前言:我们精心挑选了数篇优质函数教学论文文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。
(一)案例教学的内涵
对于案例教学,不同的教育工作者给出了不同的定义,不一而足。笔者认为,经济数学的案例教学,是指教师以案例为基本素材,创设(问题)情境,通过师生、生生间多向互动,激发学生有意义的学习,使其加深对基本原理和概念的理解,以达到建构知识与提高分析、解决问题能力的目的的一种特定的教学方法,是一种理论与实际有机切合的重要教学形式。
(二)案例应用方式分类
依据案例在经济数学概念(原理)教学过程中应用的方式和出现的位置,可将其分为以下四类。
1.概念(原理)前案例。在进入教学主题之前,先引入若干简单、特殊的案例,然后以不完全归纳的形式呈现概念(原理)的教学方式称为概念(原理)前案例教学。概念(原理)前案例数量以二三为宜。如:在导数(边际)定义前引入变速直线运动物体的速度问题、曲线在一点处的切线的斜率问题,在定积分定义前引入曲边梯形的面积问题等。
2.概念(原理)中案例。通过引入贴合教学主题、难度适中的案例,随剖析随呈现概念(原理)的教学方式称为概念(原理)中案例教学。经济数学中的弹性概念适合概念(原理)中案例教学。
3.概念(原理)后案例。在呈现概念(原理)后,再抛出相对较难的案例,以演绎的形式再现或者应用概念(原理),以加深学习者对概念(原理)的理解、内化、迁移能力的教学方式称为概念(原理)后案例教学。概念(原理)后案例涉及的知识面比较广,难度较大,可以分为课上、课下两部分实施。课上以教师为主导,课下以作业的形式,促使有兴趣的学生翻阅资料钻研探索,锻炼其分析综合、解决问题的能力。概念(原理)后案例教学具有普适性。
4.前后呼应式案例。在进入教学主题之前,先抛出案例题干激发学生的学习兴趣,而后呈现概念(原理),最后剖析案例,应用概念(原理)解决案例的教学方式称为前后呼应式案例教学。前后呼应式案例教学适合于复杂概念(原理),如微分方程理论、差分方程理论、级数理论等。
二、分段函数的案例教学
例1:快递收费问题。圆通快递哈尔滨发深圳收费规定如下:首重1公斤,收费13元,续重每公斤10元。试建立快递收费y(元)与货物重量x(公斤)之间的函数关系。解:y=13,0<x≤113+10(x-1),x>—1例2:邮资问题。国内普通信函重量在100克及以内的,每重20克(不足20克,按20克计)本埠收费0.80元,外埠收费1.20元;100克以上部分,每增加100克(不足100克,按100克计)本埠加收1.20元,外埠加收2.00元。试分别建立本外埠邮资与信函重量之间的函数关系。
三、总结
所谓数学思想方法是对数学知识的本质认识,是从某些具体的数学内容和对数学的认识过程中提炼上升的数学观点,他在认识活动中被反复运用,带有普遍的指导意义,是建立数学和用数学解决问题的指导思想;是在数学教学中提出问题、解决问题过程中,所采用的各种方式、手段、途径等。掌握数学思想方法,就是掌握数学的精髓,因此要使学生领悟、掌握和熟练地使用数学思想方法,不是机械的传授。下面我就在一次函数教学中用到哪些数学思想方法谈谈个人的一些做法:
一、数形结合思想方法
“数无形,少直观,形无数,难入微”。“数形结合”是数学中最重要的,也是最基本的思想方法之一,是解决许多数学问题的有效思想。利用“数形结合”可使所要研究的问题化难为易,化繁为简,使抽象变得直观。如:一次函数y=-x+5图象不经过哪一象限?解法一:根据图象性质,k<0,b>0过一二四,即不过三象限。解法二:若忘了一次函数图象性质,可做出此函数的图象,问题就迎刃而解了。这就是利用了数形结合思想方法。
三、分类思想方法
当一个问题因为某种量的情况不同而有可能引起问题的结果不同时,需要对这个量的各种情况进行分类讨论,例如一次函数y=kx+b的图象经过哪几个象限,这时就要分四类讨论:
(1)当k>0,b>0时,图象经过一二三象限;
(2)当k>0,b<0时,图象经过一三四象限;
(3)当k<0,b>0时,图象经过一二四象限;
(4)当k<0,b<0时,图象经过二三四象限。
三、整体思想方法
整体思想是从问题的整体性质出发,突出对问题的整体结构的分析和改造,发现问题的整体结构特征,善于用“集成”的眼光,把某些式子或图形看成一个整体,把握它们之间的关联,进行有目的的、有意识的整体处理。整体思想方法在代数式的化简与求值、解方程(组)、几何解证等方面都有广泛的应用,整体代入、叠加叠乘处理、整体运算、整体设元、整体处理等都是整体思想方法在解数学问题中的具体运用。例如:已知y+b与x+a(a,b是常数)成正比例,(1)试说明y是x的一次函数:(2)如是x=3时,y=5,x=2时,y=2,求y与x的函数关系式。解决这个问题(1)时,我们就要把y+b与x+a都看成一个整体,设y+b=k(x+a)得出y=kx+ak-b,从而说明y是x的一次函数,解决问题(2)时,当我们把握两组数值代入解析式y=kx+ak-b中后得到一个三元二次方程组,显然不能求出每个未知数的值,但我们可以把ak-b看作一个整体,就可以求出k=3,ak-b=4,从而求出y与x的函数的关系式是y=3x-4,在这个问题中两次运用到整体思想方法。
四、模型思想方法
当一个问题可能与某个方程建立关联时,可以构造方程并对方程的性质进行研究以解决这个问题。如若想找出一次函数y=kx+b与x轴、y轴交点,可根据点在坐标轴上的特征,x轴上的点纵坐标为0,即当y=0时,x=-b/k,即与x轴交点为(-b/k,0)。y轴上的点横坐标为0,即当x=0时,y=b,因此与y轴交点为(0,b)。这就用到了方程这一模型思想方法。
五、类比思想方法
当我们要探究一次函数y=kx+b的图象及其变化规律时,由于一次函数y=kx+b的图象可以看作是由正比例函数y=kx的图象平移|b|个单位长度而得到的,因而可以利用之前已经学习正比例函数y=kx的图象及其变化规律类比得出一次函数y=kx+b的图象及其变化规律。
六、特殊与一般思想方法
函数插值理论在数值分析中是非常重要的一个知识点,也是离散函数逼近的重要方法。其原理是利用插值法,可在离散数据的基础上得到一条连续函数通过全部已知数据点,进而可以估算出其他节点处的近似值。插值方法主要有拉格朗日插值、牛顿插值、分段线性插值、样条插值等,其理论烦琐,但是又非常重要,它是数值积分理论的重要理论基础。插值方法很多,如何在理论和实验教学中让学生掌握各个方法的原理,以及每个插值方法使用的注意事项,是摆在教师面前的难题。课堂注重理论,实验注重做法,在实验教学中,笔者认为应该在加强课堂理论学习的基础上,实验要注重如何让学生巩固课堂学习的成果,把插值的原理和特点通过设计的算例让学生自己描绘出来。学生通过实验全面认识各个插值理论的优缺点,为以后数值积分的学习打下基础。为此,在插值实验这一节,我们为学生设计了一个比较实验,通过每一对有特点的算例的比较,让学生在比较中获得各个插值方法的使用注意事项和具体的操作方法,知道什么可以做什么不能做,并且获得对插值的全新认识。实验的首要任务是编程,利用MATLAB数学软件结合课堂学到的理论公式编写拉格朗日插值和牛顿插值的程序。尽管MATLAB有内置的命令实现拉格朗日插值,但是学生无法通过内置命令掌握拉格朗日插值理论公式,并且由于通过MATLAB编程实现拉格朗日插值和牛顿插值比较容易,所以还是要求学生通过理论公式独立编程,以加深对理论公式的记忆和理解。在编程的基础上,要求学生利用编写的程序完成以下对比实验。
1.从函数y=sin(x),x∈(-2π,2π)中等距离取5个点,要求学生分别利用拉格朗日插值和牛顿插值进行求插值函数的操作
观察利用两个插值原理求出来的插值函数有何异同。2.从多项式y=x4+x3+x2+x+1中等距离取5个点,要求学生利用拉格朗日插值方法进行插值操作,观察获得的插值函数和原函数有何异同。3.提示学生对函数y=sin(x),x∈(-2π,2π)的5点拉格朗日插值效果不好,若要提高插值效果,将节点个数增加到11个,将插值效果进行比较。4.在上例的基础上,让学生通过画图比较函数f(x)=11+25x2,x∈(-1,1)的5点拉格朗日插值和11点拉格朗日插值效果。提示学生可以进一步增加节点个数,观察得出的图形。5.利用分段插值的方法,对函数(fx)=11+25x2,x∈(-1,1)进行11点插值,与11点拉格朗日插值的插值效果比较。6.保留拉格朗日插值方法,取消等距节点,提示学生利用[-1,1]上的切比雪夫多项式的零点(切比雪夫点)xk=cos(2k-1)π2(n+1)--,k=1,2,…,n+1对以上两个函数进行拉格朗日插值,与等距节点的插值效果进行比较。我们希望学生做完以上案例后不但能顺利完成结果的获得,而且还能利用课堂学到的理论知识分析得到的结果,这些结果都是课堂上讲解的理论知识的数值例子,能做出来,会分析,这是对学生的锻炼,也能提高学生的动手能力和学习积极性。以下我们对以上案例进行分析。1.通过案例1,学生得到结果后能了解到,在相同的节点条件下,利用拉格朗日插值和牛顿插值得到的插值多项式是一样的,这与课堂的理论分析完全一致。这个结果是学生自己完成实验后得到的,与课堂理论分析结合,学生更能理解两种插值的相同之处。而通过编写两个插值方法的MATLAB程序,学生既可以学习编程,还可以掌握两者达到同一目的的不同之处。
2.通过上例可得出拉格朗日插值和牛顿插值结果
一样的结论,所以对四次多项式y=x4+x3+x2+x+1进行5点插值只需利用拉格朗日插值即可。学生可通过得到的结果和图形知道,其实得到的插值多项式就是原来的四次多项式本身,原函数和插值多项式两者的误差为零。这个结论可以提示学生通过拉格朗日插值理论的误差公式解释和分析,从而复习和掌握拉格朗日插值误差公式。
3.通过案例1得到的插值多项式的图形对比原函数图形
一般来说函数的5点插值的逼近效果还是不理想的,误差比较大。若要提高逼近效果,首先让学生通过实验观察提高节点个数对插值的逼近效果的影响。所以设计了一个对比实验让学生对两个函数进行高次插值。通过实验结果的观察可知,对于函数y=sin(x),x∈(-2π,2π),11点的插值逼近效果在整个区间上都比5点插值效果好,几乎和原函数重合了提高插值次数达到了良好的效果。而对于龙格函数f(x)=11+25x2,x∈(-1,1),高次插值出现了龙格现象,即区间中间部分逼近效果非常好,而区间两边出现非常大的震荡。通过这两个案例的比较分析,让学生自己总结出光靠增加节点个数提高插值的逼近效果不可行,需要另找办法。龙格现象是插值理论的重要知识点,在课堂教学中学生对该现象只停留在理论上,通过该实验案例的分析,学生在自己做出龙格现象图形的时候,能加深对龙格现象和拉格朗日插值的缺点的理解。而对于学生普遍会存在疑问,龙格现象只是龙格函数的特有现象吗?y=sin(x),x∈(-2π,2π)不会出现龙格现象吗?可提示学生继续对没有出现龙格现象的函数增加插值节点,观察龙格现象是否是所有函数的共有特点,并且这可以留作实验作业让学生课后自己完成。
4.此案例提供一个提高逼近效果的方法,就是分段插值
利用分段插值,可以在增加节点个数的情况下,保持插值次数不增加,从而保证的插值效果。学生通过此案例可以理解为什么介绍完整体插值后还需要讲解分段插值,老师在以后介绍数值积分中的复化积分公式的时候,进行比较讲解。5.通过切比雪夫点的插值案例,提示学生分段插值不是提高逼近效果的唯一方法,通过改变节点的选取,把原来的等距节点变为区间上正交多项式的零点,可以在增加节点个数,让拉格朗日插值的逼近效果也相应提高而不会出现龙格现象。这个案例可以和以后数值积分中的高斯求积公式配合,让学生了解正交多项式的零点在函数逼近方面的重要应用。并且在介绍完[-1,1]上的切比雪夫点插值后,可以预留作业,让学生在其他区间上寻找正交多项式零点进行拉格朗日插值,让学生对正交多项式理论加深印象,为以后数值积分的高斯求积公式的介绍铺垫。
二、结束语