美章网 精品范文 电子电源技术范文

电子电源技术范文

前言:我们精心挑选了数篇优质电子电源技术文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。

电子电源技术

第1篇

现代电源技术是应用电力电子半导体器件,综合自动控制、计算机(微处理器)技术和电磁技术的多学科边缘交又技术。在各种高质量、高效、高可靠性的电源中起关键作用,是现代电力电子技术的具体应用。

当前,电力电子作为节能、节才、自动化、智能化、机电一体化的基础,正朝着应用技术高频化、硬件结构模块化、产品性能绿色化的方向发展。在不远的将来,电力电子技术将使电源技术更加成熟、经济、实用,实现高效率和高品质用电相结合。

1.电力电子技术的发展

现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。电力电子技术起始于五十年代末六十年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。

1.1整流器时代

大功率的工业用电由工频(50Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解(有色金属和化工原料需要直流电解)、牵引(电气机车、电传动的内燃机车、地铁机车、城市无轨电车等)和直流传动(轧钢、造纸等)三大领域。大功率硅整流器能够高效率地把工频交流电转变为直流电,因此在六十年代和七十年代,大功率硅整流管和晶闸管的开发与应用得以很大发展。当时国内曾经掀起了-股各地大办硅整流器厂的热潮,目前全国大大小小的制造硅整流器的半导体厂家就是那时的产物。

1.2逆变器时代

七十年代出现了世界范围的能源危机,交流电机变频惆速因节能效果显著而迅速发展。变频调速的关键技术是将直流电逆变为0~100Hz的交流电。在七十年代到八十年代,随着变频调速装置的普及,大功率逆变用的晶闸管、巨型功率晶体管(GTR)和门极可关断晶闸管(GT0)成为当时电力电子器件的主角。类似的应用还包括高压直流输出,静止式无功功率动态补偿等。这时的电力电子技术已经能够实现整流和逆变,但工作频率较低,仅局限在中低频范围内。

1.3变频器时代

进入八十年代,大规模和超大规模集成电路技术的迅猛发展,为现代电力电子技术的发展奠定了基础。将集成电路技术的精细加工技术和高压大电流技术有机结合,出现了一批全新的全控型功率器件、首先是功率M0SFET的问世,导致了中小功率电源向高频化发展,而后绝缘门极双极晶体管(IGBT)的出现,又为大中型功率电源向高频发展带来机遇。MOSFET和IGBT的相继问世,是传统的电力电子向现代电力电子转化的标志。据统计,到1995年底,功率M0SFET和GTR在功率半导体器件市场上已达到平分秋色的地步,而用IGBT代替GTR在电力电子领域巳成定论。新型器件的发展不仅为交流电机变频调速提供了较高的频率,使其性能更加完善可靠,而且使现代电子技术不断向高频化发展,为用电设备的高效节材节能,实现小型轻量化,机电一体化和智能化提供了重要的技术基础。

2.现代电力电子的应用领域

2.1计算机高效率绿色电源

高速发展的计算机技术带领人类进入了信息社会,同时也促进了电源技术的迅速发展。八十年代,计算机全面采用了开关电源,率先完成计算机电源换代。接着开关电源技术相继进人了电子、电器设备领域。

计算机技术的发展,提出绿色电脑和绿色电源。绿色电脑泛指对环境无害的个人电脑和相关产品,绿色电源系指与绿色电脑相关的高效省电电源,根据美国环境保护署l992年6月17日“能源之星"计划规定,桌上型个人电脑或相关的设备,在睡眠状态下的耗电量若小于30瓦,就符合绿色电脑的要求,提高电源效率是降低电源消耗的根本途径。就目前效率为75%的200瓦开关电源而言,电源自身要消耗50瓦的能源。

2.2通信用高频开关电源

通信业的迅速发展极大的推动了通信电源的发展。高频小型化的开关电源及其技术已成为现代通信供电系统的主流。在通信领域中,通常将整流器称为一次电源,而将直流-直流(DC/DC)变换器称为二次电源。一次电源的作用是将单相或三相交流电网变换成标称值为48V的直流电源。目前在程控交换机用的一次电源中,传统的相控式稳压电源己被高频开关电源取代,高频开关电源(也称为开关型整流器SMR)通过MOSFET或IGBT的高频工作,开关频率一般控制在50-100kHz范围内,实现高效率和小型化。近几年,开关整流器的功率容量不断扩大,单机容量己从48V/12.5A、48V/20A扩大到48V/200A、48V/400A。

因通信设备中所用集成电路的种类繁多,其电源电压也各不相同,在通信供电系统中采用高功率密度的高频DC-DC隔离电源模块,从中间母线电压(一般为48V直流)变换成所需的各种直流电压,这样可大大减小损耗、方便维护,且安装、增加非常方便。一般都可直接装在标准控制板上,对二次电源的要求是高功率密度。因通信容量的不断增加,通信电源容量也将不断增加。

2.3直流-直流(DC/DC)变换器

DC/DC变换器将一个固定的直流电压变换为可变的直流电压,这种技术被广泛应用于无轨电车、地铁列车、电动车的无级变速和控制,同时使上述控制获得加速平稳、快速响应的性能,并同时收到节约电能的效果。用直流斩波器代替变阻器可节约电能(20~30)%。直流斩波器不仅能起调压的作用(开关电源),同时还能起到有效地抑制电网侧谐波电流噪声的作用。

通信电源的二次电源DC/DC变换器已商品化,模块采用高频PWM技术,开关频率在500kHz左右,功率密度为5W~20W/in3。随着大规模集成电路的发展,要求电源模块实现小型化,因此就要不断提高开关频率和采用新的电路拓扑结构,目前已有一些公司研制生产了采用零电流开关和零电压开关技术的二次电源模块,功率密度有较大幅度的提高。

2.4不间断电源(UPS)

不间断电源(UPS)是计算机、通信系统以及要求提供不能中断场合所必须的一种高可靠、高性能的电源。交流市电输入经整流器变成直流,一部分能量给蓄电池组充电,另一部分能量经逆变器变成交流,经转换开关送到负载。为了在逆变器故障时仍能向负载提供能量,另一路备用电源通过电源转换开关来实现。

现代UPS普遍了采用脉宽调制技术和功率M0SFET、IGBT等现代电力电子器件,电源的噪声得以降低,而效率和可靠性得以提高。微处理器软硬件技术的引入,可以实现对UPS的智能化管理,进行远程维护和远程诊断。

目前在线式UPS的最大容量已可作到600kVA。超小型UPS发展也很迅速,已经有0.5kVA、lkVA、2kVA、3kVA等多种规格的产品。

2.5变频器电源

变频器电源主要用于交流电机的变频调速,其在电气传动系统中占据的地位日趋重要,已获得巨大的节能效果。变频器电源主电路均采用交流-直流-交流方案。工频电源通过整流器变成固定的直流电压,然后由大功率晶体管或IGBT组成的PWM高频变换器,将直流电压逆变成电压、频率可变的交流输出,电源输出波形近似于正弦波,用于驱动交流异步电动机实现无级调速。

国际上400kVA以下的变频器电源系列产品已经问世。八十年代初期,日本东芝公司最先将交流变频调速技术应用于空调器中。至1997年,其占有率已达到日本家用空调的70%以上。变频空调具有舒适、节能等优点。国内于90年代初期开始研究变频空调,96年引进生产线生产变频空调器,逐渐形成变频空调开发生产热点。预计到2000年左右将形成。变频空调除了变频电源外,还要求有适合于变频调速的压缩机电机。优化控制策略,精选功能组件,是空调变频电源研制的进一步发展方向。

2.6高频逆变式整流焊机电源

高频逆变式整流焊机电源是一种高性能、高效、省材的新型焊机电源,代表了当今焊机电源的发展方向。由于IGBT大容量模块的商用化,这种电源更有着广阔的应用前景。

逆变焊机电源大都采用交流-直流-交流-直流(AC-DC-AC-DC)变换的方法。50Hz交流电经全桥整流变成直流,IGBT组成的PWM高频变换部分将直流电逆变成20kHz的高频矩形波,经高频变压器耦合,整流滤波后成为稳定的直流,供电弧使用。

由于焊机电源的工作条件恶劣,频繁的处于短路、燃弧、开路交替变化之中,因此高频逆变式整流焊机电源的工作可靠性问题成为最关键的问题,也是用户最关心的问题。采用微处理器做为脉冲宽度调制(PWM)的相关控制器,通过对多参数、多信息的提取与分析,达到预知系统各种工作状态的目的,进而提前对系统做出调整和处理,解决了目前大功率IGBT逆变电源可靠性。

国外逆变焊机已可做到额定焊接电流300A,负载持续率60%,全载电压60~75V,电流调节范围5~300A,重量29kg。

2.7大功率开关型高压直流电源

大功率开关型高压直流电源广泛应用于静电除尘、水质改良、医用X光机和CT机等大型设备。电压高达50~l59kV,电流达到0.5A以上,功率可达100kW。

自从70年代开始,日本的一些公司开始采用逆变技术,将市电整流后逆变为3kHz左右的中频,然后升压。进入80年代,高频开关电源技术迅速发展。德国西门子公司采用功率晶体管做主开关元件,将电源的开关频率提高到20kHz以上。并将干式变压器技术成功的应用于高频高压电源,取消了高压变压器油箱,使变压器系统的体积进一步减小。

国内对静电除尘高压直流电源进行了研制,市电经整流变为直流,采用全桥零电流开关串联谐振逆变电路将直流电压逆变为高频电压,然后由高频变压器升压,最后整流为直流高压。在电阻负载条件下,输出直流电压达到55kV,电流达到15mA,工作频率为25.6kHz。

2.8电力有源滤波器

传统的交流-直流(AC-DC)变换器在投运时,将向电网注入大量的谐波电流,引起谐波损耗和干扰,同时还出现装置网侧功率因数恶化的现象,即所谓“电力公害”,例如,不可控整流加电容滤波时,网侧三次谐波含量可达(70~80)%,网侧功率因数仅有0.5~0.6。

电力有源滤波器是一种能够动态抑制谐波的新型电力电子装置,能克服传统LC滤波器的不足,是一种很有发展前途的谐波抑制手段。滤波器由桥式开关功率变换器和具体控制电路构成。与传统开关电源的区别是:(l)不仅反馈输出电压,还反馈输入平均电流;(2)电流环基准信号为电压环误差信号与全波整流电压取样信号之乘积。

2.9分布式开关电源供电系统

分布式电源供电系统采用小功率模块和大规模控制集成电路作基本部件,利用最新理论和技术成果,组成积木式、智能化的大功率供电电源,从而使强电与弱电紧密结合,降低大功率元器件、大功率装置(集中式)的研制压力,提高生产效率。

八十年代初期,对分布式高频开关电源系统的研究基本集中在变换器并联技术的研究上。八十年代中后期,随着高频功率变换技术的迅述发展,各种变换器拓扑结构相继出现,结合大规模集成电路和功率元器件技术,使中小功率装置的集成成为可能,从而迅速地推动了分布式高频开关电源系统研究的展开。自八十年代后期开始,这一方向已成为国际电力电子学界的研究热点,论文数量逐年增加,应用领域不断扩大。

分布供电方式具有节能、可靠、高效、经济和维护方便等优点。已被大型计算机、通信设备、航空航天、工业控制等系统逐渐采纳,也是超高速型集成电路的低电压电源(3.3V)的最为理想的供电方式。在大功率场合,如电镀、电解电源、电力机车牵引电源、中频感应加热电源、电动机驱动电源等领域也有广阔的应用前景。

3.高频开关电源的发展趋势

在电力电子技术的应用及各种电源系统中,开关电源技术均处于核心地位。对于大型电解电镀电源,传统的电路非常庞大而笨重,如果采用高顿开关电源技术,其体积和重量都会大幅度下降,而且可极大提高电源利用效率、节省材料、降低成本。在电动汽车和变频传动中,更是离不开开关电源技术,通过开关电源改变用电频率,从而达到近于理想的负载匹配和驱动控制。高频开关电源技术,更是各种大功率开关电源(逆变焊机、通讯电源、高频加热电源、激光器电源、电力操作电源等)的核心技术。

3.1高频化

理论分析和实践经验表明,电气产品的变压器、电感和电容的体积重量与供电频率的平方根成反比。所以当我们把频率从工频50Hz提高到20kHz,提高400倍的话,用电设备的体积重量大体下降至工频设计的5~l0%。无论是逆变式整流焊机,还是通讯电源用的开关式整流器,都是基于这一原理。同样,传统“整流行业”的电镀、电解、电加工、充电、浮充电、电力合闸用等各种直流电源也可以根据这一原理进行改造,成为“开关变换类电源”,其主要材料可以节约90%或更高,还可节电30%或更多。由于功率电子器件工作频率上限的逐步提高,促使许多原来采用电子管的传统高频设备固态化,带来显著节能、节水、节约材料的经济效益,更可体现技术含量的价值。

3.2模块化

模块化有两方面的含义,其一是指功率器件的模块化,其二是指电源单元的模块化。我们常见的器件模块,含有一单元、两单元、六单元直至七单元,包括开关器件和与之反并联的续流二极管,实质上都属于“标准”功率模块(SPM)。近年,有些公司把开关器件的驱动保护电路也装到功率模块中去,构成了“智能化”功率模块(IPM),不但缩小了整机的体积,更方便了整机的设计制造。实际上,由于频率的不断提高,致使引线寄生电感、寄生电容的影响愈加严重,对器件造成更大的电应力(表现为过电压、过电流毛刺)。为了提高系统的可靠性,有些制造商开发了“用户专用”功率模块(ASPM),它把一台整机的几乎所有硬件都以芯片的形式安装到一个模块中,使元器件之间不再有传统的引线连接,这样的模块经过严格、合理的热、电、机械方面的设计,达到优化完美的境地。它类似于微电子中的用户专用集成电路(ASIC)。只要把控制软件写入该模块中的微处理器芯片,再把整个模块固定在相应的散热器上,就构成一台新型的开关电源装置。由此可见,模块化的目的不仅在于使用方便,缩小整机体积,更重要的是取消传统连线,把寄生参数降到最小,从而把器件承受的电应力降至最低,提高系统的可靠性。另外,大功率的开关电源,由于器件容量的限制和增加冗余提高可靠性方面的考虑,一般采用多个独立的模块单元并联工作,采用均流技术,所有模块共同分担负载电流,一旦其中某个模块失效,其它模块再平均分担负载电流。这样,不但提高了功率容量,在有限的器件容量的情况下满足了大电流输出的要求,而且通过增加相对整个系统来说功率很小的冗余电源模块,极大的提高系统可靠性,即使万一出现单模块故障,也不会影响系统的正常工作,而且为修复提供充分的时间。

3.3数字化

在传统功率电子技术中,控制部分是按模拟信号来设计和工作的。在六、七十年代,电力电子技术完全是建立在模拟电路基础上的。但是,现在数字式信号、数字电路显得越来越重要,数字信号处理技术日趋完善成熟,显示出越来越多的优点:便于计算机处理控制、避免模拟信号的畸变失真、减小杂散信号的干扰(提高抗干扰能力)、便于软件包调试和遥感遥测遥调,也便于自诊断、容错等技术的植入。所以,在八、九十年代,对于各类电路和系统的设计来说,模拟技术还是有用的,特别是:诸如印制版的布图、电磁兼容(EMC)问题以及功率因数修正(PFC)等问题的解决,离不开模拟技术的知识,但是对于智能化的开关电源,需要用计算机控制时,数字化技术就离不开了。

3.4绿色化

电源系统的绿色化有两层含义:首先是显著节电,这意味着发电容量的节约,而发电是造成环境污染的重要原因,所以节电就可以减少对环境的污染;其次这些电源不能(或少)对电网产生污染,国际电工委员会(IEC)对此制定了一系列标准,如IEC555、IEC917、IECl000等。事实上,许多功率电子节电设备,往往会变成对电网的污染源:向电网注入严重的高次谐波电流,使总功率因数下降,使电网电压耦合许多毛刺尖峰,甚至出现缺角和畸变。20世纪末,各种有源滤波器和有源补偿器的方案诞生,有了多种修正功率因数的方法。这些为2l世纪批量生产各种绿色开关电源产品奠定了基础。

现代电力电子技术是开关电源技术发展的基础。随着新型电力电子器件和适于更高开关频率的电路拓扑的不断出现,现代电源技术将在实际需要的推动下快速发展。在传统的应用技术下,由于功率器件性能的限制而使开关电源的性能受到影响。为了极大发挥各种功率器件的特性,使器件性能对开关电源性能的影响减至最小,新型的电源电路拓扑和新型的控制技术,可使功率开关工作在零电压或零电流状态,从而可大大的提高工作频率,提高开关电源工作效率,设计出性能优良的开关电源。

总而言之,电力电子及开关电源技术因应用需求不断向前发展,新技术的出现又会使许多应用产品更新换代,还会开拓更多更新的应用领域。开关电源高频化、模块化、数字化、绿色化等的实现,将标志着这些技术的成熟,实现高效率用电和高品质用电相结合。这几年,随着通信行业的发展,以开关电源技术为核心的通信用开关电源,仅国内有20多亿人民币的市场需求,吸引了国内外一大批科技人员对其进行开发研究。开关电源代替线性电源和相控电源是大势所趋,因此,同样具有几十亿产值需求的电力操作电源系统的国内市场正在启动,并将很快发展起来。还有其它许多以开关电源技术为核心的专用电源、工业电源正在等待着人们去开发。

参考文献

(l)林渭勋:浅谈半导体高频电力电子技术,电力电子技术选编,浙江大学,384-390,1992

(2)季幼章:迎接知识经济时代,发展电源技术应用,电源技术应用,N0.2,l998

(3)叶治正,叶靖国:开关稳压电源。高等教育出版社,1998

第2篇

当前,电力电子作为节能、节才、自动化、智能化、机电一体化的基础,正朝着应用技术高频化、硬件结构模块化、产品性能绿色化的方向发展。在不远的将来,电力电子技术将使电源技术更加成熟、经济、实用,实现高效率和高品质用电相结合。

1.电力电子技术的发展

现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。电力电子技术起始于五十年代末六十年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。

1.1整流器时代

大功率的工业用电由工频(50Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解(有色金属和化工原料需要直流电解)、牵引(电气机车、电传动的内燃机车、地铁机车、城市无轨电车等)和直流传动(轧钢、造纸等)三大领域。大功率硅整流器能够高效率地把工频交流电转变为直流电,因此在六十年代和七十年代,大功率硅整流管和晶闸管的开发与应用得以很大发展。当时国内曾经掀起了-股各地大办硅整流器厂的热潮,目前全国大大小小的制造硅整流器的半导体厂家就是那时的产物。

1.2逆变器时代

七十年代出现了世界范围的能源危机,交流电机变频惆速因节能效果显著而迅速发展。变频调速的关键技术是将直流电逆变为0~100Hz的交流电。在七十年代到八十年代,随着变频调速装置的普及,大功率逆变用的晶闸管、巨型功率晶体管(GTR)和门极可关断晶闸管(GT0)成为当时电力电子器件的主角。类似的应用还包括高压直流输出,静止式无功功率动态补偿等。这时的电力电子技术已经能够实现整流和逆变,但工作频率较低,仅局限在中低频范围内。

1.3变频器时代

进入八十年代,大规模和超大规模集成电路技术的迅猛发展,为现代电力电子技术的发展奠定了基础。将集成电路技术的精细加工技术和高压大电流技术有机结合,出现了一批全新的全控型功率器件、首先是功率M0SFET的问世,导致了中小功率电源向高频化发展,而后绝缘门极双极晶体管(IGBT)的出现,又为大中型功率电源向高频发展带来机遇。MOSFET和IGBT的相继问世,是传统的电力电子向现代电力电子转化的标志。据统计,到1995年底,功率M0SFET和GTR在功率半导体器件市场上已达到平分秋色的地步,而用IGBT代替GTR在电力电子领域巳成定论。新型器件的发展不仅为交流电机变频调速提供了较高的频率,使其性能更加完善可靠,而且使现代电子技术不断向高频化发展,为用电设备的高效节材节能,实现小型轻量化,机电一体化和智能化提供了重要的技术基础。

2.现代电力电子的应用领域

2.1计算机高效率绿色电源

高速发展的计算机技术带领人类进入了信息社会,同时也促进了电源技术的迅速发展。八十年代,计算机全面采用了开关电源,率先完成计算机电源换代。接着开关电源技术相继进人了电子、电器设备领域。

计算机技术的发展,提出绿色电脑和绿色电源。绿色电脑泛指对环境无害的个人电脑和相关产品,绿色电源系指与绿色电脑相关的高效省电电源,根据美国环境保护署l992年6月17日“能源之星"计划规定,桌上型个人电脑或相关的设备,在睡眠状态下的耗电量若小于30瓦,就符合绿色电脑的要求,提高电源效率是降低电源消耗的根本途径。就目前效率为75%的200瓦开关电源而言,电源自身要消耗50瓦的能源。

2.2通信用高频开关电源

通信业的迅速发展极大的推动了通信电源的发展。高频小型化的开关电源及其技术已成为现代通信供电系统的主流。在通信领域中,通常将整流器称为一次电源,而将直流-直流(DC/DC)变换器称为二次电源。一次电源的作用是将单相或三相交流电网变换成标称值为48V的直流电源。目前在程控交换机用的一次电源中,传统的相控式稳压电源己被高频开关电源取代,高频开关电源(也称为开关型整流器SMR)通过MOSFET或IGBT的高频工作,开关频率一般控制在50-100kHz范围内,实现高效率和小型化。近几年,开关整流器的功率容量不断扩大,单机容量己从48V/12.5A、48V/20A扩大到48V/200A、48V/400A。

因通信设备中所用集成电路的种类繁多,其电源电压也各不相同,在通信供电系统中采用高功率密度的高频DC-DC隔离电源模块,从中间母线电压(一般为48V直流)变换成所需的各种直流电压,这样可大大减小损耗、方便维护,且安装、增加非常方便。一般都可直接装在标准控制板上,对二次电源的要求是高功率密度。因通信容量的不断增加,通信电源容量也将不断增加。

2.3直流-直流(DC/DC)变换器

DC/DC变换器将一个固定的直流电压变换为可变的直流电压,这种技术被广泛应用于无轨电车、地铁列车、电动车的无级变速和控制,同时使上述控制获得加速平稳、快速响应的性能,并同时收到节约电能的效果。用直流斩波器代替变阻器可节约电能(20~30)%。直流斩波器不仅能起调压的作用(开关电源),同时还能起到有效地抑制电网侧谐波电流噪声的作用。

通信电源的二次电源DC/DC变换器已商品化,模块采用高频PWM技术,开关频率在500kHz左右,功率密度为5W~20W/in3。随着大规模集成电路的发展,要求电源模块实现小型化,因此就要不断提高开关频率和采用新的电路拓扑结构,目前已有一些公司研制生产了采用零电流开关和零电压开关技术的二次电源模块,功率密度有较大幅度的提高。

2.4不间断电源(UPS)

不间断电源(UPS)是计算机、通信系统以及要求提供不能中断场合所必须的一种高可靠、高性能的电源。交流市电输入经整流器变成直流,一部分能量给蓄电池组充电,另一部分能量经逆变器变成交流,经转换开关送到负载。为了在逆变器故障时仍能向负载提供能量,另一路备用电源通过电源转换开关来实现。

现代UPS普遍了采用脉宽调制技术和功率M0SFET、IGBT等现代电力电子器件,电源的噪声得以降低,而效率和可靠性得以提高。微处理器软硬件技术的引入,可以实现对UPS的智能化管理,进行远程维护和远程诊断。

目前在线式UPS的最大容量已可作到600kVA。超小型UPS发展也很迅速,已经有0.5kVA、lkVA、2kVA、3kVA等多种规格的产品。

2.5变频器电源

变频器电源主要用于交流电机的变频调速,其在电气传动系统中占据的地位日趋重要,已获得巨大的节能效果。变频器电源主电路均采用交流-直流-交流方案。工频电源通过整流器变成固定的直流电压,然后由大功率晶体管或IGBT组成的PWM高频变换器,将直流电压逆变成电压、频率可变的交流输出,电源输出波形近似于正弦波,用于驱动交流异步电动机实现无级调速。

国际上400kVA以下的变频器电源系列产品已经问世。八十年代初期,日本东芝公司最先将交流变频调速技术应用于空调器中。至1997年,其占有率已达到日本家用空调的70%以上。变频空调具有舒适、节能等优点。国内于90年代初期开始研究变频空调,96年引进生产线生产变频空调器,逐渐形成变频空调开发生产热点。预计到2000年左右将形成。变频空调除了变频电源外,还要求有适合于变频调速的压缩机电机。优化控制策略,精选功能组件,是空调变频电源研制的进一步发展方向。

2.6高频逆变式整流焊机电源

高频逆变式整流焊机电源是一种高性能、高效、省材的新型焊机电源,代表了当今焊机电源的发展方向。由于IGBT大容量模块的商用化,这种电源更有着广阔的应用前景。

逆变焊机电源大都采用交流-直流-交流-直流(AC-DC-AC-DC)变换的方法。50Hz交流电经全桥整流变成直流,IGBT组成的PWM高频变换部分将直流电逆变成20kHz的高频矩形波,经高频变压器耦合,整流滤波后成为稳定的直流,供电弧使用。

由于焊机电源的工作条件恶劣,频繁的处于短路、燃弧、开路交替变化之中,因此高频逆变式整流焊机电源的工作可靠性问题成为最关键的问题,也是用户最关心的问题。采用微处理器做为脉冲宽度调制(PWM)的相关控制器,通过对多参数、多信息的提取与分析,达到预知系统各种工作状态的目的,进而提前对系统做出调整和处理,解决了目前大功率IGBT逆变电源可靠性。

国外逆变焊机已可做到额定焊接电流300A,负载持续率60%,全载电压60~75V,电流调节范围5~300A,重量29kg。

2.7大功率开关型高压直流电源

大功率开关型高压直流电源广泛应用于静电除尘、水质改良、医用X光机和CT机等大型设备。电压高达50~l59kV,电流达到0.5A以上,功率可达100kW。

自从70年代开始,日本的一些公司开始采用逆变技术,将市电整流后逆变为3kHz左右的中频,然后升压。进入80年代,高频开关电源技术迅速发展。德国西门子公司采用功率晶体管做主开关元件,将电源的开关频率提高到20kHz以上。并将干式变压器技术成功的应用于高频高压电源,取消了高压变压器油箱,使变压器系统的体积进一步减小。

国内对静电除尘高压直流电源进行了研制,市电经整流变为直流,采用全桥零电流开关串联谐振逆变电路将直流电压逆变为高频电压,然后由高频变压器升压,最后整流为直流高压。在电阻负载条件下,输出直流电压达到55kV,电流达到15mA,工作频率为25.6kHz。

2.8电力有源滤波器

传统的交流-直流(AC-DC)变换器在投运时,将向电网注入大量的谐波电流,引起谐波损耗和干扰,同时还出现装置网侧功率因数恶化的现象,即所谓“电力公害”,例如,不可控整流加电容滤波时,网侧三次谐波含量可达(70~80)%,网侧功率因数仅有0.5~0.6。

电力有源滤波器是一种能够动态抑制谐波的新型电力电子装置,能克服传统LC滤波器的不足,是一种很有发展前途的谐波抑制手段。滤波器由桥式开关功率变换器和具体控制电路构成。与传统开关电源的区别是:(l)不仅反馈输出电压,还反馈输入平均电流;(2)电流环基准信号为电压环误差信号与全波整流电压取样信号之乘积。

2.9分布式开关电源供电系统

分布式电源供电系统采用小功率模块和大规模控制集成电路作基本部件,利用最新理论和技术成果,组成积木式、智能化的大功率供电电源,从而使强电与弱电紧密结合,降低大功率元器件、大功率装置(集中式)的研制压力,提高生产效率。

八十年代初期,对分布式高频开关电源系统的研究基本集中在变换器并联技术的研究上。八十年代中后期,随着高频功率变换技术的迅述发展,各种变换器拓扑结构相继出现,结合大规模集成电路和功率元器件技术,使中小功率装置的集成成为可能,从而迅速地推动了分布式高频开关电源系统研究的展开。自八十年代后期开始,这一方向已成为国际电力电子学界的研究热点,论文数量逐年增加,应用领域不断扩大。

分布供电方式具有节能、可靠、高效、经济和维护方便等优点。已被大型计算机、通信设备、航空航天、工业控制等系统逐渐采纳,也是超高速型集成电路的低电压电源(3.3V)的最为理想的供电方式。在大功率场合,如电镀、电解电源、电力机车牵引电源、中频感应加热电源、电动机驱动电源等领域也有广阔的应用前景。

3.高频开关电源的发展趋势

在电力电子技术的应用及各种电源系统中,开关电源技术均处于核心地位。对于大型电解电镀电源,传统的电路非常庞大而笨重,如果采用高顿开关电源技术,其体积和重量都会大幅度下降,而且可极大提高电源利用效率、节省材料、降低成本。在电动汽车和变频传动中,更是离不开开关电源技术,通过开关电源改变用电频率,从而达到近于理想的负载匹配和驱动控制。高频开关电源技术,更是各种大功率开关电源(逆变焊机、通讯电源、高频加热电源、激光器电源、电力操作电源等)的核心技术。

3.1高频化

理论分析和实践经验表明,电气产品的变压器、电感和电容的体积重量与供电频率的平方根成反比。所以当我们把频率从工频50Hz提高到20kHz,提高400倍的话,用电设备的体积重量大体下降至工频设计的5~l0%。无论是逆变式整流焊机,还是通讯电源用的开关式整流器,都是基于这一原理。同样,传统“整流行业”的电镀、电解、电加工、充电、浮充电、电力合闸用等各种直流电源也可以根据这一原理进行改造,成为“开关变换类电源”,其主要材料可以节约90%或更高,还可节电30%或更多。由于功率电子器件工作频率上限的逐步提高,促使许多原来采用电子管的传统高频设备固态化,带来显著节能、节水、节约材料的经济效益,更可体现技术含量的价值。

3.2模块化

模块化有两方面的含义,其一是指功率器件的模块化,其二是指电源单元的模块化。我们常见的器件模块,含有一单元、两单元、六单元直至七单元,包括开关器件和与之反并联的续流二极管,实质上都属于“标准”功率模块(SPM)。近年,有些公司把开关器件的驱动保护电路也装到功率模块中去,构成了“智能化”功率模块(IPM),不但缩小了整机的体积,更方便了整机的设计制造。实际上,由于频率的不断提高,致使引线寄生电感、寄生电容的影响愈加严重,对器件造成更大的电应力(表现为过电压、过电流毛刺)。为了提高系统的可靠性,有些制造商开发了“用户专用”功率模块(ASPM),它把一台整机的几乎所有硬件都以芯片的形式安装到一个模块中,使元器件之间不再有传统的引线连接,这样的模块经过严格、合理的热、电、机械方面的设计,达到优化完美的境地。它类似于微电子中的用户专用集成电路(ASIC)。只要把控制软件写入该模块中的微处理器芯片,再把整个模块固定在相应的散热器上,就构成一台新型的开关电源装置。由此可见,模块化的目的不仅在于使用方便,缩小整机体积,更重要的是取消传统连线,把寄生参数降到最小,从而把器件承受的电应力降至最低,提高系统的可靠性。另外,大功率的开关电源,由于器件容量的限制和增加冗余提高可靠性方面的考虑,一般采用多个独立的模块单元并联工作,采用均流技术,所有模块共同分担负载电流,一旦其中某个模块失效,其它模块再平均分担负载电流。这样,不但提高了功率容量,在有限的器件容量的情况下满足了大电流输出的要求,而且通过增加相对整个系统来说功率很小的冗余电源模块,极大的提高系统可靠性,即使万一出现单模块故障,也不会影响系统的正常工作,而且为修复提供充分的时间。

3.3数字化

在传统功率电子技术中,控制部分是按模拟信号来设计和工作的。在六、七十年代,电力电子技术完全是建立在模拟电路基础上的。但是,现在数字式信号、数字电路显得越来越重要,数字信号处理技术日趋完善成熟,显示出越来越多的优点:便于计算机处理控制、避免模拟信号的畸变失真、减小杂散信号的干扰(提高抗干扰能力)、便于软件包调试和遥感遥测遥调,也便于自诊断、容错等技术的植入。所以,在八、九十年代,对于各类电路和系统的设计来说,模拟技术还是有用的,特别是:诸如印制版的布图、电磁兼容(EMC)问题以及功率因数修正(PFC)等问题的解决,离不开模拟技术的知识,但是对于智能化的开关电源,需要用计算机控制时,数字化技术就离不开了。

3.4绿色化

电源系统的绿色化有两层含义:首先是显著节电,这意味着发电容量的节约,而发电是造成环境污染的重要原因,所以节电就可以减少对环境的污染;其次这些电源不能(或少)对电网产生污染,国际电工委员会(IEC)对此制定了一系列标准,如IEC555、IEC917、IECl000等。事实上,许多功率电子节电设备,往往会变成对电网的污染源:向电网注入严重的高次谐波电流,使总功率因数下降,使电网电压耦合许多毛刺尖峰,甚至出现缺角和畸变。20世纪末,各种有源滤波器和有源补偿器的方案诞生,有了多种修正功率因数的方法。这些为2l世纪批量生产各种绿色开关电源产品奠定了基础。

第3篇

当前,电力电子作为节能、节才、自动化、智能化、机电一体化的基础,正朝着应用技术高频化、硬件结构模块化、产品性能绿色化的方向发展。在不远的将来,电力电子技术将使电源技术更加成熟、经济、实用,实现高效率和高品质用电相结合。

1.电力电子技术的发展

现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。电力电子技术起始于五十年代末六十年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。

1.1整流器时代

大功率的工业用电由工频(50Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解(有色金属和化工原料需要直流电解)、牵引(电气机车、电传动的内燃机车、地铁机车、城市无轨电车等)和直流传动(轧钢、造纸等)三大领域。大功率硅整流器能够高效率地把工频交流电转变为直流电,因此在六十年代和七十年代,大功率硅整流管和晶闸管的开发与应用得以很大发展。当时国内曾经掀起了-股各地大办硅整流器厂的热潮,目前全国大大小小的制造硅整流器的半导体厂家就是那时的产物。

1.2逆变器时代

七十年代出现了世界范围的能源危机,交流电机变频惆速因节能效果显著而迅速发展。变频调速的关键技术是将直流电逆变为0~100Hz的交流电。在七十年代到八十年代,随着变频调速装置的普及,大功率逆变用的晶闸管、巨型功率晶体管(GTR)和门极可关断晶闸管(GT0)成为当时电力电子器件的主角。类似的应用还包括高压直流输出,静止式无功功率动态补偿等。这时的电力电子技术已经能够实现整流和逆变,但工作频率较低,仅局限在中低频范围内。

1.3变频器时代

进入八十年代,大规模和超大规模集成电路技术的迅猛发展,为现代电力电子技术的发展奠定了基础。将集成电路技术的精细加工技术和高压大电流技术有机结合,出现了一批全新的全控型功率器件、首先是功率M0SFET的问世,导致了中小功率电源向高频化发展,而后绝缘门极双极晶体管(IGBT)的出现,又为大中型功率电源向高频发展带来机遇。MOSFET和IGBT的相继问世,是传统的电力电子向现代电力电子转化的标志。据统计,到1995年底,功率M0SFET和GTR在功率半导体器件市场上已达到平分秋色的地步,而用IGBT代替GTR在电力电子领域巳成定论。新型器件的发展不仅为交流电机变频调速提供了较高的频率,使其性能更加完善可靠,而且使现代电子技术不断向高频化发展,为用电设备的高效节材节能,实现小型轻量化,机电一体化和智能化提供了重要的技术基础。

2.现代电力电子的应用领域

2.1计算机高效率绿色电源

第4篇

当前,电力电子作为节能、节才、自动化、智能化、机电一体化的基础,正朝着应用技术高频化、硬件结构模块化、产品性能绿色化的方向发展。在不远的将来,电力电子技术将使电源技术更加成熟、经 济、实用,实现高效率和高品质用电相结合。

1. 电力电子技术的发展

现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。电力电子技术起始于五十年代末六十年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。

1.1 整流器时代

大功率的工业用电由工频(50Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解(有色金属和化工原料需要直流电解)、牵引(电气机车、电传动的内燃机车、地铁机车、城市无轨电车等)和直流传动(轧钢、造纸等)三大领域。大功率硅整流器能够高效率地把工频交流电转变为直流电,因此在六十年代和七十年代,大功率硅整流管和晶闸管的开发与应用得以很大发展。当时国内曾经掀起了-股各地大办硅整流器厂的热潮,目前全国大大小小的制造硅整流器的半导体厂家就是那时的产物。

1.2 逆变器时代

七十年代出现了世界范围的能源危机,交流电机变频惆速因节能效果显著而迅速发展。变频调速的关键技术是将直流电逆变为0~100Hz的交流电。在七十年代到八十年代,随着变频调速装置的普及,大功率逆变用的晶闸管、巨型功率晶体管(GTR)和门极可关断晶闸管(GT0)成为当时电力电子器件的主角。类似的应用还包括高压直流输出,静止式无功功率动态补偿等。这时的电力电子技术已经能够实现整流和逆变,但工作频率较低,仅局限在中低频范围内。

1.3 变频器时代

进入八十年代,大规模和超大规模集成电路技术的迅猛发展,为现代电力电子技术的发展奠定了基础。将集成电路技术的精细加工技术和高压大电流技术有机结合,出现了一批全新的全控型功率器件、首先是功率M0SFET的问世,导致了中小功率电源向高频化发展,而后绝缘门极双极晶体管(IGBT)的出现,又为大中型功率电源向高频发展带来机遇。MOSFET和IGBT的相继问世,是传统的电力电子向现代电力电子转化的标志。据统计,到1995年底,功率M0SFET和GTR在功率半导体器件市场上已达到平分秋色的地步,而用IGBT代替GTR在电力电子领域巳成定论。新型器件的发展不仅为交流电机变频调速提供了较高的频率,使其性能更加完善可靠,而且使现代电子技术不断向高频化发展,为用电设备的高效节材节能,实现小型轻量化,机电一体化和智能化提供了重要的技术基础。

2. 现代电力电子的应用领域

2.1 计算机高效率绿色电源

高速发展的计算机技术带领人类进入了信息社会,同时也促进了电源技术的迅速发展。八十年代,计算机全面采用了开关电源,率先完成计算机电源换代。接着开关电源技术相继进人了电子、电器设备领域。

计算机技术的发展,提出绿色电脑和绿色电源。绿色电脑泛指对环境无害的个人电脑和相关产品,绿色电源系指与绿色电脑相关的高效省电电源,根据美国环境保护署l992年6月17日“能源之星"计划规定,桌上型个人电脑或相关的外围设备,在睡眠状态下的耗电量若小于30瓦,就符合绿色电脑的要求,提高电源效率是降低电源消耗的根本途径。就目前效率为75%的200瓦开关电源而言,电源自身要消耗50瓦的能源。

2.2 通信用高频开关电源

通信业的迅速发展极大的推动了通信电源的发展。高频小型化的开关电源及其技术已成为现代通信供电系统的主流。在通信领域中,通常将整流器称为一次电源,而将直流-直流(DC/DC)变换器称为二次电源。一次电源的作用是将单相或三相交流电网变换成标称值为48V的直流电源。目前在程控交换机用的一次电源中,传统的相控式稳压电源己被高频开关电源取代,高频开关电源(也称为开关型整流器SMR)通过MOSFET或IGBT的高频工作,开关频率一般控制在50-100kHz范围内,实现高效率和小型化。近几年,开关整流器的功率容量不断扩大,单机容量己从48V/12.5A、48V/20A扩大到48V/200A、48V/400A。

因通信设备中所用集成电路的种类繁多,其电源电压也各不相同,在通信供电系统中采用高功率密度的高频DC-DC隔离电源模块,从中间母线电压(一般为48V直流)变换成所需的各种直流电压,这样可大大减小损耗、方便维护,且安装、增加非常方便。一般都可直接装在标准控制板上,对二次电源的要求是高功率密度。因通信容量的不断增加,通信电源容量也将不断增加。

2.3 直流-直流(DC/DC)变换器

DC/DC变换器将一个固定的直流电压变换为可变的直流电压,这种技术被广泛应用于无轨电车、地铁列车、电动车的无级变速和控制,同时使上述控制获得加速平稳、快速响应的性能,并同时收到节约电能的效果。用直流斩波器代替变阻器可节约电能(20~30)%。直流斩波器不仅能起调压的作用(开关电源), 同时还能起到有效地抑制电网侧谐波电流噪声的作用。

通信电源的二次电源DC/DC变换器已商品化,模块采用高频PWM技术,开关频率在500kHz左右,功率密度为5W~20W/in3。随着大规模集成电路的发展,要求电源模块实现小型化,因此就要不断提高开关频率和采用新的电路拓扑结构,目前已有一些公司研制生产了采用零电流开关和零电压开关技术的二次电源模块,功率密度有较大幅度的提高。

2.4 不间断电源(UPS)

不间断电源(UPS)是计算机、通信系统以及要求提供不能中断场合所必须的一种高可靠、高性能的电源。交流市电输入经整流器变成直流,一部分能量给蓄电池组充电,另一部分能量经逆变器变成交流,经转换开关送到负载。为了在逆变器故障时仍能向负载提供能量,另一路备用电源通过电源转换开关来实现。

现代UPS普遍了采用脉宽调制技术和功率M0SFET、IGBT等现代电力电子器件,电源的噪声得以降低,而效率和可靠性得以提高。微处理器软硬件技术的引入,可以实现对UPS的智能化管理,进行远程维护和远程诊断。

目前在线式UPS的最大容量已可作到600kVA。超小型UPS发展也很迅速,已经有0.5kVA、lkVA、2kVA、3kVA等多种规格的产品。

2.5 变频器电源

变频器电源主要用于交流电机的变频调速,其在电气传动系统中占据的地位日趋重要,已获得巨大的节能效果。变频器电源主电路均采用交流-直流-交流方案。工频电源通过整流器变成固定的直流电压,然后由大功率晶体管或IGBT组成的PWM高频变换器, 将直流电压逆变成电压、频率可变的交流输出,电源输出波形近似于正弦波,用于驱动交流异步电动机实现无级调速。

国际上400kVA以下的变频器电源系列产品已经问世。八十年代初期,日本东芝公司最先将交流变频调速技术应用于空调器中。至1997年,其占有率已达到日本家用空调的70%以上。变频空调具有舒适、节能等优点。国内于90年代初期开始研究变频空调,96年引进生产线生产变频空调器,逐渐形成变频空调开发生产热点。预计到2000年左右将形成。变频空调除了变频电源外,还要求有适合于变频调速的压缩机电机。优化控制策略,精选功能组件,是空调变频电源研制的进一步发展方向。

2.6 高频逆变式整流焊机电源

高频逆变式整流焊机电源是一种高性能、高效、省材的新型焊机电源,代表了当今焊机电源的发展方向。由于IGBT大容量模块的商用化,这种电源更有着广阔的应用前景。

逆变焊机电源大都采用交流-直流-交流-直流(AC-DC-AC-DC)变换的方法。50Hz交流电经全桥整流变成直流,IGBT组成的PWM高频变换部分将直流电逆变成20kHz的高频矩形波,经高频变压器耦合, 整流滤波后成为稳定的直流,供电弧使用。

由于焊机电源的工作条件恶劣,频繁的处于短路、燃弧、开路交替变化之中,因此高频逆变式整流焊机电源的工作可靠性问题成为最关键的问题,也是用户最关心的问题。采用微处理器做为脉冲宽度调制(PWM)的相关控制器,通过对多参数、多信息的提取与分析,达到预知系统各种工作状态的目的,进而提前对系统做出调整和处理,解决了目前大功率IGBT逆变电源可靠性。

国外逆变焊机已可做到额定焊接电流300A,负载持续率60%,全载电压60~75V,电流调节范围5~300A,重量29kg。

2.7 大功率开关型高压直流电源

大功率开关型高压直流电源广泛应用于静电除尘、水质改良、医用X光机和CT机等大型设备。电压高达50~l59kV,电流达到0.5A以上,功率可达100kW。

自从70年代开始,日本的一些公司开始采用逆变技术,将市电整流后逆变为3kHz左右的中频,然后升压。进入80年代,高频开关电源技术迅速发展。德国西门子公司采用功率晶体管做主开关元件,将电源的开关频率提高到20kHz以上。并将干式变压器技术成功的应用于高频高压电源,取消了高压变压器油箱,使变压器系统的体积进一步减小。

国内对静电除尘高压直流电源进行了研制,市电经整流变为直流,采用全桥零电流开关串联谐振逆变电路将直流电压逆变为高频电压,然后由高频变压器升压,最后整流为直流高压。在电阻负载条件下,输出直流电压达到55kV,电流达到15mA,工作频率为25.6kHz。

2.8 电力有源滤波器

传统的交流-直流(AC-DC)变换器在投运时,将向电网注入大量的谐波电流,引起谐波损耗和干扰,同时还出现装置网侧功率因数恶化的现象,即所谓“电力公害”,例如,不可控整流加电容滤波时,网侧三次谐波含量可达(70~80)%,网侧功率因数仅有0.5~0.6。

电力有源滤波器是一种能够动态抑制谐波的新型电力电子装置,能克服传统LC滤波器的不足,是一种很有发展前途的谐波抑制手段。滤波器由桥式开关功率变换器和具体控制电路构成。与传统开关电源的区别是:(l)不仅反馈输出电压,还反馈输入平均电流; (2)电流环基准信号为电压环误差信号与全波整流电压取样信号之乘积。

2.9 分布式开关电源供电系统

分布式电源供电系统采用小功率模块和大规模控制集成电路作基本部件,利用最新理论和技术成果,组成积木式、智能化的大功率供电电源,从而使强电与弱电紧密结合,降低大功率元器件、大功率装置(集中式)的研制压力,提高生产效率。

八十年代初期,对分布式高频开关电源系统的研究基本集中在变换器并联技术的研究上。八十年代中后期,随着高频功率变换技术的迅述发展,各种变换器拓扑结构相继出现,结合大规模集成电路和功率元器件技术,使中小功率装置的集成成为可能,从而迅速地推动了分布式高频开关电源系统研究的展开。自八十年代后期开始,这一方向已成为国际电力电子学界的研究热点,论文数量逐年增加,应用领域不断扩大。

分布供电方式具有节能、可靠、高效、经济和维护方便等优点。已被大型计算机、通信设备、航空航天、工业控制等系统逐渐采纳,也是超高速型集成电路的低电压电源(3.3V)的最为理想的供电方式。在大功率场合,如电镀、电解电源、电力机车牵引电源、中频感应加热电源、电动机驱动电源等领域也有广阔的应用前景。

3. 高频开关电源的发展趋势

在电力电子技术的应用及各种电源系统中,开关电源技术均处于核心地位。对于大型电解电镀电源,传统的电路非常庞大而笨重,如果采用高顿开关电源技术,其体积和重量都会大幅度下降,而且可极大提高电源利用效率、节省材料、降低成本。在电动汽车和变频传动中,更是离不开开关电源技术,通过开关电源改变用电频率,从而达到近于理想的负载匹配和驱动控制。高频开关电源技术,更是各种大功率开关电源(逆变焊机、通讯电源、高频加热电源、激光器电源、电力操作电源等)的核心技术。

3.1 高频化

理论分析和实践经验表明,电气产品的变压器、电感和电容的体积重量与供电频率的平方根成反比。所以当我们把频率从工频50Hz提高到20kHz,提高400倍的话,用电设备的体积重量大体下降至工频设计的 5~l0%。无论是逆变式整流焊机,还是通讯电源用的开关式整流器,都是基于这一原理。同样,传统“整流行业”的电镀、电解、电加工、充电、浮充电、电力合 闸用等各种直流电源也可以根据这一原理进行改造, 成为“开关变换类电源”,其主要材料可以节约90%或更高,还可节电30%或更多。由于功率电子器件工作频率上限的逐步提高,促使许多原来采用电子管的传统高频设备固态化,带来显著节能、节水、节约材料的经济效益,更可体现技术含量的价值。

3.2 模块化

模块化有两方面的含义,其一是指功率器件的模块化,其二是指电源单元的模块化。我们常见的器件模块,含有一单元、两单元、六单元直至七单元,包括开关器件和与之反并联的续流二极管,实质上都属于“标准”功率模块(SPM)。近年,有些公司把开关器件的驱动保护电路也装到功率模块中去,构成了“智能化”功率模块(IPM),不但缩小了整机的体积,更方便了整机的设计制造。实际上,由于频率的不断提高,致使引线寄生电感、寄生电容的影响愈加严重,对器件造成更大的电应力(表现为过电压、过电流毛刺)。为了提高系统的可靠性,有些制造商开发了“用户专用”功率模块(ASPM),它把一台整机的几乎所有硬件都以芯片的形式安装到一个模块中,使元器件之间不再有传统的引线连接,这样的模块经过严格、合理的热、电、 机械方面的设计,达到优化完美的境地。它类似于微电子中的用户专用集成电路(ASIC)。只要把控制软件写入该模块中的微处理器芯片,再把整个模块固定在相应的散热器上,就构成一台新型的开关电源装置。由此可见,模块化的目的不仅在于使用方便,缩小整机体积,更重要的是取消传统连线,把寄生参数降到最小,从而把器件承受的电应力降至最低,提高系统的可靠性。另外,大功率的开关电源,由于器件容量的限制和增加冗余提高可靠性方面的考虑,一般采用多个独立的模块单元并联工作,采用均流技术,所有模块共同分担负载电流,一旦其中某个模块失效,其它模块再平均分担负载电流。这样,不但提高了功率容量, 在有限的器件容量的情况下满足了大电流输出的要求, 而且通过增加相对整个系统来说功率很小的冗余电源模块,极大的提高系统可靠性,即使万一出现单模块故障,也不会影响系统的正常工作,而且为修复提供充分的时间。

3.3 数字化

在传统功率电子技术中,控制部分是按模拟信号来设计和工作的。在六、七十年代,电力电子技术完全是建立在模拟电路基础上的。但是,现在数字式信号、数字电路显得越来越重要,数字信号处理技术日趋完善成熟,显示出越来越多的优点:便于计算机处理控制、避免模拟信号的畸变失真、减小杂散信号的干扰(提高抗干扰能力)、便于软件包调试和遥感遥测遥调,也便于自诊断、容错等技术的植入。所以,在八、九十年代,对于各类电路和系统的设计来说,模拟技术还是有用的,特别是:诸如印制版的布图、电磁兼容(EMC) 问题以及功率因数修正(PFC)等问题的解决,离不开模拟技术的知识,但是对于智能化的开关电源,需要用计算机控制时,数字化技术就离不开了。

3.4 绿色化

电源系统的绿色化有两层含义:首先是显著节电, 这意味着发电容量的节约,而发电是造成环境污染的重要原因,所以节电就可以减少对环境的污染;其次这些电源不能(或少)对电网产生污染,国际电工委员会(IEC)对此制定了一系列标准,如IEC555、IEC917、IECl000等。事实上,许多功率电子节电设备,往往会变成对电网的污染源:向电网注入严重的高次谐波电流,使总功率因数下降,使电网电压耦合许多毛刺尖峰,甚至出现缺角和畸变。20世纪末,各种有源滤波器和有源补偿器的方案诞生,有了多种修正功率因数的方法。这些为2l世纪批量生产各种绿色开关电源产品奠定了基础。

第5篇

当前,电力电子作为节能、节才、自动化、智能化、机电一体化的基础,正朝着应用技术高频化、硬件结构模块化、产品性能绿色化的方向发展。在不远的将来,电力电子技术将使电源技术更加成熟、经济、实用,实现高效率和高品质用电相结合。

1.电力电子技术的发展

现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。电力电子技术起始于五十年代末六十年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。

1.1整流器时代

大功率的工业用电由工频(50Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解(有色金属和化工原料需要直流电解)、牵引(电气机车、电传动的内燃机车、地铁机车、城市无轨电车等)和直流传动(轧钢、造纸等)三大领域。大功率硅整流器能够高效率地把工频交流电转变为直流电,因此在六十年代和七十年代,大功率硅整流管和晶闸管的开发与应用得以很大发展。当时国内曾经掀起了-股各地大办硅整流器厂的热潮,目前全国大大小小的制造硅整流器的半导体厂家就是那时的产物。

1.2逆变器时代

七十年代出现了世界范围的能源危机,交流电机变频惆速因节能效果显著而迅速发展。变频调速的关键技术是将直流电逆变为0~100Hz的交流电。在七十年代到八十年代,随着变频调速装置的普及,大功率逆变用的晶闸管、巨型功率晶体管(GTR)和门极可关断晶闸管(GT0)成为当时电力电子器件的主角。类似的应用还包括高压直流输出,静止式无功功率动态补偿等。这时的电力电子技术已经能够实现整流和逆变,但工作频率较低,仅局限在中低频范围内。

1.3变频器时代

进入八十年代,大规模和超大规模集成电路技术的迅猛发展,为现代电力电子技术的发展奠定了基础。将集成电路技术的精细加工技术和高压大电流技术有机结合,出现了一批全新的全控型功率器件、首先是功率M0SFET的问世,导致了中小功率电源向高频化发展,而后绝缘门极双极晶体管(IGBT)的出现,又为大中型功率电源向高频发展带来机遇。MOSFET和IGBT的相继问世,是传统的电力电子向现代电力电子转化的标志。据统计,到1995年底,功率M0SFET和GTR在功率半导体器件市场上已达到平分秋色的地步,而用IGBT代替GTR在电力电子领域巳成定论。新型器件的发展不仅为交流电机变频调速提供了较高的频率,使其性能更加完善可靠,而且使现代电子技术不断向高频化发展,为用电设备的高效节材节能,实现小型轻量化,机电一体化和智能化提供了重要的技术基础。

2.现代电力电子的应用领域

2.1计算机高效率绿色电源

高速发展的计算机技术带领人类进入了信息社会,同时也促进了电源技术的迅速发展。八十年代,计算机全面采用了开关电源,率先完成计算机电源换代。接着开关电源技术相继进人了电子、电器设备领域。

计算机技术的发展,提出绿色电脑和绿色电源。绿色电脑泛指对环境无害的个人电脑和相关产品,绿色电源系指与绿色电脑相关的高效省电电源,根据美国环境保护署l992年6月17日“能源之星"计划规定,桌上型个人电脑或相关的设备,在睡眠状态下的耗电量若小于30瓦,就符合绿色电脑的要求,提高电源效率是降低电源消耗的根本途径。就目前效率为75%的200瓦开关电源而言,电源自身要消耗50瓦的能源。

2.2通信用高频开关电源

通信业的迅速发展极大的推动了通信电源的发展。高频小型化的开关电源及其技术已成为现代通信供电系统的主流。在通信领域中,通常将整流器称为一次电源,而将直流-直流(DC/DC)变换器称为二次电源。一次电源的作用是将单相或三相交流电网变换成标称值为48V的直流电源。目前在程控交换机用的一次电源中,传统的相控式稳压电源己被高频开关电源取代,高频开关电源(也称为开关型整流器SMR)通过MOSFET或IGBT的高频工作,开关频率一般控制在50-100kHz范围内,实现高效率和小型化。近几年,开关整流器的功率容量不断扩大,单机容量己从48V/12.5A、48V/20A扩大到48V/200A、48V/400A。

因通信设备中所用集成电路的种类繁多,其电源电压也各不相同,在通信供电系统中采用高功率密度的高频DC-DC隔离电源模块,从中间母线电压(一般为48V直流)变换成所需的各种直流电压,这样可大大减小损耗、方便维护,且安装、增加非常方便。一般都可直接装在标准控制板上,对二次电源的要求是高功率密度。因通信容量的不断增加,通信电源容量也将不断增加。

2.3直流-直流(DC/DC)变换器

DC/DC变换器将一个固定的直流电压变换为可变的直流电压,这种技术被广泛应用于无轨电车、地铁列车、电动车的无级变速和控制,同时使上述控制获得加速平稳、快速响应的性能,并同时收到节约电能的效果。用直流斩波器代替变阻器可节约电能(20~30)%。直流斩波器不仅能起调压的作用(开关电源),同时还能起到有效地抑制电网侧谐波电流噪声的作用。

通信电源的二次电源DC/DC变换器已商品化,模块采用高频PWM技术,开关频率在500kHz左右,功率密度为5W~20W/in3。随着大规模集成电路的发展,要求电源模块实现小型化,因此就要不断提高开关频率和采用新的电路拓扑结构,目前已有一些公司研制生产了采用零电流开关和零电压开关技术的二次电源模块,功率密度有较大幅度的提高。

2.4不间断电源(UPS)

不间断电源(UPS)是计算机、通信系统以及要求提供不能中断场合所必须的一种高可靠、高性能的电源。交流市电输入经整流器变成直流,一部分能量给蓄电池组充电,另一部分能量经逆变器变成交流,经转换开关送到负载。为了在逆变器故障时仍能向负载提供能量,另一路备用电源通过电源转换开关来实现。

现代UPS普遍了采用脉宽调制技术和功率M0SFET、IGBT等现代电力电子器件,电源的噪声得以降低,而效率和可靠性得以提高。微处理器软硬件技术的引入,可以实现对UPS的智能化管理,进行远程维护和远程诊断。

目前在线式UPS的最大容量已可作到600kVA。超小型UPS发展也很迅速,已经有0.5kVA、lkVA、2kVA、3kVA等多种规格的产品。

2.5变频器电源

变频器电源主要用于交流电机的变频调速,其在电气传动系统中占据的地位日趋重要,已获得巨大的节能效果。变频器电源主电路均采用交流-直流-交流方案。工频电源通过整流器变成固定的直流电压,然后由大功率晶体管或IGBT组成的PWM高频变换器,将直流电压逆变成电压、频率可变的交流输出,电源输出波形近似于正弦波,用于驱动交流异步电动机实现无级调速。

国际上400kVA以下的变频器电源系列产品已经问世。八十年代初期,日本东芝公司最先将交流变频调速技术应用于空调器中。至1997年,其占有率已达到日本家用空调的70%以上。变频空调具有舒适、节能等优点。国内于90年代初期开始研究变频空调,96年引进生产线生产变频空调器,逐渐形成变频空调开发生产热点。预计到2000年左右将形成。变频空调除了变频电源外,还要求有适合于变频调速的压缩机电机。优化控制策略,精选功能组件,是空调变频电源研制的进一步发展方向。

2.6高频逆变式整流焊机电源

高频逆变式整流焊机电源是一种高性能、高效、省材的新型焊机电源,代表了当今焊机电源的发展方向。由于IGBT大容量模块的商用化,这种电源更有着广阔的应用前景。

逆变焊机电源大都采用交流-直流-交流-直流(AC-DC-AC-DC)变换的方法。50Hz交流电经全桥整流变成直流,IGBT组成的PWM高频变换部分将直流电逆变成20kHz的高频矩形波,经高频变压器耦合,整流滤波后成为稳定的直流,供电弧使用。

由于焊机电源的工作条件恶劣,频繁的处于短路、燃弧、开路交替变化之中,因此高频逆变式整流焊机电源的工作可靠性问题成为最关键的问题,也是用户最关心的问题。采用微处理器做为脉冲宽度调制(PWM)的相关控制器,通过对多参数、多信息的提取与分析,达到预知系统各种工作状态的目的,进而提前对系统做出调整和处理,解决了目前大功率IGBT逆变电源可靠性。

国外逆变焊机已可做到额定焊接电流300A,负载持续率60%,全载电压60~75V,电流调节范围5~300A,重量29kg。

2.7大功率开关型高压直流电源

大功率开关型高压直流电源广泛应用于静电除尘、水质改良、医用X光机和CT机等大型设备。电压高达50~l59kV,电流达到0.5A以上,功率可达100kW。

自从70年代开始,日本的一些公司开始采用逆变技术,将市电整流后逆变为3kHz左右的中频,然后升压。进入80年代,高频开关电源技术迅速发展。德国西门子公司采用功率晶体管做主开关元件,将电源的开关频率提高到20kHz以上。并将干式变压器技术成功的应用于高频高压电源,取消了高压变压器油箱,使变压器系统的体积进一步减小。

国内对静电除尘高压直流电源进行了研制,市电经整流变为直流,采用全桥零电流开关串联谐振逆变电路将直流电压逆变为高频电压,然后由高频变压器升压,最后整流为直流高压。在电阻负载条件下,输出直流电压达到55kV,电流达到15mA,工作频率为25.6kHz。

2.8电力有源滤波器

传统的交流-直流(AC-DC)变换器在投运时,将向电网注入大量的谐波电流,引起谐波损耗和干扰,同时还出现装置网侧功率因数恶化的现象,即所谓“电力公害”,例如,不可控整流加电容滤波时,网侧三次谐波含量可达(70~80)%,网侧功率因数仅有0.5~0.6。

电力有源滤波器是一种能够动态抑制谐波的新型电力电子装置,能克服传统LC滤波器的不足,是一种很有发展前途的谐波抑制手段。滤波器由桥式开关功率变换器和具体控制电路构成。与传统开关电源的区别是:(l)不仅反馈输出电压,还反馈输入平均电流;(2)电流环基准信号为电压环误差信号与全波整流电压取样信号之乘积。

2.9分布式开关电源供电系统

分布式电源供电系统采用小功率模块和大规模控制集成电路作基本部件,利用最新理论和技术成果,组成积木式、智能化的大功率供电电源,从而使强电与弱电紧密结合,降低大功率元器件、大功率装置(集中式)的研制压力,提高生产效率。

八十年代初期,对分布式高频开关电源系统的研究基本集中在变换器并联技术的研究上。八十年代中后期,随着高频功率变换技术的迅述发展,各种变换器拓扑结构相继出现,结合大规模集成电路和功率元器件技术,使中小功率装置的集成成为可能,从而迅速地推动了分布式高频开关电源系统研究的展开。自八十年代后期开始,这一方向已成为国际电力电子学界的研究热点,论文数量逐年增加,应用领域不断扩大。

分布供电方式具有节能、可靠、高效、经济和维护方便等优点。已被大型计算机、通信设备、航空航天、工业控制等系统逐渐采纳,也是超高速型集成电路的低电压电源(3.3V)的最为理想的供电方式。在大功率场合,如电镀、电解电源、电力机车牵引电源、中频感应加热电源、电动机驱动电源等领域也有广阔的应用前景。

3.高频开关电源的发展趋势

在电力电子技术的应用及各种电源系统中,开关电源技术均处于核心地位。对于大型电解电镀电源,传统的电路非常庞大而笨重,如果采用高顿开关电源技术,其体积和重量都会大幅度下降,而且可极大提高电源利用效率、节省材料、降低成本。在电动汽车和变频传动中,更是离不开开关电源技术,通过开关电源改变用电频率,从而达到近于理想的负载匹配和驱动控制。高频开关电源技术,更是各种大功率开关电源(逆变焊机、通讯电源、高频加热电源、激光器电源、电力操作电源等)的核心技术。

3.1高频化

理论分析和实践经验表明,电气产品的变压器、电感和电容的体积重量与供电频率的平方根成反比。所以当我们把频率从工频50Hz提高到20kHz,提高400倍的话,用电设备的体积重量大体下降至工频设计的5~l0%。无论是逆变式整流焊机,还是通讯电源用的开关式整流器,都是基于这一原理。同样,传统“整流行业”的电镀、电解、电加工、充电、浮充电、电力合闸用等各种直流电源也可以根据这一原理进行改造,成为“开关变换类电源”,其主要材料可以节约90%或更高,还可节电30%或更多。由于功率电子器件工作频率上限的逐步提高,促使许多原来采用电子管的传统高频设备固态化,带来显著节能、节水、节约材料的经济效益,更可体现技术含量的价值。

3.2模块化

模块化有两方面的含义,其一是指功率器件的模块化,其二是指电源单元的模块化。我们常见的器件模块,含有一单元、两单元、六单元直至七单元,包括开关器件和与之反并联的续流二极管,实质上都属于“标准”功率模块(SPM)。近年,有些公司把开关器件的驱动保护电路也装到功率模块中去,构成了“智能化”功率模块(IPM),不但缩小了整机的体积,更方便了整机的设计制造。实际上,由于频率的不断提高,致使引线寄生电感、寄生电容的影响愈加严重,对器件造成更大的电应力(表现为过电压、过电流毛刺)。为了提高系统的可靠性,有些制造商开发了“用户专用”功率模块(ASPM),它把一台整机的几乎所有硬件都以芯片的形式安装到一个模块中,使元器件之间不再有传统的引线连接,这样的模块经过严格、合理的热、电、机械方面的设计,达到优化完美的境地。它类似于微电子中的用户专用集成电路(ASIC)。只要把控制软件写入该模块中的微处理器芯片,再把整个模块固定在相应的散热器上,就构成一台新型的开关电源装置。由此可见,模块化的目的不仅在于使用方便,缩小整机体积,更重要的是取消传统连线,把寄生参数降到最小,从而把器件承受的电应力降至最低,提高系统的可靠性。另外,大功率的开关电源,由于器件容量的限制和增加冗余提高可靠性方面的考虑,一般采用多个独立的模块单元并联工作,采用均流技术,所有模块共同分担负载电流,一旦其中某个模块失效,其它模块再平均分担负载电流。这样,不但提高了功率容量,在有限的器件容量的情况下满足了大电流输出的要求,而且通过增加相对整个系统来说功率很小的冗余电源模块,极大的提高系统可靠性,即使万一出现单模块故障,也不会影响系统的正常工作,而且为修复提供充分的时间。

3.3数字化

在传统功率电子技术中,控制部分是按模拟信号来设计和工作的。在六、七十年代,电力电子技术完全是建立在模拟电路基础上的。但是,现在数字式信号、数字电路显得越来越重要,数字信号处理技术日趋完善成熟,显示出越来越多的优点:便于计算机处理控制、避免模拟信号的畸变失真、减小杂散信号的干扰(提高抗干扰能力)、便于软件包调试和遥感遥测遥调,也便于自诊断、容错等技术的植入。所以,在八、九十年代,对于各类电路和系统的设计来说,模拟技术还是有用的,特别是:诸如印制版的布图、电磁兼容(EMC)问题以及功率因数修正(PFC)等问题的解决,离不开模拟技术的知识,但是对于智能化的开关电源,需要用计算机控制时,数字化技术就离不开了。

3.4绿色化

电源系统的绿色化有两层含义:首先是显著节电,这意味着发电容量的节约,而发电是造成环境污染的重要原因,所以节电就可以减少对环境的污染;其次这些电源不能(或少)对电网产生污染,国际电工委员会(IEC)对此制定了一系列标准,如IEC555、IEC917、IECl000等。事实上,许多功率电子节电设备,往往会变成对电网的污染源:向电网注入严重的高次谐波电流,使总功率因数下降,使电网电压耦合许多毛刺尖峰,甚至出现缺角和畸变。20世纪末,各种有源滤波器和有源补偿器的方案诞生,有了多种修正功率因数的方法。这些为2l世纪批量生产各种绿色开关电源产品奠定了基础。

第6篇

关键词:电力电子;开关电源;应用

1绪论

着半导体和信息技术的推进,电力电子技术的发展带动开关电源由低频向高频,整体化到模块化,由高能耗向低能耗进行技术转变。高频开关电源作用为将交流输入的电流转化为合适的直流输出。经过大功率开关元件,如金属—绝缘体—半导体管等组成的逆变电路,将直流高压转换成方波,之后将方波电压由高压降低为低压,最后输出稳定的直流电压,在现代开关电源的应用中得到极大推崇。高频开关电源主要特点如下:

1.1质量低、体积小。

高频技术可以不使用工频变压器,使质量和体积减少90%。

1.2功率系数大。

随着可控硅导通角的变化使相变整流器的功率系数变化,负载较小时,系数较小,可以达到0.3;完全导通时可以使系数达到0.69以上。

1.3噪声弱。

开关电源噪声只有45db左右,较工频变压器以及滤波电感在相控整流设备中的噪声降低30%。

1.4效率高。

减少开关瞬间消耗,而且由于整机的功率因数补偿,可以使效率达到90%以上。

1.5结构模块化。

模块式结构可以便于整个开关的设计和研发,降低成本。

2现代电力电子的应用领域

高频开关电源能通过大功率晶体管如IGBT等进行运行,使频率限制在区间60~110kHz。并且整流器功率容量也增大到48V/400A以上。大规模集成电路的突飞猛进更是促进电源模块体积的减小,从而进一步增加电源的功率密度,以实现开关电源的高效化和微小化。整体科技的进步需要计算机和通信设施具有更高的性能和稳定性,UPS不间断电源便顺时而出。输入它的交流电经过整流器转换为直流输出,一部分流入电池给其充电,另一部分经过逆变器、转换开关等元器件到工作设备。不间断电源使用脉宽调制技术和大功率IGBT,降低噪声强度,提高电源利用效率和系统稳定性。变频器主要在电气传动系统中用于交流电机的变频调速,具有节能环保作用。它的电源经过大功率晶体管和高频变换器将电压转换为交流输出,其电压和频率可变,功率可以超过110kW[1]。通过模块科学堆积、程序智能控制、神经网络控制等现代高新技术实现强电和弱电有效结合,降低大功率设备的研发成本和研发难度,并且可以极大的提升生产效率,实现环保节能、经济高效、系统稳定的卓越性能。

3电力电子技术在开关电源中的应用

3.1软开关技术

IGBT功率器件控制的PWM电源可以克服传统大功率电源逆变主电路结构的高耗能问题,是能耗降低30%~40%。软开关技术采用谐振原理,克服传统电路使用缓冲电路消除电压尖峰和浪涌电流问题,从而使系统趋于简单,降低故障发生的可能性。传统电路在开关启动和关闭的瞬间会产生极大的电流和电压,瞬间产生的电压无法有效利用,从而增加能耗。谐振电路可以吸收高频变压器中电感以及电容等,降低晶体管等元件的压力,从而提高电源的利用率和稳定性。

3.2同步整流技术

同步整流技术时在软开关的基础上进一步提升效率的技术,它通过作整流开关二极管的金属绝缘体~半导体管反接,适用于低压、大电流的电源上。同步电流通过零电压开关和零电流开关,它们驱动同步整流的脉冲信号与初始的脉冲信号联动,将其上升沿超过原来的上升沿,降低延迟以实现金属~氧化物半导体场效应晶体管和零电压开关方式。

3.3控制技术

主电路的设计必须满足开关变换器的结构不同、离散非线性的特点,因此开关电源要使用多路控制。开关电源的动态性可以通过电子运动和时间周期的增减来控制实现,开关电源的智能性可以通过基因算法~BP算法、模糊控制、微机控制、人工神经网络等技术实现。MEMS技术发展使微机运算的速度巨大提升,微机或者DSP应用到大功率开关的数字模块的实现更加促进电源数字化和高效化的实现。

3.4功率半导体

MOSFET和IGBT半导体器件的研发,使开关电源的高效利用能源的能力又得到极大的飞跃,两种晶体管的内部电阻都很小,驱动功率需求低,最重要的是能耗极其小。结合同步整流技术和控制技术,将高频化开关电源的实现向前推进了极大的一步。

4结语

电力电子技术在开关电源中的应用会随着技术的不断进步转向更加广泛的应用,高频化、模块化、智能化、节能化等必然成为其未来的应用方向。高频开关技术的应用更是标志着电子电力技术在开关电源上应用的成熟,相信不远的未来,电力电子在开关电源中的应用会进一步的突破。

参考文献:

[1]杨威,卢俊.电力电子技术在高频开关电源中的应用[J].城市建设理论研究,2012(36).

[2]王予倩.电力电子技术的发展及其在开关电源中的应用[J].四川电力电子,2005,28(5):45~47.

第7篇

关键词: 电力电子技术; 高频开关电源; 功率半导体器件; 功率变换

中图分类号:F407.61 文献标识码:A 文章编号:

1 电力电子技术概述

电力电子技术以功率处理为对象,以实现高效率用电和高品质用电为目标,通过采用电力半导体器件,并综合自动控制计算机(微处理器)技术和电磁技术,实现电能的获取、传输、变换和利用。电力电子技术包括功率半导体器件与IC技术、功率变换技术及控制技术等几个方面。

电力电子技术起始于20世纪50年代末60年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。70年代后期以门极可关断晶闸管(GTO),电力双极型晶体管(BJT),电力场效应管(P-MOSFET)为代表的全控型器件全速发展,使电力电子技术的面貌焕然一新进入了新的发展阶段。80年代末期和90年代初期发展起来的、以绝缘栅极双极型晶体管(IGBT)为代表的复合型器件集驱动功率小,开关速度快,通泰压降小,载流能力大于一身,性能优越使之成为现代电力电子技术的主导器件。

2高频开关电源概述

高频开关电源是交流输入直流整流,然后经过功率开关器件(功率晶体管、MOS管、IGBT等)构成放入逆变电路,将高压直流(单相整流约300V,三相整流约500V)变换成方波(频率为20kHz)。高频方波经高频变压器降压得到低压的高频方波,再经整流滤波得到稳定电压的直流输出。

高频开关电源的特点[1]:

1、重量轻,体积小

由于采用高频技术,去掉了工频(50Hz)变压器,与相控整流器相比较,在输出同等功率的情况下,开关电源的体积只是相控整流器的1/10,重量也接近1/10。

2、功率因数高

相控整流器的功率因数随可控硅导通角的变化而变化,一般在全导通时,可接近0.7,以上,而小负裁时,但为0.3左右。经过校正的开关电源功率因数一般在0.93以上,并且基本不受负载变化的影响。

3、可闻噪声低

在相控整流设备中,工频变压器及滤波电感作时产生的可闻噪声大,一般大于60db,而开关电源在无风扇的情况下可闻噪声仅为45db左右。

4、效率高

开关电源采用的功率器件一般功耗较小,带功率因数补偿的开关电源其整机效率可达88%以上,较好的可以做到92%以上。

5、冲击电流小

开机冲击电流可限制在额定输入电流的水平。

6、模快式结构

由于体积小,重量轻,可设计为模块式结构。

3电力电子技术在大功率开关电源中的应用

3.1功率半导体器件

功率半导体器件的发展是高频开关电源技术的重要支撑。功率MOSFET和IGB的出现,使开关电源高频化的实现成为可能;超快恢复功率二极管和MOSFET同步整流技术的开发,为研制高效率或低电压输出的开关电源创造了条件;功率半导体器件的额定电压和额定电流不断增大,为实现单机电源模块的大电流和高率提供了保证。

(1)功率MOSFET

功率MOSFET是一种单极型(只有电子或空穴作但单一导电机构)电压控制半导体元件[8],其特点是控制极(栅极)静态内阻极高,驱动功率很小,开关速度高,无二次击穿,安全区宽等。开关频率可高达500kHz,特别适合高频化的电力电子装置。

(2)绝缘栅双极晶体管IGBT

绝缘栅双极晶体管IGBT是一种双(导通)机制复合器件,它的输入控制部分为MOSFET,输出极为GTR,集中了MOSFET及GTR分别具有的优点[2]:高输入阻抗,可采用逻辑电平来直接驱动,实现电压控制,开关速度高,饱和压降低,电阻及损耗小,电流、电压容量大,抗浪涌电流能力强,没有二次击穿现象,安全区宽等。

3.2软开关技术

传统大功率开关电源逆变主电路结构多采用PWM硬开关控制的全桥电路结构,功率开关器件在开关瞬间承受很大的电流和电压应力,产生很大的开关损耗,且随着频率的提高而损耗增大。工作频率在20kHz,采用IGBT功率器件的PWM硬开关控制的电源,功率器件开关损耗占总损耗的60%~70%,甚至更大[3]。为了消除或抑制电路的电压尖峰和浪涌电流,一般增加缓冲电路,不仅使电路更加复杂,还将功率器件的开关损耗转移到缓冲电路,而且缓冲电路的损耗随着工作频率的提高而增大。

软开关技术利用谐振原理,使开关器件两端的电压或流过的电流呈区间性正弦变化,而且电压、电流波形错开,使开关器件实现接近零损耗。谐振参数中吸收了高频变压器的漏抗、电路中寄生电感和功率器件的寄生电容,可以消除高频条件下的电压尖峰和浪涌电流,极大地降低器件的开关应力,从而大大提高开关电源的效率和可靠性。

3.3同步整流技术

对于输出低电压、大电流的开关电源来讲,进一步提高其效率的措施是在应用软开关技术的基础上,以功率MOS管反接作为整流用开关二极管,这种技术称为同步整流(SR),用SR管代替肖特基二极管(SBD)可以降低整流管压降,提高开关电源的效率。

现在的同步整流技术都在努力地实现ZVS及ZCS方式的同步整流。自从2002年美国银河公司发表了ZVS同步整流技术之后,现在已经得到了广泛应用[4]。这种方式的同步整流技术巧妙地将副边驱动同步整流的脉冲信号与原边PWM脉冲信号联动起来,其上升沿超前于原边PWM脉冲信号的上升沿,而降沿滞后的方法实现了同步整流MOSFET的ZVS方式工作。最新问世的双输出式P联M控制IC几乎都在控制逻辑内增加了对副边实现ZVS同步整流的控制端子。这些IC不仅解决好初级侧功率MOSFET的软开关, 而且重点解决好副边的ZVS方式的同步整流。用这几款IC制作的DC/DC变换器, 总的转换效率都达到了94%以上。

3.4控制技术

开关变换器具有强非线性、离散性、变结构的特点,负载性质也是多变的,因此主电路的性能必须满足负载大范围的变化,这使开关电源的控制方法和控制器的设计变得比较复杂。

电流型控制及多环控制在开关电源中得到了较广泛的应用;电荷控制、单周期控制等技术使开关电源的动态性能有了很大的提高。一些新的方法,如自适应控制、模糊控制、神经网络控制及各种调制方式在开关电源中的应用,已经引起关注。

随着微电子技术的发展,微控制器的处理速度越来越快,集成度越来越高,将微控制器或者DSP应用到大功率开关电源的数字控制模块已经成为现实。开关电源的高性能数字控制芯片的出现,推动了电源数字化的进程[5]。

数字控制可以实现精细的非线性算法,监控多部件的分布电源系统,减少产品测试的调整时间,使产品生产率更高。实时数字控制可以实现快速、灵活的控制设计,改善电路的瞬态响应性能,使之速度更快、精度更高、可靠性更强。

4 结束语

高频开关电源作为电子设备中不可或缺的组成部分也在不断地改进,高频化、模块、数字化、绿色化是其发展趋势。高频开关电源上述各技术的实现,将标志着开关电源技术的成熟。电力电子技术的不断创新,将使开关电源产业有着广阔的发展前景。

参考文献

[1] 莫慧芳. 高频开关电源发展概述. 电源世界, 2007(5)

[2] 贺益康, 潘再平. 电力电子技术. 科学出版社, 2010年第2版

[3]倪倩, 齐铂金, 赵晶等. 软开关全桥PWM主电路拓扑结构在逆变焊接电源中的应用. 自动化与仪表, 2002(1)

第8篇

关键词:电力电子;能量管理系统;电能质量控制

中图分类号:TU852文献标识码:A文章编号:1007-9599 (2010) 14-0000-01

Power Electronics and New Energy Power Generation Technology

Yang Lin

(Institute of Electrical Engineering,Northwest University for Nationalities,Lanzhou730030,China)

Abstract:This paper discusses several new forms of energy generation and integrated power supply system transformation,control,intelligence management and safety issues,and hope in the future development of new energy power,we can overcome difficulties and achieve electronic power of new development.

Keywords:Power electronics;Energy management system;Power quality control

我们已进入21世纪,这是一个全新的时代,经济的高速发展给人们的生活带来了很多的便利,但随之而来的却是能源的耗竭,原本丰富的能源如今已变得匮乏,并危及到人们未来的生产生活。与此同时,毫无顾忌的能源利用还造成了大气的严重污染,从而又引发能源危及,这样的恶性循环会直接危及到人类的发展,甚至威胁人类的健康和繁衍。因此,开拓新能源,减少能量源浪费成为当今世界最为关注的话题。

一、新能源的发电方式

(一)太阳能发电

太阳能发电开始于上世纪50年代,当时,第一块实用的硅太阳电池研制成功,如今,太阳能发电技术已经经历了半个世纪的发展,其技术也在日益成熟。目前,占主流的太阳电池仍然是硅太阳电池,主要分为单晶硅太阳电池、多晶硅太阳电池和非晶硅太阳电池。典型的太阳能供电系统结构如图1所示,太阳电池阵列进行光电转换,把太阳能变为电能,再由功率变换器将太阳电池输入到直流电中,最后转换成用户所要使用的电源模式。根据用户的需求,功率变换器可以选择直流斩波器进行DC/DC变换,或采用逆变器进行DC/AC变换。而功率变换装置还应包括蓄电池系统,主要是为了平衡电流。如果太阳光充足,可以利用太阳能,并利用蓄电池充电;如果在夜晚或者阳光不充足时,就可以使用蓄电池供电。

(二)风力发电

如今,风力的主要运用方式就是风力发电,它的发展速度最快,也最受全世界关注。风力发电主要有3种运转方式:

1.独立运行方式,利用一台小型的风力发电机向需要的用户提供电能,它还可以通过蓄电池充电,预防无风时影响发电效果;

2.风力发电与其他发电方式相结合的联合供电方式,主要向交通不便或偏远山区供电,以及地广人稀的草原牧场提供电力;

3.并网型风力发电运行方式,将风力发电网安装在条件较好的地区,常常是一处风场安装几十台甚至几百台风力发电机,这也是风力发电的主要发展方向。风力发电机组在不同风速的条件下运行,其发电机输出的电压的幅值和频率是变化的,所以,通常要配置电力电子功率变换器,通过这种装置控制电流,保证输出的电压是平衡稳定的。

(三)燃料电池发电系统

燃料电池(Fuel Cell)是将反应物如氢气等的化学能直接转化为电能的电化学装置。它通过燃料(通常是氢气)和氧气结合所发生的光电反应来发电。燃料电池发展了这么久,根据电介质的不同,主要分为5种燃料电池:碱性燃料电池(Alkaline Fuel Cell,AFC);质子交换膜燃料电池(Proton ExchangeMembrane Fuel Cell,PEMFC);磷酸燃料电池(Phosphoric Acid Fuel Cell,PAFC);熔盐燃料电池(Molten Car-bonate Fuel Cell,MCFC);固体氧化物燃料电池(Solid Oxide Fuel Cell,SOFC)。

实际上,燃料电池也有其优点,例如:发电效率高:发热少;噪音低,污染小;功率密度高。目前,燃料电池发电主要集中在以下几个方面:燃料电池特性研究;燃料电池发电系统结构和高效功率变换的研究;能量管理技术;孤岛检测和保护技术,并网电流控制;并网运行与独立运行之间的无缝切换控制技术。

燃料电池所输出的电压会随着电压的变化,发生较大范围的变化。燃料电池的输出电压在负载发生突变时还要经过一段时间才能停止反应,对于质子交换模燃料电池响应延迟达2秒。因此,燃料电池一般与负荷动态的具体要求无法很好的匹配。

二、电力储能技术

可再生能源发电装置所产生的电能主要还存在无法预测的周期性变化,例如风能、光伏发电等,如果将其电能直接输入普通电网,将会对电流带来不良影响,而电力储备装置就可以平衡能源发电输入与电网之间的矛盾。电力储能技术有蓄水蓄能、压缩空气储能、飞轮储能、电池储能等它们都各具特点,各有优势,但它们的正常运行主要是依靠电子电力技术。

蓄水储能与压缩空气储能主要是对电力高峰期进行调节,但是对地理条件的要求较高。电池储能的精密性高,需要在技术成熟的条件下进行,理论上可以用于电力调峰,单电池使用寿命有效,这成为蓄电技术的难点。飞轮储能的储能量有限,运行复杂,一般用于电能质量调节。

三、电能质量控制

(一)电源谐波检测和分析技术

谐波的测量和分析都是以思想谐波治理为前提条件的,精准的谐波测量和分析可以为谐波的治理提供准确的依据。自提出快速傅里叶变换算法(FFT)以来,基于傅里叶变换的谐波测量得到了普遍应用。然而基于傅里叶变换的谐波测量要求整周期同步采样,不然就会严重影响其效果。因此,怎样减少因同步偏差而引起的测量误差成为电子电力技术人员迫切要解决的难题。

(二)电能质量控制和管理

首先,电能质量的控制和管理主要包含功率因数校正和滤波器设计,由于传统的无源滤波器体积和重点都很大,还需要对不同的频率进行设计,而功率因数较技术正是提高功率因数和降低谐波污染的重要途径。如今,电能质量控制和管理的研究重点在与PFC控制技术上,比如:单开关、多开关以及软开关三相PFC电路的研制,软开关技术与PFC技术的融合已经成为未来的发展趋势,虽然目前的PFC产品受到功率的限制,但应用于分布式新能源发电系统却是重要机遇。

四、总结

综上所述,随着科技的发展,新能源的开拓和使用技术越来越成熟,但是,要真正做好新能源发电技术,还需要从解决先存的各种问题,因此,电子电力技术人员应在在电气、电子、控制和信息等工程技术领域加强合作研究,通过系统集成和技术融合,实现各种技术的突破,我相信,我们一定可以克服各种困难,迎来新能源造福人类的灿烂明天。

参考文献:

[1]Rechten H.可再生能源技术[A].中美清洁能源技术论坛论文集[C],2001

[2]汤天浩.新能源与变换:系统集成、技术融合及应用展望[J].电源技术学报,2004,2,1

[3]李俊峰,高虎,王仲颖.中国风电发展报告[M].北京:中国环境科学出版社,2008

[4]戴慧珠,陈默子,王伟胜.中国风电发展现状及有关技术服务[J].中国电力,2005,38,1

第9篇

关键词:电梯 应急救援 应急电源 智能化 绿色节能

中图分类号:TM921 文献标识码:A 文章编号:1674-098X(2016)12(b)-0046-02

进入21世纪以来,中国的经济快速发展,城市化进程逐步实行,这让市场对于电梯(包括直梯和扶梯)的需求都日益增长。截至2014年,全国使用中的电梯总数约为350万台,且在数量上一直保持着较高速度的增长。随着电梯在人们生活中使用得愈来愈广泛,且用途愈来愈多,人们对电梯的依赖性已经达到了空前的高度。

1 背景介绍

在使用电梯时,使用者即是操作者,电梯这种简易化操作使其使用门槛极低,但随之而来的问题是:(1)一旦遇到非正常状况时,由于缺少关于电梯使用的安全知识和技能,使用者很难做出正确的、积极的反应来应对突发状况,更无法对自身进行保护;(2)电梯的使用一般均面向群体用户,一旦电梯发生问题,则很容易上升为社会性事件,造成非常消极的影响。因此,为了让电梯更加普及化,也为了为使用者提供更大的安全保障,除了电梯自身质量一定要不断提高外,对电梯的应急救援工作也要不断加强。并且在当今科学非常发达的情况下,应该充分利用科学技术,对电梯的应急救援进行强化。

2 数字电源

近年来,数字信号处理器DSP得到了很好发展,使得数字开关电源可以有比较高的开关频率。同时,数字式的开关电源与设计周期较短,且实现方式灵活,容易模块化管理等相较于模拟系统的优势,因此,数字控制在电源中有了很广泛应用。数字电源快速发展,并逐渐实现了现代控制的方法。

2.1 数字电源的定义

数字电源的定义并不单一,就强调电源控制而言,数字电源可以定义为:在对模拟开关电源的改造和升级的基础上,通过数字接口,可以实现数字控制、检测功能的开关电源。而对数字电源较为详细的定义为:核心利用数字信号处理器或者微控制器,控制数字电源驱动器和PWM控制器等,从而实现数字控制、管理和监测的功能,作为数字电源。这种定义较为复杂,但是包含了数字电源的基础原理,即通过设定电源开关状态的内部参数,从而改变其外在的特性,也就是从传统的电源控制,转变为更精细的电源管理。数字技术是数字电源管理的基础。

2.2 数字电源的特点

数字电源是区别于传统电源的、依托于数字技术的开关电源,在其使用功能上,一定不拘泥于简单电源启动和关断。就数字电源的特点,从其原理、内容方面出发,最主要有:(1)数字电源是以数字信号处理器或微控制器为核心,其控制对象不是简单的电源开关外部特性,而是驱动器和控制器,因此,其可以实现智能化;(2)不同于以往的分立式元器件,数字电源实现了电源系统的单片集成,将多个元器件组合为一个芯片或一组芯片;(3)由于核心为数字信号处理器和微控制器,所以数字电源可以达到很高的技术指标,比如其脉冲宽度调制的分辨力可以到达150 ps(10~12 s),性能优异。除此以外,数字电源在多相位控制、非线性控制和故障预测等功能上,都表现出了非常优异的性能,也对于绿色又节能型开关电源的研发提供了很好途径。相较于传统的模拟电源,数字电源在更加多样化的需求中表现更加优异。

3 电梯应急救援

随着人们在生活中对电梯愈来愈频繁使用,电梯出现紧急故障(比如:停电)而使乘客被困在电梯中、发生危险的情况也愈来愈多。对于电梯应急救援,传统的应对方法是在电梯轿厢内部安装容易识别、触及的报警装置,如果电梯发生险情,电梯内的乘客可以快速报警,然后由专业工作人员进行松闸、盘车等工作,打开电梯解救被困乘客。整个救援过程生效的主要前提,就是电梯内部的报警装置保证一定能起作用,及时将求救信息发送给专业人员,进行施救。整个过程较为理论化和理想化。

3.1 电梯的传统应急电源存在的问题

考虑到被困乘客在遇到电梯故障的情况下,心理和生理上都会出现不良反应。为了减小这种不利影响,近年来,电梯应急装置被创造出并得到广泛应用。电梯应急装置有多种叫法,如电梯停电自动平层控制,或者电梯停电自动救助装置等,但其内在的结构和其工作的原理从本质上来说就是应急电源。按照方法来分,电梯应急救援分成接管型和全供电型两种,其中接管型的包括:主控、充电、简化的电梯控制系统(包括变频器和抱闸控制、电梯运行状态检测等)和电池组、电源检测等;全供电型的应急电源的组成部分包括:主控、充电、逆变、接口板块和电池组、电源检测等。长期以来,接管型都有资源浪费、接线和调试复杂等缺点,现在逐渐被全供电型取代。

(1)对于直接拖动电梯的运行方式而言,电梯在其结构中有逆变的部分,而在应急电源组成部分中的逆变板与逆变部分设计了重复的整流、逆变,这对资源是一种浪费,严重影响使用的性价比;(2)传统应急电源在维护上必须有专人定时进行维护,或增加额外的检测设备去自动检测,难以与物联网等网络设备接轨;(3)传统应急电源只能做到机械式的、简单的电梯应急救援,只能被动解决主电源无法供电等电梯故障时的应急救援问题,但是无法更加主动、智能化解决电梯故障问题。同时,传统的应急电源只能判出单一情况并做出反应,就资源利用来说远远达不到节能、绿色的使用要求。

3.2 数字电源在电梯应急救援中的应用

通过数字的方式,对电源的电压和电流进行控制的开关电源,就是该文中所叙述的数字电源。数字电源在电梯应急救援中应用所具有的优势如以下几点。

(1)在电梯应急中,通过使用数字电源,可以利用数字电源的应用灵活性,对其系统的运行进行数字化参数设计,从而可以通过一次甚至多次的设计,使其具有多种对突发故障的应急模式,充分利用数字电源驱动器和PWM控制器的智能化操作,实现电梯应急救援的数字控制、管理和监测的功能;(2)电梯应急工作由于其工作特点,需要很强的可靠性。数字电源由于其数字化控制、管理的特点,较传统的应急电源可靠性更高。同时,由于数字电源采用的先进控制算法,即对故障可以进行数字化参数设定多种应对方式,从而为整个系统的运转提供了高能效。数字电源本身的管理系统,可以在最大程度上降低负载点、电路板和机架等诸多部分的能耗;(3)对于电梯由于主电源停电而发生故障的情况,数字电源对自身有完善的监测,救援装置本身可以自行监测自身状态,可以简化现场调试和维保,当出现电池容量不足、设备异常等问题可以直接告知给维保人员,快速监测和定位问题,也可以通过网络设备向相应的人员提供完善的资料。

4 结语

数字电源有着符合全球网络化、信息化发展的特性,且在电源市场颇受关注,是未来电源发展的必然趋势。随着电梯使用的快速普及化,电梯应急救援工作的重要性达到空前高度。而相比于传统应急电源,数字电源可以通过程序设置,对故障做出不同、多样的反应,如在发生故障时,如果电梯内部没有乘客,数字电源可以通过判别而采用“不启动应急电源进行强行召回”的运行方式,这样更加合理且更加节省资源。所以说,数字电源在电梯应急救援中的应用,将会对电梯应急救援带来更高的性价比、更好的用户体验和更加绿色、节能的操作。

参考文献

第10篇

【关键词】电子束;Arm;数字化;阴极灯丝

1.引言

电子束焊机的工作原理如图1所示,当高压电子枪中的阴极灯丝被加热到一定的温度时会逸出电子,散射出的电子则在高压电场中被加速至光速或接近光速,电子通过电磁透镜聚焦后,形成能量密度超高的电子束,当电子束轰击焊件表面时,电子的强大动能瞬间转变为热能,使金属熔融,待冷却后自然凝固,达到焊接的目的[1]。

电子束焊接阴极灯丝电源主要用于对阴极灯丝的加热,使其受热后发射电子,控制灯丝加热电源的输出电压或电流可达到控制溢出电子的目的,从而间接的控制电子束流大小。在实际焊接过程中,需要阴极灯丝能够稳定的发射电子并维持电子枪内电子密度几乎不变,故对灯丝加热电源的要求很高[2]。

2.系统构成及主回路设计

图2是数字控制的电子束焊机阴极灯丝加热电源的电路原理框图。灯丝电源主要由滤波整流电路、Buck调压电路、逆变电路、信号处理电路、Arm控制板、灯丝变压器和高频整流电路等组成。单相200V市电经全桥不控整流滤波后由得到310V左右的平滑直流电压,由IGBT构成的Buck电路完成直流电压幅值的调节,逆变电路完成DC/AC的转换,信号采集电路将反馈回来的灯丝变压器原边电流和电压进行处理后,送至控制器STM32的A/D输入端,经控制器转换和完成数字PI调节后输出相应的PWM波,然后经驱动电路放大后去驱动IGBT,完成整个灯丝电源的闭环控制。改变PWM波的占空比就能改变输出电压的幅值和电流[3]。

2.1 CPU控制器

CPU是整个灯丝电源的核心部分,主要负责反馈信号的采集、数字PI闭环计算、PWM波输出、参数设置和外部通信。CPU采用的是ST公司最新推出的STM32F107系列ARM芯片。该系列芯片采用ARM公司32位的Cortex M3为核心,最高主频为72MHz,Cortex核心内部具有单周期的硬件乘法和除法单元,所以适合用于高速数据的处理。芯片具有三个独立的转换周期,最低为1μs的高速模数转换器,三个独立的数模转换器带有各自独立的采样保持电路,所以特别适合三相电机控制、数字电源和网络应用。芯片还带有丰富的通讯单元,包括1个以太网接口、5个异步串行接口、1个USB从器件、1个CAN器件、I2C和SPI等模块。

2.2 显示电路及其它电路

对于独立应用的电子束焊机阴极灯丝加热电源,需要能够设置电源的各项参数,包括设定输出电流、PID参数等,并且实时显示当前电流电压值,当发生故障时候还需要显示故障类型。灯丝电源的显示单元采用四位数码管进行动态显示,具有显示直观、寿命长等优点。灯丝电源还包括驱动电路、信号调理电路、保护电路、通信电路等。

3.控制方法及软件实现

3.1 数字PI闭环控制

当Buck电路输出功率逐渐增大的过程中,Buck电路工作模式会从DCM进入到CCM状态,故被控系统是一个典型的非线性控制系统[4]。

由于单相市电供电电压通常存在±10%的波动,故整流电压Us也至少存在±10%的波动,此外,阴极灯丝冷态和热态时相差很大,控制系统设计的任务是抑制Us波动和灯丝电阻发生变化对Io的影响。系统的主要干扰来自Us的大幅波动,为了快速抑制系统波动采用负反馈和Us前馈的控制结构,控制系统结构如图4所示。控制器采用数字PI控制,即:

当电子束焊机刚开机工作时,阴极灯丝处于冷态,此时突然开启灯丝电源,如果按照电压控制,势必会产生很大的冲击电流,这会影响阴极灯丝的寿命,为了避免这种情况,故采用灯丝变压器原边电流控制方式。若采用电流控制时,当灯丝开路时会产生很高的电压易损坏变压器二次侧元器件,为了解决这个问题,需要对输出电压进行限制,并及时提示用户灯丝断裂故障,然后自动将输出电压降到零。

3.2 系统软件设计

CPU主要功能是完成闭环PI控制算法、发送PWM脉冲、故障保护、数据显示和远程通信。系统软件主要是对STM32芯片的编程,编程语言采用C语言[5,6]。

程序由主程序和若干子程序:通信程序、采样子程序、PWM中断程序、显示程序等组成。进入PWM中断后,首先对各路反馈信号进行采集和处理,该流程图如图5所示,然后经数字PI调节器运算后产生PWM脉冲输出,经驱动电路隔离放大后驱动IGBT,实现整个灯丝电源系统的闭环控制。

本电源采用全数字操作界面,所有参数均能通过面板按键进行设置,实现了灯丝电源的全数字化操作,并且数码管够实时显示灯丝电源系统的输出电流、输出电压、运行状态、故障信息等,当发生故障时,CPU将所有PWM脉冲全部封锁,然后将过压、过流以及灯丝断裂信息等故障信息显示出来。

4.实验结果

电子束焊机的阴极灯丝一般采用很薄的片状钨丝,电阻值通常很小,通常需要灯丝两端加上0~6V可调电压,流过灯丝的最大电流可达30A左右。我们将制作的电子束焊机灯丝电源用在某知名厂家生产的电子束焊机上,图6是在真空系统正常工作而高压电源未开启时,测量的灯丝电源工作时的波形。

其中图6是输出灯丝电流设定21A时的波形,示波器CH1、CH3是灯丝变压器原边电压、电流测量波形,CH2是灯丝电流测量波形。从图中我们可看出灯丝电源能够很好实现软启动功能,几乎无超调,并且灯丝电流纹波非常小,控制在5%以内,达到了很好的控制效果。

5.总结

基于Arm(STM32F107)的数字化灯丝逆变式电源具有高精度、小体积、全数字等特点,所有电源参数直接通过人机界面设定并存储,并具备与上位机远程通信的功能。在实际焊接实验过程中,灯丝能够按照设定的上升和下降时间实现缓升和缓降功能,当灯丝断裂的时候也能够很快识别并及时关断电源输出,并及时提醒用户需要跟换新的阴极灯丝,实现了灯丝电源的智能化。

参考文献

[1]樊生文,王泽庭,李正熙.基于移相全桥的电子束焊机高压电源的研制[J].自动化与仪器仪表,2010(12):62-64.

[2]海强.高稳定度的电子束焊机阴极电源及测试方法[J].电焊机,1999(12):21-23.

[3]李正熙,王磊,赵仁涛.一种全桥逆变式电子束焊机高压电源[J].自动化与仪器仪表,2008(3):15-17.

[4]阮新波,严仰光.直流开关电源的软开关技术[M].北京:北京科学技术出版社,2000.

[5]苏奎峰.TMS320x28xxx原理与开发[M].北京:电子工业出版社,2009.

第11篇

关键词:新能源汽车电子;技术进展;投资热点

随着汽车销量尤其是我国新能源汽车总体销量的稳步增长、汽车电子化的普及带动装配率的提高,我国汽车电子的市场规模呈现加速增长趋势。我国汽车电子市场规模从2007年的1216亿元增长到2015年的3979亿元,2016年已经突破5000亿元大关。

1国家地方系列政策出台助力新能源汽车推广

近年来,《国务院办公厅关于加快新能源汽车推广应用的指导意见》等一系列文件的出台积极推动了新能源汽车的发展。截至到2016年6月,国家共出台新能源汽车相关政策30项,其中推广政策出台7项,行业规范政策出台8项,充电基础设施政策出台4项,企业目录相关政策出台5项,行业管理相关政策出台6项。地方政府也纷纷推出鼓励新能源汽车的各项优惠政策,其中具有代表性的一线城市中,北京是2015年全国首个出台针对纯电动专用车补贴政策的城市。此外,上海、深圳等面临节能减排压力较大的城市,也积极加大在在财政补贴、牌照资源等方面的优惠力度。在国家和地方政策的推动下,我国新能源汽车呈现爆发式增长,2016年产量51.7万辆,销售50.7万辆,比2015年同期分别增长51.7%和53%。在我国新能源汽车爆发式增长的带动下,我国新能源汽车电子产业迅速发展。2015年我国汽车电子市场规模达657亿美元,同比增长13%。目前,我国已初步形成了长三角、珠三角、环渤海和东北等四大汽车电子产业集群。根据估算,2015年我国新能源汽车电子产业规模接近45亿元,2020年将达237亿元,复合增长率约39%。

2技术进展

新能源汽车电子产业的快速发展,对技术研发提出了更高的要求。在我国汽车电子技术起步较晚的大背景下,我国企业积极与国外企业合作,在车联网终端、车辆通信等方面取得一定进步。在整车控制和集成领域,我国骨干的整车企业从系统到软件到硬件三个层级都具备了开发的能力,为新能源汽车电子产业的发展提供技术支撑。2.1车载信息服务领域取得快速发展。当前,车联网是装备工业实现信息化的重要内容,车载信息系统服务同时作为智能交通的重要补充和新的亮点受到关注。近年来,我国政府陆续了涉及车联网的多项政策法规,交通部《道路运输车辆卫星定位系统车载终端技术要求》;国务院《关于加强道路交通安全工作的意见》,要求重型载货汽车和半挂牵引车应在出厂前安装卫星定位装置,并接入道路货运车辆公共监管与服务平台等等,这些政策规范了商用车车辆的监控管理,也加快了商用车联网实施的步伐。与政策相对应,企业也积极加快车联网的布局。乐视与阿斯顿马丁的合作、上汽与阿里的合作已表明汽车智能化与车联网已成为当前汽车技术领域研发的重要方向。2015年4月,英特尔公司联合中交兴路和星航道,了首款基于英特尔Quark处理器的“端到端”商用车车联网终端。英特尔表示“端到端”主要强调数据在多个端之间的流动性,如从终端到云端,从物流企业到车主端再到云端。数据采集后传送到云端进行大数据分析后,再传回终端为司机提供信息服务,达到规避交通事故、提升驾驶效率等目的。该终端产品主要有运算、端处理和安全三大特性。2015年5月,凯迪拉克与安吉星联合,在国内首家推出车载4GLTE服务,为未来车联网技术与服务创新构建平台基础。汽车智能化与网联化的发展不仅给车主带来全新的驾乘体验,同时兼顾安全和绿色环保,通过车与路、车与车、车与人、车与城市之间实时联网,实现智能交通网络。2.2新能源汽车整车控制器开发技术取得突破新能源汽车电控产品主要负责对关键零部件的控制以及能量的管理。从产品种类上看,主要包括车用动力电池控制系统,车用电机控制系统,燃料电池控制系统,混合动力耦合控制系统,电动车能量管理系统,代用燃料发动机电控系统等。目前国内部分整车企业或零部件企业通过自主研发,技术引进以及与国内大学、科研院所联合开发,掌握了混合动力汽车串联、并联以及混联控制技术,电动汽车以及燃料电池电控技术,产品已初步实现产业化,应用在新能源汽车的试点中,控制器的生产厂商主要有一汽、上汽、东风、奇瑞、天津清源等整车厂和万向电动车、上海电驱动等零部件厂商。目前,我国已基本掌握新能源汽车整车控制器开发技术,拥有自主研发并生产新能源汽车电控产品的能力,部分产品进入小批量生产阶段;产品研发水平和产业化实力与国外比较成熟的企业相比仍有较大差距,控制器基础硬件、开发工具等依赖进口;国产电控产品目前主要应用在小规模试生产产品中,大部分企业推出量产新能源汽车时更倾向于选择国外知名控制器硬件供应商。2.3电源管理系统取得阶段性进展电池管理系统(BMS)是新能源汽车电子关键技术之一,在新能源汽车中负责对动力电池进行评价、管理和保护的功能。目前国内研发主要集中在部分高校、科研院所和企业的研发中心,BMS系统功能较为完备,能与示范车型相配套,但目前仍处于试验或小批量生产阶段,与达到产业化程度仍有差距。国内BMS系统主要由企业与高等院校联合开发、生产。同济大学配合国内多家动力电池研发单位研发了新能源轿车集中控制式电池管理系统,同济大学与上汽集团等联合开发的电池管理系统已在上海世博会的燃料电池汽车系统中应用;北京航空航天大学研制开发的锂离子动力电池的均衡充电及管理系统在一汽、东风电动、重庆长安、天津清源等企业得到应用,申报并获多项发明专利。

3技术投资热点

当前,我国新能源汽车市场保持高速增长,行业投资规模迅速扩大。未来,在国家政策和市场需求的带动下,新能源汽车产业链的下述环节将成为投资热点。

3.1动力电池

随着扶持政策陆续出台,新能源汽车产业化进程加速,动力电池市场需求持续扩大。根据工信部的《中国制造2025》规划系列解读,节能与新能源汽车产业发展战略目标中提及到2020年,动力电池、驱动电机等关键系统达到国际先进水平,在国内市场占有率80%。2016年6月,国家动力电池创新中心成立,这是首个国家制造业创新中心。此外,2016年,国轩高科、吉利、天津力神、三星SDI、天能集团陆续投资动力电池新建项目。新能源汽车产业的关键点在于动力电池的生产和电池技术的创新,未来,动力电池制造商将围绕电池安全、续航能力、充电速率、环境适应性以及成本等方面积极提升竞争力。

3.2核心器件

随着新能源汽车渗透率的大幅提升,功率半导体、传感器等作为新能源汽车的核心器件,将迎来新的爆发机遇。比如近几年随着市场的刺激以及国家政策的扶持,国内逐渐出现了一批IG-BT方面的公司并取得了令人欣喜的成绩,例如中车时代电气、比亚迪微电子、华微电子。功率半导体占到新能源汽车中半导体用量的50%,而IGBT是用于新能源汽车的主要功率半导体。新能源汽车动力总成系统电气化,使每辆汽车半导体元器件用量大幅提升,国内相关厂商将从中获得发展机遇。

3.3充电桩

根据《节能与新能源汽车产业发展规划(2012-2020年)》要求,2020年充电桩与汽车之间的比例要达到1:1,而目前的车桩比例仅为4:1,这表明未来充电桩市场具有巨大发展空间。4月6日和29日,国家电网启动了两批充电桩招标,2016年充电桩招标总金额将达50亿元,远高于往年。国家电网也明确了2016年将进一步加快推进国家公路快充网络和城市充电网络建设,在“两纵两横一环”高速公路城际快充网络的基础之上,建设“七纵四横两网格”高速公路快速充电网络。充电设施是新能源汽车发展的一大短板,也是新能源汽车产业链投资的热点,2016年将是充电设备产业高速发展的一年。

3.4服务运营

对于投资者来说,整车制造需要更长的时间投入、更深的技术积累以及更高的资金要求。在此背景下,避开如整车制造等门槛较高的产业前端,着眼于服务运营、电池回收、检测评估、物流租赁等产业后端,完善新能源汽车行业的整体生态圈将成为投资热点。比如新能源汽车单位耗能价格低的特点,使其在物流租赁领域拥有广阔的应用前景,一辆4立方米的电动汽车一个月较传统燃油车节约1800元,而且车越大节约越多。

3.5无人驾驶

不少国家已认识到无人驾驶汽车所拥有的广阔市场前景,无人驾驶符合汽车智能化和互联网化的趋势,是互联网浪潮下汽车行业变革的重大机遇,目前世界顶尖级互联网公司和汽车厂商公司,都在积极切入这个领域。国内一汽、上汽、北汽、奇瑞、长安等整车企业以及小米、乐视、百度等互联网企业也均开展了相关研究和试验。当前国内无人驾驶产业正处于萌芽期,部分细分市场仍为空白。2016年有望成为无人驾驶投资元年,预计到2020年无人驾驶将初步实现商业化,并于2025年实现量产,行业将迎来5-10年的中长期投资机会。

参考文献:

[1]国际新能源汽车网[EB/OL].http:///html/newenergy-2272646.shtml,2016-06-14,2017-06-11.

[2]赵艳,刘学文.5号令你读懂了吗?中国交通通信信息中心冯泉博士解读5号令[J].交通世界(运输车辆),2014,7.

[3]文清.积极加入车管网实行车辆动态监督[J].汽车与安全,2015,3.

第12篇

【关键词】数字电源 结构原理 问题 优化设计

1 数字电源

1.1 数字电源的概述

目前,数字电源有多种定义。

第一种定义为:通过数字接口,控制开关电源,强调的是,数字电源的“通信”功能”。

第二种定义为:具有数字控制,开关电源的功能,强调的是,数字电源的“数控”功能。

第三种定义为:具有数字监测,开关电源的功能,强调的是,数字电源对温度等参数的“监测”功能,通过设定开关电源的内部参数,来改变其外在特性,在“电源控制”的基础上,增加了“电源管理”。相比传统的模拟电源,数字电源的区别,是控制和通信部分。在应用场合,简单易用、参数变更要求少,模拟电源产品更具优势。此外,相对模拟电源,在多系统业务中,数字电源,通过软件编程,来实现多方面的应用。数字电源有用DSP和MCU控制的。对于DSP控制的电源,采用数字滤波方式,而MCU控制的电源,能满足电源的需求,反应速度快、电源稳压性能好。

1.2 数字电源的特点

数字电源系统具有以下特点:

(1)数模组件组合优化:实现了开关电源中,模拟组件与数字组件的优化组合。采用“整合数字电源”技术。

(2)控制智能化:对于传统的,由微控制器(μP或μC)控制,开关的电源.而它是以,数字信号处理器(DSP)或微控制器(MCU为核心,智能化开关电源构成系统是“数字电源驱动器及PWM控制器”。

(3)控制精度高:数字电源,实现多相位控制、非线性控制、负载均流、故障预测等功能;发挥数字信号处理器及微控制器的优势,这样设计的数字电源,达到高技术指标,为绿色节能型开关电源提供条件。

(4)集成度高:对于高集成度,将大量的分立式元器件,整合到一个芯片或一组芯片中。实现了,电源系统单片集成化。

(5)模块化程度高:分布式的数字电源系统就易于构成。

2 数字电源结构

2.1 PWM控制器

双端推挽式PWM控制器是UCD8220/8620,其受DSP或MCU数字控制的。二者的区别是,低压启动UCD8220即 48V,而UCD8620内部,增加高压启动电路即110V。UCD8220的内部,主要包括:“3.3v电压调整器、基准电压源、脉宽调制器(PWM)、驱动逻辑、推挽式驱动器、欠压关断电路、限流电路、电流检测电路”。 在峰值电流模式或电压模式下,UCD8220/8620能够运行,即对极限电流的编程,输出极限电流数字标志。

2.2 数字信号处理器(DSP)

UCD950是数字电源系统,配套的数字信号处理器,它们内部主要包含 :“32位CPU、时钟振荡器、32位定时器、看门狗电路、内外部中断控制器、SCI总线、SPI总线、CAN总线及I C总线接口、l2路PWM信号输出、系统控制器、16通道12位和ADC、16K×16 Flash、6K×16 SARAM、1K×16ROM”。利用Power PADTM HTSSOP和QFN软件包,可进行编程。它采用标准的是“3.3v”输入或输出接口,其与UCD8K系列的完全兼容。

2.3 数字电源驱动器

数字控制电源驱动器芯片,大部分是UCD7100/7201,二者的区别是:可驱动MosFET开关功率管,可适配UCD9110/9501型数字控制器;UCD7100为单端输出,而UCD7201为双端输出;额定输出电流均为±4A;对于主控制器,可监控输出的电流,快速检测,过流故障而关断电源;检测周期仅为 25ns。

3 数字电源面临的问题

数字电源,有很多优点,但仍有缺点。数字电源,需要一个采样、量化和处理的过程,做出反馈,即对负载的变化,而目前,它对负载变化的响应速度,比模拟电源慢。精度和效率比模拟电源差。数字电源占板面积,大于模拟电源。在负载点(POL)系统中,数字控制优点非常明显,而在简单应用中,模拟电源仍占有优势。考虑到数字电源,解决方案的优点,数字电源,虽然技术复杂,但使用不复杂。要求设计人员,具有一定的程序设计能力,目前,电源设计人员,普遍模拟设计为主,缺乏编程训练。这对数字电源的推广,也造成了一定的障碍。每次AD转换后,数字芯片,将得到的结果,送到系统中央处理器,由处理器,对取样的值,进行运算和PI调节。

另外,人们对数字电源的认识,不像模拟电源那样,经过了多年应用的考验。对其的可靠性有疑问。虽然数字电路,在概念上,优于模拟电路,可靠性是设计的问题,而不是数字化的问题。

4 数字电源电路优化设计

我们采用智能化数字电源,其系统由:“PWM、电源驱动器、DSP、接口电路、显示器和键盘”6部分组成。系统框图如图1所示。

对于图中的数字信号处理器,UCD9501,通过接口芯片与键盘和显示器相连,对于用户,不仅能从显示器上,观察到当前的电源参数,还可通过,键盘随时修改电源参数。为了简化配置,也可由:“数字信号处理器(UCD9501)和数字控制电源驱动器(UCD7100)”构成智能化数字电源系统。

5 结语

总而言之,数字电源系统,具有高集成度、高性价比、电源管理功能完善、电路简单、能面向用户设计等显著优点,实现了智能化电源系统,优化设计和创造。在应用场合中,简单易用、参数变更不多,模拟电源产品,具有很多优势,其应用的针对性,可以通过硬件固化来实现。

参考文献

[1]杨学明.集成电路产业在各国经济发展中的比较研究[J].创业与投资,2009.

[2]吴纬国.论我国集成电路制造业之发展路线[J].中国电子商情,2003.

第13篇

电子束溶炼技术(EBM)是冶金溶炼技术领域里的一个重要分支技术,在尖端金属冶炼领域中占有着重要地位,同时也是未来冶炼领域里的一个重要组成部分。从本质上来讲,电子束的冶炼就是在真空环境较高的条件下,先通过加热的手段使负载电阻丝产生电子,然后通过一定的高压使电子进行高速运动,最后将高速运动的电子束流的动能转化为热能从而冶炼金属的一种溶炼方法。它主要针对于难溶金属进行冶炼,比如鹤、钽、银、银、铪、铬、银、错和钛等溶点较高,轻易难以融化的金属。在难溶金属的冶炼领域里面,钛合金是其中一种使用开发程度较高的金属。金属钛是自上世纪中叶被人们逐步发现并加以利用的一种金属,相比于其他难溶金属而言,金属钛的强度很高,且不容易被腐烛,在温度较高的条件下依然能保持自己本身的特性,所以钛合金在高温、恶劣、特殊的环境下被广泛使用;如航空航天领域、军工化工制造领域、汽车医疗领域等。在钛合金的优质特性逐渐被人们发现之后,慢慢被人们所熟知,许多国家开始着手于钛合金的冶炼与开发。到了上个世纪五六十年代,钛合金在航空航天飞行器的发动机的使用上发挥了重要的作用。到了上个世纪80年代以后,钛合金的应用得到了进一步的发展,得益于军工领域的进步,钛合金在火箭、导弹等装备设施上得到了更多的应用[2]。正由于以钛合金为代表的难溶金属在工业以及民用发展的进程中得到了广泛的应用,为电子束焰炼技术的发展提供了重要的基础[3]。

1.2课题背景及意义

电子束溶炼炉电源的发展趋势是大功率、高频化、小型化。目前国内的开发应用水平与国外发达国家的先进水平仍有很非常明显的差距;其中美国ATI公司已经成功生产出由8支电子枪同时工作,总功率达到5.6MW的溶炼炉,冶炼功率等级为世界最大;德国溶炼炉产业以ALD公司为主要代表,公司成功生产出单台功率为600kW的电子枪,4台电子枪同时运转功率能够达到2000kW。在我国,北京有色金属研究院开发出4台电子枪同时工作可提供2.4MW的大型高效电子束冷床炉。但是目前世界各大公司生产的电子束溶炼炉电源主要还是釆用传统的工频升压方式,高频电源的开发仍是未来电子束溶炼炉的发展的难点和热点。

1.2.1电子束溶炼炉的发展历史

电子束的概念第一次出现在人们的视野中是在上个世纪的80年代,美国的Temescal冶金公司在1957年首度使用电子束进行了对金属钛等难溶金属的冶炼,此时才正式开启了商业方面对电子束溶炼的运用的时代。而到了 20世纪60年代,横向电子枪技术相对成熟起来,能够投入使用,并且己经能够对直径达到80的组锭和鹤锭进行冶炼。到了上世纪80年代中期,过去的横向电子枪己经完全被现在新式的轴向电子枪所取代,现在电子束溶炼炉的溶炼能力得到了质的飞越。在90年代后期美国提出了冶炼的新思路,将需要溶炼的金属放置在溶炼的容器内进行冶炼的同时,另一个溶炼装置同时进行准备,这样的搭配使溶炼的效率和能力都已经大幅提高[9]。

1.2.2电子束溶炼炉的工作原理

电子束溶炼是利用大功率电子束流,通过控制电子束流的功率,束流的大小,进行难溶金属的溶化与冶炼,通过凝固结晶后将杂质去掉,提纯、结晶的一种冶炼方法[4]。电子束熔炼炉的主要结构包括三个部分组成:(1)电子枪。(2)电源系统(3)电子束控制系统。电子枪是用于发射电子束的设备,电源系统分别由灯丝电源、轰击电源、加速电源三部分组成,用于电子枪不同部分的供电使用。电子束控制系统负责完成对电子束的聚焦和偏转。电子束以极快的速度发射到金属表面,将动能转化为热能并将金属溶化达到溶炼的目的。

如图1.1所示为电子束溶炼炉电子枪结构示意图,它的基本工作过程如下所述

3)灯丝电源通过输出稳定的电流对灯丝进行加热,灯丝通入电流后产生高温并在其周围溢出少量电子;

4)轰击电源将灯丝周围产生的电子轰击到阴极板上;

5)阴极板受到高速电子的轰击,温度急剧升高,并在其周围产生电子密度极大的电子

6)在阴极板与馆炼金属之间加入高压加速电源,使电子形成电子束,溶化金属,达到冶炼、提纯的目的。

2灯丝电源系统结构设计及控制策略

灯丝电源是电子束溶炼炉电源系统的重要组成部分。灯丝电源系统主要功能是对灯丝负载两端进行加热,负载在通过较大的电流之后温度升高发射出大量电子,然后供给后级电源继续进行处理。在已经成熟的电子束系统中最常用的办法是通过闭环的调节和控制使电流最终达到一个稳定的状态,从而让灯丝电流达到稳定的电流输出,能够使溢出电子的数量达到一个稳定的平衡,如果灯丝的电流能够稳定,最终会促使怀炼炉电子束流也随之稳定。在电子束溶炼的过程中,灯丝电流的大小与稳定程度直接影响电子束流的大小,从而成为影响溶炼功率的重要因素。

2.1电子束溶炼炉灯丝电源的结构

电子束溶炼炉灯丝电源系统的结构主要包括:

1)不控整流部分

2)Buck变换器

3)全桥逆变部43分

4)降压隔离变压器

5)采样电路、控制电路与过流保护电路

2.2灯丝电源的工作原理

灯丝电源的作用在于使灯丝通过电流而溢出电子,然后提供给后级电路,灯丝电流的大小以及其稳定程度最终影响溶炼炉电子束流的大小。而电子束流的大小与稳定程度直接决定了溶炼过程中的金属产量和质量。本课题所设计的电子束溶炼炉灯丝电源为一个高频交流电源,输出电流范围为交流0-20A可调,输出电压稳定在交流0~10V。

2.2.1主电路基本原理

电子束溶炼炉灯丝电源的拓扑结构如图2.1所示。电源主回路的部分主要由下面几个单元构成:不控整流部分;Buck变换器部分;全桥逆变部分;高频降压变压器部分。在电子束恪炼炉中灯丝电源与轰击电源以及加速电源部分串联组成,所以输出端必须有变压器对其进行隔离,可起到保护低压控制回路的功能。单相工频220V交流输入电源经过不控整流滤波后,得到280V左右的直流电压,直流电压经过Buck变换器的电压调整将Buck变换器电压输出控制在180V;所得到的直流电压经过全桥逆变器后逆变为高频的交流方波,最后经过降压隔离变压器可得到10A的交流电流。

2.2.2 Buck变换器的工作模式

第14篇

关键词:电子信息系统 数字化医院 信息管理系统机房设计

一、数字化医院电子信息系统机房建设的发展

随着经济社会的发展和科学技术的进步,综合医院的建设标准也越来越高,医院智能化系统已经成为现代化医院的重要基础设施,对于维持医院的正常运转和使用非常重要,是数字化医院的大脑和神经中枢。伴随越来越多的各种医院信息系统的开通,数字化医院所有的临床作业全部实现无纸化运行,医院的电子病历、放射信息、医学影像、药品管理信息、财务信息、人事信息、办公管理信息等大量信息需要收集、存储、处理、提取及数据交换,而一个安全可靠、技术先进、结构完善、灵活性强、兼容性好的数字化医院电子信息系统机房则是实现医院智能化的关键。

我们通过结合多个数字化医院的电子信息系统机房的设计及施工案例,对医院电子信息系统机房的分级选址及设备布置、建筑结构、电气、设备等方面相关的设计、施工要素进行详细介绍。

二、医院信息系统机房的分级、选址及设备布置

(一)医院信息系统机房的分级

按《电子信息系统机房设计规范》GB50174-2008中的规定,电子信息机房应划分为A、B、C三级,根据机房所处行业或领域的重要性,单位对机房各系统的保障和维护能力,以及因场地设施故障造成网络信息中断或重要数据丢失而在经济和社会效益上造成的损失或影响程度这三方面因素来确定机房的等级。除上述外,还应综合考虑初期建设投资、维护成本等因素。

三级医院应按照B级电子信息系统机房设置。B级机房场地设施应按照冗余要求配置,运行期间,不应因设备故障而导致电子信息系统运行中断。冗余是指系统部件部分或全部一用一备,即重复的配置系统的部分或全部部件,当系统发生故障时,冗余配置的部件介入并承担故障部件的工作,由此减少系统的故障时间。系统配置为:N+X(X=1~N),系统配置除满足基本需求外,增加了X个单元、X个模块或X个路径,任何重复配置的X个单元、模块或路径的故障或维护不会导致系统运行中断。如图1所示,中心信息机房核心交换机为冗余配置,各楼信息服务器均在中心信息机房异地冗余配置;核心交换机至各汇聚层交换机为路径冗余配置。

二级及以下医院可按C级电子信息系统机房设置。C级机房场地设施应按基本要求配置,场地设施正常运行情况下,应保证电子信息系统运行不中断,系统满足基本配置。

(二)机房的选址

电子信息系统受粉尘、有害气体、振动冲击、电磁场干扰等因素影响时,将导致运算差错、错误动作、机械部件磨损、缩短使用寿命等。电子信息系统机房选址应符合下列要求:

1.应远离产生粉尘、油烟、有害气体以及生产或贮存具有腐蚀性、易燃、易爆物品的场所。三级医院的主机房空气含尘浓度,在静态条件下测试,每升重大于或等于0.5μm的空气尘粒数应少于18000粒;

2.应远离强振源和强噪声源。当不能避免时,应采取隔振、消声和隔声措施。有人值守的主机房和辅助区,当电子信息设备停机时,主操作员位置测量的噪声值应小于65dB(A);在电子信息设备停机条件下,主机房地板表面垂直及水平方向的振动加速度不应大于500mm/s2;

3.应远离强电磁场干扰场所,不应设置在变压器室、配电室的楼上、楼下或隔壁场所,主机房和辅助区内磁场干扰环境场强不应大于800A/m;主机房和辅助机房内频率为0.15MHz~1000MHz的无线电干扰场强不应大于126dB。满足不了要求时,应采取电磁屏蔽措施;

4.不应设置在厕所、浴室或其他潮湿、易积水场所的正下方或临近区域;

5.电力供给应稳定可靠,交通通信应便捷,自然环境应清洁;

6.主机房的活荷载标准值应远大于建筑物其他部分,考虑到经济性,机房应设置在建筑的低层;考虑到防止水灌入等,机房宜设置在建筑物的首层及以上层,当地下室为多层时也可设置在地下一层。

(三)机房的设备布置

机房宜根据设备布置及工作运行要求,根据实际需要由主机房、辅助区、支持区、行政管理区等功能区组成。主机房的使用面积应根据电子信息设备的数量、外形尺寸和布置方式确定,并应预留今后业务发展需要的使用面积。在条件不具备的情况下,主机房的使用面积可按下式确定:

电子信息设备确定规格时:A=K∑S ;电子信息设备未确定规格时:A=FN 。

其中,A—主机房使用面积(m2);K—系数,可取5~7;S—电子信息设备的投影面积(m2);F—单台设备占用面积,可取3.5~5.5(m2/台);N—主机房内所有设备总台数。

辅助区的面积宜为主机房面积的0.2~1倍,用户工作室的面积可按3.5m2/人~4m2/人计算,长期有人工作的房间可按5m2~7m2计算。

机房的设备布置,应满足机房管理人员的操作和安全需求,及设备运输、散热、安装和维护的要求。机房内通道和设备间距离应符合以下规定:

用于设备运输的通道净宽不应小于1.5m;面对面布置的机柜之间距离不宜小于1.5m;背对背布置的机柜之间距离不宜小于1.0m;需设备检修时,设备检修方向的净距不宜小于1.2m;成行排列的机柜,长度超过6m时,两端应设有出口通道;当两个出口通道间距离超过15m时,在两个出口通道之间还应增加出口通道,出口通道的宽度不宜小于1.0m。

三、医院信息系统机房对建筑结构的要求

(一)一般要求

建筑平面和空间布局应具有灵活性,并应满足电子信息系统机房的工艺要求。主机房净高应根据机柜高度计通风要求确定,考虑常用机柜一般为1.8m~2.2m,气流组织所需机柜顶面至吊顶距离一般为400mm~800mm,取平均值,机房净高不宜小于2.6m。

三级医院内B级信息机房距离停车场不宜小于10m,距离铁路或高速公路不宜小于100m,距离飞机场不宜小于1600m。信息机房楼地面等效均布活荷载≥4.5kN/m2,免维护电池室容量

(二)人流、物流及出入口

机房宜单独设置出入口;有人操作区域和无人操作区域宜分开设置;机房通道宽度及门的尺寸应满足设备和材料(大型设备如精密空调、UPS机柜等)的运输要求,建筑入口至主机房的通道净宽不应小于1.5m;为减少人员将灰尘带入机房,可根据实际需要在机房主入口设置更衣间,条件不具备时可设置更衣柜。

(三)防火、疏散及安全

电子信息系统机房的防火设计应符合《建筑设计防火规范》GB50016或《高层民用建筑设计防火规范》GB50045的相关要求,其耐火等级不低于二级,且不低于建筑主体的耐火等级。A级或B级电子信息系统机房,当位于其它建筑物内时,考虑其安全性,主机房与其他部位之间应设置耐火极限不低于2h的隔墙,隔墙上的门应采用甲级防火门。

面积大于100m2的主机房安全出口不应少于两个,且分散布置,宜将门设置在机房的两端;门应向疏散方向开启且能自动关闭,并保证在任何情况下都能从机房内打开。

主机房的顶棚、壁板(包括夹芯材料)和隔断应为不燃烧体。

另外,设置在首层的机房的外门外窗应采取安全措施,根据机房的重要性,可设置警卫室或保安设施。

(四)室内装修

信息机房的室内装修,应选用气密性好、不起尘、易清洁、符合环保要求,在温度和湿度变化作用下变形小且具有表面静电耗散性能的材料,不得使用强吸湿性材料及未经表面改性处理的高分子绝缘材料作为面层。顶棚与墙面应涂不起灰、浅色、无光涂料。

机房地面铺设防静电活动地板时,活动地板的高度应根据电缆布线和空调送风要求确定,并应符合下列规定:

第一,只做电缆布线使用时,地板高度不宜小于250mm,活动地板下的地面可采用水泥砂浆抹平;

第二,既作为电缆布线,又作为空调静压箱时地板高度不宜小于400mm,活动地板下的地面应采用不起尘、不易积灰、易清洁的材料,楼板或地面应采取保温、防潮措施,地面垫层宜配筋,维护结构宜采用防结露措施。

三级医院内B级信息机房的主机房不宜设置外窗,当设置外窗时应采用双层固定窗,并具有良好的气密性。UPS系统的电池室设有外窗时应避免阳光直射。

四、医院信息机房的电气设计

(一)机房供配电

医院信息机房负荷等级应根据《供配电系统设计规范》GB50052-2009及《电子信息系统机房设计规范》GB50174-2008中的规定。

1.医院各类信息机房负荷分级及供电要求:

A级信息机房应按一级负荷中的特别重要负荷供电,应由双重电源供电,当一电源发生故障时,另一电源不应同时受到损坏,还应配备柴油发电机作为备用电源,当市电发生故障时,后备柴油发电机应能承担全部负荷的需要;

B级信息机房应按一级负荷供电,应由双重电源供电,当一电源发生故障时,另一电源不应同时受到损坏,当供电电源不能满足要求时,应设置后背柴油发电系统;

C级信息机房应按二级负荷供电,宜由两回路供电。

后备柴油发电机燃料储存量,A级机房要求72小时,B级机房要求24小时。

2.医院信息机房内精密空调系统应采用放射式供电,A级、B级机房精密空调系统按一级负荷供电,双重电源末端切换。

3.医院信息机房内信息设备供电的电源质量要求,见表1。

为保证供电质量,电子信息设备应由不间断电源系统UPS供电。UPS系统应有自动和手动旁路装置。确定UPS系统基本容量时应留有余量,一般可按不小于电子信息设备计算负荷的1.2倍选取,且UPS系统备用时间不小于15min。

当输出端N线与PE线间电位差不能满足要求时,宜配备隔离变压器。

4.用于信息系统机房内的电子信息设备与动力设备的UPS系统应由不同回路配电。电子信息设备的配电应采用专用配电箱(柜),专用配电箱(柜)应靠近用电设备安装,且宜配置浪涌保护器、电源检测和报警装置,并应提供远程通信接口。实际设计中,除电子信息设备设专用配电箱(柜)外,精密空调、检修等用电可合设一个配电箱(柜)。需特别注意的是,由于荧光灯容易对电子信息设备造成电磁干扰,信息机房内的照明电源不应引自电子信息设备配电盘,可就近引自防火分区内应急照明箱。

5.线路敷设。敷设在隐蔽通风空间的低压配电线路应采用阻燃铜芯电缆,电缆应沿线槽、桥架或局部穿管敷设;当配电电缆线槽与通信电缆线槽并列或交叉敷设时,配电电缆线槽应字下方。配电线路的中性线截面积不应小于相线截面积,单相负荷应均匀分配在三相线路上。

(二)机房照明

工作区域内一般照明的照度均匀度不应低于0.7,一般显色指数要求不低于80。

1.照度标准值要求:

服务器设备区、网络设备区、存储设备区、监控中心、测试区、打印室:500lx;

进线间、备件库:300lx。

2.统一眩光值UGR要求:

服务器设备区、网络设备区、存储设备区、备件库:22;

进线间:25;

监控中心、测试区、打印室:19。

3.机房内不应采用0类灯具;采用Ⅰ类灯具时,灯具PE端子必须与PE线可靠连接。信息机房的照明线路宜穿钢管暗敷或在吊顶内穿钢管明敷。

4.机房应设置通道疏散照明级疏散指示标志,主机房通道疏散照明照度值不应低于5lx,其他区域不应低于0.5lx。

(三)机房接地、静电防护

机房的防雷和接地设计应满足《建筑物防雷设计规范》GB50057和《建筑物电子信息系统防雷技术规范》GB50343的有关规定。

对电子信息设备进行等电位联结是保障人身安全、保证电子信息系统正常运行、避免电磁干扰的基本要求。等电位联接是静电防护的必要措施。电子信息系统机房内所有设备金属外壳、各类金属管道、金属线槽、建筑物金属结构等必须进行等电位联接并接地。

1.主机房和辅助区的地板或地面应由静电泄放措施和接地构造,防静电地板、地面的表面电阻或体积电阻值应为2.5×104 ~1.0×109Ω,且应具有防火、环保、耐污耐磨性能。主机房和辅助区中不使用防静电活动地板的房间,可铺设防静电地面,其静电耗散性应长期稳定,且不应起尘。

2.静电接地的连接线宜采用焊接或压接。当采用导电胶与接地导体粘结时,其接触面积不应小于20cm2。

3.保护性接地和功能性接地宜共用一组接地体,其接地电阻值应按其中的最小值确定。对功能性接地有特殊要求需单独设置接地线的电子信息设备,为防止干扰,接地线应与其它接地线绝缘;为减少环路电压,供电线路与接地线宜同路径敷设。

4.对于C级机房中规模较小的机房可采取S型(星型结构、单点接地)等电位联结方式。

5.A级、B级或规模较大的C级机房可采用M型或SM混合型等电位联结方式。主机房应设置等电位联结网格,网格四周设置截面不小于50mm2的铜带或裸铜线形成的等电位联结带,并应通过等电位联结导体将等电位联结带就近与接地汇流排、各类金属管道、金属线槽、建筑物金属结构进行连接。每台电子信息设备(机柜)应采用两根不同长度的等电位联结导体就近与等电位联结网格连接。网格应采用截面不小于25mm2的铜带或裸铜线,并应在防静电活动地板下形成边长0.6m~3m的矩形网格,一般形成600mm×600mm网格,紫铜带网格可压在架空地板支柱下。

(四)机房布线

承担信息业务的传输介质(包括设备缆线、跳线和配线设备)应采用光缆或六类及以上等级的对绞电缆,传输介质各组成部分的等级应保持一致,并应采用冗余配置。

机房存在下列情况之一时,应采用屏蔽布线系统、光缆布线系统或采取其他相应防护措施:无线电、电磁场干扰不满足要求时;银行、安全部门、军队等网络有安全保密要求时;安装场地不能满足非屏蔽布线系统与其他系统管线或设备的间距要求时。

缆线采用线槽或桥架敷设时,考虑检修、理线、通风的要求,线槽或桥架的高度不宜大于150mm。

(五)安全防范系统

安全防范系统由视频安防监控系统、入侵报警系统和出入口控制系统组成,各系统之间应具备联动控制功能。紧急情况时,如发生火灾时,出入口控制系统应能接受相关系统的联动控制而自动释放电子锁。

(六)环境和设备监控系统

具体信息机房环境要求,见表2。环境和设备监控系统宜采用集散或分布式网络结构,系统应易于扩展和维护,并应具备显示、记录、控制、报警、分析和提示功能。机房专用空调、柴油发电机、不间断电源系统等设备自身硬配带监控系统,监控的主要参数纳入设备监控系统,A、B级信息机房主机的集中控制和管理宜采用KVM切换系统。

五、消防

主机房建筑面积大于等于140m2的电子计算机机房内的主机房和基本工作间的已记录磁(纸)介质库宜采用气体灭火系统;A级机房应采用洁净气体灭火系统;B级机房的主机房及A、B级机房的配电室、UPS室,宜设置洁净气体灭火系统,也可采用高压细水雾灭火系统;C级机房可设置高压细水雾灭火系统或自动喷水灭火系统,自动喷水灭火系统宜采用预作用系统。凡设置洁净气体灭火系统的主机房,应配置专业空气呼吸器或氧气呼吸器。

医院内电子信息系统机房应设置火灾自动报警系统。机房采用水喷雾或气体灭火系统时,防护区用的空调机、通风机、排烟机、及其管道中的防火阀应自动关闭,确认火灾扑灭后方可启动排烟机排烟,系统应具有自动控制、手动控制和应急操作三种控制方式,报警区域内应设置两种火灾报警探测器,且火灾报警系统应与灭火系统联动。

医院电子信息机房内安装有高压细水雾灭火系统、空调机和加湿器的房间,地面应设置挡水和排水设施。

六、结束语

结合现有综合医院信息机房存在的问题和使用需求,设计中应首先注意先进性,医院信息机房设计应本着先进与实用的原则,把现有的较先进技术与成熟技术结合起来,充分考虑医院未来的发展空间;其次,实用性,要充分考虑医院现有的经济实力等因素,在满足实际使用需求的情况下,考虑系统造价;第三,灵活性,选择系统时,应注意选择一些标准化的开放式的系统,方便各个系统间互联以及后期系统增容等。 (编辑 刘鲁)

参考文献

第15篇

关键词:电子设备;电压;变化

1 技术与指标

电压的不稳定有时会造成许多不良影响,如电压不稳定产生的测量和计算误差,引起控制装置的工作不稳定,甚至根本无法正常工作。因此,为了减小或者避免上述影响,合理的设计出稳压电路是很有必要的。主要技术指标和要求:

(1)输出直流电压UO的调节范围为3-12V,且连续可调;

(2)最大输出电流小于200mA;

(3)稳压系数Sr

(4)能起到过流保护的作用。

大多数直流稳压电源包括变压、整流、滤波和稳压这四个部分。本方案也从这四个部分着手,其中,整流电路选用了单相桥式整流电路,滤波部分选用电容滤波器,稳压环节则采用三端可调集成稳压器W117。

2 总体设计方案论证及选择

2.1 降压电路

电源变压器的是变换交流电的静止电气设备,用来改变交流电压到所需电压值。实际上,理想变压器有P1=P2=U1I1=U2I2。

根据U2/U1=N2/N1,变压器通过改变次级线圈的匝数改变次级电压,由于变压器材料存在着铁损与铜损,所以它的输出功率略小于输入功率。但可以方便的实现所需电压的获得。另外,电源变压器用途广泛,变压稳定,市场购买方便。综上分析,我们选用电源变压器来实现降压功能。将220V的电网电压转换成我们所需要的电压以起到降压的作用。由变压器效率?浊=P2/P1,再根据性能指标要求:UOmin=3V,U0max=12V,选用功率为10W的变压器。

2.2 整流电路

整流电路采用互接成桥式结构的四个单向导通二极管组成。利用二极管的单向导通作用,在交流输入电压U2的正半周内,两个正向二极管导通,反向二极管截止,在负载RL上得到上正下负的输出电压;在负半周内,正好相反,正向二极管截止,反向二极管导通,流过负载RL的电流方向与正半周一致。因此,无论在正半周还是在负半周内,整流电路都能是负载上产生变相不变的脉动直流电压。

单向桥式整流电路中的二极管安全工作条件为:

(1)二极管的最大整流电流必须大于实际流过二极管的平均电流。

2.3 滤波电路

电路工作原理:设变压器次级电压U2的波形为正弦波形,由于采用全波整流的方式,因此在波形的正半周期和负半周期,电源电压U2均能既对RL供电又对电容C进行充电。

现U2按正弦规律上升,当次级电压U2高于UC时,二极管导通,在给负载供电的同时也给电容器C进行充电。随后,U2按正弦规律下降,当U2低于UC时,二极管截止,电容C又经RL放电。另外,当U2先按正弦规律下降再按正弦规律上升即在负半周期时会得到与正半周期相同的充放电情况。因此,在正弦波电压U2的作用下,电容不断进行充放电,从而得到一近似于锯齿波的电压UL=UC,是负载电压逐步趋于稳定。

通过以上的分析,我们得到有关电容滤波电路的如下结论:

(1)电容放电速度的快慢取决于RLC,RLC大则放电速度慢,负载电压产生的电压波动小,负载电压趋于平稳。

2.4 稳压电路

单片集成稳压电源不但克服了稳压二极管的缺点,而且具有较小体积、较高的可靠性、价格低廉等优点。

本课题选用三端可调集成稳压器W117来调节输出电压。

其中Ci用来与电感效应相互抵消,消除自激振荡以保护电路稳定电压,这里取0.3。

C0用来消除输出电压“毛刺”,进一步完善并调整输出电压,这里取1。

3 方案的原理框图

4 总体电路图

通过上述总体方案的论证,我们选用电源变压器来实现降压功能,整流电路选用单相桥式整流电路,滤波部分选用电容滤波器,稳压环节则采用三端可调集成稳压器W117。

参考文献

[1]刘全忠.电子技术[M].2版.北京:高等教育出版社,2004.

[2]秀,张伯尧.电工电子学[M].2版.北京:高等教育出版社,2004.

[3]孙骆生.电工学基本教程[M].4版.北京:高等教育出版社,2008.