美章网 精品范文 城市轨道交通安全分析范文

城市轨道交通安全分析范文

前言:我们精心挑选了数篇优质城市轨道交通安全分析文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。

城市轨道交通安全分析

第1篇

关键词:城市轨道交通;安全风险;分析;评价

引 言:随着轨道交通项目的快速发展,在其建设和运营过程中的风险和安全问题日益突出。由于轨道交通项目具有投资大、建设周期长、技术复杂、影响范围广的特点,所以简单的风险分析和规避已不能满足其发展需求,必须要树立风险管理的理念。

1 风险管理概述

关于风险管理的内在含义,有着很多不一样的观点。但是风险管理和所有控制系统有一个共性,那就是涵盖了三个必备的要素:其一为管理目标;其二是资讯搜集及解释;其三是相对应的解决措施。有学者研究表明:风险管理目标对风险而言,风险是存在客观因素与主观因素的。从客观上的分析,管理的目标是尽可能地将风险降至最低,并且风险能够以数理统计为基础,进而加以测度[2]。此种思维模式极易被采纳。从主观上分析,管理的目标讲究与风险同生共存,并将风险当作是人们在某种特定的文化社会背景下进而加以构成的。在不同的人及不同的背景下,风险也是有所不同的。虽然此种观点看起来较为抽象,但是从目前关于风险管理的框架体系来看,对于风险管理当中的风险识别、风险分析、风险评估及风险应对而言,无论是客观上的因素,还是主观上的因素,都是必然存在的。并且,想要使风险管理能够日益完善,就并且充分融合这两方面的观点,以此使风险管理的应用更加规范、更加科学。

城市轨道交通项目的风险分析与评价虽然逐渐被重视,但是还为形成一套成熟的理论,目前的评价分析方法大多是借鉴铁路工程经济评价或者建设项目经济评价的方法,这两者的侧重点有所不同,但是均与城市轨道交通实际不符,另外针对项目安全的评价研究也较少。本文是针对影响项目安全的风险进行分析评价,并对典型风险给予相应的评价方法。

2 预先危险性分析

预先危险性分析是在进行某项工程活动(包括设计、施工、生产、维修等)之前,对系统存在的各种危险因素(类别、分布)、出现条件和事故可能造成的后果进行宏观、概略分析的系统安全分析方法。其目的是早期发现系统的潜在危险因素,确定系统的危险等级,提出相应的防范措施,防止这些危险因素发展成为事故,避免考虑不周所造成的损失,属定性评价。即:讨论、分析、确定系统存在的危险、有害因素,及其触发条件、现象、形成事故的原因事件、事故类型、事故后果和危险等级,有针对性地提出应采取的安全防范措施。

2.1预先危险性分析法的功能主要有:

(1)大体识别与系统有关的主要危险;

(2)鉴别产生危险的原因;

(3)估计事故出现对系统产生的影响;

(4)对已经识别的危险进行分级,并提出消除或控制危险性的措施。

2.2预先危险性分析步骤

(1)对分析系统的生产目的、工艺过程以及操作条件和周围环境进行充分的调查了解;

(2)收集以往的经验和同类生产中发生过的事故情况,判断所要分析对象中是否也会出现类似情况,查找能够造成系统故障、物质损失和人员伤害的危险性;

(3)根据经验、技术诊断等方法确定危险源;

(4)识别危险转化条件,研究危险因素转变成事故的触发条件;

(5)进行危险性分级,确定危险程度,找出应重点控制的危险源;

(6)制定危险防范措施。

3 城市轨道交通风险的分析评价与对策

3.1大客流输运模拟评价

本评价主要针对典型地铁突发大客流情况下的进出站控制、售检票、疏散通道、行车组织等措施进行模拟研究分析和验证。

评价采用模拟仿真的方法,利用基于个体的人员动力学模型,建立地铁车站疏运模型,设定客流量时间曲线、进出站通道、闸机、售检票模式、限流方案等,对最大极端客流和实际客流进行数值模拟分析。

现阶段国内外针对大客流输运公认的模拟软件为人员动力学模型Legion进行模拟仿真研究。Legion模型为人员疏散的矢量模型,最大的特点就是基于个体行为(agent-based)和矢量连续空间(Vector)解析,能够兼顾人员个体行为描述、人员规模和空间区域三个方面,可适用于大规模大区域的人群模拟仿真。模型以每个行人个体为单位,行人的每一步在行走平面路线和方向上都通过计算机算法计算,即每个行人个体有决定自身行动的决策权,在决策时考虑周围环境(建筑及障碍物等)和与其他行人相互作用和影响,进行信息交流,做出相应的决策。该模型主要用于研究人群疏散行为、疏散时间、疏散策略与技术等。

3.2人员疏散模拟分析评价

城市轨道交通应对突发事件的能力一般采用人员疏散速度来衡量,可以通过人员疏散模拟来进行评价。评价方法为BuildingExodus模型,即模拟人员疏散的精细网格模型。该模型针对大型空间及大量人群逃生设计,适用于模拟大型超级市场、医院、电影院、车站、机场航站楼、危险建筑物、学校等场所。可输入各种人员行为特征(如逃生人员生理、心理、行为属性),及火灾危险特性(如浓烟、温度、毒气危害属性)等逃生影响参数进行模拟,以展现更符合实际情况的较佳化人员逃生模拟结果。Exodus输入紧急情况下有关人类行为的各种信息,资料来源包括火灾的影像记录、已公布的调查报告和与受伤害者的交谈资料等。在建筑空间充分利用前提下,以拥挤人群、内部存在座椅等障碍物与设有警报设备等状况下进行疏散模拟。

3.3火灾风险分析方法

对火灾风险采用FDS(Fire Dynamics Simulator 火灾动力学模拟)评价方法。FDS一种火灾驱动流体流动的计算流体动力学软件,其原理是火灾的场模拟计算,场模拟是利用计算机求解火灾过程中状态参数的空间及其随时间变化的模拟方式,场是指状态参数如速度、温度、各组分的浓度等的空间分布。场模拟的理论依据是自然界普遍成立的质量守恒、动量守恒、能量守恒以及化学反应的定律等。火灾过程中状态参数的变化也遵循着这些规律,因而可以用场模拟方法求解火灾过程。FDS通过大涡模型对连续方程、动量、能量方程以及压力收敛方程进行求解,可得到温度、压力、气体成分、可见度等参数的空间分布。

火灾风险分析采用大涡场模拟模拟软件FDS version 3进行数值模拟,对车站隧道火灾情况进行模拟,其分析评价内容为:

(1)针对典型站台和通道结构,研究火灾的发生和发展,获得站台的通道内不同局部位置的温度和烟浓度分布等;

(2)研究不同传热状况(辐射、对流、导热等)下典型站台和通道内的热效应和作用区域;

(3)火灾条件下烟气的动态扩散和传递特征,获得烟气在站台和通道内的分布规律和对人员的影响;

(4)火灾、烟气条件下典型站台和通道内的人员疏散模拟;

(5)基于对典型站台和通道内火灾和烟气的发生、发展、扩散和传递的规律的研究,获得防范安全事故、人员疏散和救援的操作预案。

4 结语

总之,由于城市轨道交通建设与运营系统的复杂性,必然带来生产建设和运营风险的多变性。因此,我们应不断深入研究风险管理方法和标准,总结安全风险管理与评价经验,持续提高安全风险管理水平,为建设和运营提供良好的安全环境。

参考文献:

[1]邓云峰. 城市轨道交通危险因素分析[J].中国安全生产科学技术, 2005(3).

第2篇

关键词:城市轨道交通;信息安全;六西格玛理论;衡量因素

引言

现代城市建设的发展,以及私家车的普及和城市扩大化的发展,人们上班的地方和居住的地方距离并不是很近,因此在出行方面,就会采用多种方式。而由于城市轨道自身的优点,使之成为城市主流的出行工具。避免了开私家车在路面上遇到的拥堵现象。2015年,我国有28个城市建成了近百条地铁线路,线路里程4000多公里,城市轨道[1]也明显增多。随着网络系统及工业设备遭受ATP攻击、后门利用、网络监听和Dos攻击的日趋激烈,城市轨道网络信息系统遭受着严重的考验,轨道运营的安全实用性受到社会的广泛关注。在欧美等国家现在都将城市轨道交通公共安全作为国家关键基础设施,高度重视其安全和应急响应工作。在我国城市轨道网络通信系统中的信息安全保护方面,存在系统梳理难、安全定级难、从而导致信息安全隐患问题突出,同时会随着数据流量每天的增长对整个系统构成极大的安全威胁。在大数据处理信息蓬勃发展的今天,城市轨道交通信息可以有效的利用大数据的处理方式,对如何合理确定城市轨道网络系统中信息安全的方法进行有效的研究,对促进交通安全运行,维护公共秩序起到重大作用。

1现状分析

城市轨道交通实现网络化运营后,网络信息安全面临着严峻的考验。为了保证安全运营、有序发展,实现平安运行的目标,必须加强网络安全管理[2]。涉及物理范围广、业务领域多、运行管理流程复杂。从未在信息安全等级界定方面比较复杂。同时,其网络信息系统的边界问题较为庞大。而等级保护级别和保护要素中,要明确到确定的网络节点上具有一定的难度。因此,确定交通轨道网络系统中信息安全的评估方法就成了一项重要工作。

1.1城市轨道交通网络系统分析

城市轨道交通信息网络系统建设规划主要是针对目前新建的道路交通工程的网络信息系统升级改造提供指导,旨在实现数据集中和安全保障[3]。网络安全是信息网络安全运行的基本保障,需要借助一整套安全防护设备对现有网络信息系统进行安全防护。首先,在安全防护设备上,可在互联网与内网之间设置防火墙、IPS插卡及ACC插卡等安全隔离装置,用以隔离来自互联网的不法攻击。安全隔离装装置投运后,应指派专人定期观测用户的使用情况。在网络交换机中安装防火墙,运用虚拟防火墙技术在交换机与内网之间建起一道安全防护屏障,能够大大提高内网信息的安全性。最终,在PC终端上设置安全准入系统,对接入信息进行安全认证和动态监测,实现隐患隔离,从而大大提网络信息安全。

1.2网络化运营特点

车站是最基本的网络运营单元,也是本文的重点研究对象。整个乘客出行完成活动的起始点,也是工作人员进行各项工作的场所。在城市轨道交通网络中,车站、线路、车辆段、控制中心之间相辅相成,共同组成了一套完善的交通网络运行系统。因此,他们之间的相互关系、相互作用以及所呈现出的内在规律,都会形成表征网络特性的度量[4]。由此,轨道网络运营系统的特点就显而易见了:①网络的成长扩大性,使客运量大幅增大。近年来,城市轨道交通规模逐步扩展,人们在出行方面越来越关注轨道交通的便捷性、时效性和连通性。地铁作为城市轨道交通系统中最主要的出行方式,随着基础设施和轨道运营设备的不断完善,近年来对客流的吸引力不断增大,线路负荷强度不断增大。②规模越来越大,使管理的复杂度持续上升。随着国内各大一,二线城市轨道交通的不断投入运营,覆盖范围和建设规模都在不断拓展,运用管理尤其是安全管理方面的工作压力越来越大。以北京为例,北京地铁全网在役车辆共8000余辆,设车辆基站22处,变电站30座,员工人数超过3万多,网络运营规模就覆盖了整座北京城,管理难度相当大。③网络交叉关联,错综复杂,协调和组织难度加速呈现。网络化运营规模的持续扩张[5]使得站点之间、线路之间以及系统之间联系更加紧密,一旦其中某一站点运营异常,就会迅速波及整个网络运营系统,并对其产生严重的安全威胁,若不及时处理,就有可能引发严重后果。在轨道交通网络运营系统中,换乘站作为线路中的连接点,如果运行异常,必然对相邻线路客流情况以及网络运营造成严重的安全威胁。④网络依赖的程度越高,使得安全保障要求空前提高。根据交通客流研究报告显示,以北京为例,轨道交通的客流量占全市公交客运量在2016年可能会超过50%,将对提升城市交通网络运营效率起到至关重要的作用。相比于单线路运营模式来讲,安全稳定是网络化运营首先要考虑的因素,因为其影响程度往往是全局性的。网络化运营的安全性和可靠性,主要体现在城市轨道交通系统是否能快速应对急剧增加的客流量以及各类突发性运营事件。为此,北京,上海等城市轨道交通管理部门,提出了建立一个信息安全评估方法,根据运营数据提前解决不安全事故的发生。1.3国内事故分析根据对国内收集的1200起故障/事故,按照北京地铁运营公司的事故指标,将运营延误5分钟以上事件定位运营事故,则国内共计发生运营事故459起,具体可划分为9大类,53小类。从大类来看,发生事故次数排在前三的依次为通信系统、车体系统和制动系统,三者合计达到总运营事故数的71%。从小类上看,排在前五位的具体事故类型主要有信号故障、乘客跳下站台、道岔故障、列车故障等,占总数的48.8%。

2基于六西格玛理论的信息安全评估方法

六西格玛管理理论[6]是一种以顾客需求为导向,以事实和数据为基础,遵循DMAIC方法准则,运用统计技术、实验设计和管理方法进行平复,实现信息质量持续改进,达到以降低缺失率为目的的综合优化管理方法。对交通网络中的信息提出了六西格玛设计改进流程,重新对数据进行定义、测量、分析、改进和控制。构建衡量指标:首先建立静态衡量因子空间,其中由Im(因素信息),Sm(故障后果危害度),Dm(因素故障难检度),Pm(故障严重度)等四项衡量因子组成,来分析整体网络的安全等级。其中k为因素评估的公职幅度参数,风险管理者可以根据各个不同的安全因素设定不同k,来表达因素监控的目的[7]。然后根据每个因素指标的上下限值分别组合起来就可对该系统中的因素梯度指标进行衡量。并根据上下限值绘制坐标图,图中的每个空间点代表单个因素对安全影响指标的大小,离原点或最小衡量点越远,表示该因素安全指数越大,图1中G点(标准化后)表示最不安全状态的最大点,简言之,就是说离G越近,该因素对安全情况起的作用就越关键。

3仿真验证

根据北京上海两地地铁运营公式2009-2012年的车辆运营故障统计,得出车辆在运营过程中的故障比例如表1所示。从表1可以看出,地铁各系统故障中,通信系统的故障率最高占43%,最低的是牵引系统占9%,其次是车体系统占25%,以及制动系统和辅助电源系统。地铁系统复杂,并位于城市的地下,各个系统相互关联,故障比较多,风险因素也分厂多。本文通过事故统计分析,根据系统故障率,结合安全评估的需要,利用六西格玛理论的信息安全评估方法对选取的地铁系统进行安全评价。如表2所示。根据六西格玛随机赋权法公式(1)、(2)的计算上下限门槛值的范围,产生随机数为0.60,归一化得到的权重向量[Dm,Sm,Im]=[0.218,0.287,0.337]。根据故障率和因素属性的累计率和权重可知,在此次测试的地铁车辆安全水平的下、上限制分别为XLmi=0.322,XUmi=0.371。说明在检查过程中,该车辆的安全评估为安全状态。只需在平时安全检查时注意牵引系统对重要度的影响即可。根据权重向量和安全水平的限制,可以了解各系统故障所处的安全风险水平,同时根据其所处的安全风险水平采取相应的措施,可以实现事前预控,保证地铁运营安全。

4结论

本文通过对城市轨道系统,网络化运营的分析研究,提出了基于六西格玛理论的单因素多属性安全评估方法,并通过该方法计算实现了不同系统对车辆安全风险故障率评估。该方法以六西格玛理论、坐标组合、随机赋权法等理论与方法为基础,结合动态和静态因素衡量因子,实现系统安全评估,以此可以为车辆进行事前故障定位、检修,并以此为车辆运行提供有效的安全控制监测提供参考和指导。

参考文献:

[1]中国城市轨道交通年度报告课题组.中国城市轨道交通年度报告2011[R].北京:北京交通大学出版社,2011.

[2]曾笑雨,刘苏,张奇.基于事故统计分析的城市轨道交通运营安全和可靠性研究[J].安全与环境工程,2012,19(1):90-94.

[3]苏旭明,王艳辉,祝凌曦.改进的故障模式及影响分析在城市轨道交通运营安全评价中的应用[J].2011,5:65-69.

[4]贾水库,温晓虎,林大建,蒋仲安.基于层次分析法地铁运营系统安全评价技术的研究[J].中国安全科学学报,2008,18(5):137-141.

[5]何大韧,刘宗华,汪秉宏.复杂系统与复杂网络[M].北京:高等教育出版社,2009.

[6]李文超.六西格玛管理的理论基础和创新[J].湖北工业大学学报,2007年,22(6):40-43.

第3篇

【关键词】城市轨道;交通;电气系统;安全研究

近年来人们的出行率相对于过去提高了好多,而各城市特别是各省省会的交通状况却令人望而生畏,尤其是天气状况不好的时候更是拥堵的水泄不通。此时城市轨道交通应运而生,并且凭借较高的行驶速度及庞大的载客量而受到广大市民的认可。城市的轨道交通不仅能够代表该城市具有过硬的科技实力,而且对于城市环境的美化及整体布局的优化都具有辅助作用。因此要加强城市轨道交通整个系统的安全性以保障广大市民的经济利益,而其中核心工作就是保障各类电气系统安全运行。

1 安全研究概述

城市轨道交通作为人们出行的公共客运新种类,车辆系统中涉及了种类繁多的电气设施,而每一项电气设备都有可能给交通增加很多安全隐患。不论实在轨道交通最初的设计阶段,还是有专门施工人员进行建造阶段,亦或是工程竣工之后的运行阶段,因为结构复杂的原因都有可能引起事故的发生。现如今各类交通事故层出不穷而且原因多种多样,城市轨道是一种专业性较强的客运种类,其中电气设备设置也比较复杂,载客量也相当大,因此对于整个轨道交通系统的安全研究不能从单一角度考虑。必须充分考虑系统的时效性等特点,从多角度出发,不论是从理论技术支持上还是从政策法规管理上都应该不断加强,以此来不断完善城市轨道交通安全管理系统。

2 关乎城市轨道交通安全的电气系统

城市轨道交通的组成设备比较复杂,但是电气系统是其核心组件,并且按照功能的不同可以分为以下四部分:

第一,用以控制车辆牵引及制动的系统,它是城市轨道交通中不可或缺的部分,也是车辆能够正常运行的基本前提,更是车辆核心技术。通常情况下这种复合系统可以分为多个种类,例如利用设备各组件之间的摩擦进行制动、或者是利用组件与空气之间的摩擦力进行制动及专门制动系统等。在轨道交通正常行驶过程中车辆的牵引力能够直接影响其运行效果,比如牵引力过弱时车辆的运输能力就会下降,牵引力过大时又不利于系统控制,在距离相对较短的两站点之间会由于牵引力过大而引发意外事故。

第二,用以辅助车辆供电的系统。轨道交通设备相当复杂,而车辆能够正常运行的前提就是具有充足的电量。供电系统不仅要给车辆各项设备进行电量提供,同时还要给车辆内部一些需求电量的设备进行供电,例如照明灯、空调及牵引装置等所需的电量。而该供电系统主要根据设备所需电流类型的不同进行分别供电,例如在给充电机及蓄电池进行供电时主要输出直流电,再给电热器等设备进行供电时要输出三相交流电。由此可知车辆辅助供电系统也是必不可少的。

第三,用以控制车辆车门的系统。该系统所控制的就是为乘客上车和下车设置的各车门,由于车辆在城市中行驶时,特别是在站点密集度比较大的地方停车较为频繁,乘客上下车流量也比较大,因此为保障该过程的安全性车门的控制主要是由专业的控制电路、机构及控制开关等控制。

第四,用以负责车辆牵引的传动系统。轨道交通之所以能够安全快速的运营与牵引传动系统有着密切的联系,这种系统要想满足车辆的各种需求就必须具有较高的稳定性及安全可靠性。城市交通结构相对复杂,客流量较大的地方站点之间的距离相对较短,因此车辆从发动到停车之间的时间也较短,但是车辆的运行模式却是固定编好的,因此传动系统要想满足这些复杂情况的需求就必须具有较强的断续工作能力。

3 电气系统相关安全研究

为了保证使用轨道交通出行人的生命安全,车辆上安装的复杂电气装置必须与整个系统的电磁等具有良好的兼容能力,要做到这一点就必须将电气装置与地面进行连接。因为大地具有良好的导电性,在这个过程中地面可以作为等电位面或点进行使用,也可以为车辆运行的电路提供点位参考面或点,以供车辆释放运行时所产生的静电。只有将系统运行时产生的电流进行很好地释放,车辆才能够安全运行,二者要求电气设备的设置具有较高的科学性,一般情况下电路的安全设置可以分为以下三种形式:

第一,工作接地,主要有车辆高压回流接地及车辆低压接地。首先高压回流接地是为了保障车辆运行电路的畅通而将接触网处的电流进行合理引入运行轨道,该过程要求电路的设计要具有严谨性,并且电缆的电阻要尽量小以保障电流能够完全回归到电源,而不会给车辆造成触电隐患。铁路车辆相关安全要求中也明确表明为了电流不产生泄露或者某一电路的损坏,一定要保证有两条及以上接通的电路。其次是低压接地,它主要为系统中的低压电路设置一个电位基准,以保障系统中散杂信号能够正常回流通道。低压工作接地在最初设计时要尽可能的将会产生干扰的电路进行分开,同高压回流电路设计一样要尽量采用阻抗较低的电缆进行接地。

第二,安全接地。该项工作主要是为了保障乘客及设备的安全而做,经分析直流电在接近0.1安并接触人体时会感觉到四肢发热,与电流直接接触的皮肤也会感觉到疼痛。随着电流的加大会对人体造成更大的伤害,甚至会出现休克或死亡现象。人体自身对电流的阻抗能力会因个人身体素质的不同而略有差异,并且会随着电压及施压面积的增大而逐渐减少,因此为了放置交通车辆内人员不被通电设备所伤害,一定要将易于接触的设备进行安全放置,例如装在防电箱里或者外加其它防电措施。而车内其它金属材质的物体都要与接地线相连接,这样将车辆、轨道及车内箱体连接成同一点位,而轨道又与大地相连接,即使某设备在车辆运行中漏电也会在人体可接受范围内,而不会对人产生更大的威胁。

第三,屏蔽接地。对信号频率较高电缆接地的接地线选取时,要采用表面积较大的编制类型,因为这样电流通过时会有很明显的肌肤效应。对电场进行屏蔽时要选用尽可能密的电缆,此外对磁场的设计也要充分考虑接地保护。对于不同电路为了防止意外事故的发生都要根据具体情况而设置相应的屏蔽。

除了以上安全措施,城市内相关部门还要对从事轨道交通行业的工作人员进行培训以增强安全意识,对广大市民也要严格要求不能随便触碰车辆内设施,都要为交通出行安全做出力所能及的事。

4 结束语

轨道交通相关技术伴随着国内科技实力的上升而不断进步,电气系统作为轨道交通的核心组成对于交通的安全运行有着重大影响。为保障交通乘客的人身安全,必须加大对电气系统的安全研究。在实际应用中也要将电气设备进行更科学、更智能的安置方式以扩大其应用范围,以此来不断满足轨道交通的安全需要。

参考文献:

[1]徐浩,王建.探究城市轨道交通电气系统安全[J].城市建设理论研究,2014(12).

第4篇

关键词:城市轨道交通;安全管理;现状;对策

引 言:在城市公共客运交通系统中,城市轨道交通是其重要的组成部分。虽然轨道交通系统具有独立性、封闭性的特征,并且与其他公共交通工具相比较更加安全可靠,但是由于轨道交通运输量大、设施设备科技含量高。这样如果发生安全事故就会造成很严重的后果,因此,一定要注意城市轨道交通的安全管理。

1 城市轨道交通安全管理的意义

1.1 城市轨道交通安全管理符合交通运输业可持续发展的要求。过去,由于行车人员工作失职、设备故障、乘客安全意识不强等造成严重的城市轨道交通事故。因此,必须从长远利益出发,实施安全管理条例,加强乘客安全知识教育、增强责任意识等,以保障我国城市轨道交通运输业的可持续发展。

1.2 城市轨道交通安全管理是提高效益的有效途径。一是无污染、噪声小,符合社会环保要求;二是安全性好、便捷,符合出行者的需求。

1.3 城市轨道交通安全管理有益于新技术在交通运输业生产中的应用。把质量标准化、管理精细化、安全信息化、装备机械化作为保障安全、发展生产、强化管理的重要举措,实现了以安全为轴心、以生产为中心、以管理为重心、以效益为核心的经营方略,促进了安全生产、经济效益和企业管理的同步提高。

1.4 城市轨道交通安全管理直接关系乘客安全。它满足乘客的出行需求,又是城市拥有良好交通秩序的前提和保障。

2 城市轨道交通安全管理现状

从目前我国城市轨道交通安全管理的整体情况来看,我国的城市轨道交通安全管理工作还存在着以下问题:

2.1 安全监督工作不到位

防患于未然对于城市轨道交通安全管理工作是一个很好的代名词,然而,在我国的城市轨道交通安全管理工作当中,恰恰缺少了防患于未然的预防工作,安全监督工作不到位。在我国的诸多城市中,其已经建立了轨道交通,以带动城市交通的发展,但是,其在交通发展的过程中没有按照轨道交通的发展模式进行预防和监督,没有使许多危险因素消灭在萌芽的状态,给城市居民的生活带来了诸多的不便,甚至是威胁到了城市的居民的安全。

2.2 责任机制不完善

对于城市轨道交通安全管理工作来说,城市轨道交通安全管理工作中的责任机制不完善,尤其是在责任监管工作中,许多城市轨道交通安全管理负责人只注重自身的责任,或者是只注重相关领导者的责任,其却忽视了相关工作人员的责任落实,没有将责任机制落实到每一个工作人员身上,导致责任机制的不健全,甚至影响我国城市轨道交通安全管理的进一步完善。可以说,在城市轨道交通安全管理工作中责任机制落实不明确,责任机制不健全,将不利于我国城市轨道交通安全管理的进一步发展和完善,有碍于城市轨道交通安全管理的全面化管理。

2.3 技术支持不足

技术支持不足在我国的城市轨道交通安全管理工作中是一个重要的影响因素,因为技术支持不到位导致了我国城市轨道交通安全管理工作难以进行。在我国的发展过程中,城市安全监督需要在工程建设和运营的时候有一定的技术支持,从目前我国城市轨道交通坚实的过程中,其虽然已经具备了一定的技术,但是,与世界上其他的国家的城市轨道交通建设来看,还是存在着一定的技术差异,无论是在交工建设之前的勘察工作,还是在工程的设计工作,乃至是施工及其运营的过程中,都存在着一定的问题,这些问题影响着我国的城市轨道交通安全管理工作。

3 城市轨道交通安全管理的具体对策

在我国的城市轨道交通安全管理过程中,其还存在这一些问题,因此需要根据我国目前城市轨道交通安全管理存在的问题进行具体的落实,有针对性的提升我国安全监管的力度,使城市轨道交通安全管理工作得到更好的体现。

3.1 强化安全监管

在城市轨道交通安全管理的过程中,安全监管工作是十分必要,其需要在不同的侧面进行监督和管理,使安全问题成为人人关注、人人重视的问题,避免不安全隐患的发生。第一,要强化事前的预警和管理,即在城市轨道交通正常运行的时候要将可能发生的风险进行详尽的规划和预案,使预案工作尽可能的完善,这样就能将许多危险因素消灭在萌芽的状态。事前的安全预防和监管是促进监管工作进一步完善的基础环节。第二,强化事中监管。强化事中监管是对城市轨道交通运行过程中的一种监管,纵然有完善的技术支持,完善的安全监督也不能够百分百的避免安全问题的出现,因此,要针对安全问题的发生过程进行监管,当安全问题引发的时候要尽可能的快速安全处理,使安全问题得到最大限度的解决。

3.2 强化责任机制

对于城市轨道交通安全管理工作来说,其是一个综合性的整体,在城市轨道交通安全管理的过程中需要进行全面的管理和监督,这就需要将责任落实到各个地方,强化责任机制是我国城市轨道交通安全管理工作所需要做的第一步。在城市轨道交通安全管理过程中落实责任机制需要体现在众多地方,比如说在线路运营管理中要体现出责任机制,在生产作业中体现安全责任意识,我国需要在城市轨道交通安全管理过程中要进一步强化责任机制,将责任机制落实到实处,展现安全管理的切实性和可行性。

3.3 强化技术支持

强化技术支持是完善城市轨道交通安全管理的又一个方面。首先,技术支持要体现在工程的建筑方面,即在工程建设的过程中要体现技术支持。比如说在工程的设计上、工程的建筑上等都需要强化相应的管理,这样就能使的城市轨道交通能够顺利、安全的进行运营。同时,在监督管理上要强化技术支持,即建立相对完善的技术网络体系,使有关于城市轨道交通安全管理的一切工作都纳入到其中,使之形成一种完善的网络体系,这样就能够在全面的范围内进行监管,使其得到良好的运用和拓展。第三,要强化工作人员的技术掌握和操作能力,使进行城市轨道交通安全管理工作的工作人员能够精准的掌握相关的技术,带动相关工作人员的技术水平得到迅速的提升。

3.4 加大对工作人员培训力度

作为轨道交通的管理者,应建立和完善设备运行状况计量检测体系,确保设备运作的安全度; 制定突发事故应急预案,增强突发性事件的应急处置能力;给职工营造一个良好舒适的工作环境,并结合人体疲劳周期合理安排工作时间;应经常对司乘人员进行安全知识培训和教育,使工作人员掌握危险时保护乘客减少伤害的技能,在发生事故时能及时地组织乘客疏散。

3.5 加强对乘客的安全教育

作为乘客,应该增加有关安全、文明使用轨道交通的知识。例如,在车厢内发生意外的事故时,处于第一现场的乘客应该及时阻止事故的恶化;在事故发生后应听从地铁广播和工作人员指挥,紧张有序地离开事故现场;平时应多注意站厅站台上的各种安全标识。

4 结束语

综上,在我国城市轨道交通安全管理的管理过程中,不仅仅要具备安全管理的理念,还需要进一步完善和强化相应的改革措施,使我国城市轨道交通安全管理能够在相应的技术支持下得到合理的完善,尽可能的展现出科学性和合理性,使城市轨道交通安全管理与城市管理之间结合起来,形成全面的管理理念和管理方案。

参考文献:

[1]袁大军.论城市轨道交通领域的技术创新[J].城市轨道交通研究,2011(5).

第5篇

关键词 城市轨道交通,安全性,初步危害分析

现代城市轨道交通系统在设计建造时采用了许多安全措施来保障安全运营,但由于轨道交通系统的复杂性,在实际运营时涉及安全方面的问题仍然非常多。对这些问题的解决,目前无论是理论研究层面还是具体实践层面,均尚未形成一个完整的体系,处于零散状态[1]。本文采用安全系统工程的方法,对上海地铁运营有限公司管辖的轨道交通系统进行了安全性分析,为开展系统安全管理、事故预防、项目改造的时间与资金计划等提供决策依据。

1 安全性分析与评价方法

系统安全性分析是安全系统工程的核心内容,也是安全性评价的基础[2]。系统安全性分析方法目前提出的有数十种之多。我国应用较多的是事故树分析、事件树分析、故障类型影响分析、因果分析图法、安全检查表法等。系统安全性评价方法目前应用较多的是风险评价、层次评价、模糊评价等,及一些分析方法附带的评价功能。采用这些方法进行系统安全性分析和评价的主要是采矿、化工等行业。

对于城市轨道交通系统的安全性分析,由于缺乏可借鉴的资料和规范的统计数据,并且目的是发现潜在的危险因素,采用初步危害分析对系统进行安全性分析和评价是比较合适的。

初步危害分析通常是系统安全性大纲中所执行的第一种安全性分析方法[3],它包含了危险源的分析和评价。初步危害分析最好是在系统进行技术设计时就开始进行,这样才能减少系统建成后因为存在各种不安全因素或各类事故频发倾向而必须进行改造的费用。但由于国内城市轨道交通系统在设计、建造和运营时,没有编制和执行系统安全性大纲,也没有进行过各种系统的安全性分析与评估,所以对已建成的城市轨道交通系统进行初步危害分析也是必要的和有意义的。

2 初步危害分析

初步危害分析(preliminaryhazardanalysis,简为PHA)也可译为预先危险分析,是一种事前归纳方法,是从各种局部单元的危险状态归纳出最终的潜在事故和事故的严重性。PHA的主要目的是:①确定系统中危险单元、危险状态和潜在事故;②确定潜在事故影响的危害性;③建立初步的安全规范要求,以减少或控制所确定的危险状态和潜在事故[2]。由这种分析得到的数据和信息有以下几个方面的作用:①预测硬件、规程和系统接口问题区域;②为进一步制订安全性大纲提供信息;③确定安全性工作进度的优先顺序;④确定安全性试验的范围;⑤确定进一步安全性分析的范围。

PHA的原理基于事故因果连锁链理论,即认为:事故的发生首先要有危险状态的产生(人的不安全行为或物的不安全状态),并且危险状态的产生有其原因;危险状态并不一定会导致事故发生,须在某个或几个触发事件的作用下转化为事故(见图1)。根据危险状态发生的频率和触发事件发生的概率,可以推算出事故发生的频率,再根据事故后果的严重级别和事故发生的频率推算出各个危险状态(或对应的事故)的危害等级。

3 城市轨道交通系统初步危害分析

第6篇

关键词:城市轨道交通;综合监控系统;安全性可靠性分析;风险评估

Abstract: The integrated monitoring system integrated interconnect multiple subsystems, only the system is normal, coordinated run at the same time, it can achieve the rail transportation safety, reliable and efficient operation purpose. Therefore, analyzes the integrated monitoring system for urban rail transit safety and reliability, it has a positive role in guiding in design and construction of the integrated monitoring system for its outcome will have urban rail.Key words: urban rail traffic; comprehensive monitoring system; reliability analysis of the security; risk assessment

中图分类号:X924.3文献标识码:A文章编号:2095-2104(2012)04-0020-0

1城市轨道交通发展现状

近年来随着国家大力发展汽车工业,轿车已大量进入家庭, 2008年全国私人汽车保有量达3501万辆,其中大多数的汽车都在城市里行驶,如此多的汽车不仅消耗大量燃油,也对空气造成严重污染,更使城市道路交通拥挤状况进一步加剧,市民出行速度严重下降,因此国内已有许多城市引入了城市轨道交通系统。

城市轨道交通特别是地铁是一个复杂的系统工程,它影响着城市未来的各个方面,是城市重要的有机组成部分,同时也能提升城市的综合竞争力。中国第一条地铁线路位于北京,于1969年10月1日建成通车。截至2010年,我国已建成城市轨道交通线路的城市有北京、上海、广州、深圳、天津、武汉、南京、大连等城市。除已建成轨道交通的城市外,国家相继批准了成都、哈尔滨、沈阳、西安、苏州、无锡、宁波、郑州、长沙等城市的轨道交通建设,此外,乌鲁木齐、太原、石家庄等城市已开展前期和报批工作。

我国未来建设轨道交通的城市将越来越多,轨道交通总里程保守估计在2万公里以上,且在今后的30年内,轨道交通建设将始终处于高速发展时期。

2 城市轨道交通综合监控系统

轨道交通综合监控系统由最早的人工和半自动的监管系统发展而来,始终在运营需求的推动下,在技术进步的推动下,经历了半导体到计算机,分离系统到集成系统的重大进步。当今,城市轨道交通综合监控系统正在走向全自动化、全数字化和高智能化,随着2010年的中华人民共和国国家标准GB 50636-2010:《城市轨道交通综合监控系统设计规范》的推出,在建或将建的城市轨道交通工程都采用了综合监控系统技术。

城市轨道交通综合监控系统是一个统一的运行平台、信息共享平台和集中监控系统,能够实现各系统基础数据的统一管理,以及系统之间的数据共享;实现系统之间的业务关联与事件联动,保障乘客的安全和列车运行计划,提高对轨道交通的服务质量和综合运营效率。综合监控系统的总体功能目标:

保证列车安全稳定运行;

实现机电设备良好运转;

完善乘客服务水平;

安全可靠的系统联动;

提高地铁运营效率。

综合监控系统(见图2.1)集成互联了电力监控系统(SCADA)、环境与设备监控系统(BAS)、门禁系统(ACS)、火灾自动报警系统(FAS)、信号系统(SIG)、屏蔽门系统(PSD)、自动售检票系统(AFC)、电扶梯系统(ES)及其他辅助系统。

图2.1

综合监控系统与城市轨道交通运营的关系十分密切,综合监控系统实现了各系统之间的资源共享,能够给实时掌握各个系统的运行情况,但由于综合监控系统与各系统之间的接口多,信息传输量大,随着各个城市城市轨道交通线路的不断增多,其安全性,可靠性日益成为城市轨道交通正常运营的重点。综合监控系统及其集成互联的系统产生的风险体现在:机电设备不能正常工作对运营工作及人员产生危害,造成运营服务质量降低,运行中断,出现事故及各类人员伤害等事故。(见表格2.1)。

正是由于城市轨道交通综合监控系统的复杂性、重要性及事故多发性,促使我们必须对综合监控系统生命周期(见图2.2)14个阶段内的安全性、可靠性进行研究,提出风险评估方案,以提高综合监控系统对城市轨道交通正常运营的保障度。

3 综合监控系统的安全性分析

根据城市轨道交通综合监控系统的特点,对系统等级结构分析,提出对系统风险的分类方法;通过对系统功能性安全的目标进行分析,提出风险分配、规避和消除的方法,以降低综合监控系统出现故障可能性。

3.1 系统等级结构分析及风险分类

1)对系统边界和系统功能进行定义,对系统进行分类

通过外部视角理论,对目标系统及其子系统进行分级,系统分级图示例(图3.1)

2)通过使用对风险的经验性和创造性识别手段,进行风险、危害分类。使用到的方法包括以下:

检查表法

故障模式和影响分析法

头脑风暴法

危害和可操作性研究法(HAZOP)

3.2 风险的等级评估及风险的规避、消除

通过对危害分级方法的研究,结合危害的分类,进行风险等级评估,提出风险登记册及风险分配、规避和消除的方法。

所有危害须按业主制定的风险矩阵(参照表格3.1)进行风险等级评估。各风险等级的处理如下:

被评估为R1或R2风险等级的所有危害事项,必须尽快通过设计方法将风险减轻至R3或R4等级。

不接受剩余风险被评为R1等级的危害事项。承包商可要求业主批准特许剩余风险为R2的危害事项;在该等级情况下,必须连同有关理由向业主正式申请,并由业主审核批准。

R3危害事项一般可以接受,若实际可行并合乎成本效益,承包商仍须寻求机会将该类危害事项减低至R4等级。

风险评级为R4的危害事项均在可接受范围内。在正常情况下,毋需采取额外减轻措施。

承包商须将所有风险(包括由业主提供的风险及由承包商识别的新风险)记录在风险登记册内,并递交给业主审批。

承包商须在风险登记册内定期更新预防/减轻措施的相关数据及进度,并递交给业主审批。

4 综合监控系统可靠性分析

1)通过对可靠性理论和可靠性的数学定义的研究,建立系统可靠性模型,并以此进行可靠性预测,针对系统级和部件级可靠性提出不同的预测方法。

其中, f(x)—失效概率密度函数,

t—时间

故障树法(Fault Tree Analysis,简称FTA)

在系统设计过程中通过对可能造成系统失效的各种因素进行分析,画出逻辑框图(失效树),从而确定系统失效原因的各种可能组合方式或其发生概率,已计算系统失效概率,采取相应的纠正措施,以提高系统可靠性。

事件树法(Event Tree Analysis,简称ETA)

事件树分析是一种按事故发展的时间顺序由初始事件开始推论可能的后果,从而进行危险源辨识的方法。

2)通过现场采集系统运行情况和设备使用状况数据,使用韦伯分布和线性回归分析法进行分析,从而验证可靠性保障计划。

3)根据城市轨道轨道交通综合监控系统的特点,通过应用新兴学科“可靠性设计”理论,将可靠性设计嵌入到综合监控系统的设计过程中,确立可靠性保证计划;建立故障报告与修正措施系统,以实现综合监控系统可靠性的增长。

5 结束语

城市轨道综合监控系统是应用安全性可靠性研究的重要领域,由于为城市轨道交通构建综合监控系统是一个宏大工程的总设计,即以开放系统作为平台的基础无缝地接入各个子系统并通过信息共享平台由成熟的软件平台支持。城市轨道交通综合监控系统建设的主要任务就是对专业系统的“综合”,而如何使综合监控系统的众多系统及30余项不同专业设施安全可靠地运行,并有一套成熟的安全评估措施为综合监控系统服务,就让综合监控系统的安全性可靠性和风险评估研究显得十分复杂和困难。因此,开展城市轨道综合监控系统安全性可靠性研究和风险评估研究具有十分重要的科研价值,其研究成果将对城市轨道综合监控系统的设计和施工具有积极地指导作用。

参考文献:

[1] 中华人民共和国国际标准. 城市轨道交通综合监控系统工程设计规范 GB 50656-2010 中国计划出版社 2011

[2] 魏晓东. 城市轨道交通自动化系统与技术. 电子工业出版社 2011

[3] 埃贝灵(美). 可靠性与维修性工程概论. 清华大学出版社 2008

[4]EN50126 Railway applications-The specification and demonstration of Reliability, Availability, Maintainability and Safety (RAMS) 1999

[5] 侯景雷. 中国城市轨道交通安全问题及对策研究. 都市快轨交通. 2006

第7篇

1RAMS管理体系

1.1建立公司RAMS管理体系

RAMS管理的涉及面很广,它与公司设计开发、生产制造、质量管理和采购部(子系统供方管理)发生联系,当前也与公司的培训部门有关。因此,需要成立一个公司级的RAMS领导机构。它是全公司开展RAMS工作的基础和保障。该领导机构建议以总经理或总工程师为首,由设计开发部门、工艺技术部门、质量管理部门、采购部门(子系统供方管理)的负责人或骨干组成,日常业务可由质量管理部管理。RAMS管理组织架构如表1所示。

1.2对供应商的RAMS监管

根据列车故障信息统计,约70%以上的列车故障来源于子系统供方。以系统集成为主的公司,应加强子系统供方的监管,并要有相应专业背景的工作团队。

1.2.1推荐的分包商

每个公司都有专门的供方管理机构,也有专用的《供方管理程序》,需要在供方选择、评估、确定的流程中增加RAMS和全寿命周期费用(LCC)要求。

1.2.2对供应商的RAMS管理

(1)与供应商签订的技术合同(协议)中,应详述RAMS工作要求,将系统的总体RAM(可靠性、可用性、可维修性)指标分配给各子系统,保证总体RAM目标理论上满足要求。

(2)要求供应商及时开展RAMS工作,协调、监督并审核供应商的RAMS活动和提交文件。

(3)项目执行过程中,供应商应定期(如每月)参加RAMS工作会议,推进RAMS工作,使RAMS工作与项目同步,保证其与供应商之间的接口有良好的沟通。

(4)对子系统提供的RAM指标进行总体预计和分析,通过预计发现系统薄弱环节,改进有潜力的子系统,以保证总体RAM指标满足要求。最终,总体RAM指标应满足设计最低可接受值。RAM指标通过,设计定型完成。

1.2.3供应商的RAMS工作

鉴于当前国内轨道交通行业的现状,不建议对子系统RAM指标进行单独的验证。建议子系统RAM指标随整车运营考核,每月月末进行RAM评估,连续12个月达到子系统RAMS指标视为合格;子系统RAMS指标未达到要求的,子系统供方应进行改进,直至达到RAM指标。

1.3内部RAMS审核

内审是在公司内部推行RAMS工作的一项重要手段。适时进行RAMS审核,可发现问题,实施跟踪,纠正不合格项,并验证纠正措施的实施。审核内容分为例行审核、动态审核和追加审核。为方便推进RAMS工作和不增加额外的工作量,此项工作建议与质量内审结合进行。

2列车的安全性

2.1安全风险管理

随着轨道交通安全性标准(GB/T21562—2008,IEC62278:2002,EN50126)的出台,安全风险管理将成为轨道交通提升安全性不可缺少的设计及管理技术。传统安全管理与现代风险管理的对比见表2。

2.2安全性分析方法

2.2.1隐患识别

收集和汇总公司产品或同类产品在国内外已发生的安全事故信息,组织相关技术人员进行初步的分析,建立主要隐患清单(见表3),供技术人员设计时考虑。在隐患识别方面,应重点考虑单点故障及重要安全电路(如车门控制、车门环路、制动环路等)导致的隐患。

2.2.2隐患登记及减轻措施方案

根据隐患清单建立公司内或同行业的《隐患登记册》。隐患登记的主要内容包括:编号、部件、隐患类别、隐患说明、可能原因、影响或后果、原有风险等级、建议减轻措施、剩余风险等级、管控单位、减轻措施类别、验证减轻措施方法、状态完成情况等。建议采用表格形式,方便设计师填写和RAMS工程师跟进管理。

2.2.3风险等级评估

风险分析按照GB/T21562—2008及IEC62278:2002方法执行。采用“频率-后果”矩阵的形式,评估风险分析结果、风险分类和风险验收。风险矩阵见表4。表中,R1表示必须消除的风险;R2表示当风险减少不可行时,应经轨道交通主管部门或安全规章主管部门同意后方可接受;R3表示采用充分控制并经轨道交通主管部门同意后方可接受;R4表示有或无轨道交通主管部门同意都可接受的风险。

2.2.4隐患的减轻措施

由RAMS工程师组织设计师、工艺师等提出减轻风险的措施,首先考虑设计,其次是制造,最后考虑运营及维修方面。各阶段考虑的主要内容为:(1)设计———冗余,保护设施,材料分析,负载分析计算;(2)制造———工艺标准,检测,验收,试验;(3)运营———危害的处理程序,警告标志,员工训练;(4)维修———定期维修,检查,测试设备,维修程序。

2.2.5验证减轻措施

每一个隐患减轻措施都应有对应的安全验证方法。由RAMS工程师对其进行跟踪管理和落实,并对完成状态进行统计和通报,直到所有减轻措施正式完成。安全验证的主要方法包括:(1)实验室内进行的试验;(2)供货商厂内进行的试验;(3)调试试验;(4)型式试验;(5)模拟试验。

2.2.6安全原则及规范要求的符合性评估

首先应列举所采用的设计原则、运营安全原则、工业守则或法例。在设计完成前,应逐条评估系统设计是否符合相关的安全要求。已识别的安全要求或功能,应在试验阶段对其进行安全验证,证明设计符合所需的安全功能或标准要求。安全验证可包括在安全关键设备的型式试验和调试试验中。在车辆试运营前,应完成全部安全验证工作,并确认完全符合所需的安全功能和标准要求。以上内容建议用表格形式完成,形象直观,便于管理。

2.2.7安全分析报告内容

安全分析报告通常包括以下两部分内容:第一部分,安全原则及规范要求的符合性评估;第二部分,故障树分析(FTA)报告。

2.3安全性小结

产品安全是公司运作的前提和基础,在设计过程中应有一票否决权。如果产品存在风险等级不能接受的安全隐患,那就无从谈起产品的性能、可靠性、维修性等。产品安全性工作复杂、繁琐,许多细节往往容易被忽略。应将安全工作视为公司的“国防、公安”,将其作为重点工作来抓,如果只是当成“保安”工作来抓,产品安全性工作将很难开展或大打折扣。

3列车的可靠性、可用性及可维修性(RAM)

3.1列车系统RAM分析及方法

3.1.1子系统的可靠性分配

对全车各组成子系统进行分类,建立全车的基本可靠性模型和框图。该模型为全串联模型。结合可靠性框图,根据列车的合同指标平均无故障时间(MTBF),对整车的可靠性指标进行逐级分配,完成从整体到局部的分解。可靠性分配常用公式为:λi=Ki•λs式中:λi———子系统故障率;λs———整车故障率;Ki———子系统故障率百分比。对有产品故障数据库的公司,建议用比例法进行分配;对暂时没有产品故障数据库的公司,建议用评分法计算故障百分比。可靠性分配使各供应商和各开发人员明确设计要求,保证总体RAM目标理论上满足要求。

3.1.2故障模式及影响分析

故障模式及影响分析(FMEA)是在产品设计或工艺设计过程中,通过对产品所有组成单元或工序潜在的各种故障模式及其影响进行分析,提出可能采取的预防改进措施,以提高产品安全性和可靠性的一种设计方法或工艺分析方法。它是一种预防性技术,是事先的行为,也是开展故障导向安全设计的基础。FMEA为系统的可靠性预计和安全性评价提供依据。建议车辆公司参考汽车行业的FMEA表格建立适合本公司的FMEA表。FMEA分析过程注意事项如下:(1)应建立产品分层架构表或工序表(这样不会造成漏件或漏工序);(2)应建立产品的故障模式库(有助于设计师分析时考虑全面);(3)必须由设计师、工艺师填写FMEA表(有助于FMEA技术在设计、工艺中应用);(4)对FMEA表中提出的设计、工艺改进措施,应进行审查和验证。

3.1.3系统的可靠性预计

可靠性预计是针对产品成熟期的可靠性水平进行的,设计完成时,应完成产品的可靠性预计。预计时应考虑设计、工艺改进的潜力和整个研发过程中的可靠性增长。

3.2列车系统RAM预计实例

轨道交通车辆系统极为复杂,元器件数量过多,任务可靠性框图也较复杂。本文介绍一种实用预计方法。(1)建立产品RAM预计表:建立表5所示的产品RAM预计表,按子系统部件组件零件,建立整车的分层架构,分层至可更换组件层面(表5的第二列)。

(2)填写产品RAM预计表:设计师填写产品

RAM预计表,并在产品故障影响栏中(掉线、晚点)作出标记,纳入任务可靠性考虑,并作为任务可靠性预计的依据。

(3)掉线(或延误)任务可靠性预计:应用元件计数法,将表5中掉线(或延误)栏中标记为Y的工作失效率相加,将影响列车掉线(或晚点)的元器件工作失效率相加,计算整车的掉线(或延误)λ或MTBF。根据现车统计,掉线(或延误)的MTBF约为10000h。

(4)基本可靠性预计:根据表5中的数据,应用元件计数法,将所有零部件故障率相加,计算整车的λ或MTBF。根据现车统计,整车的MTBF在100~200h之间。

(5)维修性预计:根据表5中的数据,按以下公式,利用EXCEL表格可很方便地计算平均修复时间(MTTR,式中表示为tMTTR)。tMTTRs=∑ni=1(tMTTRi•λi•Ni)∑ni=1(λi•Ni)式中:Ni———设备数量。

(6)备品备件预计:根据表5中产品每年的故障数,建立备品备件库,避免浪费。

(7)可用性计算:通过上述计算得到MTBF和MTTR,按公式可计算列车的可用性。车辆的可用性约为96%。

3.3可靠性试验

实际工程中,部分产品会出现在型式试验和寿命试验中表现良好、但在实际运营中故障率较高的情况。因此,建议对关键电子设备进行必要的高加速寿命试验(HALT)。HALT是一种发现缺陷的工序,它通过设置逐级递增的加严的环境应力,来加速暴露试验样品的缺陷和薄弱点,并从设计、工艺和用料等诸方面进行分析和改进,从而达到提升可靠性的目的。其最大的特点是设置高于样品设计运行极限的环境应力,从而使暴露故障的时间大大短于正常可靠性应力条件下所需的时间。

3.4RAM验证

RAM验证期一般从上线运营开始计算,为期2年。此阶段列车故障信息收集相对容易和全面,可靠性增长形象直观,容易接受,效果明显(见图1)。RAM验证期前半年为车辆早期故障期,半年后车辆故障率趋于稳定,进入车辆故障率的稳定期。上线运营后,每月月末应计算车辆可靠性指标,将车辆运营的实际故障率与车辆合同值进行比较(如图1所示),待车辆运营实际故障率持续低于合同要求值连续12个月,车辆可靠性通过考核。同时,通过故障曲线可以评估本型号车辆的可靠性水平。

4故障报告及纠正措施系统

建立产品的故障数据库,是公司开展RAMS工作的基础。故障报告及纠正措施系统(FRACAS)为产品的预计提供依据,让产品故障信息在公司内的设计、工艺部门充分流通运转,不断改进,提高产品的RAM指标。故障信息包括:每个故障发生的时间、公里数、对列车服务的影响、维护员工到达现场的反应时间、修复时间、关联故障、故障起因、整改措施等。FRACAS运行的简化流程图见图2。

第8篇

1RAMS管理体系

1.1建立公司RAMS管理体系

RAMS管理的涉及面很广,它与公司设计开发、生产制造、质量管理和采购部(子系统供方管理)发生联系,当前也与公司的培训部门有关。因此,需要成立一个公司级的RAMS领导机构。它是全公司开展RAMS工作的基础和保障。该领导机构建议以总经理或总工程师为首,由设计开发部门、工艺技术部门、质量管理部门、采购部门(子系统供方管理)的负责人或骨干组成,日常业务可由质量管理部管理。RAMS管理组织架构如表1所示。

1.2对供应商的RAMS监管

根据列车故障信息统计,约70%以上的列车故障来源于子系统供方。以系统集成为主的公司,应加强子系统供方的监管,并要有相应专业背景的工作团队。

1.2.1推荐的分包商每个公司都有专门的供方管理机构,也有专用的《供方管理程序》,需要在供方选择、评估、确定的流程中增加RAMS和全寿命周期费用(LCC)要求。

1.2.2对供应商的RAMS管理(1)与供应商签订的技术合同(协议)中,应详述RAMS工作要求,将系统的总体RAM(可靠性、可用性、可维修性)指标分配给各子系统,保证总体RAM目标理论上满足要求。(2)要求供应商及时开展RAMS工作,协调、监督并审核供应商的RAMS活动和提交文件。(3)项目执行过程中,供应商应定期(如每月)参加RAMS工作会议,推进RAMS工作,使RAMS工作与项目同步,保证其与供应商之间的接口有良好的沟通。(4)对子系统提供的RAM指标进行总体预计和分析,通过预计发现系统薄弱环节,改进有潜力的子系统,以保证总体RAM指标满足要求。最终,总体RAM指标应满足设计最低可接受值。RAM指标通过,设计定型完成。

1.2.3供应商的RAMS工作鉴于当前国内轨道交通行业的现状,不建议对子系统RAM指标进行单独的验证。建议子系统RAM指标随整车运营考核,每月月末进行RAM评估,连续12个月达到子系统RAMS指标视为合格;子系统RAMS指标未达到要求的,子系统供方应进行改进,直至达到RAM指标。

1.3内部RAMS审核

内审是在公司内部推行RAMS工作的一项重要手段。适时进行RAMS审核,可发现问题,实施跟踪,纠正不合格项,并验证纠正措施的实施。审核内容分为例行审核、动态审核和追加审核。为方便推进RAMS工作和不增加额外的工作量,此项工作建议与质量内审结合进行。

2列车的安全性

2.1安全风险管理

随着轨道交通安全性标准(GB/T21562—2008,IEC62278:2002,EN50126)的出台,安全风险管理将成为轨道交通提升安全性不可缺少的设计及管理技术。传统安全管理与现代风险管理的对比见表2。

2.2安全性分析方法

2.2.1隐患识别收集和汇总公司产品或同类产品在国内外已发生的安全事故信息,组织相关技术人员进行初步的分析,建立主要隐患清单(见表3),供技术人员设计时考虑。在隐患识别方面,应重点考虑单点故障及重要安全电路(如车门控制、车门环路、制动环路等)导致的隐患。

2.2.2隐患登记及减轻措施方案根据隐患清单建立公司内或同行业的《隐患登记册》。隐患登记的主要内容包括:编号、部件、隐患类别、隐患说明、可能原因、影响或后果、原有风险等级、建议减轻措施、剩余风险等级、管控单位、减轻措施类别、验证减轻措施方法、状态完成情况等。建议采用表格形式,方便设计师填写和RAMS工程师跟进管理。

2.2.3风险等级评估风险分析按照GB/T21562—2008及IEC62278:2002方法执行。采用“频率-后果”矩阵的形式,评估风险分析结果、风险分类和风险验收。风险矩阵见表4。表中,R1表示必须消除的风险;R2表示当风险减少不可行时,应经轨道交通主管部门或安全规章主管部门同意后方可接受;R3表示采用充分控制并经轨道交通主管部门同意后方可接受;R4表示有或无轨道交通主管部门同意都可接受的风险。

2.2.4隐患的减轻措施由RAMS工程师组织设计师、工艺师等提出减轻风险的措施,首先考虑设计,其次是制造,最后考虑运营及维修方面。各阶段考虑的主要内容为:(1)设计———冗余,保护设施,材料分析,负载分析计算;(2)制造———工艺标准,检测,验收,试验;(3)运营———危害的处理程序,警告标志,员工训练;(4)维修———定期维修,检查,测试设备,维修程序。

2.2.5验证减轻措施每一个隐患减轻措施都应有对应的安全验证方法。由RAMS工程师对其进行跟踪管理和落实,并对完成状态进行统计和通报,直到所有减轻措施正式完成。安全验证的主要方法包括:(1)实验室内进行的试验;(2)供货商厂内进行的试验;(3)调试试验;(4)型式试验;(5)模拟试验。

2.2.6安全原则及规范要求的符合性评估首先应列举所采用的设计原则、运营安全原则、工业守则或法例。在设计完成前,应逐条评估系统设计是否符合相关的安全要求。已识别的安全要求或功能,应在试验阶段对其进行安全验证,证明设计符合所需的安全功能或标准要求。安全验证可包括在安全关键设备的型式试验和调试试验中。在车辆试运营前,应完成全部安全验证工作,并确认完全符合所需的安全功能和标准要求。以上内容建议用表格形式完成,形象直观,便于管理。

2.2.7安全分析报告内容安全分析报告通常包括以下两部分内容:第一部分,安全原则及规范要求的符合性评估;第二部分,故障树分析(FTA)报告。

2.3安全性小结

产品安全是公司运作的前提和基础,在设计过程中应有一票否决权。如果产品存在风险等级不能接受的安全隐患,那就无从谈起产品的性能、可靠性、维修性等。产品安全性工作复杂、繁琐,许多细节往往容易被忽略。应将安全工作视为公司的“国防、公安”,将其作为重点工作来抓,如果只是当成“保安”工作来抓,产品安全性工作将很难开展或大打折扣。

3列车的可靠性、可用性及可维修性(RAM)

3.1列车系统RAM分析及方法

3.1.1子系统的可靠性分配对全车各组成子系统进行分类,建立全车的基本可靠性模型和框图。该模型为全串联模型。结合可靠性框图,根据列车的合同指标平均无故障时间(MTBF),对整车的可靠性指标进行逐级分配,完成从整体到局部的分解。可靠性分配常用公式为:λi=Ki•λs式中:λi———子系统故障率;λs———整车故障率;Ki———子系统故障率百分比。对有产品故障数据库的公司,建议用比例法进行分配;对暂时没有产品故障数据库的公司,建议用评分法计算故障百分比。可靠性分配使各供应商和各开发人员明确设计要求,保证总体RAM目标理论上满足要求。

3.1.2故障模式及影响分析故障模式及影响分析(FMEA)是在产品设计或工艺设计过程中,通过对产品所有组成单元或工序潜在的各种故障模式及其影响进行分析,提出可能采取的预防改进措施,以提高产品安全性和可靠性的一种设计方法或工艺分析方法。它是一种预防性技术,是事先的行为,也是开展故障导向安全设计的基础。FMEA为系统的可靠性预计和安全性评价提供依据。建议车辆公司参考汽车行业的FMEA表格建立适合本公司的FMEA表。FMEA分析过程注意事项如下:(1)应建立产品分层架构表或工序表(这样不会造成漏件或漏工序);(2)应建立产品的故障模式库(有助于设计师分析时考虑全面);(3)必须由设计师、工艺师填写FMEA表(有助于FMEA技术在设计、工艺中应用);(4)对FMEA表中提出的设计、工艺改进措施,应进行审查和验证。

3.1.3系统的可靠性预计可靠性预计是针对产品成熟期的可靠性水平进行的,设计完成时,应完成产品的可靠性预计。预计时应考虑设计、工艺改进的潜力和整个研发过程中的可靠性增长。

3.2列车系统RAM预计实例

轨道交通车辆系统极为复杂,元器件数量过多,任务可靠性框图也较复杂。本文介绍一种实用预计方法。(1)建立产品RAM预计表:建立表5所示的产品RAM预计表,按子系统部件组件零件,建立整车的分层架构,分层至可更换组件层面(表5的第二列)。(2)填写产品RAM预计表:设计师填写产品RAM预计表,并在产品故障影响栏中(掉线、晚点)作出标记,纳入任务可靠性考虑,并作为任务可靠性预计的依据。(3)掉线(或延误)任务可靠性预计:应用元件计数法,将表5中掉线(或延误)栏中标记为Y的工作失效率相加,将影响列车掉线(或晚点)的元器件工作失效率相加,计算整车的掉线(或延误)λ或MTBF。根据现车统计,掉线(或延误)的MTBF约为10000h。(4)基本可靠性预计:根据表5中的数据,应用元件计数法,将所有零部件故障率相加,计算整车的λ或MTBF。根据现车统计,整车的MTBF在100~200h之间。(5)维修性预计:根据表5中的数据,按以下公式,利用EXCEL表格可很方便地计算平均修复时间(MTTR,式中表示为tMTTR)。tMTTRs=∑ni=1(tMTTRi•λi•Ni)∑ni=1(λi•Ni)式中:Ni———设备数量。(6)备品备件预计:根据表5中产品每年的故障数,建立备品备件库,避免浪费。(7)可用性计算:通过上述计算得到MTBF和MTTR,按公式可计算列车的可用性。车辆的可用性约为96%。

3.3可靠性试验

实际工程中,部分产品会出现在型式试验和寿命试验中表现良好、但在实际运营中故障率较高的情况。因此,建议对关键电子设备进行必要的高加速寿命试验(HALT)。HALT是一种发现缺陷的工序,它通过设置逐级递增的加严的环境应力,来加速暴露试验样品的缺陷和薄弱点,并从设计、工艺和用料等诸方面进行分析和改进,从而达到提升可靠性的目的。其最大的特点是设置高于样品设计运行极限的环境应力,从而使暴露故障的时间大大短于正常可靠性应力条件下所需的时间。

3.4RAM验证

RAM验证期一般从上线运营开始计算,为期2年。此阶段列车故障信息收集相对容易和全面,可靠性增长形象直观,容易接受,效果明显(见图1)。RAM验证期前半年为车辆早期故障期,半年后车辆故障率趋于稳定,进入车辆故障率的稳定期。上线运营后,每月月末应计算车辆可靠性指标,将车辆运营的实际故障率与车辆合同值进行比较(如图1所示),待车辆运营实际故障率持续低于合同要求值连续12个月,车辆可靠性通过考核。同时,通过故障曲线可以评估本型号车辆的可靠性水平。

4故障报告及纠正措施系统

建立产品的故障数据库,是公司开展RAMS工作的基础。故障报告及纠正措施系统(FRACAS)为产品的预计提供依据,让产品故障信息在公司内的设计、工艺部门充分流通运转,不断改进,提高产品的RAM指标。故障信息包括:每个故障发生的时间、公里数、对列车服务的影响、维护员工到达现场的反应时间、修复时间、关联故障、故障起因、整改措施等。FRACAS运行的简化流程图见图2。

第9篇

关键词:沙特轻轨 安全管理 运营安全

1 背景――沙特麦加轨道交通出现的必然性

麦加、麦地那是世界各国穆斯林心目中的圣地。每年穆斯林朝觐的时候,麦加、麦地那都会迎来数以百万计的各国虔诚的穆斯林朝觐者。所以,每年穆斯林朝觐的时候,就是沙特最为繁忙的时期。但是,数百万人的交通问题一直困扰着国王和所有沙特人,在圣地建设高速铁路,成了沙特人最大的梦想。

为了缓解每年数百万穆斯林朝觐期间的交通压力,沙特阿拉伯王国在伊斯兰教第一圣城投资兴建了一条专用麦加轻轨铁路。该轻轨铁路途经米纳、穆茨达里法赫和阿拉法特3个主要朝觐地区,共设9座车站,全长18.25公里,合同造价约合17.73亿美元。设计运能单向72000人/小时,采用五种列车运行模式。该铁路开通投入运营后,借助舒适快捷的中国轻轨列车,来麦加朝觐的穆斯林可以往返于各个朝觐地区,进而在一定程度上缓解朝觐期间麦加的交通压力。

中沙两国2008年6月签署《关于加强基础设施建设领域合作协定》之后,麦加轻轨项目是首个合作项目,在中东地区也是中国企业建成的第一条轻轨铁路。迄今世界上,麦加轻轨线是设计运能最大、运营模式最复杂,同类工程建设工期最短,室外温度最高的轻轨铁路项目。因此,确保运营安全意义重大。

2 轻轨交通事故发生的主要原因

2.1 轻轨建设的合理性

①选择轻轨交通车辆和运营设备,在选择过程中,必须确保技术成熟、安全可靠、维修方便,并且经济合理。

②轻轨交通系统中,采用当前先进的工艺技术对所使用材料和部件进行防火处理。

在设计轻轨交通安全工程的过程中,需要高度关注。其目的在于:强化轻轨交通安全的重要性,确保轻轨交通工程设计的系统化、程序化、规范化。

2.2 安全管理的重要性

按照系统的方式对轻轨交通进行分析,将事故发生的直接原因归结为人、设备、环境3个因素,造成事故的间接原因是存在管理缺陷。上述4种因素与事故的发生存在着必然的联系,运用布尔代数原理,借助事故树中的条件或门,可写出:

T=A(B+C+D)=AB+AC+AD

式中:T、A、B、C、D分别代表事故、事故的管理原因、事故的人为原因、事故的设备原因、事故的环境原因。

通过对上述公式进行分析:管理、人、设备和环境四大因素是导致事故发生的原因。在运行过程中,这四大因素中的任何一种因素出现问题,都会造成事故的发生。而管理因素对其他3种因素随时起着制约作用,管理与上述任何一种因素相互结合,在一定程度上都会引发事故。从某种意义上说,在管理过程中,如果存在缺陷、不善,或者混乱、失误等都会直接引发事故,或者因人为因素、设备的不安全状态,以及环境中存在不安全因素等,都会引发事故的发生,可见管理缺陷是引发事故的关键。

2.3 沙特的特殊环境因素

沙特阿拉伯主要属于热带沙漠气候。沙特整体地势西高东低。西部高原属地中海气候,其他地区属亚热带沙漠气候。夏季炎热干燥,最高气温可达50℃以上;冬季气候温和,年平均降雨不超过200毫米。因此,在沙特这样特殊的高温环境条件下,轻轨极易发生火灾,而且危险性很大:

①尤其是朝觐时期,客流量大,人员集中,一旦发生火灾,极易造成群死群伤的严重后果。

②轻轨本身独有的特点,一旦起火容易造成火势的蔓延扩大和有毒浓烟的产生。这是由于列车内的车座、顶棚及其他装饰材料,大多是可燃材料,有些塑料、橡胶等新型材料不仅易燃而且在燃烧时会产生毒性气体。

③轻轨大部分区段都是高架轨道,给救援工作造成困难。

所以,抵御高温干燥的恶劣环境,有效避免火灾发生,是确保轻轨运营安全的重要工作之一。

3 运营安全保障

3.1 运营管理组织结构

总经理统筹管理整个运营项目,各部门总监分工合作,确保整个运营活动的顺利进行。其中,安全总监负责识别和管理整个轻轨系统中的安全风险,这是确保使用轻轨时乘客感觉安全和确保员工人身安全的重要部分。安全总监须与外部权威机构和涉及安全事宜的对口组织紧密联系。

3.2 轻轨交通安全管理体系原理

①组织保证。对于企业组织来说,在成本管理体系运行过程中,最高管理者需要任命负责人对成本管理体系进行负责,整个成本管理体系工作,由负责人全权代表最高管理者进行领导、组织、指挥和协调。对于最高管理者来说,需要建立和完善成本管理的组织机构,成立成本管理部门,同时明确相应的岗位职责、权限、相互关系等,在一定程度上使全体人员明确知道自己需要承担的责任和义务,从而控制和降低成本。组织应对上述过程和具有的能力提供充分信任。

②制度保证。以安全生产责任制为核心,制定和完善安全管理规章制度,进而为安全生产管理奠定基础和提供保障,全面安全管理的思想透过安全生产责任系统的建立得以充分的体现。以岗位安全生产责任制为基础,制定实施细则,进而在一定程度上确保各级安全生产责任制落实到人。按照管理层次、分工等,将安全责任细化到每个岗位上。

③教育培训。所有员工须接受相关安全培训,以使之不仅理解各自的安全职责,还能鉴别安全需求。这些培训必须作为业务决策程序的基本内容和不可分割的部分。安全教育是使职工适应作业环境的重要手段,如果不经过培训和教育,熟练掌握生产环境中有关作业的条件和知识,就难免产生人的不安全行为。

3.3 安全风险评估

3.3.1 风险评估的主要任务

风险评估任务包括以下内容;

①识别评估对象面临的各种风险;

②评估风险概率和可能带来的负面影响;

③确定组织承受风险的能力;

④确定风险消减和控制的优先等级;

⑤推荐风险消减对策。

3.3.2 轻轨交通运营安全评估体系

轻轨运营安全评估体系包括以下七部分:

①安全管理及事故风险评估;

②运营组织与管理评;

③车辆系统评估;

④信号通信系统评估;

⑤供电系统评估;

⑥线路、轨道、土建结构及安全保护区评估;

⑦机电设备评估。

3.3.3 正常、降级以及紧急情况下运营安全预案的重要性

运营和维护策略必须能够维持正常、降级和紧急模式下的轻轨系统平稳安全运行,而且必须能够应对在7天朝觐的特定时间内大批乘客同时使用该轻轨系统。从控制论的角度看,安全管理是一个多回路的反馈控制系统。在这个系统中,事故是被控制的对象,事故控制是研究的中心。系统控制的目的是减少或消灭事故的发生及其影响,以提高生产系统的安全度。因此,做好安全预案,是处理正常、降级以及紧急情况下将事故风险降至最低的最有效办法。

4 总结

设计运能最大、室外温度最高、建设工期最短、服务全世界穆斯林朝觐者的沙特麦加轻轨铁路项目,再次向国际市场展现了中国企业的优秀品质和讲诚信、重信誉、负责任的良好形象,提升了中国企业的国际竞争力,通过提供安全,高效的运营服务,增进了中沙两国的友谊。沙特轻轨属跨国运营,国际环境复杂,恶劣自然条件给轻轨运营带来了极大的挑战和安全隐患。安全管理是运营的重点工作,通过安全分析,充分做好安全事故预案,通过防止事故和降低事故等级,给每一位穆斯林朝觐者带来安全,高效的服务。

参考文献:

[1]周跃进.项目管理[M].机械工业出版社,2010.

[2]崔艳萍,唐祯敏,李毅雄.城市轨道交通现代安全管理体系构建初探[J].中国安全科学学报,2005(03).

[3]莫蔚然.广州地铁运营管理的探讨与实践[D].广东工业大学,2007(04).

[4]张俊丽.基于公共安全优先的综合交通枢纽预警管理系统构建研究[J].天津理工大学,2009(01).