美章网 精品范文 数学学习论文范文

数学学习论文范文

前言:我们精心挑选了数篇优质数学学习论文文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。

数学学习论文

第1篇

关键词:训练培养;小学数学;小组合作;学习技能

Abstract:Thecooperationlearnskillinstructionandthetrainingareintheelementaryschoolmathematicsclassroominstructionanimportantlink,mustenhance“thegroupcooperationstudy”thevalidity,mustmasterthecooperationruleskilled,theacademicsocietylistensattentivelyto,thediscussion,toexpressownviewpoint,theacademicsocietyorganizationandtheappraisal,guidesthestudenttograspthecooperationstudyrelentlesslythemethod,formstheessentialcooperationskill.

keyword:Trainingraise;Elementaryschoolmathematics;Groupcooperation;Learnskill

前言

《数学课程标准》中明确指出:“有效的数学学习活动不能是单纯地依赖模仿与记忆,动手实践、自主探索与合作交流应当是学生学习数学的重要方式。”合作学习技能指导与训练是小学数学课堂教学中重要的一环。技能是完成某种任务的一种活动方式,学习活动由学习技能构成,每一种学习活动往往包含一系列的具体技能。如果不具备一定的学习技能,学习是难以进行的。要提高“小组合作学习”的有效性,必须培养学生的合作学习技能。

在小学数学小组活动中,让学生掌握合作规则,学会倾听,学会讨论,学会表达与交流意见,学会组织和评价,是小组合作学习的主要技能与方法,要坚持不懈地引导学生掌握合作学习的方法,并形成必要的合作学习技能。下面浅谈自己在教学实践中的一些做法和体会:

一、熟练掌握合作规则

“没有规矩,不成方圆。”小组合作也不例外。一般情况下的小组讨论,学习能力强的学生未等其他学生发言,就把自己的意见说出来,这样一来,那些学困生相当于走了个形式,没有经过大脑思考便得到了现成的答案,结果,好的更好,差的更差。这时就需要教师事先作好安排,讲清合作规则,使学生掌握必要的合作技能:包括如何倾听别人的意见,在小组中如何开展讨论,如何表达自己的见解,如何纠正他人的错误,如何汲取他人的长处,如何归纳众人的意见等。

因此,可在小组合作前这样规定:讨论前,小组成员先独立思考,把想法记下来,再由小组长安排,各个成员各自说出自己的想法,其他人倾听,然后讨论,形成集体的意见后由记录员将其整理出来。这样,每个人都有了思考的机会和时间。

二、在合作中学会倾听

在开始合作时,特别是低年级学生,具有个人心理优势,一节课注意力集中的时间过短,对于自己的发言比较认真,不容易接纳别人的意见,而对于同学的发言,却不重视。为此,在课堂上要求学生学会三听:一是认真听每位同学的发言,眼睛看着对方,要听完整,认真思辨,不插嘴;二是要听别人的发言要点,培养学生收集信息的能力;三是听后须作思考,并做出判断,提出自己的见解,提高学生反思、评价的能力。在这样要求下训练,引导学生学会反复琢磨、体会,善于倾听同学意见,不随意打断别人发言,提供学生发表不同见解的空间,以达到相互启迪、帮助的功效,学生不但养成了专心听的习惯,调动主动参与的积极性,而且培养了学生相互尊重的品质,能体会他人的情感,善于控制自己的情绪。三、学会表达自己的观点

语言表达是人与人交往的基础,也是自己实际能力的一项重要指标。合作学习需要每个成员清楚地表达自己的想法,互相了解对方的观点。教师重点要对不会表达的学生有意识进行示范指导,而全班汇报展示成果时,让更多学生充分表达自己的见解,让别人听懂你的见解,不光是优生要会表达、善表达,那些性格内向,不善言辞的学生也要学会表达,整体提高学生的表达技能。为此,教师要深入到小组中,调动这些学生的参与欲望,培养他们敢说的勇气,把一些基础较差、思维能力弱、不善言谈的学生也有表现自我和获得成功的机会。

因此,在教学中要有意识地提供机会让学生多表达自己的观点,给学生的讨论提供时间和空间,使学生敢说、会说,培养学生善于倾听、思考、判断、选择和补充别人意见的好习惯,一旦发现问题及时给予指点,使学生逐渐学会用语言准确表达出自己的想法。

四、在合作中学会讨论

讨论交流是合作学习解决问题的关键。每个成员表达了自己的想法后,意见不统一、理解不一致时,这就需要通过讨论、争辩,达成共识,解决问题。教师指导时,按一定的步骤和方法进行,让不同层次的学生逐步学会讨论交流问题的技能。合作学习中,学生在独立思考的基础上,再通过共同讨论、相互启发,从而达到合作的目的。学生讨论问题后,各组由一人汇报自学或独立思考的内容,其他成员必须认真听,并且有自己的补充和见解。最后,还应将各自遇到的问题提供给全组成员讨论,对达成共识和未能解决的问题分别归纳整理,得出正确的结论。通过这样的讨论,可以培养学生的思考、分析、判断和表达能力。

五、在合作中学会组织

听、说技能是合作学习的基本技能,组织技能就是合作学习的重要技能。组织技能是听、说技能和独立思考的前提。合作讨论的成败与否,很大程度上取决于小组内的组织者,具体做法是:指导组织者进行组内分工、归纳组内意见、帮助别人评价等,另外,为了体现小组内的主体性,可定期培训、及时更换组织者。通过训练不但提高了合作学习的效率,而且为学生今后立足于社会打下了坚实的基础。

六、在合作中学会评价

合作学习活动中评价不只是教师对学生做出的简单的评价,其中包括学生之间的相互评价、学生的自我评价和学生对教师的评价等。评价能力的培养也很重要。教师要引导学生对学习结果进行评价,也要对学习过程进行评价,既要对知识掌握情况进行评价,也要对每个同学的情感表现进行评价。教学中可以通过教师的范评引导学生互评,如让学生倾听他人发言后,用手势表示对或错,用准确流畅的语言评价,以增强评价的能力勇气、提高评价的水平。通过正确地评价让学生的自尊心、自信心和进取心得到保护,激发了发展的功力和创新的活力。

第2篇

1“研究性学习”的教学含义

随着《全日制普通高级中学课程计划》和《全日制普通高级中学数学教学大纲》的实施,以及新的高中教材在全国逐步推广使用,“研究性学习”正成为高中教学研究的热点.教育部门的各级领导、教研员、任课教师对“研究性学习”的理解还处在探索阶段,认识还不统一.尤其是对“什么是‘研究性学习’?”“什么样的课是‘研究性学习’的课?”“研究性学习与探究性学习有什么区别?”等问题在认识上还存在分歧.我们认为有必要搞清楚“研究性学习”的含义,适当扩大“研究性学习”这一概念的外延,这样我们把“研究性学习”划分了三个层次.

1.1含有课程意义的必修课

“研究性学习”最初是在《全日制普通高级中学课程计划》中提出的,它是该课程计划中规定的高中课程项目之一.把“研究性学习”、“劳动技术教育”、“社区服务”和“社会实践”统一划归为“综合实践活动”,属于必修课程,规定了课时安排和具体要求.这种意义的“研究性学习”属于课程范畴,但它没有统一的教材,属于校本课程的范围.它所涉及的教学内容不同于数学、物理、化学、地理、生物等学科,而具有明显的综合性.它一般在课下和校外进行,具有鲜明的实践性.

1.2写进课本的“研究性学习”课题

在《全日制普通高级中学数学教学大纲》中规定:“每个学期至少安排一个研究性学习课题”.新教材执行新大纲,在相应的章中单独设立一节,以“研究性课题”给出具体的教学内容,如“分期付款中的有关计算”、“向量在物理中的应用”、“线性规划的实际应用”、“多面体欧拉公式的发现”、“杨辉三角”等.教材中的“研究性学习”给出了具体的课题,这些课题大部分属于课外内容,或具有实际意义或具有研究探索的意义,但都属于数学内容.它与上一层次没有材的“研究性学习”不同,它既有教材,又具有学科性.

1.3课堂教学中的“研究性学习”

随着教学改革的深入,只用以上两种层次的“研究性学习”来培养学生的创新意识和应用意识已感到不足.如何使用课本的教材内容,使用“研究性学习”的方法,在日常教学的过程中进行学生创新意识和应用意识的培养,就成了课堂教学改革的方向.于是这种使用课本内容进行“研究性学习”的课堂教学被称之为“研究性学习”的教学模式或方法,简称为“研究性学习”.

不过开始时,有些报刊中的文章使用“自主探究性学习”的提法以和第一层次的“研究性学习”相区别.但随着改革的深入,现在大部分文章已不再使用“探究性学习”的字样,而都使用“研究性学习”了.这种变化也说明了随着课程和教学改革的深入,对“研究性学习”的理解正向纵深发展,给“研究性学习”注入了新的内涵,使它更具生命力.

三个层次的“研究性学习”其区别在于所选用的素材不同,所研究的对象不同,而使用的方法却是一样的,都具有研究性和探索性.本文下面所提及的“研究性学习”是指“研究性学习”教学模式的简称,它的真实含义是“研究性教学”.

2“研究性学习”的教学特性

如何使用课本内容,引导学生进行探索与发现的课堂教学,是我们要研究的重点.为此,我们首先应该明确以引导学生参加“研究性学习”为主的教学模式应该具备哪些特性,只有这样才能为教学设计、具体实施以及教学评价提供依据.

2.1自主性

学生的自主学习是相对于传授式学习而言的,自主性的主要标志是学生学习的主动性.学生是课堂教学的主人,他们应积极主动参与教学活动,主动获取知识,是课堂教学的主体.对主体性的评价,不能只看学生的活动所占课堂教学时间的比例,关键是看学生的思维是否真的被调动起来了,他们的学习是否积极主动.

自主性的第二个标志是个体性或独立性.课堂虽是集体学习的场所,但课堂的学习活动却是从个体开始的,其最终目的也是为了提高每一个学生的思维水平.因此,课堂教学过程中首先要强调学生个体的作用与发展,让每个学生在教学活动中尽量做到:信息自己采集,数据自己处理,问题自己提出,课题自己选定.提倡独立钻研,独立思考,独出心裁,以培养独创精神.

2.2协作性

协作性是在个体性和独立性的基础上体现的,两者的关系是相辅相成的,在学生的自主独立思维活动被调动起来之后,在解决问题的过程中,往往会遇到思维障碍,此时通过学生与学生之间的思维沟通,通过相互协作,往往会使思维障碍得以克服,并加快解决问题的速度.学生之间进行相互沟通与交流的学习也被称为“合作学习”.“合作学习”可以培养学生的协作意识和团队精神,学会与人沟通和交流的方法.

合作学习可划分为两个层次.一是小组内的合作学习,几人一组,人数不多,便于沟通,有利于互相启发,与个体研究能紧密结合.二是班级性的大型思维展示,这也是一种合作学习.这种形式的合作学习范围大,人数多,用于展示研究成果和思维过程,并开展讨论和争论.两种层次的合作学习可在课堂中多次交替开展,有利于学生创新思维的培养.

2.3研究性

前两个特性都是从学生在“研究性学习”中的地位、作用以及学习的方式等方面简述的,并没有对研究的方法、研究的过程给以突出说明.我们认为,“研究性学习”最本质的属性是“研究”二字,“研究性学习”的教学模式不同于讲授式,也不同于自学式,它的主要过程是:提出问题—研究探索—得出结论.其中所研究问题的性质很重要,无论是由学生提出,还是由教师给出,所提出的问题应该是开放的,只有素材而没有结论.这样才具有研究的意义.可以这样说,问题的开放性决定了教学模式的研究性.

“研究性学习”的研究性还应表现在研究过程中对研究方法的实践.研究不应该盲目进行,而应体现出方法性.也就是说在研究的过程中,要教给学生一些研究问题的基本方法,通过研究的实践,使他们从中学会研究的方法.我们认为学习实践研究的方法比得到的研究结论更为重要.

在“研究性学习”的教学活动中,最经常使用的研究方法有:归纳性研究方法、类比性研究方法、试验性研究方法和实验性研究方法.课堂教学过程中是否突出强调并使用相关的研究方法是“研究性学习”研究性的重要标志.

“研究性学习”的教学特性,除上面所述的三种以外,还具有开放性、实践性、创新性等其他特性.但我们认为后三种特性的本质属性不如前三种突出,有的还可以包含在前三种之中,因此就不再赘述.

3“研究性学习”的教学设计

如何进行“研究性学习”的教学设计?怎样实施课堂教学的“研究性学习”?这些问题应该是我们研究的重点.我区“研究性学习”的教学研究工作刚刚起步,只搞了几节市、区级的研究课,在听取了专家和同行们的意见之后,又进行了深入的思考,产生了一些新的想法.现将“研究性学习”在教学设计时应重点考虑的几个问题整理如下.

3.1两个体现

作为教研活动的“研究课”,在备课之初首先应该考虑这节课要给听课教师展示什么,打算起到什么示范作用,准备达到什么目的.对于“研究性学习”的研究课,应重点突出以下两条.

3.1.1体现新教学理念

什么是新的教学理念?什么是数学教学的新理念?我们认为应该从教学目的出发,在新的高中教学大纲中去寻找答案.

在新的高中教学大纲中对数学课的教学目的进行了新的划分,共分为三个层次.第一层提出的是一般能力要求,可归纳为“三层问题”,即“提出问题、分析问题和解决问题的能力”;“两种意识”,即“创新意识和应用意识”;“四类能力”,即“探究能力”、“建模能力”、“交流能力”和“实践能力”.第二层提出的是数学思维能力要求,把空间想象和运算等都包含在内.第三层是人格、品德和素质的要求,表现为“兴趣”、“信心”、“精神”、“价值”和“世界观”.

与原大纲相比较,我们认为“提出问题”的能力、“创新意识和应用意识”、“探究能力”、“建模能力”、“交流能力”和“实践能力”等都颇具新意.如果我们在备课之初抓住其中的一两项,认真地去设计在教学过程中如何实现,不失为是新教学理念的体现.

3.1.2体现新的教学设计思想

在党的“十六大”上,提出了“发展要有新思路,改革要有新突破,开放要有新局面,各项工作要有新举措”的工作要求.数学课的教学模式与教学设计怎样体现“新”字,是我们需要研究的又一个问题.我们不能墨守陈规,因循守旧或小打小闹,止步不前,而必须解放思想,打破原有的教学设计的思维框架,在教学模式和教学设计上有所突破.要大胆创新,独出心裁,别出新意,以体现课堂教学改革的新思路.

最近进行的一节以数列为载体的“研究性学习”课,包括了等差数列和等比数列的定义、通项公式、前n项和公式等主要内容.教学顺序不是先研究完等差数列再研究等比数列,而是横向与纵向交叉进行.在研究完等差数列的定义之后,类比研究等比数列的定义;在研究完等差数列的通项公式之后,类比研究等比数列的通项公式,最后再顺次研究等差数列、等比数列的前n项和公式.这种改革不失为一种大胆的尝试,不仅课堂教学容量大,而且知识之间的横纵向联系十分紧密,不仅学生在研究方法上有所收益,而且有利于知识结构的形成.

3.2两个突出

一节课只有45分钟,不可能涉及过多的教学目的,不可能面面俱到,因此一节“研究性学习”研究课的教学设计抓主要矛盾和主要过程是十分必要的.

3.2.1突出一个主题

主题的确定,可以从教材内容上考虑,可以从教学方法上考虑,但最主要的还是从教学目的和培养目标上考虑.一节课如果从总的教学目标考虑,不应有过多的项目,要把主题选好,然后再在这个主题下进行具体设计.

最近进行了一节函数复习的“研究性学习”研究课.开始时打算由两个具体的函数解析式,通过研究它的定义域、值域、奇偶性、单调性、最大(小)值,并画出它的草图来复习函数的概念、性质与图象.但后来任课教师考虑到给出的函数解析式过于抽象,不如由实例引出,使其具有实际意义.这是个很好的建议,并在此基础上又作了进一步的发展,既然引入的是实例,那么结尾也应给予呼应,也应再回到应用问题.于是前后共出现三道应用题,并且还涉及了字母的讨论.这样一来,由原来侧重于创新意识,变成了应用意识与创新意识并重;由一个主题变成了两个主题.如果照此设计实施,可能一个目标也完成不了.又经过讨论,最后决定只由应用问题引出函数解析式,把由解析式到函数图象的“研究性学习”、培养创新意识确定为本节课的主题.

3.2.2突出一条主线

我们这里所说的主线是指教师与学生的关系、学生与学生的关系在“研究性学习”中的位置.作为“研究性学习”的研究课,必然要把学生的自主学习放在首位.在课堂中,学生的自主性与协作性的关系如何处理?以哪一个特性为主更好呢?在常规教学中学生主体作用的发挥、课堂活跃的程度,往往用教师提问次数的多少、学生回答问题所占时间的多少来评价.为了改变这种现象,我们提出,在现阶段“研究性学习”的研究课,要突出“合作学习”的作用.一节课中,在不同的教学环节应设计出不同类型的合作学习方式,以“合作学习”为主线,将“合作学习”贯穿于课堂教学的始终.

3.3两个侧重

无论什么课型,就教学过程而言,都可以划分为引入环节、主体环节和结尾环节.不言而喻,一节课的中心和关键必然是中间的主体环节,必然要把设计的重点放在这一环节中.正因为如此,往往容易忽视对引入和结尾的教学设计,于是我们在“研究性学习”研究课的教学设计中,加强了对这两个环节的考虑.

3.3.1侧重引入环节的教学设计

引入环节是课堂教学的首要环节.这一环节设计得好坏,直接影响一节课的教学效果.对于“研究性学习”的研究课,引入环节的教学设计,我们提出了三层考虑,即提出问题—制造悬念—激发兴趣.

问题的提出,可以由教师直接给出,也可以由学生自己提出;可以由实际问题引出,也可以用数学问题引出;可以由旧内容引出,也可以开门见山直接给出.但无论采用哪种方法,都要注意贯彻主题和主线.能由学生提出的,最好就不由老师给出;能由实际问题引出的,最好就不用数学问题引出;能由旧知识引出的,最好就不开门见山.在提出问题时,应该是先大后小,先难后易,先一般后特殊,以给学生多留一些思考的余地,少一些提示,以增加课堂“研究性学习”的气氛.

制造悬念是设置问题的一种技巧.对学生那些似知非知,似懂非懂,似是而非的新内容,对那些可能产生负迁移,可能发生错误的新方法,教师应精心设计一些带有悬念的问题,让学生自己思考,“勾”起学生参与解决问题的欲望,最终达到激发兴趣的目的.

3.3.2侧重小结环节的教学设计

复习小结是课堂教学的最后一个环节,常规做法是由老师或学生总结本节的知识内容,也有教师更深入一步,总结本节课所涉及的重要思想和方法.但作为“研究性学习”的研究课,到此我们仍觉不够.由于“研究性学习”的课堂教学把研究方法放在了重要的位置上,因此我们提出,在总结数学知识和数学方法的基础上,还应更深入一步,“在学完了这节课之后,你还学会了哪些解决问题的一般方法?”希望学生自己总结出在思维方法上的收获.开始时,学生肯定会不适应,说不到点子上.我们觉得,随着改革的深入,在多次使用“研究性学习”的教学模式进行教学之后,学生解决问题的方法会逐渐积累.通过总结,解决问题的能力会逐步提高.

4两个希望

教学设计是在课堂教学之前教师的教学设想,但在课堂教学具体实施的过程中,往往很难完全实现,这是正常的现象.尤其是在调动学生参与,启发学生思维时,课堂上学生会怎样表现?设计与实际之间往往会有较大的差异,设计时难度也会更大.于是,我们只好用“希望”二字来表达我们对课堂教学中学生活动的一种企盼,也是对教师在教学设计时提出的较高要求.

4.1希望产生障碍或出现错误

研究的过程从来就不可能一次成功,产生思维障碍,出现这样或那样的错误是正常和自然的.为了使学生学会思维、实践研究的方法,我们希望教师在全班讨论时,不要只叫会的,只听对的,相反,应从出现错误的,产生障碍的开始,要求学生不要只讲结果而应讲出产生错误和出现思维障碍的原因,讲出解决的办法,讲出思维的全过程.

没有失败,哪有成功?我们也应该让学生尝试失败,并从中总结经验和教训,逐渐学会由失败走向成功.

第3篇

随着社会、经济、科技的高速发展,数学的应用越来越广,地位越来越高,作用越来越大。不仅如此,数学教育的实践和历史还表明,数学作为一种文化,对人的全面素质的提高具有巨大的影响。因此,提高基础教育中的数学教学质量,就显得尤为重要。可目前由于受“应试教育”的影响,数学教学中违背教育规律的现象和做法时有发生,为此更新数学教学思想、完善数学教学方法就显得更加迫切。在数学教学中,开展学法指导,正是改革数学教学的一个突破口。

对数学教学如何实施数学学习方法的指导,人们进行了许多有益的探索和实验。首先是通过观察、调查,归纳总结了中学生数学学习中存在的问题,如“学习懒散,不肯动脑;不订计划,惯性运转;忽视预习,坐等上课;不会听课,事倍功半;死记硬背,机械模仿;不懂不问,一知半解;不重基础,好高骛远;赶做作业,不会自学;不重总结,轻视复习”[1]等等。针对这些问题,提出了相应的数学学法指导的途径和方法,如数学全程渗透式(将学法指导渗透于制订计划、课前预习、课堂学习、课后复习、独立作业、学结、课外学习等各个学习环节之中)[2];建立数学学习常规(课堂常规———情境美,参与高,求卓越,求效率;课后常规———认真读书,整理笔记,深思熟虑,勇于质疑;作业常规———先复习,后作业,字迹清楚,表述规范,计算正确,填好《作业检测表》,重做错题)[3]等等。诚然,这对于端正学习态度、养成学习习惯、提高学业成绩、优化学习品质,采劝对症下药”的策略,开展对学习常规的指导,无疑会收到较好的效果。但是,数学学习方法的指导,决不能忽视数学所特有的学习方法的指导。可以说,这才是数学学法指导之内核和要害。也就是说,数学学法指导应该着重指导学生学会理解数学知识、学会解决数学问题、学会数学地思维、学会数学交流、学会用数学解决实际问题等。有鉴于此,笔者主要从“数学”、“数学学习”出发,来阐释数学学习方法,论述数学学法指导。

从数学的角度出发,就是要考察数学的特点。关于数学的特点,虽仍有争议,但传统或者说比较科学的提法仍是3条:高度的抽象性、逻辑的严谨性和应用的广泛性。

1.数学研究的对象本来是现实的,但由于数学仅从空间形式与数量关系方面来反映客观现实,所以数学是逐级抽象的产物。比如三角形形状的实物模型随处可见,多种多样,名目繁多,但数学中的“三角形”却是一种抽象的思维形式(概念),撇开了人们常见的各种三角形形状实物的诸多性质(如天然属性、物理性质等)。因此,学习数学首当其冲的是要学习抽象。而抽象又离不开概括,也离不开比较和分类,可以说比较、分类、概括是抽象的基础和前提。比如,要从已经过抽象得出的物体运动速度v=v0+at、产品的成本m=m0+at、金属加热引起的长度变化l=l0+at中再次抽象出一次函数f(x)=ax+b,显然要经过比较(它们的异同)和概括(它们的共同特征)。根据数学高度抽象性的特点,数学学法指导要强调比较、分类、概括、抽象等思维方法的指导。

2.数学结论的可靠性有其严格的要求,观察和实验不能作为论证的依据和方法,而是要经过逻辑推理(表现为证明或计算),方能得以承认。比如,“三角形内角和为180°”这个结论,通过测量的方法是不能确立的,唯有在欧氏几何体系中经过数学证明才能肯定其正确性(确定性)。在数学中,只有通过逻辑证明和符合逻辑的计算而得到的结论,才是可靠的。事实上,任何数学研究都离不开证明和计算,证明和计算是极其主要的数学活动,而通常所说的“数学思想方法往往是数学中证明和计算的方法。探求数学问题的解法也就是寻找相应的证明或计算的具体方法。从这一点上来说,证明或计算是任何一种数学思想方法的组成部分,又是任何一种数学思想方法的目标和表述形式”[4]。又由于证明和计算主要依靠的是归纳与演绎、分析与综合,所以根据数学逻辑的严谨性特点,数学学法指导要重视归纳法、演绎法、分析法、综合法的指导。

3.由于任何客观对象都有其空间形式和数量关系,因而从理论上说以空间形式与数量关系为研究对象的数学可以应用于客观世界的一切领域,即可谓宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁,无处不用数学。应用数学解决问题,不但首先要提出问题,并用明确的语言加以表述,而且要建立数学模型,还要对数学模型进行数学推导和论证,对数学结果进行检验和评价。也就是说,数学之应用,它不仅表现为一种工具,一种语言,而且是一种方法,是一种思维模式。根据数学应用的广泛性特点,数学学法指导还要指导学生建立和操作数学模型,以及进行检验和评价。

从数学学习的角度出发,就是要通过对数学学习过程的考察,引申出数学学法指导的内容和策略。关于数学学习的过程,比较新颖的观点是:“在原有行为结构与认知结构的基础上,或是将环境对象纳入其间(同化),或是因环境作用而引起原有结构的改变(顺应),于是形成新的行为结构与认知结构,如此不断往复,直到达成相对的适应性平衡”[5]。通过对这一认识的分析和理解,就数学学法指导而言,可概括出以下3点:

1.行为结构既是学习新知的目的和结果,又是学习新知的基础,因而在数学教学中亦需注重外部行为结构形成的指导。由于这种外部行为主要包括外部实物操作和外部符号(主要是语言)活动,所以在数学学法指导中,一要重视学具的操作(可要求学生尽可能多地制作学具,操作学具);二要重视学生的言语表达(给学生尽可能多地提供言语交流的机会,可以是教师与学生间的交流,也可以是学生与学生之间的交流)。

2.认知结构同样既是学习新知的目的和结果,也是学习新知的基础,故而数学教学要加强数学认知结构形成的指导。所谓数学认知结构,是指学生头脑中的知识结构按自己的理解深度、广度,结合自己的感觉、知觉、记忆、思维等认知特点,组合成的一个具有内部规律的整体结构。因此,对于学生形成数学认知结构的指导,关键在于不断地提高所呈现的数学知识和经验的结构化程度。在数学学法指导中,须注意如下几点:①加强数学知识间联系的教学。无论是新知识的引入和理解,还是巩固和应用,尤其是知识的复习和整理,都要从知识间的联系出发。②重视数学思想的挖掘和渗透。由于数学思想是对数学的本质的认识,因而数学思想是数学知识结构建立的基础。常见的数学思想有:符号思想、对应思想、数形结合思想、归纳思想、公理化思想、模型化思想等等。③注重数学方法的明晰教学。数学方法作为解决问题的手段,是建立数学知识结构的桥梁。常见的数学方法有:化归法、构造法、参数法、变换法、换元法、配方法、反证法、数学归纳法等。

3.在原有行为结构与认知结构的基础上,无论是通过同化,还是通过顺应来获得新知,必须是在一种学习机制的作用下方能实现。而这种学习机

制主要就是对学习新知过程的监控和调节,即所谓的元学习。实质上,能否会学,关键就在于这种学习是否建立起来。于是,元学习的指导又成为数学方法指导的重要内容。为此,在数学学法指导中,需要注意:①要传授程序性知识和情境性知识。程序性知识即是对数学活动方式的概括,如遇到一个数学证明题该先干什么,后干什么,再干什么,就是所谓的程序性知识。情境性知识即是对具体数学理论或技能的应用背景和条件的概括,如掌握换元法的具体步骤,获得换元技能,懂得在什么条件下应用换元法更有效,就是一种情境性知识。②尽可能让学生了解影响数学学习(数学认知)的各种因素。比如,学习材料的呈现方式是文字的、字母的,还是图形的;学习任务是计算、证明,还是解决问题,等等。这些学习材料和学习任务方面的因素,都对数学学习产生影响。③要充分揭示数学思维的过程。比如,揭示知识的形成过程、思路的产生过程、尝试探索过程和偏差纠正过程。④帮助学生进行自我诊断,明确其自身数学学习的特征。比如:有的学生擅长代数,而认知几何较差;有的学生记忆力较强而理解力较弱;还有的学生口头表达不如书面表达等。⑤指导学生对学习活动进行评价。如评价问题理解的正确性、学习计划的可行性、解题程序的简捷性、解题方法的有效性等诸多方面。⑥帮助学生形成自我监控的意识。如监控认知方向意识、认知过程意识和调节认知策略意识等等。

根据数学内容的性质,数学教学一般可分为概念教学、命题(主要有定理、公式、法则、性质)教学、例题教学、习题教学、总结与复习等5类。相应地,数学学法指导的实施亦需分别落实到这5类教学之中。这里仅就例题教学中如何实施数学学法指导谈谈自己的认识。

1.根据学生的学情安排例题。如前所述,学习新知必须建立在已有的基础之上,从内容上讲,这个基础既包括知识基础,又包括认知水平和认知能力,还包括学习兴趣、认知意识,乃至学习态度等有关学习动力系统方面的准备。因此,无论是选配例题,还是安排例题,都要考虑到学生的学习情况,尤其是要考虑激发学生认知兴趣和认知需求的原则(称之为动机原则)。在例题选配和安排中,可采取增、删、调的策略,力求既突出重点,又符合学生的学情。所谓增,即根据学生的认知缺陷增补铺垫性例题,或者为突破某个难点增加过渡性例题。所谓删,即根据学生情况,删去比较简单的例题或要求过高的难题。所谓调,即根据学生的实际水平,将后面的例题调至前面先教,或者将前面的例题调到后面后教。

2.根据学习目标和任务精选例题。例题的作用是多方面的,最基本的莫过于理解知识,应用知识,巩固知识;莫过于训练数学技能,培养数学能力,发展数学观念。为发挥例题的这些基本作用,就要根据学习目标和任务选配例题。具体的策略是:增、删、并。这里的增,即为突出某个知识点、某项数学技能、某种数学能力等重点内容而增补强化性例题,或者根据联系社会发展的需要,增加补充性例题。这里的删,即指删去那些作用不大或者过时的例题。所谓并,即为突出某项内容把单元内前后的几个例题合并为一个例题,或者为突出知识间的联系打破单元界限而把不同内容的例题综合在一起。

3.根据解题的心理过程设计例题教学程序。按照波利亚的解题理论,一般把解题过程分为弄清问题、拟定计划、实现计划、回顾等4个阶段。这是针对解题过程本身而言的。但就解题教学来说,还应当增加一个步骤,也是首要环节,即要使学生“进入问题情境”,让学生产生一种认知的需要。对于“进入问题情境”环节,要求教师用简短的语言,在承上启下中,提出学习目标,明确学习任务,激起认知冲突。而对其余4个环节,教师的行为可按波利亚的“怎样解题表”中的要求去构思。一般教师和学生都能够注意做到做好前3个环节,却容易忽视“回顾”环节。

严格说来,回顾环节对解题能力的提高,对例题教学目的的实现起着不可替代的作用。对回顾环节来讲,除波利亚提出的几条以外,更为主要的是对解题方法的概括和反思,并使其能迁移到其它问题的解决之中。

4.根据数学方法指导的目的和内容适度调整例题。通常,人们根据问题的条件(A)、解决的过程(B)及问题的结论(C)的情况把数学题划分为标准题和非标准题两大类:如果条件和结论都明确,学生也熟知解题过程(即A、B、C三要素全已知),这种题为标准题(记为ABC);A、B、C三要素中缺少一个或两个要素的题则为非标准题。如果分别用X、Y、Z表示对应于A、B、C的未知成分,则非标准题的题型(计6种)可表示为:ABZ,AYC,XBC,AYZ,XBZ,XYC。数学教材中的例题大多数是ABC型和ABZ型,有部分的AYC型和极少数的AYZ型。由于数学学法指导的一项重要任务是教学生会抽象、概括、归纳、演绎,会数学地思考和交流,会分析问题和解决问题,因而例题教学要特别注重教材中缺少的几种类型题的教学。其中最为重要的是“开放性题”(ABZ型和AYZ型例题中,Z不唯一)和“数学问题解决”中所指出的“数学应用题”(AYC型及AYZ型中所涉及的主题是数学以外的内容)。对于“开放性题”,由于它的结论不唯一,对培养学生数学思维有着至关重要的作用。对于“数学应用题”,则由于它的解决要用数学模型法,因而对培养学生运用分析问题和解决问题的方法是十分重要的。从数学学法指导的角度来说,适度调整例题很有必要。调整的策略有二:一是改,即将已有的题型变换为别的题型;二是增,即增加与知识点有关的“开放性题”和“数学应用题”。

第4篇

一、数学学习的特征

由于数学有其突出的特点,所以数学学习作为学生学习的一种具体形式,也必将表现出一些特殊性来。

(一)数学学习是数学语言的学习,也是一种科学的公共语言的学习

数学学习活动基本上是数学思维活动,而数学语言是数学思维的工具,所以掌握数学语言是顺利地、有效地进行数学学习活动的重要基础之一,我们要求学生应当把对数学语言的掌握同数学知识的学习紧密地结合起来。对数学语言的学习应当从语义和语法两个方面去进行,做到“能说、会写、会用”。

数学语言被广泛运用于各门科学。无论是自然科学,还是社会科学,它们中的不少概念是用数学语言来加以精确定义的,例如瞬时速度、人口增长率等;它们中的不少法则和规律是用数学语言来加以描述的,例如体积、温度与压强三者之间的相互关系等。另外,数学语言还能帮助我们通过对实验数据的分析和处理作出科学的预测。例如,1871年海王星的发现,就与运用数学语言有密切关系。所以说,数学还是一种科学的公共语言。任何一门科学都是以对数学语言的运用程度来衡量其发展水平的。正如马克思说的那样,只有当科学能够成功地运用数学时,它才能达到完善的程度。

(二)数学学习是一个“数学化”的过程,需要较强的抽象概括能力

数学是研究现实世界的空间形式和数量关系的科学。数学源于现实,也必须寓于现实,并且用于现实,这就使数学完全脱离了具体的事实,仅考虑形式的数量关系和空间形式,决定了数学学习是一个“数学化”的过程,从而成为学生学习的各门学科当中一门最为抽象、最为概括的学科。

数学的高度抽象性和概括性主要表现在它所使用的高度形式化的数学语言上,例如,数的绝对值的“|a|”的定义形式,就采用了十分形式化的数学语言。

数学学科的这一高度抽象概括特性,容易给学生在数学学习中造成表面的形式理解,具体表现在只记住内容丰富的形式符号,而不能真正理解它的本质含义;仅能掌握形式的数学结论,而不知道结论背后的丰富事实;仅能够解答与例题类似的习题,而不能灵活运用解题方法,达到举一反三。从而出现形式和内容的脱节,具体和抽象的脱节,感性和理性的脱节。因此,在数学学习别需要进行抽象概括,只有通过逐步地从具体到抽象的概括,才能使学生真正地掌握数学知识,不仅掌握形式的数学结论,而且掌握形式结论背后的丰富事实。

(三)数学学习是一个逻辑推理的过程,需要较强的逻辑推理能力

推理是人类思维的一种重要表现形式,它是由一个或几个判断推出另一个判断的思维形式。数学是一门建立在公理体系基础上,其结论需加以严格证明的科学。数学推理的严格性和数学结论的确定性是大家所共知的。学习数学时,无论是概念的学习,还是命题的学习,或是定理的证明,习题的解决,都离不开逻辑推理,即数学证明。而数学证明所采用的逻辑形式中,最基本、最主要的就是演绎推理中的三段论。学生在整个中学阶段的数学学习中,反复学习、使用三段论来解答各种数学问题,并且还要求他们能够达到熟练掌握的程度,这对于他们演绎(逻辑)推理能力的发展无疑是极其有利的。所以从思维过程来说,数学学习就是一个逻辑推理的过程。

(四)数学学习是一个再创造的过程,需要较强的非逻辑思维能力

数学既是演绎科学,又是归纳科学;既是理论科学,又是实验科学。因此,数学思维具有“实验、猜测、想象、直觉、灵感”等特点。对于学生来说,数学学习是一个再创造的过程。这个过程要求学生除了必须具有一定的逻辑推理能力外,更需要具有非逻辑思维能力。

(五)数学学习是能使学习者形成良好心理品质、科学态度、富于创造开拓精神和良好素质的一种学习

数学除了能使学习者获得知识、发展智力和能力、形成数学观念外,还具有突出的思想品德教育功能。首先,数学中含有许多可进行爱国主义教育的内容,例如可结合数学内容,适当介绍一些我国古今数学家的伟大成就,使学生树立爱国主义思想。其次,数学中充满了辩证法,蕴涵着丰富的辩证唯物主义观点,例如对立统一(有理数的减法转化为加法)、量变质变(圆的割线绕圆外一点逐渐旋转变成切线的过程)、普遍联系(有序实数对与平面内的点之间的对应关系)、运动变化(数的概念的发展)等。再次,数学是一门特别费思考、严要求、重训练的学科。因此,数学学习有助于学生形成爱科学、有顽强意志、良好的思考习惯和勤于探索、追求真理的科学态度。最后,数学具有很大的魅力,例如数与形的完美统一、和谐简洁等,足以把学习者带入一个五彩缤纷的世界,激发他们的学习兴趣,培养他们对科学美、数学美的感受力、鉴赏力以及对美的追求和创新意识。

二、数学学习的一般过程

根据学习的认知理论可知,数学学习的过程是新的学习内容与学生原有的数学认知结构相互作用,形成新的数学认知结构的过程。依据学生认知结构的变化,可以将数学学习的一般过程划分为三个阶段,如图1所示:

图1数学学习的一般过程

(一)输入阶段

学习活动起源于新的学习情境。输入阶段实质上就是给学生提供新的数学信息和新的学习内容,并创设有利于学生观察思考、分析辨别和抽象概括的情境。在这样的学习情境中,学生原有的数学认知结构与新学习的内容之间发生认知冲突,使他们在心理上产生学习新知识的需要,这是输入阶段的关键。为了引起学习,在这一阶段中,教师一方面要设法激发学生们强烈的学习动机和学习热情;另一方面要通过一定的手段(例如必要的复习)强化与新知识有关的内容,使学生作好必要的认知准备。

(二)相互作用阶段

在学生有了学习的需要和一定的知识准备之后,当新的学习内容输入后,数学学习便进入相互作用的阶段。这时学生原有的数学知识结构与新的学习内容之间就发生相互作用。相互作用的基本形式有两种:同化和顺应。

所谓同化,就是利用自己已有的数学认知结构,对新学习的内容进行加工和改造,并将其纳入到原有的数学认知结构中去,从而扩大原有的数学认知结构。

所谓顺应,就是当原有的数学认知结构不能接纳新的学习内容时,必须对原有的数学认知结构进行调整和改造,以适应新的学习内容的需要。例如,初中一年级学生学习负有理数,就是把负有理数同化到正有理数结构中去的过程,学生在小学已形成了0和正有理数的认知结构,因此,当把负有理数的概念输入时,学生就在他们头脑中筛选出可以纳入负有理数的数学认知结构棗正有理数认知结构。根据这个结构,对负有理数进行加工改造,建立起负有理数和正有理数之间的联系:在数轴上,负有理数是0左边的数,负有理数的性质和正有理数的性质相反,负有理数的加、减运算可用正有理数来定义,等等。负有理数就被同化到正有理数认知结构中去了,原有的正有理数认知结构被扩充成有理数认知结构,这个过程可用下面的图2来表示:

图2有理数认知结构形成过程

再如,学生学习函数概念的过程就是顺应的过程。初中生刚学习函数时,原有的认知结构不能适应新的认知需要,在此之前,学生原有的认知结构中只有常量数学的有关知识,主要是代数式的恒等变形和方程、不等式的等价变形,以通过运算求得结果为目的,其主要手段是运算。而学习变量的概念,要以变化的观点来考察变量之间的相互依赖关系,研究的着眼点是“关系”,其表达的主要手段是列出解析式或描绘图象。比如,在学习函数概念之前学习圆的面积公式,是为了利用圆的半径去计算圆的面积;而在学习函数概念时,则要换个角度来考察圆的面积公式,将其看成圆的面积与半径之间相互变化所遵循的规律。显然,学生原有的认知结构不能和新的认知需要相适应,学生必须对原有认知结构进行调整,以适应新的学习需要,并建立新的数学认知结构,我们可用图3来表示这一过程:

变量及相互关系常量数学认知结构函数认知结构

同化和顺应是学习过程中学生原有数学认知结构和新学习内容相互作用的两种不同的形式;它们往往存在于同一个学习过程中,只是侧重面不同而已。例如上面所说的负有理数的学习,原有的正有理数认知结构也有所改变,以顺应新知识的学习;而在函数概念的学习中,也存在着同化的过程。

(三)操作运用阶段

第5篇

随着社会、经济、科技的高速发展,数学的应用越来越广,地位越来越高,作用越来越大。不仅如此,数学教育的实践和历史还表明,数学作为一种文化,对人的全面素质的提高具有巨大的影响。因此,提高基础教育中的数学教学质量,就显得尤为重要。可目前由于受“应试教育”的影响,数学教学中违背教育规律的现象和做法时有发生,为此更新数学教学思想、完善数学教学方法就显得更加迫切。在数学教学中,开展学法指导,正是改革数学教学的一个突破口。

对数学教学如何实施数学学习方法的指导,人们进行了许多有益的探索和实验。首先是通过观察、调查,归纳总结了中学生数学学习中存在的问题,如“学习懒散,不肯动脑;不订计划,惯性运转;忽视预习,坐等上课;不会听课,事倍功半;死记硬背,机械模仿;不懂不问,一知半解;不重基础,好高骛远;赶做作业,不会自学;不重总结,轻视复习”[1]等等。针对这些问题,提出了相应的数学学法指导的途径和方法,如数学全程渗透式(将学法指导渗透于制订计划、课前预习、课堂学习、课后复习、独立作业、学结、课外学习等各个学习环节之中)[2];建立数学学习常规(课堂常规———情境美,参与高,求卓越,求效率;课后常规———认真读书,整理笔记,深思熟虑,勇于质疑;作业常规———先复习,后作业,字迹清楚,表述规范,计算正确,填好《作业检测表》,重做错题)[3]等等。诚然,这对于端正学习态度、养成学习习惯、提高学业成绩、优化学习品质,采劝对症下药”的策略,开展对学习常规的指导,无疑会收到较好的效果。但是,数学学习方法的指导,决不能忽视数学所特有的学习方法的指导。可以说,这才是数学学法指导之内核和要害。也就是说,数学学法指导应该着重指导学生学会理解数学知识、学会解决数学问题、学会数学地思维、学会数学交流、学会用数学解决实际问题等。有鉴于此,笔者主要从“数学”、“数学学习”出发,来阐释数学学习方法,论述数学学法指导。

从数学的角度出发,就是要考察数学的特点。关于数学的特点,虽仍有争议,但传统或者说比较科学的提法仍是3条:高度的抽象性、逻辑的严谨性和应用的广泛性。

1.数学研究的对象本来是现实的,但由于数学仅从空间形式与数量关系方面来反映客观现实,所以数学是逐级抽象的产物。比如三角形形状的实物模型随处可见,多种多样,名目繁多,但数学中的“三角形”却是一种抽象的思维形式(概念),撇开了人们常见的各种三角形形状实物的诸多性质(如天然属性、物理性质等)。因此,学习数学首当其冲的是要学习抽象。而抽象又离不开概括,也离不开比较和分类,可以说比较、分类、概括是抽象的基础和前提。比如,要从已经过抽象得出的物体运动速度v=v0+at、产品的成本m=m0+at、金属加热引起的长度变化l=l0+at中再次抽象出一次函数f(x)=ax+b,显然要经过比较(它们的异同)和概括(它们的共同特征)。根据数学高度抽象性的特点,数学学法指导要强调比较、分类、概括、抽象等思维方法的指导。

2.数学结论的可靠性有其严格的要求,观察和实验不能作为论证的依据和方法,而是要经过逻辑推理(表现为证明或计算),方能得以承认。比如,“三角形内角和为180°”这个结论,通过测量的方法是不能确立的,唯有在欧氏几何体系中经过数学证明才能肯定其正确性(确定性)。在数学中,只有通过逻辑证明和符合逻辑的计算而得到的结论,才是可靠的。事实上,任何数学研究都离不开证明和计算,证明和计算是极其主要的数学活动,而通常所说的“数学思想方法往往是数学中证明和计算的方法。探求数学问题的解法也就是寻找相应的证明或计算的具体方法。从这一点上来说,证明或计算是任何一种数学思想方法的组成部分,又是任何一种数学思想方法的目标和表述形式”[4]。又由于证明和计算主要依靠的是归纳与演绎、分析与综合,所以根据数学逻辑的严谨性特点,数学学法指导要重视归纳法、演绎法、分析法、综合法的指导。

3.由于任何客观对象都有其空间形式和数量关系,因而从理论上说以空间形式与数量关系为研究对象的数学可以应用于客观世界的一切领域,即可谓宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁,无处不用数学。应用数学解决问题,不但首先要提出问题,并用明确的语言加以表述,而且要建立数学模型,还要对数学模型进行数学推导和论证,对数学结果进行检验和评价。也就是说,数学之应用,它不仅表现为一种工具,一种语言,而且是一种方法,是一种思维模式。根据数学应用的广泛性特点,数学学法指导还要指导学生建立和操作数学模型,以及进行检验和评价。

从数学学习的角度出发,就是要通过对数学学习过程的考察,引申出数学学法指导的内容和策略。关于数学学习的过程,比较新颖的观点是:“在原有行为结构与认知结构的基础上,或是将环境对象纳入其间(同化),或是因环境作用而引起原有结构的改变(顺应),于是形成新的行为结构与认知结构,如此不断往复,直到达成相对的适应性平衡”[5]。通过对这一认识的分析和理解,就数学学法指导而言,可概括出以下3点:

1.行为结构既是学习新知的目的和结果,又是学习新知的基础,因而在数学教学中亦需注重外部行为结构形成的指导。由于这种外部行为主要包括外部实物操作和外部符号(主要是语言)活动,所以在数学学法指导中,一要重视学具的操作(可要求学生尽可能多地制作学具,操作学具);二要重视学生的言语表达(给学生尽可能多地提供言语交流的机会,可以是教师与学生间的交流,也可以是学生与学生之间的交流)。

2.认知结构同样既是学习新知的目的和结果,也是学习新知的基础,故而数学教学要加强数学认知结构形成的指导。所谓数学认知结构,是指学生头脑中的知识结构按自己的理解深度、广度,结合自己的感觉、知觉、记忆、思维等认知特点,组合成的一个具有内部规律的整体结构。因此,对于学生形成数学认知结构的指导,关键在于不断地提高所呈现的数学知识和经验的结构化程度。在数学学法指导中,须注意如下几点:①加强数学知识间联系的教学。无论是新知识的引入和理解,还是巩固和应用,尤其是知识的复习和整理,都要从知识间的联系出发。②重视数学思想的挖掘和渗透。由于数学思想是对数学的本质的认识,因而数学思想是数学知识结构建立的基础。常见的数学思想有:符号思想、对应思想、数形结合思想、归纳思想、公理化思想、模型化思想等等。③注重数学方法的明晰教学。数学方法作为解决问题的手段,是建立数学知识结构的桥梁。常见的数学方法有:化归法、构造法、参数法、变换法、换元法、配方法、反证法、数学归纳法等。

3.在原有行为结构与认知结构的基础上,无论是通过同化,还是通过顺应来获得新知,必须是在一种学习机制的作用下方能实现。而这种学习机

制主要就是对学习新知过程的监控和调节,即所谓的元学习。实质上,能否会学,关键就在于这种学习是否建立起来。于是,元学习的指导又成为数学方法指导的重要内容。为此,在数学学法指导中,需要注意:①要传授程序性知识和情境性知识。程序性知识即是对数学活动方式的概括,如遇到一个数学证明题该先干什么,后干什么,再干什么,就是所谓的程序性知识。情境性知识即是对具体数学理论或技能的应用背景和条件的概括,如掌握换元法的具体步骤,获得换元技能,懂得在什么条件下应用换元法更有效,就是一种情境性知识。②尽可能让学生了解影响数学学习(数学认知)的各种因素。比如,学习材料的呈现方式是文字的、字母的,还是图形的;学习任务是计算、证明,还是解决问题,等等。这些学习材料和学习任务方面的因素,都对数学学习产生影响。③要充分揭示数学思维的过程。比如,揭示知识的形成过程、思路的产生过程、尝试探索过程和偏差纠正过程。④帮助学生进行自我诊断,明确其自身数学学习的特征。比如:有的学生擅长代数,而认知几何较差;有的学生记忆力较强而理解力较弱;还有的学生口头表达不如书面表达等。⑤指导学生对学习活动进行评价。如评价问题理解的正确性、学习计划的可行性、解题程序的简捷性、解题方法的有效性等诸多方面。⑥帮助学生形成自我监控的意识。如监控认知方向意识、认知过程意识和调节认知策略意识等等。

根据数学内容的性质,数学教学一般可分为概念教学、命题(主要有定理、公式、法则、性质)教学、例题教学、习题教学、总结与复习等5类。相应地,数学学法指导的实施亦需分别落实到这5类教学之中。这里仅就例题教学中如何实施数学学法指导谈谈自己的认识。

1.根据学生的学情安排例题。如前所述,学习新知必须建立在已有的基础之上,从内容上讲,这个基础既包括知识基础,又包括认知水平和认知能力,还包括学习兴趣、认知意识,乃至学习态度等有关学习动力系统方面的准备。因此,无论是选配例题,还是安排例题,都要考虑到学生的学习情况,尤其是要考虑激发学生认知兴趣和认知需求的原则(称之为动机原则)。在例题选配和安排中,可采取增、删、调的策略,力求既突出重点,又符合学生的学情。所谓增,即根据学生的认知缺陷增补铺垫性例题,或者为突破某个难点增加过渡性例题。所谓删,即根据学生情况,删去比较简单的例题或要求过高的难题。所谓调,即根据学生的实际水平,将后面的例题调至前面先教,或者将前面的例题调到后面后教。

2.根据学习目标和任务精选例题。例题的作用是多方面的,最基本的莫过于理解知识,应用知识,巩固知识;莫过于训练数学技能,培养数学能力,发展数学观念。为发挥例题的这些基本作用,就要根据学习目标和任务选配例题。具体的策略是:增、删、并。这里的增,即为突出某个知识点、某项数学技能、某种数学能力等重点内容而增补强化性例题,或者根据联系社会发展的需要,增加补充性例题。这里的删,即指删去那些作用不大或者过时的例题。所谓并,即为突出某项内容把单元内前后的几个例题合并为一个例题,或者为突出知识间的联系打破单元界限而把不同内容的例题综合在一起。

3.根据解题的心理过程设计例题教学程序。按照波利亚的解题理论,一般把解题过程分为弄清问题、拟定计划、实现计划、回顾等4个阶段。这是针对解题过程本身而言的。但就解题教学来说,还应当增加一个步骤,也是首要环节,即要使学生“进入问题情境”,让学生产生一种认知的需要。对于“进入问题情境”环节,要求教师用简短的语言,在承上启下中,提出学习目标,明确学习任务,激起认知冲突。而对其余4个环节,教师的行为可按波利亚的“怎样解题表”中的要求去构思。一般教师和学生都能够注意做到做好前3个环节,却容易忽视“回顾”环节。

严格说来,回顾环节对解题能力的提高,对例题教学目的的实现起着不可替代的作用。对回顾环节来讲,除波利亚提出的几条以外,更为主要的是对解题方法的概括和反思,并使其能迁移到其它问题的解决之中。

第6篇

培养学生学习数学的兴趣是学习活动中重要的心理因素。它可以使学生对数学知识有顽强的追求和积极的探索。培养兴趣应在教学过程中结合数学知识教学进行。特别是低年级学生对学习目的、任务,尚未树立起明确的认识,全凭好奇心和新鲜感。他们的学习欲望往往是从兴趣中产生的。他们乐于在轻松愉快的气氛中学习知识。根据他们的思维特征,在感知和理解教材的两大环节中,一定要重视作为非智力因素的情感过程结合教材,努力创设新奇、新异、新颖的情境,注意激发和培养学习兴趣,使直接兴趣转化为学习的间接兴趣。在数学教学中,如何提高学生学习数学的兴趣呢?

一、根据学生的特点培养学生的数学学习兴趣

抓住学生“好奇”的心理特征,创设最佳的学习环境,提高学生的学习兴趣。数学课上教师要善于利用新颖的教学方法,引起学生对新知识的好奇,诱发学生的求知欲,激发学生学习数学的兴趣。在教学的进行中,教师根据教材的重点、难点和学生的实际,在知识的生长点、转折点设计有趣的提问,以创设最佳的情境,抓住学生的好奇心,激发学生的兴趣,提高课堂的教学效果。

抓住学生“好胜”的特点,创设“成功”的情境,以激发学生和学习兴趣。学生对数学的学习兴趣是在每一主动学习活动中形成和发展的。教师要善于掌握有利时机,利用学生的好胜心鼓动、诱导、点拨帮助学生获得成功。让学生从中获得喜悦和快乐,这样再从乐中引趣,从乐中悟理,更进一步增强学生学习数学的兴趣。

二、直观形象,唤发兴趣

人的思维是从具体到抽象,从形象思维向抽象思维转化的。特别是低年级小学生的思维带有明显的具体性、形象性的特点。因此在教学过程中首先要坚持直观形象这一原则,即用具体、形象、生动的事物充分调动他们的多种感官,让他们有充分的看一看、摸一摸、听一听、说一说的机会,以丰富深化感知。

以认"2"为例,老师先出示实投:2个苹果、2只小鸟、2个小学生、2辆汽车,让学生数一数再让学生在桌上摆2根小棒,2个三角形等具体的实物来丰富学生的感性认识。学生一边摆图形,教师一边提问:"这些东西不一样,它们的数量一样吗?"从中使学生得知尽管这些东西各有不同,但数量都是"2",可以用数字"2"来表示,使他们的认识从具体到抽象,并在实物下面写"2"。再请学生讲出数量是"2"的各种各样东西,然后老师又问:"你们看到或听到’2’这个数时想到了什么?"他们说,想到人有2只手,2只脚,自行车有两个轱辘,吃饭要用2根筷子等等,从而使学生又从抽象"2"想到实物,使学生初步形成"2"的概念。

由于直观形象的方法适应了学生的思维特点,唤起了学生的学习兴趣,因而比较好地解决了低年级学生理解力差与教学概念抽象的矛盾,使学生沿着实物--表象--抽象的顺序加深了对概念的理解。自然而然地过渡到喜爱你所教的数学学科上了。达到“尊其师,信其道”的效果。

和学生进行情感交流的另一个方面是:教师通过数学或数学史学的故事等,来让学生了解数学的发展、演变及其作用,了解数学家们是如何发现数学原理及他们的治学态度等。比如:笔者给学生讲“数学之王──高斯”、“几何学之父──欧几里德”、“代数学之父──韦达”、“数学之神──阿基米德”等数学家的故事,不仅使学生对数学有了极大的兴趣,同时从中也受到了教育。起到了“动之以情,晓之以理,引之以悟,导之以行”的作用。如此培养学生学习数学的兴趣,既有助于提高我们的数学教学质量,又有助于学生素质的发展。

三、精心设疑,诱发兴趣

"学启于思,思源于疑",有疑问才能启发学生去探索。作为一名教师必须具有挖掘并把握教材中的智力因素和善于捕捉学生思维活动的动向并加以引导的能力,充分运用疑问为发展智力服务。所谓设疑,是老师有意识地将"疑"设在学生学习新旧知识的矛盾冲突之中,使学生在"疑"中生"奇","疑"中生"趣",从而达到诱发学生学习兴趣的目的。

针对学生喜欢趣味性,好奇心强的特点,在教学,"看实物口说应用题时",注意抓条件、问题和数量关系三大要素,有目的地进行多方练习。

如:老师右手拿5支铅笔,左手拿4支铅笔,一共有几支铅笔?学生回答后老师又说,一共有9支铅笔,老师右手拿5支,左手拿几支?学生说对后,老师给予表扬,接着老师又把一部分铅笔放在铅笔盒里,一部分放到手里,随之设疑提出:"你们猜一猜,铅笔盒里有几支铅笔?"这时,他们争强好胜的心理表现出来,便争先恐后地回答问题。有的说:"铅笔盒里有5支。""有的说铅笔盒里有4支。"等等,此时,教师惋惜地告诉他们:"你们猜的数都不对",老师反问:"你们知道为什么猜不对吗?"这时老师说:"这不是一道完整的题,它缺少一个总数条件,所以你们算不出来,如果老师说一共有8支铅笔,手里拿着2支铅笔,铅笔盒里一共有几支铅笔?这时同学们恍然大悟,人人积极思考争着发言。这样,学生在求知解疑的过程中,学会知识,提高能力,从而诱发了他们学习的兴趣。

四、通过游戏,激发兴趣

低年级学生爱说,爱笑,爱动,爱玩。如果在教学中忽视了这一特点,一味平铺直叙的去讲,必然使他们觉得疲劳乏味,是达不到良好的效果的,经验证明:要妥善地把他们喜欢做游戏的兴趣迁移到课堂上来,让他们充分体会到学习的乐趣,从而产生对学习的兴趣。

如:找朋友,夺红旗,开汽车,我是小小邮递员等等。如讲认数8时,就是通过这几种游戏巩固了8组成,第一,让学生从学具盒里拿出小圆片摆8的组成,第二,老师摆出1-7的数字卡片,指名学生"找对子"第三做"找朋友"的游戏,老师把1-7的数字卡分别发给7个同学,每人拿一张站在讲桌前,然后指名其中一人手拿自己的卡片站在6个同学的对面,用自己的卡片去找朋友,他的数字卡片和对面的数字卡片组成了8,大家齐说:"对!"不是8,齐说:"不对!"第四,看谁得分多,老师和同学比赛,老师拿出一张数字卡(老师慢慢的出现给学生有个思考的时间)全体同学说出和老师数字卡片组成的数,学生齐说说对了(一个不错),学生得分,如果有一个说错,老师得分,做这个游戏时,同学们更齐心了,注意力非常集中,很少有错。每当他们胜利时,都高兴地鼓起掌来。对低年级学生采用各种游戏进行教学,在教学中突出一个"活"字,学生学的轻松愉快,兴趣浓,学生积极性主动性高,能收到良好的教学效果。

几年来的教学实践证明,浓厚的学习兴趣可以激发学生的学习积极性,促使学生勤奋学习,有效地发展了学生的智力,教学质量得到了大的提高。

如何有效地激发学生的学习兴趣

托尔斯泰说过:“成功的教学所需要的不是强制,而是激发学生的兴趣。”能使学生在愉悦的气氛中学习,唤起学生强烈的求知欲望是教学成功的关键。为此,教学中在激发学生学习兴趣方面,我注意努力做好以下几点。

五、在实践活动中培养学生的兴趣

“动”是儿童的天性,教学过程中,只有自己亲自动手做一做,才会知道得更多,掌握得更牢。我抓住这一特点,引导学生主动操作。如分一分、数一数、画一画、摆一摆、拼一拼等,使一些抽象的数学概念形象化、具体化。使学生在操作中理解新知的来源与发展,体验到参与之乐、思维之趣、成功之愉。同时在教学中,我还提倡自主探索、小组合作的学习方式,不断创设有意义的问题情境和数学活动激励每一个学生自己去探索数学,独立思考,发表见解,善于倾听其他同学的不同意见,在小组交流、合作中达到共同获取知识、发展能力的目的。如在“拼积木”活动中,学习小组通过合作交流、讨论,拼成的形状各种各样。教师再加以点拨和鼓励,学生在宽松、和谐的氛围中萌发了创新意识。在“随意拼”活动中,让学生利用各种实物和立体模型,发挥自己的想象力,拼出自己喜欢的东西,学生在无拘无束的氛围中拼出了火车、大炮、坦克、长颈鹿、机器人等物体形状。这样的实践活动较好地体现了“数学来源于生活实际”和“不同的人学习不同层次的数学”,使学生在尝到学习乐趣的同时,又激发了求知的欲望

“兴趣是最好的老师。”只有学生对学习的内容感兴趣,才会产生强烈的求知欲望,自动地调动全部感官,积极主动地参与教与学的全过程。为此,教师在教学中要善于创设教学情境。根据学生的生活经验,创设学生感到亲切的情境。如通过“小猪帮小兔盖房子”学习“比多少”,通过“小动物排队”学习基数、序数。让学生觉得日常生活中充满了数学问题,对数学知识感到亲切可信,从而产生学习数学的兴趣、动机。另外要选择与儿童生活密切联系的情境。例如:通过在站台上上、下车的人数来学习加减法。学生对发生在身边的事情最容易产生兴趣,如果发生在身边的事情能用所学的知识来解决,就不但能激趣,而且能增强学生学习数学的自信心。

注意应用意识和实践能力的培养,是当前数学课程改革的重点之一。积极主动的活动是儿童获取知识、发展能力的重要途径。一年级学生掌握的数学知识较少,接触社会的范围较窄,在用数学的实践活动中,我多采取模拟现实与数学游戏相结合的形式,选择学生日常生活中经常遇到的活动内容,如跳绳、踢球、赛跑等,提出相关的数学问题,这样就可以给学生以亲切感。

总之,数学教学应紧密联系学生的生活实际,从学生的生活经验和已有知识出发,创设生动有趣的情境,引导学生观察、操作、交流等,使学生通过数学活动,掌握基本的数学知识、技能,初步学会从数学角度去观察事物,思考问题,激发对数学的兴趣以及学好数学的愿望。

练习是巩固所学知识,形成技能、技巧的必要途径,是教学的一个重要环节。要使学生保持愉快的心情、振奋的精神,教师就要从儿童的现实生活和童真世界出发,设计适于儿童心理特点的吸引学生愿意学的灵活多样的练习形式。如一题多变、开放题、找朋友、做医生等,让学生通过练习,提高学习兴趣。

六、应用恰当的方法激发学生的学习动机,培养兴趣

1使学生对学习有一个正确的认识,激发学习的动机

使学生认识到学习是现代人生存的需要。联合国教科文组织提出:未来的文盲不是不识字的人,也不是识字很少的人,而是不会学习的人。从本世纪20年代开始,随着科学技术的迅猛发展,把人类带进了信息时代,新知识的巨增和旧知识的快速老化,要求人们善于学习、终身不断地进行学习。

使学生认识到自己是学习过程中的主人。使学生明白只有自己亲自参与新知识的发现、独立解决问题、善于思辨、习惯于归纳整理,才能真正锻炼自己的思维、开发自己的智力、发展自己的能力。否则,仅仅知晓一个个问题的现成答案,自己的思维没有得到任何的锻炼,就失去了“数学是锻炼思维的体操”的作用。久而久之,定会两手空空无所收获!抓住学生“好动”的特点,创设生动的数学学习情境。好动是儿童的主要特点,所以在平时的数学教学过程中,应运用多种教学方式进行数学教学,以激发学生学习数学的兴趣。比如:采用教具演示、学具操作、游戏以及电化教学手段,让学生各种感官都动起来。

2应用恰当的学习方法,激发学生的学习动机

1)巧设悬念,激发学生学习的欲望

欲望是一种倾向于认识、研究、获得某种事物的心理特征。在学习过程中,可以通过巧设悬念,使学生对某种知识产生一种急于了解的心理,这样能够激起学生学习的欲望。例如:在讲“一元二次方程根与系数关系”一课时,先给学生讲个小故事:一天,小明去小李家看他,当时小李正在有关“解一元二次方程的习题”,小明一看就告诉小李哪道题做错了。小李非常惊讶,问小明有什么“判断的秘法”?此时,我问学生“你们想不想知道这种秘法?”。同生们异口同声地说“想!”,于是同学们非常有兴趣地上完了这节课。

2)引起认知冲突,引起学生的注意

认知冲突是人的已有知识和经验与所面临的情境之间的冲突或差异。这种认知冲突会引起学生的新奇和惊讶,并引起学生的注意和关心,从而调动学生的学习的积极性。例如:“圆的定义”的教学,学生日常生活中对圆形的实物接触得也较多,小学又学过一些与圆有关的知识,对圆具有一定的感性和理性的认识。然而,他们还无法揭示圆的本质特征。如果教师此时问学生“究竟什么叫做圆?”,他们很难回答上来。不过,他们对“圆的定义”已经产生了想知道的急切心情,这时再进行教学则事半功倍。

3)给予成功的满足

兴趣是带有情绪色彩的认识倾向。在学习中,学生如果获得成功,就会产生愉快的心情。这种情绪反复发生,学习和愉快的情绪就会建立起较为稳定的联系,学生对学习就有了一定的兴趣。正如原苏联教育家苏霍姆林斯基所说:“成功的欢乐是一种巨大的情绪力量,它可以促进儿童好好学习的愿望。请你注意无论如何不要使这种内在力量消失。”(《给教师的建议》)。

4)进行情感交流,增强学习兴趣

“感人心者莫先乎于情”,教师应加强与学生感情的交流,增进与学生的友谊,关心他们、爱护他们,热情地帮助他们解决学习和生活中的困难。作学生的知心朋友,使学生对老师有较强的信任感、友好感、亲近感,那么学

5)适当开展竞赛,提高学生学习的积极性

适当开展竞赛是激发学生学习积极性和争取优异成绩的一种有效手段。通过竞赛,学生的好胜心和求知欲更加强烈,学习兴趣和克服困难的毅力会大大加强,所以在课堂上,尤其是活动课上一般采取竞赛的形式来组织教学。

6)及时反馈,不断深化学习动机

从信息论和控制论角度看,没有信息反馈就没有控制。学生学习的情况怎样,这需要教师给予恰当地评价,以深化学生已有的学习动机,矫正学习中的偏差。教师既要注意课堂上的及时反馈,也要注意及时对作业、测试、活动等情况给予反馈。使反馈与评价相结合,使评价与指导相结合,充分发挥信息反馈的诊断作用、导向作用和激励作用,深化学生学习数学的动机。

第7篇

课堂效率在学生的学习中非常重要,教师在讲课时要注意由浅入深、由易到难,讲授速度要适合学生的接受情况。课堂上要给予学生模仿性练习的机会,要加强变式训练,使学生理解和掌握知识情况及时得到反馈。同时要针对新课标精心设计每一个教学环节,新教材多处以创设问题情境作为介绍一个新知识的开始,教师要重视创设新课的情境,激发学生的兴趣,让学生围绕教学内容展开积极的思维活动。例如找同类项,教师把写有代数式的牌子发给学生,教室四角各有一个学生拿着牌子,其他同学寻找在四个角的“同类项”。这种活动虽然会使教室乱哄哄的,却调动了学生的学习兴趣。又如,方差的概念学习。教师上课时带一个量体重的称,挑三个个头差不多的学生先称,记下数字,求平均数,也按公式计算方差。然后挑最胖、最瘦、普通的三个同学量体重,计算平均数和方差。结果发现两组学生平均数差不多,方差则区别很大。这一活动,使学生感受到方差的意义,不会忘记。还有在学习相似形时,可以先向学生出示两把大小不一的30°的直角三角尺、国旗上的五角星等,问学生:这些图形有什么特点?由于学习材料很形象,学生很容易就归纳出他们形状相同、大小不一等。这样不但顺利引入新课,而且使学生一下子就掌握了相似形的本质属性。有些学生不善于做有关图形问题,这时应提倡学生多动手操作,还可以借助直观教具,加强直观教学。例如在教三角形内角和定理时,可以这样启发的:先做一个实验,把一个三角形纸板的三个角拼在一起,发现它们组成一个平角,从而知道三角形的内角和等于180°。现在,如果不允许把三角形撕开或翻折,你有什么办法能发现三角形内角和等于度?学生的思维一下就开阔了,有的说:度量三个内角的度数,再算一算它们的和;有的说:利用尺规作图,作一个角使它等于三角形三个内角的和,再度量它的度数,或者观察它的两边是否在一条直线上;还有利用两直线平行,同位角、内错角相等的原理作辅助线。最后教师总结每一种做法的可行性和优越性,得出三角形内角和定理的另一种证明方法。这样的活动能使学生的形象思维与逻辑思维有机结合,学生容易接受而且不易遗忘,从中也学到了一些数学方法,便于以后使用。另外,教师要进行角色转换。课堂上要多留时间让学生自我消化一些,独立思考一些,要鼓励学生提出问题,促使学生走入教材、走进课堂。在平时的教学中,要培养学生自主学习的习惯,提高学生自学能力,让学生自己解决学习中的问题,让他们体验体验失败与成功。教师在评价时,特别应注意学生的进步处和闪光点,及时予以鼓励,耐心激励学生上进,增强学生的信心.这样的数学课堂一定会收到事半功倍的效果。

二、提高学生课堂参与度

真正的课堂气氛活跃是指学生思维活动活跃,而不是指对那种没有思考性的问题答来答去的表面热闹。思维总是在分析问题、解决问题的过程中进行的,在数学中没有问题就不可能引起思维。心理学的研究认为,学生思维是否活跃,除了与他们对学习某知识的目的、兴趣等有关外,主要取决于他们有否解决问题的需要。在教学中教师若能给学生创设这种“愤”和“悱”的情境,即创设存在问题和发现问题的情境,就能使学生的思维活跃起来,从而生动活泼地、主动地去探求和掌握知识。例如,在讲授“平行线的判定”时,可以这样给学生提出问题:如果你面前有两条直线,问你这两条直线是不是平行线?你如何做出判断呢?这时学生会回答:我就看这两条直线是不是相交,如果不相交,那么这两条直线就是平行线。然后教师就在黑板上画出两条眼睛看见是不相交的直线,让学生做出判断。此时,学生会不假思索的判断为平行线,于是教师提出疑问:你能肯定地说这两条直线是不相交的直线吗?我们现在看到的这一部分是不相交的,但你能肯定的说在远处它们也是不相交的吗?这一问促使学生思考,经过思考,学生会对自己先前做出的判断产生动摇,发现自己做出判断的根据并不充分,从而懂得直接根据平行线的定义去进行判断是很困难的,由此激发思维的积极性,并跟随教师一道去探索判断两条直线平行的判定方法。

三、引导学生养成良好的学习习惯,掌握正确的学习方法

1.引导学生课内重视听讲,课后及时复习。学生对新知识的接受,数学能力的培养,主要在课堂上进行,所以教师要重视课堂效率,帮助学生寻求正确的学习方法。在上课时,应引导学生紧跟老师的思路,积极展开思维,预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。特别要引导学生抓住基础知识和基本技能的学习,课后要及时指导叙述复习,不留疑点。要指导学生在做各种习题之前将老师所讲的知识点回忆一遍,使之正确掌握各类公式的推理过程。要求学生认真独立完成作业,勤于思考,不要不懂就问。有些题目,学生一时难以解出,也要让他们冷静下来,认真分析题目,尽量自己解决。教师还要指导学生在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来,交织成知识网络,纳入学生的知识体系.

2.指导学生适当多做题,养成良好的解题习惯。要想学好数学,多做题目是必不可少的。而要使学生熟悉掌握各种题型的解题思路,教师要刚要从基础题入手,以课本上的习题为准,使学生反复练习,打好基础。此外再找一些课外的习题,以帮助学生开拓思路,提高他们的分析、解决能力,使之掌握一般的解题规律。对于一些易错题,要让学生备有错题集,指导他们写出解题思路和正确的解题过程,然后引导他们将两者进行比较,找出错误所在,以便及时更正。要培养学生在平时养成良好的解题习惯,让他们的精力高度集中,大脑兴奋,思维敏捷,能够进入最佳状态。如此,在考试中就能运用自如。实践证明越到关键的时候,学生所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,就会在大考中充分暴露。因此,在平时要训练学生养成良好的解题习惯。

由此可见,要使学生学好数学,就要使学生了解数学学科的特点,帮助他们找到适合自己的学习方法,使他们进入到数学的广阔天地中去。在数学教学中,教师要采取正确的态度和方法,不失时机地关心学生,引导他们,鼓励他们。教师应切切实实做一些事情,让学生喜欢数学,学好数学,用数学解决生活中的一些问题。

第8篇

一、数学学习的特征

由于数学有其突出的特点,所以数学学习作为学生学习的一种具体形式,也必将表现出一些特殊性来。

(一)数学学习是数学语言的学习,也是一种科学的公共语言的学习

数学学习活动基本上是数学思维活动,而数学语言是数学思维的工具,所以掌握数学语言是顺利地、有效地进行数学学习活动的重要基础之一,我们要求学生应当把对数学语言的掌握同数学知识的学习紧密地结合起来。对数学语言的学习应当从语义和语法两个方面去进行,做到“能说、会写、会用”。

数学语言被广泛运用于各门科学。无论是自然科学,还是社会科学,它们中的不少概念是用数学语言来加以精确定义的,例如瞬时速度、人口增长率等;它们中的不少法则和规律是用数学语言来加以描述的,例如体积、温度与压强三者之间的相互关系等。另外,数学语言还能帮助我们通过对实验数据的分析和处理作出科学的预测。例如,1871年海王星的发现,就与运用数学语言有密切关系。所以说,数学还是一种科学的公共语言。任何一门科学都是以对数学语言的运用程度来衡量其发展水平的。正如马克思说的那样,只有当科学能够成功地运用数学时,它才能达到完善的程度。

(二)数学学习是一个“数学化”的过程,需要较强的抽象概括能力

数学是研究现实世界的空间形式和数量关系的科学。数学源于现实,也必须寓于现实,并且用于现实,这就使数学完全脱离了具体的事实,仅考虑形式的数量关系和空间形式,决定了数学学习是一个“数学化”的过程,从而成为学生学习的各门学科当中一门最为抽象、最为概括的学科。

数学的高度抽象性和概括性主要表现在它所使用的高度形式化的数学语言上,例如,数的绝对值的“|a|”的定义形式,就采用了十分形式化的数学语言。

数学学科的这一高度抽象概括特性,容易给学生在数学学习中造成表面的形式理解,具体表现在只记住内容丰富的形式符号,而不能真正理解它的本质含义;仅能掌握形式的数学结论,而不知道结论背后的丰富事实;仅能够解答与例题类似的习题,而不能灵活运用解题方法,达到举一反三。从而出现形式和内容的脱节,具体和抽象的脱节,感性和理性的脱节。因此,在数学学习别需要进行抽象概括,只有通过逐步地从具体到抽象的概括,才能使学生真正地掌握数学知识,不仅掌握形式的数学结论,而且掌握形式结论背后的丰富事实。

(三)数学学习是一个逻辑推理的过程,需要较强的逻辑推理能力

推理是人类思维的一种重要表现形式,它是由一个或几个判断推出另一个判断的思维形式。数学是一门建立在公理体系基础上,其结论需加以严格证明的科学。数学推理的严格性和数学结论的确定性是大家所共知的。学习数学时,无论是概念的学习,还是命题的学习,或是定理的证明,习题的解决,都离不开逻辑推理,即数学证明。而数学证明所采用的逻辑形式中,最基本、最主要的就是演绎推理中的三段论。学生在整个中学阶段的数学学习中,反复学习、使用三段论来解答各种数学问题,并且还要求他们能够达到熟练掌握的程度,这对于他们演绎(逻辑)推理能力的发展无疑是极其有利的。所以从思维过程来说,数学学习就是一个逻辑推理的过程。

(四)数学学习是一个再创造的过程,需要较强的非逻辑思维能力

数学既是演绎科学,又是归纳科学;既是理论科学,又是实验科学。因此,数学思维具有“实验、猜测、想象、直觉、灵感”等特点。对于学生来说,数学学习是一个再创造的过程。这个过程要求学生除了必须具有一定的逻辑推理能力外,更需要具有非逻辑思维能力。

(五)数学学习是能使学习者形成良好心理品质、科学态度、富于创造开拓精神和良好素质的一种学习

数学除了能使学习者获得知识、发展智力和能力、形成数学观念外,还具有突出的思想品德教育功能。首先,数学中含有许多可进行爱国主义教育的内容,例如可结合数学内容,适当介绍一些我国古今数学家的伟大成就,使学生树立爱国主义思想。其次,数学中充满了辩证法,蕴涵着丰富的辩证唯物主义观点,例如对立统一(有理数的减法转化为加法)、量变质变(圆的割线绕圆外一点逐渐旋转变成切线的过程)、普遍联系(有序实数对与平面内的点之间的对应关系)、运动变化(数的概念的发展)等。再次,数学是一门特别费思考、严要求、重训练的学科。因此,数学学习有助于学生形成爱科学、有顽强意志、良好的思考习惯和勤于探索、追求真理的科学态度。最后,数学具有很大的魅力,例如数与形的完美统一、和谐简洁等,足以把学习者带入一个五彩缤纷的世界,激发他们的学习兴趣,培养他们对科学美、数学美的感受力、鉴赏力以及对美的追求和创新意识。二、数学学习的一般过程

根据学习的认知理论可知,数学学习的过程是新的学习内容与学生原有的数学认知结构相互作用,形成新的数学认知结构的过程。依据学生认知结构的变化,可以将数学学习的一般过程划分为三个阶段,如图1所示:

图1数学学习的一般过程

(一)输入阶段

学习活动起源于新的学习情境。输入阶段实质上就是给学生提供新的数学信息和新的学习内容,并创设有利于学生观察思考、分析辨别和抽象概括的情境。在这样的学习情境中,学生原有的数学认知结构与新学习的内容之间发生认知冲突,使他们在心理上产生学习新知识的需要,这是输入阶段的关键。为了引起学习,在这一阶段中,教师一方面要设法激发学生们强烈的学习动机和学习热情;另一方面要通过一定的手段(例如必要的复习)强化与新知识有关的内容,使学生作好必要的认知准备。

(二)相互作用阶段

在学生有了学习的需要和一定的知识准备之后,当新的学习内容输入后,数学学习便进入相互作用的阶段。这时学生原有的数学知识结构与新的学习内容之间就发生相互作用。相互作用的基本形式有两种:同化和顺应。

所谓同化,就是利用自己已有的数学认知结构,对新学习的内容进行加工和改造,并将其纳入到原有的数学认知结构中去,从而扩大原有的数学认知结构。

所谓顺应,就是当原有的数学认知结构不能接纳新的学习内容时,必须对原有的数学认知结构进行调整和改造,以适应新的学习内容的需要。例如,初中一年级学生学习负有理数,就是把负有理数同化到正有理数结构中去的过程,学生在小学已形成了0和正有理数的认知结构,因此,当把负有理数的概念输入时,学生就在他们头脑中筛选出可以纳入负有理数的数学认知结构棗正有理数认知结构。根据这个结构,对负有理数进行加工改造,建立起负有理数和正有理数之间的联系:在数轴上,负有理数是0左边的数,负有理数的性质和正有理数的性质相反,负有理数的加、减运算可用正有理数来定义,等等。负有理数就被同化到正有理数认知结构中去了,原有的正有理数认知结构被扩充成有理数认知结构,这个过程可用下面的图2来表示:

图2有理数认知结构形成过程

再如,学生学习函数概念的过程就是顺应的过程。初中生刚学习函数时,原有的认知结构不能适应新的认知需要,在此之前,学生原有的认知结构中只有常量数学的有关知识,主要是代数式的恒等变形和方程、不等式的等价变形,以通过运算求得结果为目的,其主要手段是运算。而学习变量的概念,要以变化的观点来考察变量之间的相互依赖关系,研究的着眼点是“关系”,其表达的主要手段是列出解析式或描绘图象。比如,在学习函数概念之前学习圆的面积公式,是为了利用圆的半径去计算圆的面积;而在学习函数概念时,则要换个角度来考察圆的面积公式,将其看成圆的面积与半径之间相互变化所遵循的规律。显然,学生原有的认知结构不能和新的认知需要相适应,学生必须对原有认知结构进行调整,以适应新的学习需要,并建立新的数学认知结构,我们可用图3来表示这一过程:

变量及相互关系常量数学认知结构函数认知结构

同化和顺应是学习过程中学生原有数学认知结构和新学习内容相互作用的两种不同的形式;它们往往存在于同一个学习过程中,只是侧重面不同而已。例如上面所说的负有理数的学习,原有的正有理数认知结构也有所改变,以顺应新知识的学习;而在函数概念的学习中,也存在着同化的过程。

(三)操作运用阶段

第9篇

培养学生学习数学的兴趣是学习活动中重要的心理因素。它可以使学生对数学知识有顽强的追求和积极的探索。培养兴趣应在教学过程中结合数学知识教学进行。特别是低年级学生对学习目的、任务,尚未树立起明确的认识,全凭好奇心和新鲜感。他们的学习欲望往往是从兴趣中产生的。他们乐于在轻松愉快的气氛中学习知识。根据他们的思维特征,在感知和理解教材的两大环节中,一定要重视作为非智力因素的情感过程结合教材,努力创设新奇、新异、新颖的情境,注意激发和培养学习兴趣,使直接兴趣转化为学习的间接兴趣。在数学教学中,如何提高学生学习数学的兴趣呢?

一、根据学生的特点培养学生的数学学习兴趣

抓住学生“好奇”的心理特征,创设最佳的学习环境,提高学生的学习兴趣。数学课上教师要善于利用新颖的教学方法,引起学生对新知识的好奇,诱发学生的求知欲,激发学生学习数学的兴趣。在教学的进行中,教师根据教材的重点、难点和学生的实际,在知识的生长点、转折点设计有趣的提问,以创设最佳的情境,抓住学生的好奇心,激发学生的兴趣,提高课堂的教学效果。

抓住学生“好胜”的特点,创设“成功”的情境,以激发学生和学习兴趣。学生对数学的学习兴趣是在每一主动学习活动中形成和发展的。教师要善于掌握有利时机,利用学生的好胜心鼓动、诱导、点拨帮助学生获得成功。让学生从中获得喜悦和快乐,这样再从乐中引趣,从乐中悟理,更进一步增强学生学习数学的兴趣。

二、直观形象,唤发兴趣

人的思维是从具体到抽象,从形象思维向抽象思维转化的。特别是低年级小学生的思维带有明显的具体性、形象性的特点。因此在教学过程中首先要坚持直观形象这一原则,即用具体、形象、生动的事物充分调动他们的多种感官,让他们有充分的看一看、摸一摸、听一听、说一说的机会,以丰富深化感知。

以认"2"为例,老师先出示实投:2个苹果、2只小鸟、2个小学生、2辆汽车,让学生数一数再让学生在桌上摆2根小棒,2个三角形等具体的实物来丰富学生的感性认识。学生一边摆图形,教师一边提问:"这些东西不一样,它们的数量一样吗?"从中使学生得知尽管这些东西各有不同,但数量都是"2",可以用数字"2"来表示,使他们的认识从具体到抽象,并在实物下面写"2"。再请学生讲出数量是"2"的各种各样东西,然后老师又问:"你们看到或听到’2’这个数时想到了什么?"他们说,想到人有2只手,2只脚,自行车有两个轱辘,吃饭要用2根筷子等等,从而使学生又从抽象"2"想到实物,使学生初步形成"2"的概念。

由于直观形象的方法适应了学生的思维特点,唤起了学生的学习兴趣,因而比较好地解决了低年级学生理解力差与教学概念抽象的矛盾,使学生沿着实物--表象--抽象的顺序加深了对概念的理解。自然而然地过渡到喜爱你所教的数学学科上了。达到“尊其师,信其道”的效果。

和学生进行情感交流的另一个方面是:教师通过数学或数学史学的故事等,来让学生了解数学的发展、演变及其作用,了解数学家们是如何发现数学原理及他们的治学态度等。比如:笔者给学生讲“数学之王──高斯”、“几何学之父──欧几里德”、“代数学之父──韦达”、“数学之神──阿基米德”等数学家的故事,不仅使学生对数学有了极大的兴趣,同时从中也受到了教育。起到了“动之以情,晓之以理,引之以悟,导之以行”的作用。如此培养学生学习数学的兴趣,既有助于提高我们的数学教学质量,又有助于学生素质的发展。

三、精心设疑,诱发兴趣

"学启于思,思源于疑",有疑问才能启发学生去探索。作为一名教师必须具有挖掘并把握教材中的智力因素和善于捕捉学生思维活动的动向并加以引导的能力,充分运用疑问为发展智力服务。所谓设疑,是老师有意识地将"疑"设在学生学习新旧知识的矛盾冲突之中,使学生在"疑"中生"奇","疑"中生"趣",从而达到诱发学生学习兴趣的目的。

针对学生喜欢趣味性,好奇心强的特点,在教学,"看实物口说应用题时",注意抓条件、问题和数量关系三大要素,有目的地进行多方练习。

如:老师右手拿5支铅笔,左手拿4支铅笔,一共有几支铅笔?学生回答后老师又说,一共有9支铅笔,老师右手拿5支,左手拿几支?学生说对后,老师给予表扬,接着老师又把一部分铅笔放在铅笔盒里,一部分放到手里,随之设疑提出:"你们猜一猜,铅笔盒里有几支铅笔?"这时,他们争强好胜的心理表现出来,便争先恐后地回答问题。有的说:"铅笔盒里有5支。""有的说铅笔盒里有4支。"等等,此时,教师惋惜地告诉他们:"你们猜的数都不对",老师反问:"你们知道为什么猜不对吗?"这时老师说:"这不是一道完整的题,它缺少一个总数条件,所以你们算不出来,如果老师说一共有8支铅笔,手里拿着2支铅笔,铅笔盒里一共有几支铅笔?这时同学们恍然大悟,人人积极思考争着发言。这样,学生在求知解疑的过程中,学会知识,提高能力,从而诱发了他们学习的兴趣。

四、通过游戏,激发兴趣

低年级学生爱说,爱笑,爱动,爱玩。如果在教学中忽视了这一特点,一味平铺直叙的去讲,必然使他们觉得疲劳乏味,是达不到良好的效果的,经验证明:要妥善地把他们喜欢做游戏的兴趣迁移到课堂上来,让他们充分体会到学习的乐趣,从而产生对学习的兴趣。

如:找朋友,夺红旗,开汽车,我是小小邮递员等等。如讲认数8时,就是通过这几种游戏巩固了8组成,第一,让学生从学具盒里拿出小圆片摆8的组成,第二,老师摆出1-7的数字卡片,指名学生"找对子"第三做"找朋友"的游戏,老师把1-7的数字卡分别发给7个同学,每人拿一张站在讲桌前,然后指名其中一人手拿自己的卡片站在6个同学的对面,用自己的卡片去找朋友,他的数字卡片和对面的数字卡片组成了8,大家齐说:"对!"不是8,齐说:"不对!"第四,看谁得分多,老师和同学比赛,老师拿出一张数字卡(老师慢慢的出现给学生有个思考的时间)全体同学说出和老师数字卡片组成的数,学生齐说说对了(一个不错),学生得分,如果有一个说错,老师得分,做这个游戏时,同学们更齐心了,注意力非常集中,很少有错。每当他们胜利时,都高兴地鼓起掌来。对低年级学生采用各种游戏进行教学,在教学中突出一个"活"字,学生学的轻松愉快,兴趣浓,学生积极性主动性高,能收到良好的教学效果。

几年来的教学实践证明,浓厚的学习兴趣可以激发学生的学习积极性,促使学生勤奋学习,有效地发展了学生的智力,教学质量得到了大的提高。

如何有效地激发学生的学习兴趣

托尔斯泰说过:“成功的教学所需要的不是强制,而是激发学生的兴趣。”能使学生在愉悦的气氛中学习,唤起学生强烈的求知欲望是教学成功的关键。为此,教学中在激发学生学习兴趣方面,我注意努力做好以下几点。五、在实践活动中培养学生的兴趣

“动”是儿童的天性,教学过程中,只有自己亲自动手做一做,才会知道得更多,掌握得更牢。我抓住这一特点,引导学生主动操作。如分一分、数一数、画一画、摆一摆、拼一拼等,使一些抽象的数学概念形象化、具体化。使学生在操作中理解新知的来源与发展,体验到参与之乐、思维之趣、成功之愉。同时在教学中,我还提倡自主探索、小组合作的学习方式,不断创设有意义的问题情境和数学活动激励每一个学生自己去探索数学,独立思考,发表见解,善于倾听其他同学的不同意见,在小组交流、合作中达到共同获取知识、发展能力的目的。如在“拼积木”活动中,学习小组通过合作交流、讨论,拼成的形状各种各样。教师再加以点拨和鼓励,学生在宽松、和谐的氛围中萌发了创新意识。在“随意拼”活动中,让学生利用各种实物和立体模型,发挥自己的想象力,拼出自己喜欢的东西,学生在无拘无束的氛围中拼出了火车、大炮、坦克、长颈鹿、机器人等物体形状。这样的实践活动较好地体现了“数学来源于生活实际”和“不同的人学习不同层次的数学”,使学生在尝到学习乐趣的同时,又激发了求知的欲望

“兴趣是最好的老师。”只有学生对学习的内容感兴趣,才会产生强烈的求知欲望,自动地调动全部感官,积极主动地参与教与学的全过程。为此,教师在教学中要善于创设教学情境。根据学生的生活经验,创设学生感到亲切的情境。如通过“小猪帮小兔盖房子”学习“比多少”,通过“小动物排队”学习基数、序数。让学生觉得日常生活中充满了数学问题,对数学知识感到亲切可信,从而产生学习数学的兴趣、动机。另外要选择与儿童生活密切联系的情境。例如:通过在站台上上、下车的人数来学习加减法。学生对发生在身边的事情最容易产生兴趣,如果发生在身边的事情能用所学的知识来解决,就不但能激趣,而且能增强学生学习数学的自信心。

注意应用意识和实践能力的培养,是当前数学课程改革的重点之一。积极主动的活动是儿童获取知识、发展能力的重要途径。一年级学生掌握的数学知识较少,接触社会的范围较窄,在用数学的实践活动中,我多采取模拟现实与数学游戏相结合的形式,选择学生日常生活中经常遇到的活动内容,如跳绳、踢球、赛跑等,提出相关的数学问题,这样就可以给学生以亲切感。

总之,数学教学应紧密联系学生的生活实际,从学生的生活经验和已有知识出发,创设生动有趣的情境,引导学生观察、操作、交流等,使学生通过数学活动,掌握基本的数学知识、技能,初步学会从数学角度去观察事物,思考问题,激发对数学的兴趣以及学好数学的愿望。

练习是巩固所学知识,形成技能、技巧的必要途径,是教学的一个重要环节。要使学生保持愉快的心情、振奋的精神,教师就要从儿童的现实生活和童真世界出发,设计适于儿童心理特点的吸引学生愿意学的灵活多样的练习形式。如一题多变、开放题、找朋友、做医生等,让学生通过练习,提高学习兴趣。

六、应用恰当的方法激发学生的学习动机,培养兴趣

1使学生对学习有一个正确的认识,激发学习的动机

使学生认识到学习是现代人生存的需要。联合国教科文组织提出:未来的文盲不是不识字的人,也不是识字很少的人,而是不会学习的人。从本世纪20年代开始,随着科学技术的迅猛发展,把人类带进了信息时代,新知识的巨增和旧知识的快速老化,要求人们善于学习、终身不断地进行学习。

使学生认识到自己是学习过程中的主人。使学生明白只有自己亲自参与新知识的发现、独立解决问题、善于思辨、习惯于归纳整理,才能真正锻炼自己的思维、开发自己的智力、发展自己的能力。否则,仅仅知晓一个个问题的现成答案,自己的思维没有得到任何的锻炼,就失去了“数学是锻炼思维的体操”的作用。久而久之,定会两手空空无所收获!抓住学生“好动”的特点,创设生动的数学学习情境。好动是儿童的主要特点,所以在平时的数学教学过程中,应运用多种教学方式进行数学教学,以激发学生学习数学的兴趣。比如:采用教具演示、学具操作、游戏以及电化教学手段,让学生各种感官都动起来。

2应用恰当的学习方法,激发学生的学习动机

1)巧设悬念,激发学生学习的欲望

欲望是一种倾向于认识、研究、获得某种事物的心理特征。在学习过程中,可以通过巧设悬念,使学生对某种知识产生一种急于了解的心理,这样能够激起学生学习的欲望。例如:在讲“一元二次方程根与系数关系”一课时,先给学生讲个小故事:一天,小明去小李家看他,当时小李正在有关“解一元二次方程的习题”,小明一看就告诉小李哪道题做错了。小李非常惊讶,问小明有什么“判断的秘法”?此时,我问学生“你们想不想知道这种秘法?”。同生们异口同声地说“想!”,于是同学们非常有兴趣地上完了这节课。

2)引起认知冲突,引起学生的注意

认知冲突是人的已有知识和经验与所面临的情境之间的冲突或差异。这种认知冲突会引起学生的新奇和惊讶,并引起学生的注意和关心,从而调动学生的学习的积极性。例如:“圆的定义”的教学,学生日常生活中对圆形的实物接触得也较多,小学又学过一些与圆有关的知识,对圆具有一定的感性和理性的认识。然而,他们还无法揭示圆的本质特征。如果教师此时问学生“究竟什么叫做圆?”,他们很难回答上来。不过,他们对“圆的定义”已经产生了想知道的急切心情,这时再进行教学则事半功倍。

3)给予成功的满足

兴趣是带有情绪色彩的认识倾向。在学习中,学生如果获得成功,就会产生愉快的心情。这种情绪反复发生,学习和愉快的情绪就会建立起较为稳定的联系,学生对学习就有了一定的兴趣。正如原苏联教育家苏霍姆林斯基所说:“成功的欢乐是一种巨大的情绪力量,它可以促进儿童好好学习的愿望。请你注意无论如何不要使这种内在力量消失。”(《给教师的建议》)。

4)进行情感交流,增强学习兴趣

“感人心者莫先乎于情”,教师应加强与学生感情的交流,增进与学生的友谊,关心他们、爱护他们,热情地帮助他们解决学习和生活中的困难。作学生的知心朋友,使学生对老师有较强的信任感、友好感、亲近感,那么学

5)适当开展竞赛,提高学生学习的积极性

适当开展竞赛是激发学生学习积极性和争取优异成绩的一种有效手段。通过竞赛,学生的好胜心和求知欲更加强烈,学习兴趣和克服困难的毅力会大大加强,所以在课堂上,尤其是活动课上一般采取竞赛的形式来组织教学。

6)及时反馈,不断深化学习动机

从信息论和控制论角度看,没有信息反馈就没有控制。学生学习的情况怎样,这需要教师给予恰当地评价,以深化学生已有的学习动机,矫正学习中的偏差。教师既要注意课堂上的及时反馈,也要注意及时对作业、测试、活动等情况给予反馈。使反馈与评价相结合,使评价与指导相结合,充分发挥信息反馈的诊断作用、导向作用和激励作用,深化学生学习数学的动机。

第10篇

关键词:激励兴趣中学数学学习效率

哈佛大学教授威廉。詹姆士研究发现:一个人要是没有受到激励,仅能发挥其能力的20%—30%;如果受到正确而充分的激励,就能发挥到80%—90%,甚至更高。由此可见,在数学教学中,如何正确而充分的激励学生,发挥其能力至关重要。以下内容详细介绍如何运用激励手段提高中学生数学学习效率。

所谓“激励”,就是激发鼓励人的行为动机,使人做出努力行为,从而有效完成预定目标的过程,也就是调动人的积极性。把管理心理学中的激励运用到初中数学教学,激励学生学习,培养学生的学习兴趣,从而提高学生学习效率。

一.在教学过程中,常常遇到这种情况:能力相当的学生会取得不同的成绩,甚至能力差的学生可能比能力强的学生成绩更好。

原因是多方面的,但最主要的是由于激励的程度和效果不同所致。一般来说,学生的成绩主要受两个因素影响:一是能力,二是动机激发程度。他们的关系可表现为:学习成绩=能力x动机激发程度从式子可以看出,学生成绩的好坏主要取决于其能力和动机激发程度的乘积,能力越强,动机激发程度越高,成绩就越好。在这两个影响因素中,能力是个人的心理特征,其提高需要经过一个过程,而动机激发则是较易变化而且可以控制的因素。所以,在一般情况下,成绩与动机激发程度成正比,能力稍差,可以通过激发学习动机来弥补。在学习中,能力不怎么强的学生,通过自己刻苦努力而取得较高成就的例子是屡见不鲜的,其原因就是这些学生有着强烈的学习动机或内驱力。因此,提高学生学习成绩的关键,是如何通过激励调动起人的积极性。能力再强,但若不能进行有效的激励,也难以取得良好的成绩。

二.数学教学中激励原则:

首先,激励要因人而异。由于不同学生的不同情况,所以,激励要因人而异,一些学生的成绩很好,可以激励他们把成绩提高到一个更高的水平,给他们制定一个更高的目标;一些学生的成绩一般或者不好,可以激励他们达到一个可以完成的目标。如果学生的目标都是同一个水平,成绩好的学生觉得没有动力,轻松达到目标,进丧失进取心;对成绩差的学生会来说或许是一个遥遥不可及的目标,觉得反正达不到就不想学等。因此,给学生制定一个合理的目标很重要。

其次,激励要做到奖惩适度。奖励和惩罚不适度都会影响激励效果,如果学生在上数学课无精打采、开小差、不交数学作业等等,可以给惩罚,但惩罚过重会让学生感到不公,或者失去对数学学习的信心等;惩罚过轻会让学生轻视错误的严重性,从而可能还会犯同样的错误。如果学生数学成绩提升很快或者考试考得很好,可以可以奖励。但奖励过重会使学生产生骄傲和满足的情绪,失去进一步提高自己的欲望;奖励过轻则起不到激励效果,或者让学生产生不被重视的感觉。

再次,激励要做到公平合理。公平性是一个很重要的原则,学生感到的任何不公的待遇都会影响他的学习效率和学习情绪,并且影响激励效果。取得同等成绩的学生一定要获得同等层次的奖励;同理犯同等错误的学生也应受到同等层次的处罚。犯同样错误学生应该同等处理,不要应为好生就可以优待或者特殊等等。

第四,激励要注重时效性。激励要及时地进行,这样才能最大限度地激励学生。比如某某同学在数学全国竞赛中获得名次,应即使表扬,不要等到该比赛过了几个月了才来表扬。学生的积极性早也大打折扣了,对于表扬无所谓了。

第三.激励在数学教学中具体运用

第一,数学是一门很灵活的学科,不能单纯地讲授课本“死”知识,应多鼓励学生去探究,积极培养学生学习的兴趣。孔子曰:“知之者不如好之者,好之者不如乐之者。”意思说,干一件事,知道它,了解它不如爱好它,爱好它不如乐在其中。“好”和“乐”就是愿意学,喜欢学,这就是兴趣。兴趣是最好的老师,有兴趣才能产生爱好,爱好它就要去实践它,达到乐在其中,有兴趣才会形成学习的主动性和积极性。在数学学习中,我们把这种从自发的感性的乐趣出发上升为自觉的理性的“认识”过程,这自然会变为立志学好数学,成为数学学习的成功者。教师可以通过指导学生阅读著名数学家的传记,课堂精心设疑,一题多解及灵活多变的等等教学方法培养学生学习的兴趣,鼓励学生去深入探究,让学生体会到学习数学的乐趣。

第二:在数学教育中采用——榜样激励。榜样激励,也叫做典型示范,就是通过榜样〔先进典型)来教育学生、鼓舞学生、激发学生积极性的一种方法。榜样是一面旗帜,具有一定的生动性和鲜明性,容易引起人们在感情上的共鸣。同时,有了榜样,使得大家学有方向,赶超有目标,而且看得见、摸得着,说服力强,号召力大。教师要善于发现榜样,积极扶植和培养榜样,宣传榜样,组织大家学习榜样。

第三.在数学教学中,给学生制定一个合理课实现的目标,激励学生,提高学生的积极性,让学生有被动学习转变到主动学习,由消极学习到积极学习。对于学生达到目标可以进行适度的表扬或者奖励,让学生有进一步努力的动力;如果达到目标什么表扬或者奖励都没有,会造成学生逐渐失去对数学的学习兴趣和丧失信心,难于提高学生的学习效率,难于达到目标。

第四.激励学生各方面能力全面发展。

数学是一门抽象的学科,要求学生的逻辑推理能力、抽象思维能力、计算能力、空间想象能力和分析解决问题能力有意识培养学生的各方面能力。这些能力是在不同的数学学习环境中得到培养的。在平时教学中要注意开发不同的学习场所,积极鼓励学生参与一切有益的学习实践活动,如数学第二课堂、数学竞赛、智力竞赛等活动。鼓励学生平时注意观察,比如,空间想象能力是通过实例净化思维,把空间中的实体高度抽象在大脑中,并在大脑中进行分析推理。其它能力的培养都必须学习、理解、训练、应用中得到发展。特别是,教师为了培养这些能力,会精心设计“智力课”和“智力问题”比如对习题的解答时的一题多解、举一反三的训练归类,应用模型、电脑等多媒体教学等,都是为数学能力的培养开设的好课型,在这些课型中,学生务必要用全身心投入、全方位智力参与,最终达到各方面能力的全面发展。

第11篇

一、求新——提供新鲜的东西引起兴趣

题型新目前课本中的题型几乎被计算题、应用题、证明题“垄断”。笔者在教学中注意使用客观性题型,如选择题、是非题、改错题、匹配题等新“包装”,让学生有耳目一新的感觉。如为了提高学生的阅读能力,在学习勾股定理及逆定理之后,设计了这样一道题:

例1阅读下列题目的解题过程:

已知a、b、c为ABC的三边,且满足:

a2c2-b2c2=a4-b4

试判断ABC的形状。

解a2c2-b2c2=a4-b4(A)

c2(a2-b2)=(a2+b2)(a2-b2)(B)

c2=a2+b2(C)ABC为直角三角形(D)

问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号__。

(2)错误的原因为____。

(3)本题正确的结论是____。

这样的题型,由于解题过程较简洁,用时少,学生乐于解。

题材新为了激发兴趣,可根据数学内容,设计一些适合学生爱好的新题。如在教学一元一次方程应用时,笔布置了这样一道题:

例2在97年全国足球甲级A组的前九轮比赛中,大连万达队保持不败,共积分25分,按比赛规则:胜一场得3分,平一场得一分,问该队共胜了几场球?

这种短小精悍的新题,难度不大,可使一些“足球迷”即兴求解。从而以这样的新“产品”,以新引思,以新促思,以新成思。

二、求活——挖掘习题本身的内在力量保持兴趣

思维方法活为了让学生在解题时保持兴趣,可给学生提供一些能用多种方法解决问题的习惯。如学了等腰三角形性质,要求学生解答:

例3如图1,ABC是等腰三角形:AB=AC,倘若不小心,它的一部分被墨水涂及。想一想:有什么办法把原来的等腰ABC重新画出来?

学生一见题后,兴趣就生,想出了一种方法后,兴趣不减,继续考虑。结果在作业本上出现了三种方法:①作∠B=∠C;②作BC的中垂线;③对折。

思维成果活如教了浓度配比应用题后,我将课本上一道练习改为如下题:

例4把含盐15%的盐水20千克改制成含盐20%的盐水,怎么办?

“怎么办?”这样一个灵活性较强的问题,打破“陈规旧习”的束缚,引起学生从不同角度进行分析思考。提高浓度的途径有:使盐水中的盐变多——加盐;使盐水中的水变少——蒸发水。由此提出两个不同的问题:①需加多少盐?②需蒸发多少水?从而使问题的思路明朗化。学生的思维沿着不同的方向展开,最终得到两种不同的答案。

再如在解几何题时,根据课本习题,可故意隐去一些结论,让学生去解答、猜想、证明,迎合学生希望自己是一个发现者、探索者的欲望,给他们创设一种“探索”的感受意境;使其在解题中感到乐趣无穷。

三、求近——揭示知识的应用价值提高兴趣

在习题中揭示出知识的应用价值,让学生体验到数学在他们周围世界的力量,真切感受到所学的知识是有用的,学用结合,可以大大提高学生的作业兴趣。

贴近生活实际为了让学生从解决“身边发生”的问题中去认识学习数学的重要性,可设计一些这样的习题。如在学习了不等式的内容后,笔者设置了:

例5某家长经商一批货,如果本月一日售出,可获利100元,然后可将本利都存入银行,已知银行月息为2.4%;如果下月一日售出,可获利120元,但要付5元保管费。试向这批货物何时售出(本月一日还是下月一日)最好?

提示:设这批货的本金为x元,则两种售法收益之差为

(x+100)(1+2.4%)-(x+120-5)=0.024x-12.6.

又如学习了三角形内角和定理后,让学生解:

例6一块形状为三角形的玻璃破碎后,如图2,重新配时需要带去几块?

通过这些发生在学生周围的学用结合的习题,不但使学生用了课本知识,还解决了实际问题,能使学生产生强烈的求知欲,提高作业兴趣。

贴近社会热点随着社会主义市场经济的建立,商品经济已成为当今社会的热点问题。为了让学生及早接触这方面的知识,提高解决实际问题的能力,可在习题中给予渗透。如结合函数的内容,让学生练习:

例7某商店以每瓶15元的单价出售化妆品,这种化妆品的制造和销售成本是每瓶8元。另外每天的固定经费费用400元(如取暖费、租金、保险金等)。现求这个商店每天应产销多少瓶化妆品才能获得利润300元?若每天销50瓶,是亏损还是盈利?

第12篇

关键词:数学学习;学习动机;学习兴趣

学习动机是推动学生进行学习活动的内在原因,是激励、指引学生学习的强大动力。心理学研究表明,当学生的心理处于压抑、不满,失去信心时将直接阻碍、削弱甚至中断智力活动,破坏学习的动力,当然也谈不上学习效率。没有数学学习动机,就像汽车没有发动机。在初中数学学习方面,学生如果有了强烈的数学学习动机,就有了数学学习的积极性、主动性,就能变“要我学习”为“我要学习”。所以,只有培养学生学习数学的内在动机,才能提高学生学习数学的效率。如何在教学中激发和培养学生的学习动机,并使动机得以持久,进而转化成学习的动力呢?下面是笔者在教学过程中的一点认识:

一、使学生对学习数学产生一定的兴趣和充分的认识,是激发学习动机的前提

传统的数学教学模式是以教师——课堂——书本为中心的,课堂教学是一种固定不变的模式,即预习新课——讲授新课——练习巩固。即使在学习环节中注重了预习,也是为了更好地讲授新课,为了更快地让学生接受新知。久而久之,客观上导致了学生思维的依赖性和惰性,因而也就根本谈不上让学生主动学习、主动探索,以至于学习上失去了兴趣。只有极大地激发学生学习的兴趣,才能培养学生的学习动机,才能提高学习质量。而让学生对学习数学有充分的认识,我们需做到以下几点:

1.引导学生明确学习成绩只是对数学学习的一种检验,重要的是通过数学知识的学习过程,培养学生在独立分析、认识问题后能运用所学的数学知识解决实际问题;培养学生的创造性思维,使学生的智力水平得到更好地培养和发展。学习的浓厚兴趣是推动学生数学学习的一种最实际的内在动力,只有培养数学学习兴趣,才能激发学生的数学学习动机。

2.使学生认识到学习数学是现代人生存的需要。联合国教科文组织提出:未来的文盲不是不识字的人,也不是识字很少的人,而是不会学习的人。从本世纪20年代开始,随着科学技术的迅猛发展,把人类带进了信息时代,新知识的巨增和旧知识的快速老化,要求人们善于学习、终身不断地进行学习。

3.使学生认识到自己是学习过程中的主人。使学生明白只有自己亲自参与新知识的发现、独立解决问题、善于思辨、习惯于归纳整理,才能真正锻炼自己的思维、开发自己的智力、发展自己的能力。否则,仅仅知晓一个个问题的现成答案,自己的思维没有得到任何的锻炼,就失去了“数学是锻炼思维的体操”的作用。久而久之,定会两手空空,无所收获!

二、运用恰当的方法,激发学生的学习动机

1.自然、生动、新奇地引入新课

真正的数学是丰富多彩的,而不是复杂的、枯燥的数字游戏,它有着实实在在、生动活泼的生活背景。从生活中来的数学才会是“活”的数学、有意义的数学。例如:在“中位数和众数”一节中引入材料以奥运会的相关图片和新闻为切入点。这样既复习旧知,又自然引入新知,让学生真切感受到“生活中处处有数学”、“人人学有价值的数学”、“人人学有用的数学”。这样“身临其境”地学数学,就能很好地沟通书本知识与学生的经验世界和生活世界,同时也能激发学生的求知欲。

2.设悬念,激发学生学习的欲望

欲望是一种倾向于认识、研究、获得某种事物的心理特征。在学习过程中,可以通过巧设悬念,使学生对某种知识产生一种急于了解的心理,这样能够激起学生学习的欲望。例如:在讲“一元二次方程根与系数关系”一课时,先给学生讲个小故事:一天,小明去小李家看他,当时小李正在成解一元二次方程的习题,小明一看就告诉小李哪道题做错了。小李非常惊讶,问小明有什么“判断的秘法”?此时,笔者问学生:“你们想不想知道这种秘法?”同学们异口同声地说“想!”于是同学们非常有兴趣地上完了这节课。

3.引起认知冲突,引起学生的注意

认知冲突是人的已有知识和经验与所面临的情境之间的冲突或差异。这种认知冲突会引起学生的新奇和惊讶,并引起学生的注意和关心,从而调动学生的学习的积极性。例如“圆的定义”的教学,学生日常生活中对圆形的实物接触得也较多,小学又学过一些与圆有关的知识,对圆具有一定的感性和理性的认识。然而,他们还无法揭示圆的本质特征。如果教师此时问学生“究竟什么叫做圆?”他们很难回答上来。不过,他们对“圆的定义”已经产生了想知道的急切心情,这时再进行教学则事半功倍。

4.进行情感交流,培养师生感情

“感人心者莫先乎于情”,教师应加强与学生感情的交流,增进与学生的友谊,关心他们、爱护他们,热情地帮助他们解决学习和生活中的困难。作学生的知心朋友,使学生对教师有较强的信任感、友好感、亲近感,那么学生自然而然地过渡到喜爱你所教的数学学科上了,达到“尊其师,信其道”的效果。

和学生进行情感交流的另一个方面是:教师通过数学或数学史学的故事等来让学生了解数学的发展、演变及其作用,了解数学家们是如何发现数学原理及他们的治学态度等。比如:笔者给学生讲“数学之王——高斯”、“几何学之父——欧几里德”、“代数学之父——韦达”、“数学之神——阿基米德”等数学家的故事,不仅使学生对数学有了极大的兴趣,同时从中也受到了教育,起到了“动之以情,晓之以理,引之以悟,导之以行”的作用。

5.适当开展竞赛,提高学生学习的积极性

适当开展竞赛是激发学生学习积极性和争取优异成绩的一种有效手段。通过竞赛,学生的好胜心和求知欲更加强烈,学习兴趣和克服困难的毅力会大大加强。所以,在课堂上,尤其是活动课上,笔者一般都会采取竞赛的形式来组织教学。如男女同学抢答竞赛,小组抢答竞赛等。笔者发现,每次上活动课时,同学们都非常期待和兴奋,这是学生感兴趣的一种表现,是学习数学的一个好苗头。在竞赛过程中,同学们很活跃,思维也很敏捷,反应速度一次比一次快。其实,学生年纪还小,爱玩是他们的天性,这种寓教于乐的模式无疑具有不可抵挡的吸引力和巨大的潜力,在游戏当中学生不知不觉就锻炼了自己的思维能力,达到了潜移默化的功效。

6.及时反馈

从信息论和控制论角度看,没有信息反馈就没有控制。学生学习的情况怎样,这需要教师给予恰当的评价,以深化学生已有的学习动机,矫正学习中的偏差。教师既要注意课堂上的及时反馈,也要注意及时对作业、测试、活动等情况给予反馈,使反馈与评价相结合,使评价与指导相结合,充分发挥信息反馈的诊断作用、导向作用和激励作用,深化学生学习数学的动机。

当通过反馈,了解到一个小的教学目标已达到后,要再次“立障”、“设疑”,深化学生的学习动机,使学生始终充满学习动力。比如“提公因式法因式分解”的教学中,当学生对形如:am+an,a(m+n)+b(m+n)的多项式会分解以后,再提出新问题:形如a(m-n)+b(n-m)的多项式如何利用提公因式的方法因式分解呢?只有这样才能使学生的思维始终处于积极参与学习过程的状态,才能真正地深化学生的学习动机。

7.让每一位学生尝到成功的喜悦

心理学研究表明:动机的产生和保持有赖于成功。学生在数学学习中不断取得成功后会带来无比快乐和自豪的感觉,产生成就感,继而对数学产生亲切感,驱使他们向着第二次成功、第三次成功……迈进,形成稳定持续的动机。所以,教师必须从学生实际出发,设计和创设竞争和成功的机会,让不同层次的学生按问题的坡度都能够“跳一跳,够得着”,进而增强学好数学的信心。

总之,要激发学生学习的动机,首先是使学生对学习有一个正确的认识,这是学习动力的源泉。而后是激发学习动机的技术性问题,即如何激发学生的学习动机,激发学生学习动机的方式和手段也是多种多样的,只要教师们有效地利用上述手段来调动学生学习的积极性,学生就有可能学得积极主动并学有成效。超级秘书网:

参考文献:

[1]王振宏.学习动机的认知理论与应用[M].北京:中国社会科学出版社,2009.

第13篇

现代教育心理学告诉我们,学生学习分为机械学习和有意义学习两种。机械学习是一种形式上死记硬背的学习,它只能使学生获得虚假的知识(假知)。假知没有“活性”,既不能迁移,更不能运用。有意义学习是一种以思维为核心的理解性的学习,它可以使学生获得真正的知识(真知)。这种知识是有心理意义的,它有机地纳入学生原有的认知结构中去,转化成为学生自己的心理品质、自己的血肉,成为“我的知识”,学生记得准确而又牢固,还能用得迅速而又合理。正因为如此,当代所有的教育心理学家都竭力主张有意义学习,反对机械学习。小学数学课堂教学怎样才能让学生进行有意义的学习呢?美国当代著名的认知教育心理学家奥苏伯尔认为,有意义学习必须具备两个先决条件,即认知基础和情感动力。为此我们在课堂教学导入环节中应着重强调抓好以下几点:(1)确立认知停靠点。认知基础是决定学生进行有意义学习的一个最重要的内部因素。这是因为,从学生的认知发展角度来说,任何新知识都是在原有的旧知识的基础上生长起来的。换句话说,学生对新知识的掌握总是借助旧知识而实现的。新知识好比一条船,旧知识好比锚桩,头脑里原有的认知结构就好比港湾。没有锚桩,船就无法停泊在港湾。旧知识是学习新知识的认知停靠点,为此,在新课导入中要引导学生对旧知识进行复习,搞好铺垫,架起“认知桥梁”,做到温故知新。比如在学小数的除法时,就要先复数是整数的除法法则和商不变性质;在教比较复杂的求平均数应用题时,先复习一下以前学过的简单的求平均数的问题。因为没有前者,后者就失去了落脚点,学习便只能是机械地进行。苏霍姆林斯基说得好:“教给学生能借助已有的知识去获取新知识,这是最高的教学技巧之所在。”(2)寻找情感激发点。在有意义学习中,学生必须具备有意义学习的心态,表现为积极主动地把新知识与原有认知结构中的适当观念加以联系的倾向性。这种倾向性就是教学中的情感动力,没有这种情感动力,新旧知识的相互作用、相互结合就不能积极发生。为此新课导入设计一定要激发学生学习的情感。激发学生学习情感,一般有两种途径:一是通过列举典型、说明意义、明确目的,使学生感到有学习和探求的需要。如在教比例尺一节时,教师通过阐明比例尺知识在设计图纸和画地图等活动中的广泛应用,使学生明确学习目的,从而激发学习积极性和提高学习自觉性;二是通过设置疑问,创设悬念,造成知识冲突等,使学生产生强烈的问题意识和求知欲。如在教“通分”一节时,教师有意让学生在比较3/4和5/6的大小时“卡壳”,制造悬念,创设问题情境,使学生在迫切要求的求知状态下变“要我学”为“我要学”。

有意义学习过程是思维活动和心灵活动的统一,为此我们在授新课过程中还应着重强调抓好以下“两点”,即思维展开点和心灵交流点。

新旧知识的相互同化、相互作用,只能是在学生思维活动中才能实现。正因为如此,我们才说,有意义学习是一种以思维为核心的理解性学习,没有思维,就谈不上理解。为此教师在讲授活动中一定要引导学生展开充分的思维,“自奋其力,自致其知。”那么教师应在哪些地方引导学生展开充分的思维呢?我们认为,教材的重点、难点和关键点、容易混淆的知识点、容易出现错误的知识点、有助于智能开发的知识点均是思维的展开点。以数学概念教学为例,概念所反映对象的范围、概念定义中的关键词语、概念定义中词语的严密性、概念的语言表达方法、概念中的“特例”与“一般”、概念间的相互联系等等,都应是思维展开点。教师只有引导学生在这些地方展开充分的思维,学生才能真正理解概念、掌握概念。我们在以往的教学中对“思维展开”重视不够,表现有二:一是以学生认识的特殊性为理由,抹煞数学知识形成的思维过程,让学生走捷径,直接地消极接受现成的结论,这是导致学生机械学习的一大原因。二是片面夸大教师的主导作用。教师把应由学生独立思考和解决的难点、疑点和关键点全部代替包办了。这种课堂教学活动具有极大的片面性,是导致学生机械学习的另一原因。我们感到,引导学生展开充分的思维活动之所以显得特别重要,乃是因为这一过程不仅是学生主动获得真知的过程,而且也是学生思维品质和思维能力真正有效发展的过程。

有意义学习过程是一个涉及教师在学生理性和情绪两方面的动态的人际过程。为此,教师不仅要在认识上引导学生展开充分的思维,而且要在情感上与学生进行不断的心与心的交流。师生之间只有保持心灵上的交流,才能创设一种和谐、祥和、友爱和宽松的课堂气氛,从而使学生处于无拘无束、心情舒畅、心情振奋的心理状态之中。实际上,也只有在这种心理状态中,学生的思维活动才能真正充分地、深刻地、创造性地展开。那么,教师怎样与学生进行心灵交流呢?我们认为最重要的首先是关注,教师在课堂教学全过程中始终都要积极地关注班上的每个学生。教师讲授时,眼睛不能只看书本和教案,而应该与学生保持交流,连在角落处的学生都能感受到教师的亲切目光。请学生起来回答问题时,教师更应全神贯注地、友好地注视他。其次是激励。教学的艺术不在于传授本领,而在于激励、唤醒和鼓舞。“说得好”、“说得很有道理”等赞扬和激励学生的话应常挂在教师嘴上,即使对于说错的学生,也决不能漠然置之,更不能随意责难,而是要想方设法减轻学生因发言不好而带来的心理压力,并在适当时候再给机会,让他尝试获得成功的欢乐。

心灵交流如同肥沃的土地,思维和知识的种子就播在这片土壤上,有意义学习因此也就在深层次上把知和情有机地统一起来。

第14篇

论文摘要:合作学习作为课程改革所倡导的三大学习方式之一,越来越被广大教师所认可,正成为当今课堂教学的一个亮点。但实际教学中有不少课堂的合作学习只停留在形式上,实效性不高。为了提高合作学习的实效性,教师必须在深入钻研教材和充分了解学生特点的基础上,对合作学习的内容、目标和时间进行充分、科学、精心的预设。

合作学习就是师生共同协作、共同参与、共同探究的学习方式,它主要在于分工合作,协同作战,用团队精神面对困难,用构建的群体力量战胜困难,在合作学习中主要通过讨论、争辩、表达、倾听及参与实践等形式来展开,让学生在活动中体会到合作的作用,有意识地引导学生参加实践活动培养他们的实践意识、合作意识,是现代课堂教学的必然趋势。

一、精心预设,选择合作学习的内容

选择恰当的合作学习内容是保证小组合作学习有效性的前提和关键。教师在课前要根据教学内容、学生实际和教学环境条件等,选择有价值的内容,精心设计小组合作学习的“问题”,为学生提供适当的、带有一定挑战性的学习对象或任务。

数学课堂教学的合作学习的内容,可以是教师在教学的重点和难点处设计的探究性、发散性、矛盾性的问题,也可以是学生在质疑问难中主动提出的问题,但并非所有的学习内容都适于合作学习,过于简单、结构良好、只有单一答案的学习任务,如简单计算之类的学习内容就不适合于合作学习。因此,教师要精心选择合作学习的内容,依据学生的数学认知,把那些具有思考性、开放性、趣味性,必须发挥小组集体智慧的内容才让学生进行合作学习。

例如教学“梯形面积的计算”一课,寻找梯形面积的计算方法时,教师可以组织学生进行小组合作学习和动手操作,通过画、剪、割、补、拼等实践活动,去发现梯形面积的计算方法,并通过小组交流将自已的观点、想法、收获告诉同学,同时倾听其他同学的意见。通过小组合作学习,使学生在讨论、争辩、互助的过程中进一步归纳出梯形面积的计算公式梯形的面积=(上底+下底)×高÷2=(a+b)h÷2。

又如教学“统计”时,教师可设计“统计某路口1分钟通过的车辆的情况”,由于是播放录像,速度比较快,各种车辆目不暇接地从学生眼前通过,学生一时统计不下来,这正是教师的设计意图:让学生想到要寻求合作,这样既能亲身经历统计的全过程,又能很好地感悟集体协作的威力。结果学生分工有的统计摩托车、有的统计小轿车,而写字太慢的学生就画“正”字来表示车辆通过数等等…·许多办法都让学生们你一言我一语地凑出来了。

此外,学生个人思考和探索有困难、需要互相启发的学习内容,答案多样性、问题涉及面大的学习内容也适合采用小组合作学习的方式,让学生在学习小组内冷静的思考、理智地分析。

总之,教师要深入了解班级学生的实际及教材的特点,精心预设,精选小组合作学习的内容,才能充分发挥学生的主体地位,有效地促进学生知识的发展和能力的提高,真正发挥小组合作学习的实效性。

二、合作学习的积极参与策略

学生主体性的实现,需要其自身的主体意识发展到一定的水平,而主体意识的最终形成又是以人的自我意识发展水平、思维能力为制约条件的。因此,学生在学习过程中,单凭自身的学习水平,难以达到理想效果,但学生在合作学习中借助积极参与各项活动,可以产生交互影响,使他们从感性上形象地体会其自身的主体地位及其意义,以达到主体地位的感性实现“合作”必须“参与”,只有“参与”才能“互动”,参与互动越多,越积极,主体地位的感性体验越强烈,主体意识就越强,从而激发学生进一步提高参与互动的积极性和自觉性。

全程参与“合作学习”教学仍以班级授课为基础,以合作学习小组为基本活动形式,其基本教学模式为合作设计——小组活动——反馈评比——归纳点讲。因此,无论是在哪一个教学阶段,教师都要巧妙设计,促进学生的有效参与。

差异参与:由于学生的学习水平是存在差异的。因此,在分组学习过程中,教师应根据学生的性别、成绩、能力等方面的差异组成异质小组,这样才能保证组与组之间同质平衡性和组内成员之间异质的互补性,充分体现“组内合作,组间竞争”的特点。为全员参与、全程参与提供保障。

三、营造民主平等氛围的策略

教学动态因素之间的情感交融,是调动学生积极参与合作学习的动力源泉之一,日本心理学家菊池亲夫指出:教师态度温和这一变量与学生学习成绩之间是正相关。有的教师在教学过程中与学生问的心理距离非常近,他的一个手势,一个眼神都调动学生的注意力,他的拍肩摸头也会使学生因此受到鼓舞。

在合作学习中促进师生间的情感交融,可以从师生互爱、生生互爱、人格平等、教学民主等四个方面来实现。

师生互爱:师生间沟通的渠道是教师对学生的爱和学生对教师的爱。爱是学生的基本心理需求,爱是形成良好师生关系的核心。“没有爱就没有教育”。教师是学生掌握知识发展个性的导航者和引路人,理应受到学生足够的尊重,但教师在教学中要以诚待生,以情育人,通过各种渠道与学生建立浓厚的情感基础,使学生感到学习生活的愉快。

在合作学习中,如果达不到师生互爱,有些学生就可能出现不喜欢老师所教学科,也就不可能促进组内全员合作学习的效果。因为老师布置的学习任务,个别同学或几个同学就可能不按老师要求去办,这样组内其它成员或组长必然出面干涉,由此就可能激发组内成员之间的矛盾,影响合作学习。

生生互爱:在合作学习中,生生互爱显得尤为重要。因为合作学习是以小组为单位进行学习的,而小组间的各成员是异质的,在学习过程中强调相互影响,共同探究,共同提高。只有生生互爱,才会相互尊重,相互帮助,相互促进,避免优生一言堂,差生闲着玩,甚至出现优生瞧不起差生,排挤差生的现象。

“智者多虑必有一失,愚者千虑必有一得”,在合作学习中,生生互爱,相互尊重,人人都认真对待他人意见,就会达到人人都想说,敢说;人人都想做,敢做。达到人人都在原有的基础上得到一定的提高。

人格平等:在合作学习的环境中,各动态因素之间在人格上应该是平等的,无论是教师与学生之间,还是学生与学生之间都应该是平等的。只有师生之间的关系平等了,教师才会融入每个合作学习小组之中,把自己当作学生中的一员,倾听学生意见,尊重学生的观点,学生才敢把老师当作朋友,坦露直言。因此,人格平等有助于培养同学之间的合作意识,合作精神,有利于促进同学之间学习的共同提高,也有助于学生创造思维的发挥。超级秘书网

教学民主:教学民主,在合作学习教学过程中,主要体现为“观点开放”和“教学对话”两种。

“观点开放”即除了原则性很强的是非问题之外,对许多争论性的、假说性的、未有定论的、尚有分歧的各种观点,应持开放性的态度。这不仅是一种教学民主,而且是一种科学态度,它能让儿童从小适应各种不同观点及争论环境,激发他们追求真知的欲望,达到“百家争鸣,去粗取精,去伪存真”的目的。

“教学对话”即在课堂教学中,实现真正的生动活泼的适合少年儿童心理特点的活动。主要采用学生在合作学习中,相互提问,发表个人不同见解,并以此作为人共同对话的理由和动机。教师要尽可能在“同一等级上”,在事先未确定的道路上开展语言交流活动。

第15篇

(1)便于对数学教学活动进行较为全面系统的回顾和反思,以总结经验,找准问题,发扬成绩,纠正错误;

(2)把握中学生学习数学的心理状态,加强教学活动的针对性,提高数学课程教学的质量和效益;

(3)试图探讨影响数学教学质量的因素及与素质教育相悖的有关问题,使数学学科价值能够在教育过程中得到充分展现和有效发挥,更好地为实施"科教兴国"战略和现代化建设服务。

中学生数学学习的心理障碍,是指影响、制约、阻碍中学生积极主动和持久有效地学习数学知识、训练创造性思维、发展智力、培养数学自学能力和自学习惯的一种心理状态,也即是中学生在数学学习过程中因"困惑"、"曲解"或"误会"而产生的一种消极心理现象。其主要表现有以下几个方面:

1.依赖心理

数学教学中,学生普遍对教师存有依赖心理,缺乏学习的主动钻研和创造精神。一是期望教师对数学问题进行归纳概括并分门别类地一一讲述,突出重点难点和关键;二是期望教师提供详尽的解题示范,习惯于一步一步地模仿硬套。事实上,我们大多数数学教师也乐于此道,课前不布置学生预习教材,上课不要求学生阅读教材,课后也不布置学生复习教材;习惯于一块黑板、一道例题和演算几道练习题。长此以往,学生的钻研精神被压抑,创造潜能遭扼杀,学习的积极性和主动性逐渐丧失。在这种情况下,学生就不可能产生"学习的高峰体验"--高涨的激励情绪,也不可能在"学习中意识和感觉到自己的智慧力量,体验到创造的乐趣"。

2.急躁心理

急功近利,急于求成,盲目下笔,导致解题出错。

一是未弄清题意,未认真读题、审题,没弄清哪些是已知条件,哪些是未知条件,哪些是直接条件,哪些是间接条件,需要回答什么问题等;

二是未进行条件选择,没有"从贮存的记忆材料中去提缺题设问题所需要的材料进行对比、筛选,就"急于猜解题方案和盲目尝试解题";

三是被题设假象蒙蔽,未能采用多层次的抽象、概括、判断和准确的逻辑推理;

四是忽视对数学问题解题后的整体思考、回顾和反思,包括"该数学问题解题方案是否正确?是否最佳?是否可找出另外的方案?该方案有什么独到之处?能否推广和做到智能迁移等等"。

3.定势心理

定势心理即人们分析问题、思考问题的思维定势。在较长时期的数学教学过程中,在教师习惯性教学程序影响下,学生形成一个比较稳固的习惯性思考和解答数学问题程序化、意向化、规律化的个性思维策略的连续系统--解决数学问题所遵循的某种思维格式和惯性。不可否认,这种解决数学问题的思维格式和思维惯性是数学知识的积累和解题经验、技能的汇聚,它一方面有利于学生按照一定的程序思考数学问题,比较顺利地求得一般同类数学问题的最终答案;另一方面这种定势思维的单一深化和习惯性增长又带来许多负面影响,如使学生的思维向固定模式方面发展,解题适应能力提高缓慢,分析问题和解决问题的能力得不到应有的提高等。

4.偏重结论

偏重数学结论而忽视数学过程,这是数学教学过程中长期存在的问题。从学生方面来讲,同学间的相互交流也仅是对答案,比分数,很少见同学间有对数学问题过程的深层次讨论和对解题方法的创造性研究,至于思维变式、问题变式更难见有涉及。从教师方面来讲,也存在自觉不自觉地忽视数学问题的解决过程,忽视结论的形成过程,忽视解题方法的探索,对学生的评价也一般只看"结论"评分,很少顾及"数学过程"。从家长方面来讲,更是注重结论和分数,从不过问"过程"。教师、家长的这些做法无疑助长了中学生数学学习的偏重结论心理。发展下去的结果是,学生对定义、公式、定理、法则的来龙去脉不清楚,知识理解不透彻,不能从本质上认识数学问题,无法形成正确的概念,难以深刻领会结论,致使其智慧得不到启迪,思维的方法和习惯得不到训练和养成,观察、分析、综合等能力得不到提高。

此外,还有自卑心理、自谅心理、迷惘心理、厌学心理、封闭心理等等。这些心理障碍都不同程度地影响、制约、阻碍着中学生学习数学的积极性和主动性,使数学教学效益降低,教学质量得不到应有的提高。

中学生产生数学学习心理障碍的原因是复杂的,既有教师、家长、社会方面的因素,也有中学生自身的因素。具体地讲,存在的影响因素有如下一些:

①"应试教育"大气候影响,片面追求升学率、题海战术使得教师和学生都忙于应付;

②对素质教育缺乏科学的全面的理解;

③教育质量评估体系和标准有待于进一步完善;

④数学学科价值还未真正被广大教师和学生所认识;

⑤教法单调死板,缺乏针对性、趣味性和灵活性;

⑥学法指导不够,学生学习方法不对头;等等。

如何引导中学生克服数学学习的心理障碍,增强数学教学的吸引力?这是数学教法研究的重要课题。笔者认为,必须转变教学观念,从"应试教育"转到素质教育的轨道上来,坚持"四重、三到、八引导",把握学生的心理状态,调动学生学习数学的积极性和创造性,使学生真正领悟和体会到学习数学的无穷乐趣,进而爱学、乐学、会学、学好。

"四重",即重基储重实际、重过程、重方法。

1.重基础

就是教师要认真钻研大纲和教材,严格按照大纲提取知识点,突出重点和难点,让学生清楚教学内容的知识结构体系及其各自在结构体系中的地位和作用。

2.重实际

一是指教师要深入调查研究,了解学生实际,包括学生学习、生活、家庭环境,兴趣爱好,特长优势,学习策略和水平等等;

二是指数学教学内容要尽量联系生产生活实际;

三是要加强实践,使学生在理论学习过程中初步体验到数学的实用价值。

3.重过程

揭示数学过程,既是数学学科体系的要求也是人类认识规律的要求,同时也是培养学生能力的需要。"从一定意义上讲,学生利用''''数学过程''''来学习方法和训练技能,较之掌握知识本身更具有重要的意义"。一是要揭示数学问题的提出或产生过程;二是要揭示新旧知识的衔接、联系和区别;三是要揭示解决问题的思维过程和思维方法;四是要对解题思路、解题方法、解题规律进行概括和总结。总之,要"以启发诱导为基幢,"通过学生自己的活动

来揭示获取数学知识的思维过程,进而达到发展学生能力的目的"。

4.重方法

"数学方法是在数学活动中解决数学问题的具体途径、手段和方式的总称。"所谓重方法,一是要重视教法研究,既要有利于学生接受理解,又不包办代替,让学生充分动脑、动口、动手,掌握数学知识,掌握数学过程,掌握解题方法;二是要重视学法指导,即重视数学方法教学。数学学法指导范围广泛,内容丰富,它包括指导学生阅读数学教材,审题答题,进行知识体系的概括总结,进行自我检查和自我评定,对解题过程和数学知识体系、技能训练进行回顾和反思,等等。

"三到",即教师要做到心到、情到、人到。"能够真正做到想学生所想,想学生所疑,想学生所难,想学生所错,想学生所忘,想学生所会,想学生所乐,从而以高度娴熟的教育技巧和机智,灵活自如、出神入化地带领学生在知识的海洋遨游,用自己的思路引导学生的思路,用自己的智慧启迪学生的智慧,用自己的情感激发学生的情感,用自己的意志调节学生的意志,用自己的个性影响学生的个性,用自己的心灵呼应学生的心灵,使师生心心相印,肝胆相照。课堂步入一个相容而微妙的世界,教学成为一种赏心悦目、最富有创造性、最激动人心的''''精神解放''''运动"。

"八引导",即学科价值引导、爱心引导、兴趣引导、目标引导、竞赛引导、环境引导、榜样引导、方法引导。

1.学科价值引导

就是要让学生明白数学的学科价值,懂得为什么要学习数学知识。

一是要让学生明白数学的悠久历史;

二是要让学生明白数学与各门学科的关系,特别是它在自然科学中的地位和作用;

三是要让学生明白数学在工农业生产、现代化建设和现代科学技术中的地位和作用;四是要让学生明白当前的数学学习与自己以后的进一步学习和能力增长的关系,使其增强克服数学学习心理障碍的自觉性,主动积极地投入学习。

2.爱心引导

关心学生、爱护学生、理解学生、尊重学生,帮助学生克服学习上的困难。特别是对于数学成绩较差的学生,教师更应主动关心他们,征询他们的意见,想方设法让他们体验到学数学的乐趣,向他们奉献一片挚诚的爱心。

3.兴趣引导

一是问题激趣。"问题具有相当难度,但并非高不可攀,经努力可以克服困难,但并非轻而易举;可以创造条件寻得解决问题的途径,但并非一蹴而就";

二是情景激趣,把教学内容和学生实际结合起来、创设生动形象、直观典型的情景,激起学生的学习兴趣。此外,还有语言激趣、变式激趣、新异激趣、迁移激趣、活动激趣等等。

4.目标引导

数学教师要有一个教学目标体系,包括班级目标、小组目标、优等生目标和后进生目标,面向全体学生,使优等生、中等生和后进生都有前进的目标和努力的方向。其目标要既有长期性的又有短期性的,既有总体性的又有阶段性的,既有现实性的又有超前性的。对于学生个体,特别是后进生和尖子生,要努力通过"暗示"和"个别交谈"使他们明确目标,给他们加油鼓劲。

5.环境引导"加强校风、班风和学风建设,优化学习环境;开展"一帮一"、"互助互学"活动;加强家访,和家长经常保持联系,征求家长的意见和要求,使学生有一个"关心互助、理解、鼓励"的良好学习环境。

6.榜样引导

数学教师要引导学生树立自己心中的榜样,一是要在教学中适度地介绍国内外著名的数学家,引导学生向他们学习;二是要引导学生向班级中刻苦学习的同学学习,充分发挥榜样的"近体效应";三是教师以身示范,以人育人。

7.竞争引导

开展各种竞赛活动,建立竞争机制,引导学生自觉抵制和排除不健康的心理因素,比、学、赶、帮争先进。