保证测量信号不会淹没在噪声中,打开了前置放大器功能,此时频谱仪的噪底为-95dBm,频谱仪的检波方式仍设置为RMS方式。经测试,确定将中心频率设置为9380MHz,经过20min的测量后频谱仪的频谱及读数已基本没有变化,由图2(b)可知其平均功率为-46.37dBm,结合表3和公式可知其平均功率密度和峰值功率密度分别为7.7625×10-5W/m2和0.363W/m2。

2.3长期照射安全性分析从以上两个海洋站实际测量的结果看,在测量点处X波段测波雷达信号的平均功率密度和峰值功率密度均远低于国家标准。这可能与大部分人的认识有所不同,造成这一现象有以下两个原因:(1)X波段测波雷达可以设置扫描范围。南澳站测波雷达设置了朝向海面的一侧发射信号,在雷达朝向观测场一侧时雷达发射机是不工作的;在海面一侧由于无遮挡,因此也没有近距离强反射信号,所以造成测试点雷达信号很弱,几乎测不到,测得的通道功率值大部分来自于带内噪声功率。(2)X波段测波雷达具有很好的方向性。X波段雷达天线的垂直波束宽度只有20°。遮浪海洋站的X波段雷达安装在支架上,距离地面不低于10m,测试时所用的对数周期天线虽然架设高度与人体高度一致,但仍不在雷达主波束辐射范围以内,虽然频谱仪可监测到雷达信号,但其辐射功率很低。人员在雷达所在地点周边活动不会受到雷达辐射危害。

3短时强辐射分析

3.1短时照射辐射限值从强电磁辐射设备旁经过或者短时间滞留,会受到短时间强辐射,超过一定限值时会直接造成伤害。对于短时间辐射情况,国际上最具权威性的标准应该是非电离辐射防护委员会(ICNIRP)颁布的“时变电场和磁场暴露限值的有关导则”[12]。该导则通过科学实验给出了职业照射最高限值为50W/m2,公众照射最高限值为10W/m2。特别需要注意,导则中指出在功率密度达到50W/m2时,对人的眼睛和生殖系统造成直接伤害,到100W/m2时会损伤人体皮肤。

3.2导航雷达限值距离一般导航雷达厂家会在说明书中提示X波段雷达三个关键功率密度限值所对应的距离,如表4所示,但多数都没有给出功率密度的意义。“时变电场和磁场暴露限值的有关导则”对这三个距离作出了解释。3.3短时照射的安全防护南澳和遮浪两个海洋站的测波雷达由于辐射方向和安装高度设置等原因,对于普通民众不会发生近距离受到雷达照射的情况。但是海洋站员工因工作关系,如设备检修调试等,受到雷达近距离辐射的可能性较大,应注意短时雷达照射的防护:首先在雷达工作时应避免近距离直视雷达,以防止眼睛受到伤害,同时应避免进入1m以内区域。此外,海洋站员工应加强电磁辐射有关安全知识的培训,提高安全意识。

4总结

友情链接