前言:我们精心挑选了数篇优质测量土地方法文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。
关键词:原理 优点 注意事项
中图分类号: S29 文献标识码: A 文章编号:
引言:随着科学技术的发展,测量仪器和测量技术发生了革命性的变革,目前仪器自动化程度和仪器精度以及技术性等都发生了很大的变化,全站仪在测量过程中已经可以不依靠棱镜,无棱镜型的全站仪器不在需要支立棱镜就可以进行测距,并且将测量精度和测量效率进行了很大的了提升,实现了“即瞄即测”
一.无棱镜全站仪测量技术的基本原理与优点
1基本.
全站仪测距其实就是电磁波测距;利用电磁波作为载波,运载测距信号,进行精密测距的技术。其基本原理是根据电磁波的传导速度和往返于发射器与反射器之间的时间,计算发射器与反射器之间的距离。无棱镜全站仪测距方法有两种:脉冲法和相位法。通常条件下,脉冲法的测程远,相位法的精度高。脉冲法用测量时发射和接受信号之间的时间间隔来计算距离,多次测量得出平均距离。相位法使用连续信号,以不同的频率来调制载波信号,测出发射和接受信号之间的相位差,从而求出被测距离,这两种测距原理与有棱镜的测距原理相同。
2优点
(1)无棱镜全站仪在测量的范围内,对任何被测物体的表面(玻璃镜子除外)都适合进行无棱镜测量,并可以实现单人测量工作,节省了测量工作的人力。
(2)在实际测量过程中会因地形问题出现,很多悬崖和山涧,这些地方测量人员不能直接到达,这对测量工作造成了很大的困难,而无棱镜全站仪可以直接获取这些地点的空间数据。为施工人员的工作安全带来了保障,并且有效提高了工作效率。
(3)无棱镜全站仪在对坡地和存在地质灾害的土体进行测量时,可以有效对土体滑坡和策将问题进行监控
(4)无棱镜全站仪由于免去了棱镜,所以不受测距的限制,尤其受不通视条件的影响较小。
(5)无棱镜全站仪有着强大的测量效率,一般的无棱镜全站仪测量作业是传统全站仪工作效率的二十倍。
二.无棱镜全站仪的适用条件及注意事项
在进行无棱镜全站仪使用时要注意如下问题:
(1)无棱镜全站仪在测量的过程中需要视线开阔,同时要保证被测物体有着极强的反射能力,如果被测物体的反射能力较弱,就会降低无棱镜全站仪的作业精度。
(2)无棱镜全站仪在被测物的选择上要尽量选取高程较高的测量点,例如建筑墙面、大块石头、空旷的地面、公路面等,要保证可以看到地形和地物点。
(3)无棱镜全站仪在视野不开阔的地区不宜进行工作,尤其在林区作业时,无棱镜全站仪的测量精度误差较大
(4)无棱镜全站仪的作业原理是利用电磁波来完成反射测量,但是电磁波的发射需要大量电力支持,所以无棱镜全站仪的作业时间相对较短,遇到特殊情况需要连续作业要设置外挂电池进行支援。
(5)无棱镜全站仪不能对棱镜、镜子等玻璃反光物体进行观测,以免损坏仪器。
(6)无棱镜全站仪的电磁波射线对人眼有很强的刺激作用,所以在操作时要避免对准人眼,造成伤害。
(7)无棱镜全站仪测量十分适合立杆人员无法达到的位置,例如溪谷、公路、悬崖等位置。
(8)无棱镜全站仪在使用一年后要定期做好设备检测,尤其对设备的激光束发射方向进行调整。
三.无棱镜全站仪在城市规划地形测量中的应用
在城市规划的过程中,土地测量是城市规划的重要部分,它对城市的整体规划、基础设施建设、城市建设管理、都有很大的帮助,并为城市规划部门提供合适的比例尺地形,无棱镜全站仪最大的优势就是可以不接触被测点,直接获得建站点的坐标,可以提高施工作业效率,保证测绘的成果和质量
1地貌测量;以北台矿山地貌规划测量为例。该矿山先期属露天开采,随着岩石的剥离和矿石的采掘四周形成了台阶式陡峭悬崖的深坑采掘;作业人员很难到达,并且还存在很大的危险性;如果采用从山顶到山底的陡崖符号和斜坡符号表示,很难反映出现实采掘区地貌。实际作业中,我们使用无棱镜全站仪在采坑四周摆站,对采坑周围台阶式陡峭悬崖及坑底地形进行逐一详细测量,直接测出山谷、山脊、洼地、山脚、山顶等地形变化点的三维坐标,最终绘制出该矿山开采区的现势性地形图
2地物测量;以站前平山路和永丰步行商业街人防地下商城规划测量为例。该项目站前平山路段为公交车l7路、38路、5路的终点站,车流量很大,公交车随时停靠站点将测量视线遮挡看不到棱镜;永丰步行商业街路中摆放较密集的临时商亭也将测量视线遮挡的较严,观测棱镜很困难;给测量工作带来很大的麻烦。我们运用无棱镜全站仪测量,穿过公交车上部和临时商亭顶部对该测区两侧的建筑物和商铺、路灯和电杆、摄像头和射灯等相关地物详细测量,获得相关地物的平面坐标和高程,最终绘制出该测区的实际地形图。
四.无棱镜全站仪的应用几点体会
1.无棱镜全站仪的测距性能大大优于传统全站仪,在实际应用中其测距的精度和稳定性能满足设计的测量要求,为土地规划提供了质量保证。
2.无棱镜全站仪的测距精度和被测物体表面的颜色和反光度有着直接的关系,通常情况下物体越浅、反射效果越好所得的测量效果越精确。就算物体表面粗糙,只要物体有着很强的发射性,测量精度也不会衰减。
3.在无棱镜全站仪要保证与待测目标形成垂直角度,同时要保证两者之间的视距良好,激光入射角的最大角度不得大于60度
4.影响无棱镜全站仪测量精度的因素主要来自自然环境,另外测量距离、发射角大小和物体的稳定性有着直接的关系,一般情况下所测物体间的距离越大测量的精度就会相对的降低。在雨雪、雾霾、水蒸气较大的情况下,无棱镜全站仪的激光传输会因水滴、雨水等问题产生光效折射,导致测量精度的降低,并且得不到高质量的测量数据。
结束语
无棱镜全站仪在城市土地测量中的应用越来越广,随着我国基础设施建设速度的加快,无棱镜全站仪会得到更加广泛的应用,无棱镜全站仪在未来的测量工作中有着极为广阔的发展前景。
参考文献
[1]范文兵.建筑物日照分析测量内容及方法探讨[j];城市勘测,2006,(6):34—35.
[2]范玖国.无棱镜测量在测绘3维数字地形图中的应用[j];测绘标准,2009.(1):47—49.
[3]曹阳.浅谈无棱镜全站仪在地形图测绘中的应用[j];辽宁测绘,2010.(3):24—25.
Abstract:The influence of Gauss projection distortion to several land survey and area calculating methods of land survey are discussed. Calculating discrepancy of land survey brought by these methods is stated with examples.
关键词:平面面积,高斯投影,坐标系
Keywords:flat area;Gauss projection;coordinate system
中图分类号:P20 文献标识码:A文章编号:1006-4311(2010)03-0052-01
0引言
土地面积测量是土地部门经常开展的测量工作,一般采用边界点法在投影平面上计算地块坐标封闭区域的面积,采用的投影平面在我国通常为高斯投影面,此方法简单、实用,但当采用国家统一的坐标基准,在测区投影面高程较高时,在离中央子午线较远地方会产生较大的长度变形,引起较大的面积计算误差,因此,在土地测量工作中有必要讨论一些其它的土地测量面积的计算方法,以限制高斯投影变形的影响或统一土地面积计量。下面以广州市为例,分析高斯投影变形对土地面积测量的影响,给出其它实用的几种土地测量面积计算方法。
1高斯投影对土地面积测量的影响
高斯投影会产生长度变形,由文献[2]可知因投影面高程引起的长度变形为:
ΔS1=S•Hm/RA(1)
因参考椭球面投影至高斯平面所引起的长度变形为:
ΔS2=S•y2m/R3m(2)
式中,Hm为归算边高出投影面的平均高程,RA为归算边方向参考椭球法截弧曲率半径,Rm为参考椭球面平均曲率半径,S为归算边长度,ym为归算边横坐标平均值。其中ΔS1为负值,即投影面高程总是引起归算边变短ΔS2为正值,即由椭球面投影至高斯平面总是引起归算边变长。为了便于计算,设RA=Rm=R (R取6363km,采用80椭球参数计算的平均曲率半径)可得高斯投影变形所引起的综合面积变形比m,为:
ms=(1+-)2(3)
2土地测量面积计算的几种方法
在地籍、房产和矿区等对精度要求较高的土地面积测量工作中,当所测地块投影变形超过相应规范要求时,可以根据不同要求用以下几种方法来计算土地测量的面积:
2.1 计算土地的椭球表面面积
利用文献[3]所提及的梯形椭球表面面积计算公式:
F=∫∫MNcos(B)dBdL(4)
其中,子午圈曲率半径M和卯酉圈曲率半径N的计算式为M=(a为子午圈长半径,e2为第一偏心率)N=。经进一步推算,可得某一经度和纬度范围(L1,L2)、(B1,B2)组成梯形的椭球表面面积S梯。为:
S梯=∫B2B1∫L2L1dBdL=•ln()|B2B1(5)
由于测量地块通常是不规则的,直接采用上述公式计算地块椭球表面的面积不现实,因此,可在设包围地块的梯形椭球面投影至高斯面产生的变形比与地块投影至高斯面产生的变形比相同的情况下,来求取任意地块的椭球面面积S椭为:
S椭=S平(6)
式中,S平为地块在高斯平面投影面面积,S投为包围地块经纬度组成的梯形椭球面面积,S为投包围地块的梯形在高斯平面上的投影面积。
2.2 采用抵偿投影面高程或任意带高斯投影方法建立临时以测量地块为中心的局部高斯投影坐标系。通过选取适当的中央子午线和高程面,使上述(3)式求得的面积变形比ms最小,计算土地测量平面面积。
2.3 直接采用投影变形进行面积改正计算方法。根据高斯投影变形的特点,当地块形状为南北狭长,东西跨度较小时,地块各边投影变形约相等,此时设地块面积总体变形比与地块中心点处面积变形比一致,根据上述公式(3)计算地块中心处的面积变形比m,则有:
S投=(7)
其中,S投为经投影改正后地块面积,S平为地块在原高斯平面上的测量面积。
3计算实例
设在离中央子午线约98km处有一地块,在西安80坐标系下测量的土地面积为5146246.688平方米,平均高程为21 m。经计算地块所处位置在国家统一的西安80坐标下长度变形约为12 cm/km。
相对实地平面面积,在国家统一的西安80坐标系下计算该地块的土地面积增加了1284.416平方米,产生了较大的变形,相对椭球面积产生了6090.975平方米的变形。
4结束语
高斯投影的特性决定了土地测量面积投影到高斯平面上均会产生变形,采用不同的高斯投影坐标系计算的土地面积结果各不相同。在大范围的土地测量面积计算中,为统一土地面积计量直接计算地块的椭球表面面积是适合的。对一般的土地测量的面积计算,为取得土地测量面积计算结果与实地平面一致需要采用上述减少投影变形的计算方法,其中方法(3)适宜东西跨度不大的地块,该计算方法简单实用,无需经过高斯投影正反算等复杂的计算过程。
参考文献:
[1]CJJ 8-99.城市测量规范[S].
1.1实测法
实测法是指利用GPS、全站仪等仪器进行农村土地承包经营权界址点实地测量的方法。随着JXCORS的建成,极大地方便了测绘工作,单人单机即可测量,提高了工作效率。本次试点工作采用JXCORS进行测量,对于满足JXCORS测量要求的区域,直接使用JX-CORS采集界址点数据;不能满足测量要求的区域,采用JXCORS布设图根控制点,使用全站仪测量界址点坐标。
1.2航测法
航测法是指采用航空摄影测量的方法采集农村土地承包经营权界址点数据的方法。由于农村土地承包经营权确权登记项目精度要求较高,一般采用无人机低空摄影测量方法,成图比例尺为1∶1000,然后在此基础上调绘得到界址点坐标和地块图。1.3图解法图解法是以已经测得的大比例尺航天数字正射影像、地籍图或地形图为基础,通过图解量算获取界址点坐标的方法。可以看出,图解法需要依赖于已有资料,且需要进行量算,对于缺乏基础资料或地块不规则的丘陵、山区,该方法受到了一定的局限。
2地块界址测量方法对比分析
2.1试点概况
赣州市南康区境内大部分为丘陵至低山地貌,北部边缘地区有中、低山地貌,沿章江、上犹江两岸一带有较广阔的河谷平原,是赣南较平坦的一个区域。整个地势西高东低,南北高中部低,由南北两端向中、由西向东,逐渐倾斜,中东部形似敞口盆地。一般海拔中部为110m~150m,北部为350m~500m,南部为300m~450m。丘陵、山地、平原各约占总面积的59%、27%、14%。本次试点工作选择一个比较典型的村庄进行测量,地形即包括低山丘陵区也包括山前平原,面积约2.4km2。由于本地区缺少大比例尺影像数据、地籍数据,且地形以低山丘陵为主,地块不规则,采用图解法进行界址点测量和地块图绘制具有一定的局限性,故本次试点采用实测法和航测法进行对比分析。2.2测量精度分析
2.2.1界址点精度分析
选择本次测量成果中的876个界址点进行精度分析,所有界址点均有实测法和航测法两套成果。(1)JXCORS测量界址点精度。众所周知,目前CORS技术已经成熟,根据农村集体土地所有权、使用权和众多测绘项目的检查情况,在满足JXCORS测量要求的情况下,其测量平面精度优于3cm,可以满足NY/T2537-2014《农村土地承包经营权调查规程》(以下简称《规程》)中实测界址点的精度要求。本次测量时,每个界址点均独立观测两次,平面较差小于3cm取平均值作为最终成果。当然,对于高大树木遮挡、无线信号影响等不能满足JXCORS测量要求的区域,需要全站仪测量等方法辅助测量。(2)无人机低空摄影测量界址点精度。采用无人机低空摄影测量的方法获取试点区域的影响,经过处理后根据田埂、农村道路等线状地物分割地块,得到界址点成果。采用JXCORS对航测法界址点成果进行精度检查。经统计,点位较差小于15cm的界址点有234点,占总数的26.71%;点位较差在15cm-30cm之间的有515点,占58.79总数的%;较差在30cm-45cm之间的有127点,占总数的14.50%。视JXCORS测量成果为真值,计算无人机低空摄影测量的界址点的中误差为±16.3cm,可以满足《规程》中航测法界址点的精度要求。
2.2.2地块面积精度
本次测量得到了251个地块,对测量得到的地块面积进行精度检核。经统计,JXCORS测量得到的地块面积均满足《规程》要求,航测法有两个地块面积不能满足要求,经分析原因,使用无人机低空摄影测量时受到树木遮挡影响,该地块处影像不清晰,造成面积误差超限。采用航测法进行地块图绘制时,需要认真检查面积数据。与原有地块档案对比,发现面积超限的,分析原因,若是由于本次测量精度较低造成的,需要采用实测法或图解法重新制作地块图和界址点。
2.3工作效率分析
(1)实测法工作效率。经统计,本次251地块、876个界址点,采用JXCORS结合全站仪实测使用的时间为3工作日,地块图绘制时间为1工作日,合计时间为4工作日。(2)航测法工作效率。本次航测时间为0.5工作日,影像内业处理时间为0.5工作日,地块图绘制及界址点整理时间为1工作日,共计花费2工作日。当然,本次试点工作面积较小,航测外业效率较低,若大面积航测,效率将会更高。可以看出,航测法效率较高,且野外的工作时间较少,采用航测法可以减少野外工作时间,降低成本和劳动强度,明显的提高工作效率。
3结论