前言:我们精心挑选了数篇优质数字农业的前景文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。
近年来,信息技术发展十分迅速。伴随着信息技术研究的深入与推广应用,由此衍生出了数字化设计技术,同样在社会各行业中得到广泛应用,并发挥了巨大的作用,为社会进一步发展作出了突出贡献。就数字化设计技术在农业机械设计中的应用而言,一定程度上实现了农业机械设计的标准化与前沿化发展。然而技术的发展是必然的,就农业机械设计中应用数字化设计技术进行更深层次的剖析十分重要,这对推动农业机械设计的进步与发展具有十分重要的现实意义。本文主要以数字化设计技术与农业机械设计为主线,分3部分进行论述,主要目的在于促进农业机械设计中数字化设计技术应用价值提升。
1数字化设计技术相关内容概述
1.1数字化设计技术概念
所谓“数字化设计技术”,是指在计算机数字化技术发展到一定程度的背景下,用于辅助设计领域的部分工作[1]。就当前大家所了解的数字化设计技术而言,涉及众多技术,核心处理技术主要有数字压缩、数字编码以及数字调制等。伴随着信息技术与计算机技术的不断深入应用与发展,数字化设计技术也得到了长足发展,逐步建立了一个以计算机为基础框架的模型,现如今在社会众多领域当中得到了广泛应用[2]。
1.2数字化设计技术特点
数字化设计技术在实践应用中,彰显了众多特点,总结起来,主要包括以下几个方面:首先,一个统一化产品定义模型,在社会众多领域当中能够得到更加广泛的应用,并且有着巨大的、潜在的应用空间;其次,数字化设计技术可实现并行设计,能够实现多小组同时作业,在一定程度上,可以大大提高工作效率[3];再次,基于统一化模型,设计质量也有相应的保障;最后,设计可以实现虚拟仿真处理,主要是利用计算机技术来实现,避免了传统设计对实物模型依赖程度高的弊端,相比传统设计而言,具有明显的优势,具体表现在工作效率与成本2个方面。
2农业机械设计中数字化设计技术应用现状分析
在数字化设计技术推广应用之前,设计主要是满足设计对象的一些具体要求,在局部优化或者整体优化方面,并没有重点考虑,导致无法实现总体设计优化。数字化设计技术的应用,主要是在产品设计过程中,注重CAD、CAE等多类处理技术的应用,使得产品设计周期影响因素发生巨大改变,从而达到各项要求,例如设计质量、设计成本等。与此同时,为保障后期维护工作的便捷,设计会重视总体设计的优化。就农业机械而言,具有种类繁多、市场需求量大等特点,在具体设计中,主要是在传统设计理念的支撑下,采用一些传统的设计工艺,造成整体设计水平低下,然而数字化设计技术具有一定的先进性,基于农业机械设计现状,无形中为数字化设计技术的应用提供了巨大的空间。纵观当前数字化设计技术的应用,尤其是在农业机械设计中的应用,有效促进了农业机械设计效率与质量的提升,然而在实际应用中,相关设计人员还需要高度重视一些注意事项,包括农业机械设计特点,同时对数字化设计技术的特点引起高度重视,确保两者的兼容性,以此有效提升农业机械设计的总体水平。农业机械设计特点众多,概括起来,主要包括以下2个方面:首先,从结构方面而言,结构类型较多且较为复杂;其次,从功能角度而言,功能多样,操作较为方便、简单。就前者而言,以播种机为例,在具体的设计过程中,设计人员通常需要重视的仅有2项,一是农作物的品种,二是农艺特点。根据上述2项要求,播种机便可以大致分为条播种机、穴播种机以及精密播种机等,在此基础上,结合工作原理加以区分,播种机又可以分为2大类,分别是机械式与气力式。基于此,农业机械种类繁杂。就后者而言,为满足播种的各项需求,即使农业机械型号不同,在功能方面也没有本质差异。
3农业机械设计中数字化设计技术应用前景
数字化设计技术在农业机械设计中的应用,具有十分重要的现实意义。伴随着各项技术的进一步发展,有必要对数字化设计技术的应用前景进行更深层次的剖析。对其应用前景进行论述,具体内容如下:(1)农业机械设计中引入虚拟技术。虚拟技术在农业机械设计中的应用,最大优势在于有效解决复杂结构设计问题,具体操作:借助声音定位技术以及三维成像技术实现仿真处理,在计算机上完成结构设计,以此简化设计,有效降低设计难度。另外,虚拟技术的应用,可以真实再现机械运动过程,并且可以在虚拟的情况下,借助计算机进行机械运动的力学分析,以此有效提升农业机械设计的可行性与质量。(2)实现产品设计以及制造的协同性,主要是注重两者的协调,才能保障农业机械设计质量。然而传统设计在设计与制造2个方面,存在严重的脱节问题。因此,在今后的设计中,设计人员需要高度重视农业机械产品设计与制造的协同化,并且落实到具体的设计工作中,以此实现农业机械设计优化、降低成本以及周期缩减等目的。关键工作是落实数字化设计技术的集成式应用,恰当运用这一技术,能够实现设计效果的最优化。(3)重视技术的创新。21世纪是知识时代,也是一个创新时代。一项技术是否能可持续发展,关键在于技术是否能够与时俱进、不断创新。数字化设计技术也需要不断创新,才能满足农业机械设计的各项实时要求。随着时间推移,农业机械设计将会不断衍生出新问题,数字化设计技术的应用将会面临诸多挑战。基于这一认识,为满足农业机械设计的可行性与前沿性,实现数字化设计技术的创新显然具有十分重要的现实意义。与此同时,农业机械设计必然朝着高标准方向发展,这无形中对数字化设计技术提出了更高的要求。数字化设计技术的创新,注重理念与技术的同时创新,以新理念推动技术的深入研究与实践,以此推动技术的发展,切实使设计水平得到有效提升。
关键词:农业知识;信息技术;应用;前景
中图分类号: SL26 文献标识码:A 文章编号:1674-0432(2010)-12-0013-1
0 引言
农业、农村、农民问题关系党和国家事业发展全局,农业信息化是当今世界经济和社会发展的大趋势。智能化信息技术从70年代末开始应用于农业生产领域,发展速度很快。目前,农业信息技术在农业生产运用中还存在诸多问题,信息技术在农业生产中的应用,是农业信息化的主要标志和重要内容。
1 农业信息技术概述
农业信息技术是现代信息技术与农业生产相结合的一类技术的总称。它是高新技术应用于农业的一个重要发展方向,主要研究现代信息技术在农业领域的应用,包括感测与识别技术、信息传递技术、信息处理与再生技术、信息施用技术等,利用现代信息技术可以加速农业的发展和农业产业的升级,是现代信息科学迅猛发展和农业产业内部需求相结合的必然产物。
2 我国农业知识领域中信息技术的应用现状
我国的农业信息化水平与发达国家还存在很大差距。尽管我国农业信息技术的应用已初见成效,但整体水平不高,信息资源的数量与质量不能满足农业生产和科学管理的需要。从事农业生产的劳动者,大部分文化程度较低,信息意识不强,对农业科技的了解比较少。我国目前已有的信息设施,尚未在农业知识领域得到广泛的应用,根源在于,我国农技人员及广大农民不会使用计算机,信息意识差。广大农村的生产力水平落后,信息不灵,交通不便,农民缺乏有效的信息指导。信息时代的到来,给农业发展提供了大好的机遇,我们应该抓住这一机遇,真正做到使农业发展逐步转到依靠科技进步和劳动者的素质提高上来。
3 我国农业知识领域中信息技术应用存在的问题
首先,政府在农业信息技术及农业信息化建设上的主导作用发挥不够。主要表现在以下几个方面:一是职能不到位,政府在农业信息化发展战略和总体规划方面,没有充分发挥指导和协调的功能。二是职能错位,政府承担了许多本该由社会力量完成的工作。三是政府缺乏对信息化工作的监督和管理,工作机制不够健全。其次,农业信息采集的覆盖范围和时效性有待进一步加强,兼备农业科学技术和信息技术的复合型农业信息人才缺乏。农业信息服务面窄,实用性不强。为了解决我国在运用农业信息技术服务于农业生产遇到的实际问题,我们提出数字农业理论体系。
4 数字农业理论体系的研究
农业是国民经济的基础,信息技术、生物技术的突破及其在农业领域的广泛应用,大大加快了农业现代化进程,数字农业是21世纪提升农业产业水平的有效途径之一,数字农业将有力推动农业增长方式转变和农业增产与农村经济结构调整优化,加速农业现代化进程,数字农业是农业现代化发展的要求,同时,数字农业是环境健康的要求。美国、加拿大等国家的数字农业研究已初有成效,澳大利亚、英国、丹麦等国家都颁布了严格的环境法律。在我国,从事农业研究的人员首先开始了“数字农业”研究。农业信息化是现代农业的共同取向和世界农业发展的必然趋势,数字农业是农业信息化的核心和必由之路。数字农业具有几个显著特点:虚拟现实技术支持下的多维网络信息系统;多源、多比例尺、多分辨率以及数据集成的网络信息系统;面向全社会公众开放的网络信息系统;农业运行机制的全面数字化。
5 完善农业信息化的具体途径
建立涉农服务网站,充分考虑农民使用,充分考虑农业增效,充分考虑农村发展。完善农民信息素养建设,加强信息技术环境下的教育培训,促进信息技术环境下科技传播的带动,注重信息技术环境下科技推广政策的引导。推进农业信息化应从以下几个方面着手:农业信息网络建设;农业信息资源数据库建设;农业信息监测与速报系统建设;国际间农业信息机构的联系与合作机制建设;引导和支持非政府农业信息机构的发展;信息服务人员的素质提高。
6 结束语
“农业兴,基础牢;农村稳,天下安。”在世界农业发展史上,大致经历和发生了三次比较引人注目的农业技术革命。以拖拉机等农机具为标志的农业机械技术在农业生产上的广泛应用,以现代遗传学理论等为标志的生物和化学技术在农业生产中的应用。以生物技术和信息技术为核心的新技术革命,将影响到农业发展的各个层次和环节。农业技术革命已经悄然拉开了序幕。本文就农业知识领域中信息技术的应用前景展开了相关探讨,首先对农业信息技术的基本理论做了相关梳理,然后分析了农业信息技术在我国的应用现状,同时指出了我国农业知识领域中信息技术应用存在的问题,针对存在的问题,提出了构建数字农业理论体系的设想,并基于数字农业理论体系的基础上,提出了完善农业信息化的具体途径。通过这一系列的思考,获得了对我国农业信息技术应用前景的一个基本认识。希望能对日后的农业信息技术工作的开展,起到微薄的帮助。
参考文献
[1] 杜新民.信息技术在农业上的应用[J].农业网络信息, 2005,12:11.
[2] 周国民.我国农业信息技术的应用与发展[A].农业信息技术与信息管理[C].北京:中国农业出版社,2003.
[3] 李道亮,丁娟娟.农业资源高效利用技术集成专家系统的设计[J].中国农业大学学报,1999,4(2):14-18.
1、业经理人,也可以叫做农业职业经理人,是最近出现的一种新型职业,有着良好的就业前景跟发展方向。这个职业跟农业发展有着千丝万缕的联系,比农业经纪人更加有分量,它既是生产者,又是商人,更是农业发展进步不可缺少的“领头羊”。
2、数字化管理师的岗位,看上去门槛并不高,上手也容易,但是却有着非常不错的薪水回报,有企业都开出了五万的月薪来招聘这样的职务,可以说是新兴的数字化金领了。未来,数字化管理师有可能成为大型跨国企业,甚至海外企业的核心骨干,发展前景非常广阔。
(来源:文章屋网 )
关键词:数字农业;时空推理;专家系统
0引言
数字农业应用涉及大量的气象、环境、水文、地质、土壤等领域的时空数据。这些时空数据分散在异构系统中,有着不同的数据格式和规范,采用不同的概念和术语,基于不同的数学模型和分析推理方法。这些多领域时空信息对农业生产、决策均起着重要作用。但是以前由于缺乏高效、合理的技术手段,即使付出很高的代价,也很难将这些时空信息完整无损地共享和融合集成到数字农业应用中,在很大程度上制约了数字农业的应用发展。同时GIS等商业软件平台成本较高也不利于大规模应用推广。
为此,本文基于自主版权GIS、专家系统等系统软件,应用时空推理、本体论、语义Web、关系数据挖掘和专家系统等技术,建立一个数字农业时空信息智能管理平台,对多源、异构的数字农业时空数据和推理分析方法进行集中统一的规范化管理,便于在实际应用中进行融合、集成和共享。基于该平台快速建立起了数字化测土施肥系统、大豆种植标准化管理系统、无公害水果蔬菜栽培指导系统等一批智能应用系统。这些应用系统精确控制农田每一地块种子、化肥和农药的施用量,在提高作物产量的同时,能够实现精确控制农业生产过程,有效降低成本,充分保证农业资源科学地综合开发利用,减少和防止对环境和生态的污染破坏,保持农业生态环境的良性循环,是实现“绿色农业”的重要途径。
1主要关键技术研究现状
1.1数字农业
数字农业是在“数字地球”的基础上提出并发展的,是21世纪新型的农业模式和挑战性的国家目标,包括精准农业、虚拟农业等内容,其核心是精准农业。以3S技术应用为核心的数字农业空间信息管理平台开发研究是数字农业研究的突破口[1,2]。美国于20世纪80年代初提出数字农业的概念,它是针对农业生产稳定性差、技术措施差异程度大等情况,运用卫星全球定位系统控制位置,用计算机精确定量,把农业技术措施的差异从地块水平精确到平方厘米水平,从而极大地提高种子、化肥、农药等农业资源的利用率,提高农产量,减少环境污染。法国农业部植保总局建立了全国范围内的病虫测报计算机网络系统。日本农林水产省建立了水稻、大豆、大麦等多种作物品种、品系的数据库系统。新西兰农牧研究院利用信息技术向农场主提供土地肥力测定、动物接种免疫、草场建设、饲料质量分析等各种信息服务。同时,我国紧跟国际研究的前沿,开展了系统工程、数据库与信息管理系统、遥感、专家系统、决策支持系统、地理信息系统等技术在农业、资源、环境和灾害方面的应用研究。
1.2时空推理
近年来,时空推理(Spatio-temporal Reasoning)已成为十分活跃的研究方向,在军事、航天、能源、交通、农业、环境等领域有着广泛的应用。近十年来我国国家基础地理信息中心、清华大学、解放军信息大学、中国科学院、武汉测绘科技大学、武汉大学、吉林大学等单位在时态GIS、时空数据模型、时空拓扑、时空数据库等时空推理相关领域开展了大量研究工作。
1.3时空数据标准与共享
不同领域和应用环境对时空数据的理解存在很大差异,这造成了异构时空系统集成的困难,因此时空数据共享、互操作和标准化的研究具有重要意义。这方面研究最初从空间数据入手,近期开始向时间数据和时空结合数据发展。时空数据的共享有以下方式:
(1)空间数据交换
空间数据交换的基本思想是各系统使用自身的数据格式,通过标准格式进行数据交换。目前空间数据交换标准有:SDTS、DIGEST、RINEX等国际标准; 以色列的IEF、英国的MOEPSTD、加拿大的SAIF、我国的CNSDTF等国家标准;AutoDesk的DXF、ESRI的E00、MapInfo的MIF等厂商标准。尽管各 GIS 软件厂商提供了公开的交换文件格式来进行空间数据的转换,但由于底层数据模型的不同,最终导致不同的GIS的空间数据不能无损的共享。虽然空间数据交换仍然在使用,但效果并不理想。空间数据互操作标准是当前国际公认的,比空间数据交换标准更有前途的数据标准。
(2)基于GML的空间数据互操作
开放式地理信息系统协会 (OpenGIS Consortium,OGC)提出了简单要素实现规范和地理标记语言( Geography Markup Language,GML)。OGC 相继推出了一整套GIS互操作的抽象规范,包括地理几何要素、要素集、OGIS 要素、要素之间的关系、空间参考系统、定位几何结构、存储函数和插值、覆盖类型及地球影像等17个抽象规范,2003年1月推出GML 3.10版[3]。近年来,国内外众多学者基于GML在空间数据共享等方面开展了大量研究。2001年 Rancourt等人[4]将GML与先前所定义的空间标准进行比较,认为GML能有效地满足空间数据交换标准。2002年,Zhang Jianting等人[5]提出了一种基于GML的Internet地理信息搜索引擎。2003年,Zhang Chuanrong等人[6]在网络环境下以GML作为异构空间数据库交换共享空间数据的格式,成功实现数据的互操作。2003年,崔希民等人[7]提出了GIS数据集成和互操作的系统架构,在数据层次上实现GIS 数据的集成和互操作。2003年,张霞等人[8]提出一种基于GML 构造WebGIS 的框架结构, 给出实现框架技术。其中采用GML 作为空间数据集成格式。2004年,朱前飞等人[9]提出了一种新的基于GML 的数据共享解决方案。2005年,陈传彬等人[10]提出了基于GML 的多源异构空间数据集成框架。GML数据类型较完整,支持厂家较多,相关研究丰富,是目前最有前景的时空数据标准。本文选择GML作为农业时空数据标准。
1.4时空本体
1.4.1本体、语义Web和OWL
本体方法目前已经成为计算机科学中的一种重要方法,在语义Web、搜索引擎、知识处理平台、异构系统集成、电子商务、自然语言理解、知识工程等领域有着重要应用。尤其是目前随着对语义Web研究的深入,本体论方法受到了越来越多的关注,人们普遍认为它是建立语义Web的核心技术。OWL是当前最有发展前景的本体表示语言。2002年7月29日,W3C组织公布了本体描述语言(Web Ontology Language, OWL)的工作草案1.0版。目前工作草案的最新更新为2004年2月10日的版本[11]。
1.4.2时空本体
基于本体方法对时空建模的相关研究工作如下:
1998 年,Roberto 考虑了作为地理表示基础的某些本体问题,给出了关于一般空间表示理论的某些建议[12]。2000年Zhou Q.和Fikes R.定义了一种考虑时间点和时段的时间本体[13]。2000年,Córcoles基于XML定义了一个类似SQL的时空查询语言,该语言包含八种空间算子和三种时态算子用于表达时空关系[14]。2003年,Grenon基于一阶谓词逻辑定义了时空本体,使用斯坦福大学的Protégé环境实现[15]。2003年,Bittner等人[16]提出了用于描述复杂时空过程和其中的持续实体的形式化本体。以上工作中Grenon的时空本体研究相对完整,相关研究成果已经在网上共享,本文在此基础上开展研究,建立农业时空本体。
2主要研究内容
(1) 农业时空数据规范
现阶段我国还没有公认的农业时空数据标准出台。本文基于时空推理技术,研究通用性更强的时空数据表示模型,能表示气象、土壤、环境、水文、地质等各领域的农业时空数据。GML是目前公认的时空数据标准,利用上述模型扩充GML,兼容中国农业科学院的“农业资源空间信息元数据的分类及编码体系草案”等国内现有的地方性标准,构建针对数字农业中时空数据的DA-GML标准,作为数字农业基础时空数据的规范。现有的土壤、环境等基础空间数据库均支持到GML格式的转换。
(2) 农业基础时空数据库
基于笔者自主开发的GIS平台建立农业基础时空数据库,该平台具有运行稳定、资源占用少、结构灵活、功能可裁减、成本较低、便于移植等特点。采用了时空推理技术,支持对空间和时空信息的表示和推理。通过DA-GML能够直接从现有系统中获取领域农业基础时空数据,主要包括土壤数据库、环境数据库、气象资料数据库、农业生产条件数据库、林业信息数据库、影像数据库等。
(3) 农业时空分析方法库与农业时空知识库
时空推理是研究时间、空间及时空结合信息本质的技术,通过时空推理技术将现有面向农业领域的时空分析技术进行整合和规范化表示,形成农业时空分析方法库。对领域农业时空知识进行归纳、整理,同时通过数据挖掘方法从基础数据中提炼知识,建立农业时空知识库。
(4)农业时空本体库
在(2)、(3)中存储的数据、方法和知识需要一个有效的机制进行组织和管理。就目前技术而言,本体是表达一个领域内完整的体系(概念层次、概念之间的关联等)的最有效工具,所以本文选择建立农业时空本体库。具体包括本体获取、本体管理、本体服务与展示三个模块。使用Protégé做本体开发环境编辑。Protégé是斯坦福大学开发的基于Java的本体编辑与知识获取工具,带有OWL插件的Protégé可以支持OWL格式的本体编辑与输出。
以上三个库通过Web Service方式提供基于Internet的服务,可以在线对库中信息进行维护和检索,并能无缝集成到应用系统中。
(5) 系统体系结构
系统工作原理如图1所示。首先,外部系统的时空数据转换成GML格式(现在绝大多数系统支持该数据标准),进入农业基础时空数据库。通过本体获取与编辑模块将时空数据和时空知识整理,形成本体库。外部系统的请求通过Web Ser-vices发给仲裁者,仲裁者区分各类情况调用三个库调用服务、提取数据和执行操作,结果返回给用户。
(6) 基于平台开发农业生产智能应用系统
基于数字农业时空信息管理平台建立数字化测土施肥系统、作物种植标准化管理系统、无公害水果蔬菜栽培指导系统等一批农业生产智能应用系统,解决实际问题。
3相关系统对比分析
3.1数字农业空间信息管理平台
平台基于信息和知识支持的现代农业管理的集成技术,对农田信息进行动态采集、分析、处理和输出,从而根据农田区域差异、农事安排进行模拟分析、决策支持管理和指挥控制,并对农业生产过程的区域差异进行精确定位、动态控制等定量操作[17]。
3.2全国农业资源空间信息管理系统
全国农业资源空间信息管理系统(NASIS)实现对全国农业资源空间信息的查询分发,具有系统管理、动态数据字典、数据检索、查询、数据分发、制图、报表统计、数据分发等功能。该系统已经用于全国农作物遥感监测、农业资源调查、农业科研和农业政策信息支持服务等方面[18]。
3.3中国西部农业空间信息服务系统
计算机技术、互联网技术的迅速发展为建立基于Web的中国西部农业空间信息服务系统提供技术支撑。本文从西部农业空间信息服务系统的数据库构建开始,全面地介绍了系统的运行模式和数据库访问技术,详细论述了系统的总体结构、平台环境和开发实现等。
(1)基于平台提供的开发框架,能方便、高效地建立大量的数字农业智能应用系统,基层农业科技人员也能快速开发出技术含量高的应用系统,各应用系统能互通、共享,便于升级维护。
(2)由于大量的底层服务、数据、知识和方法由平台集中统一提供,简化了开发数字农业应用软件的工作,节约了成本。
4结束语
数字农业时空信息管理平台从系统目标、适用范围、采用技术、系统接口等方面不同于任何现有的基础农业空间数据管理平台,是一个概念全新的系统,定位于基础农业空间数据管理平台的上层,更便于开发数字农业应用。其中的本体库等机制为将来建立农业时空数据网格奠定了良好的基础。
参考文献:
[1]于淑惠.数字农业及其实现技术[J ] .农业图书情报学刊,2004,15(7):5-8.
[2]唐世浩,朱启疆,闫广建,等.关于数字农业的基本构想[J ].农业现代化研究,2002,23(3):183 -187.
[3]Geography markup language (GML)[EB/OL].(2003).opengis.org/techno/specs/002029PGML.html.
[4]RANCOURT M. GML:spatial data exchange for the internet age[D].New Brunswick:Department of Geodesy and Geomatics Engineering , University of New Brunswick,2001.
[5]ZHANG Jianting,GRUENWALD L. A GML 2 based open architecture for building a geographical information search engine over the internet [DB/OL].(2002).cs.ou.edu/database/documents/zg01.pdf.
关键词:数字农业;时空推理;专家系统
0引言
数字农业应用涉及大量的气象、环境、水文、地质、土壤等领域的时空数据。这些时空数据分散在异构系统中,有着不同的数据格式和规范,采用不同的概念和术语,基于不同的数学模型和分析推理方法。这些多领域时空信息对农业生产、决策均起着重要作用。但是以前由于缺乏高效、合理的技术手段,即使付出很高的代价,也很难将这些时空信息完整无损地共享和融合集成到数字农业应用中,在很大程度上制约了数字农业的应用发展。同时GIS等商业软件平台成本较高也不利于大规模应用推广。
为此,本文基于自主版权GIS、专家系统等系统软件,应用时空推理、本体论、语义Web、关系数据挖掘和专家系统等技术,建立一个数字农业时空信息智能管理平台,对多源、异构的数字农业时空数据和推理分析方法进行集中统一的规范化管理,便于在实际应用中进行融合、集成和共享。基于该平台快速建立起了数字化测土施肥系统、大豆种植标准化管理系统、无公害水果蔬菜栽培指导系统等一批智能应用系统。这些应用系统精确控制农田每一地块种子、化肥和农药的施用量,在提高作物产量的同时,能够实现精确控制农业生产过程,有效降低成本,充分保证农业资源科学地综合开发利用,减少和防止对环境和生态的污染破坏,保持农业生态环境的良性循环,是实现“绿色农业”的重要途径。
1主要关键技术研究现状
1.1数字农业
数字农业是在“数字地球”的基础上提出并发展的,是21世纪新型的农业模式和挑战性的国家目标,包括精准农业、虚拟农业等内容,其核心是精准农业。以3S技术应用为核心的数字农业空间信息管理平台开发研究是数字农业研究的突破口[1,2]。美国于20世纪80年代初提出数字农业的概念,它是针对农业生产稳定性差、技术措施差异程度大等情况,运用卫星全球定位系统控制位置,用计算机精确定量,把农业技术措施的差异从地块水平精确到平方厘米水平,从而极大地提高种子、化肥、农药等农业资源的利用率,提高农产量,减少环境污染。法国农业部植保总局建立了全国范围内的病虫测报计算机网络系统。日本农林水产省建立了水稻、大豆、大麦等多种作物品种、品系的数据库系统。新西兰农牧研究院利用信息技术向农场主提供土地肥力测定、动物接种免疫、草场建设、饲料质量分析等各种信息服务。同时,我国紧跟国际研究的前沿,开展了系统工程、数据库与信息管理系统、遥感、专家系统、决策支持系统、地理信息系统等技术在农业、资源、环境和灾害方面的应用研究。
1.2时空推理
近年来,时空推理(Spatio-temporalReasoning)已成为十分活跃的研究方向,在军事、航天、能源、交通、农业、环境等领域有着广泛的应用。近十年来我国国家基础地理信息中心、清华大学、信息大学、中国科学院、武汉测绘科技大学、武汉大学、吉林大学等单位在时态GIS、时空数据模型、时空拓扑、时空数据库等时空推理相关领域开展了大量研究工作。
1.3时空数据标准与共享
不同领域和应用环境对时空数据的理解存在很大差异,这造成了异构时空系统集成的困难,因此时空数据共享、互操作和标准化的研究具有重要意义。这方面研究最初从空间数据入手,近期开始向时间数据和时空结合数据发展。时空数据的共享有以下方式:
(1)空间数据交换
空间数据交换的基本思想是各系统使用自身的数据格式,通过标准格式进行数据交换。目前空间数据交换标准有:SDTS、DIGEST、RINEX等国际标准;以色列的IEF、英国的MOEPSTD、加拿大的SAIF、我国的CNSDTF等国家标准;AutoDesk的DXF、ESRI的E00、MapInfo的MIF等厂商标准。尽管各GIS软件厂商提供了公开的交换文件格式来进行空间数据的转换,但由于底层数据模型的不同,最终导致不同的GIS的空间数据不能无损的共享。虽然空间数据交换仍然在使用,但效果并不理想。空间数据互操作标准是当前国际公认的,比空间数据交换标准更有前途的数据标准。
(2)基于GML的空间数据互操作
开放式地理信息系统协会(OpenGISConsortium,OGC)提出了简单要素实现规范和地理标记语言(GeographyMarkupLanguage,GML)。OGC相继推出了一整套GIS互操作的抽象规范,包括地理几何要素、要素集、OGIS要素、要素之间的关系、空间参考系统、定位几何结构、存储函数和插值、覆盖类型及地球影像等17个抽象规范,2003年1月推出GML3.10版[3]。近年来,国内外众多学者基于GML在空间数据共享等方面开展了大量研究。2001年Rancourt等人[4]将GML与先前所定义的空间标准进行比较,认为GML能有效地满足空间数据交换标准。2002年,ZhangJianting等人[5]提出了一种基于GML的Internet地理信息搜索引擎。2003年,ZhangChuanrong等人[6]在网络环境下以GML作为异构空间数据库交换共享空间数据的格式,成功实现数据的互操作。2003年,崔希民等人[7]提出了GIS数据集成和互操作的系统架构,在数据层次上实现GIS数据的集成和互操作。2003年,张霞等人[8]提出一种基于GML构造WebGIS的框架结构,给出实现框架技术。其中采用GML作为空间数据集成格式。2004年,朱前飞等人[9]提出了一种新的基于GML的数据共享解决方案。2005年,陈传彬等人[10]提出了基于GML的多源异构空间数据集成框架。GML数据类型较完整,支持厂家较多,相关研究丰富,是目前最有前景的时空数据标准。本文选择GML作为农业时空数据标准。
1.4时空本体
1.4.1本体、语义Web和OWL
本体方法目前已经成为计算机科学中的一种重要方法,在语义Web、搜索引擎、知识处理平台、异构系统集成、电子商务、自然语言理解、知识工程等领域有着重要应用。尤其是目前随着对语义Web研究的深入,本体论方法受到了越来越多的关注,人们普遍认为它是建立语义Web的核心技术。OWL是当前最有发展前景的本体表示语言。2002年7月29日,W3C组织公布了本体描述语言(WebOntologyLanguage,OWL)的工作草案1.0版。目前工作草案的最新更新为2004年2月10日的版本[11]。
1.4.2时空本体
基于本体方法对时空建模的相关研究工作如下:
1998年,Roberto考虑了作为地理表示基础的某些本体问题,给出了关于一般空间表示理论的某些建议[12]。2000年ZhouQ.和FikesR.定义了一种考虑时间点和时段的时间本体[13]。2000年,Córcoles基于XML定义了一个类似SQL的时空查询语言,该语言包含八种空间算子和三种时态算子用于表达时空关系[14]。2003年,Grenon基于一阶谓词逻辑定义了时空本体,使用斯坦福大学的Protégé环境实现[15]。2003年,Bittner等人[16]提出了用于描述复杂时空过程和其中的持续实体的形式化本体。以上工作中Grenon的时空本体研究相对完整,相关研究成果已经在网上共享,本文在此基础上开展研究,建立农业时空本体。
2主要研究内容(1)农业时空数据规范
现阶段我国还没有公认的农业时空数据标准出台。本文基于时空推理技术,研究通用性更强的时空数据表示模型,能表示气象、土壤、环境、水文、地质等各领域的农业时空数据。GML是目前公认的时空数据标准,利用上述模型扩充GML,兼容中国农业科学院的“农业资源空间信息元数据的分类及编码体系草案”等国内现有的地方性标准,构建针对数字农业中时空数据的DA-GML标准,作为数字农业基础时空数据的规范。现有的土壤、环境等基础空间数据库均支持到GML格式的转换。
(2)农业基础时空数据库
基于笔者自主开发的GIS平台建立农业基础时空数据库,该平台具有运行稳定、资源占用少、结构灵活、功能可裁减、成本较低、便于移植等特点。采用了时空推理技术,支持对空间和时空信息的表示和推理。通过DA-GML能够直接从现有系统中获取领域农业基础时空数据,主要包括土壤数据库、环境数据库、气象资料数据库、农业生产条件数据库、林业信息数据库、影像数据库等。
(3)农业时空分析方法库与农业时空知识库
时空推理是研究时间、空间及时空结合信息本质的技术,通过时空推理技术将现有面向农业领域的时空分析技术进行整合和规范化表示,形成农业时空分析方法库。对领域农业时空知识进行归纳、整理,同时通过数据挖掘方法从基础数据中提炼知识,建立农业时空知识库。
(4)农业时空本体库
在(2)、(3)中存储的数据、方法和知识需要一个有效的机制进行组织和管理。就目前技术而言,本体是表达一个领域内完整的体系(概念层次、概念之间的关联等)的最有效工具,所以本文选择建立农业时空本体库。具体包括本体获取、本体管理、本体服务与展示三个模块。使用Protégé做本体开发环境编辑。Protégé是斯坦福大学开发的基于Java的本体编辑与知识获取工具,带有OWL插件的Protégé可以支持OWL格式的本体编辑与输出。
以上三个库通过WebService方式提供基于Internet的服务,可以在线对库中信息进行维护和检索,并能无缝集成到应用系统中。
(5)系统体系结构
系统工作原理如图1所示。首先,外部系统的时空数据转换成GML格式(现在绝大多数系统支持该数据标准),进入农业基础时空数据库。通过本体获取与编辑模块将时空数据和时空知识整理,形成本体库。外部系统的请求通过WebSer-vices发给仲裁者,仲裁者区分各类情况调用三个库调用服务、提取数据和执行操作,结果返回给用户。
(6)基于平台开发农业生产智能应用系统
基于数字农业时空信息管理平台建立数字化测土施肥系统、作物种植标准化管理系统、无公害水果蔬菜栽培指导系统等一批农业生产智能应用系统,解决实际问题。
3相关系统对比分析
3.1数字农业空间信息管理平台
平台基于信息和知识支持的现代农业管理的集成技术,对农田信息进行动态采集、分析、处理和输出,从而根据农田区域差异、农事安排进行模拟分析、决策支持管理和指挥控制,并对农业生产过程的区域差异进行精确定位、动态控制等定量操作[17]。
3.2全国农业资源空间信息管理系统
全国农业资源空间信息管理系统(NASIS)实现对全国农业资源空间信息的查询分发,具有系统管理、动态数据字典、数据检索、查询、数据分发、制图、报表统计、数据分发等功能。该系统已经用于全国农作物遥感监测、农业资源调查、农业科研和农业政策信息支持服务等方面[18]。
3.3中国西部农业空间信息服务系统
计算机技术、互联网技术的迅速发展为建立基于Web的中国西部农业空间信息服务系统提供技术支撑。本文从西部农业空间信息服务系统的数据库构建开始,全面地介绍了系统的运行模式和数据库访问技术,详细论述了系统的总体结构、平台环境和开发实现等。
(1)基于平台提供的开发框架,能方便、高效地建立大量的数字农业智能应用系统,基层农业科技人员也能快速开发出技术含量高的应用系统,各应用系统能互通、共享,便于升级维护。
(2)由于大量的底层服务、数据、知识和方法由平台集中统一提供,简化了开发数字农业应用软件的工作,节约了成本。
4结束语
数字农业时空信息管理平台从系统目标、适用范围、采用技术、系统接口等方面不同于任何现有的基础农业空间数据管理平台,是一个概念全新的系统,定位于基础农业空间数据管理平台的上层,更便于开发数字农业应用。其中的本体库等机制为将来建立农业时空数据网格奠定了良好的基础。
参考文献:
[1]于淑惠.数字农业及其实现技术[J].农业图书情报学刊,2004,15(7):5-8.
[2]唐世浩,朱启疆,闫广建,等.关于数字农业的基本构想[J].农业现代化研究,2002,23(3):183-187.
[3]Geographymarkuplanguage(GML)[EB/OL].(2003)./techno/specs/002029PGML.html.
[4]RANCOURTM.GML:spatialdataexchangefortheinternetage[D].NewBrunswick:DepartmentofGeodesyandGeomaticsEngineering,UniversityofNewBrunswick,2001.
[5]ZHANGJianting,GRUENWALDL.AGML2basedopenarchitectureforbuildingageographicalinformationsearchengineovertheinternet[DB/OL].(2002).cs.ou.edu/database/documents/zg01.pdf.
关键词:数字农业;时空推理;专家系统
0引言
数字农业应用涉及大量的气象、环境、水文、地质、土壤等领域的时空数据。这些时空数据分散在异构系统中,有着不同的数据格式和规范,采用不同的概念和术语,基于不同的数学模型和分析推理方法。这些多领域时空信息对农业生产、决策均起着重要作用。但是以前由于缺乏高效、合理的技术手段,即使付出很高的代价,也很难将这些时空信息完整无损地共享和融合集成到数字农业应用中,在很大程度上制约了数字农业的应用发展。同时GIS等商业软件平台成本较高也不利于大规模应用推广。
为此,本文基于自主版权GIS、专家系统等系统软件,应用时空推理、本体论、语义Web、关系数据挖掘和专家系统等技术,建立一个数字农业时空信息智能管理平台,对多源、异构的数字农业时空数据和推理分析方法进行集中统一的规范化管理,便于在实际应用中进行融合、集成和共享。基于该平台快速建立起了数字化测土施肥系统、大豆种植标准化管理系统、无公害水果蔬菜栽培指导系统等一批智能应用系统。这些应用系统精确控制农田每一地块种子、化肥和农药的施用量,在提高作物产量的同时,能够实现精确控制农业生产过程,有效降低成本,充分保证农业资源科学地综合开发利用,减少和防止对环境和生态的污染破坏,保持农业生态环境的良性循环,是实现“绿色农业”的重要途径。
1主要关键技术研究现状
1.1数字农业
数字农业是在“数字地球”的基础上提出并发展的,是21世纪新型的农业模式和挑战性的国家目标,包括精准农业、虚拟农业等内容,其核心是精准农业。以3S技术应用为核心的数字农业空间信息管理平台开发研究是数字农业研究的突破口[1,2]。美国于20世纪80年代初提出数字农业的概念,它是针对农业生产稳定性差、技术措施差异程度大等情况,运用卫星全球定位系统控制位置,用计算机精确定量,把农业技术措施的差异从地块水平精确到平方厘米水平,从而极大地提高种子、化肥、农药等农业资源的利用率,提高农产量,减少环境污染。法国农业部植保总局建立了全国范围内的病虫测报计算机网络系统。日本农林水产省建立了水稻、大豆、大麦等多种作物品种、品系的数据库系统。新西兰农牧研究院利用信息技术向农场主提供土地肥力测定、动物接种免疫、草场建设、饲料质量分析等各种信息服务。同时,我国紧跟国际研究的前沿,开展了系统工程、数据库与信息管理系统、遥感、专家系统、决策支持系统、地理信息系统等技术在农业、资源、环境和灾害方面的应用研究。
1.2时空推理
近年来,时空推理(Spatio-temporalReasoning)已成为十分活跃的研究方向,在军事、航天、能源、交通、农业、环境等领域有着广泛的应用。近十年来我国国家基础地理信息中心、清华大学、信息大学、中国科学院、武汉测绘科技大学、武汉大学、吉林大学等单位在时态GIS、时空数据模型、时空拓扑、时空数据库等时空推理相关领域开展了大量研究工作。
1.3时空数据标准与共享
不同领域和应用环境对时空数据的理解存在很大差异,这造成了异构时空系统集成的困难,因此时空数据共享、互操作和标准化的研究具有重要意义。这方面研究最初从空间数据入手,近期开始向时间数据和时空结合数据发展。时空数据的共享有以下方式:
(1)空间数据交换
空间数据交换的基本思想是各系统使用自身的数据格式,通过标准格式进行数据交换。目前空间数据交换标准有:SDTS、DIGEST、RINEX等国际标准;以色列的IEF、英国的MOEPSTD、加拿大的SAIF、我国的CNSDTF等国家标准;AutoDesk的DXF、ESRI的E00、MapInfo的MIF等厂商标准。尽管各GIS软件厂商提供了公开的交换文件格式来进行空间数据的转换,但由于底层数据模型的不同,最终导致不同的GIS的空间数据不能无损的共享。虽然空间数据交换仍然在使用,但效果并不理想。空间数据互操作标准是当前国际公认的,比空间数据交换标准更有前途的数据标准。
(2)基于GML的空间数据互操作
开放式地理信息系统协会(OpenGISConsortium,OGC)提出了简单要素实现规范和地理标记语言(GeographyMarkupLanguage,GML)。OGC相继推出了一整套GIS互操作的抽象规范,包括地理几何要素、要素集、OGIS要素、要素之间的关系、空间参考系统、定位几何结构、存储函数和插值、覆盖类型及地球影像等17个抽象规范,2003年1月推出GML3.10版[3]。近年来,国内外众多学者基于GML在空间数据共享等方面开展了大量研究。2001年Rancourt等人[4]将GML与先前所定义的空间标准进行比较,认为GML能有效地满足空间数据交换标准。2002年,ZhangJianting等人[5]提出了一种基于GML的Internet地理信息搜索引擎。2003年,ZhangChuanrong等人[6]在网络环境下以GML作为异构空间数据库交换共享空间数据的格式,成功实现数据的互操作。2003年,崔希民等人[7]提出了GIS数据集成和互操作的系统架构,在数据层次上实现GIS数据的集成和互操作。2003年,张霞等人[8]提出一种基于GML构造WebGIS的框架结构,给出实现框架技术。其中采用GML作为空间数据集成格式。2004年,朱前飞等人[9]提出了一种新的基于GML的数据共享解决方案。2005年,陈传彬等人[10]提出了基于GML的多源异构空间数据集成框架。GML数据类型较完整,支持厂家较多,相关研究丰富,是目前最有前景的时空数据标准。本文选择GML作为农业时空数据标准。
1.4时空本体
1.4.1本体、语义Web和OWL
本体方法目前已经成为计算机科学中的一种重要方法,在语义Web、搜索引擎、知识处理平台、异构系统集成、电子商务、自然语言理解、知识工程等领域有着重要应用。尤其是目前随着对语义Web研究的深入,本体论方法受到了越来越多的关注,人们普遍认为它是建立语义Web的核心技术。OWL是当前最有发展前景的本体表示语言。2002年7月29日,W3C组织公布了本体描述语言(WebOntologyLanguage,OWL)的工作草案1.0版。目前工作草案的最新更新为2004年2月10日的版本[11]。
1.4.2时空本体
基于本体方法对时空建模的相关研究工作如下:
1998年,Roberto考虑了作为地理表示基础的某些本体问题,给出了关于一般空间表示理论的某些建议[12]。2000年ZhouQ.和FikesR.定义了一种考虑时间点和时段的时间本体[13]。2000年,Córcoles基于XML定义了一个类似SQL的时空查询语言,该语言包含八种空间算子和三种时态算子用于表达时空关系[14]。2003年,Grenon基于一阶谓词逻辑定义了时空本体,使用斯坦福大学的Protégé环境实现[15]。2003年,Bittner等人[16]提出了用于描述复杂时空过程和其中的持续实体的形式化本体。以上工作中Grenon的时空本体研究相对完整,相关研究成果已经在网上共享,本文在此基础上开展研究,建立农业时空本体。
2主要研究内容(1)农业时空数据规范
现阶段我国还没有公认的农业时空数据标准出台。本文基于时空推理技术,研究通用性更强的时空数据表示模型,能表示气象、土壤、环境、水文、地质等各领域的农业时空数据。GML是目前公认的时空数据标准,利用上述模型扩充GML,兼容中国农业科学院的“农业资源空间信息元数据的分类及编码体系草案”等国内现有的地方性标准,构建针对数字农业中时空数据的DA-GML标准,作为数字农业基础时空数据的规范。现有的土壤、环境等基础空间数据库均支持到GML格式的转换。
(2)农业基础时空数据库
基于笔者自主开发的GIS平台建立农业基础时空数据库,该平台具有运行稳定、资源占用少、结构灵活、功能可裁减、成本较低、便于移植等特点。采用了时空推理技术,支持对空间和时空信息的表示和推理。通过DA-GML能够直接从现有系统中获取领域农业基础时空数据,主要包括土壤数据库、环境数据库、气象资料数据库、农业生产条件数据库、林业信息数据库、影像数据库等。
(3)农业时空分析方法库与农业时空知识库
时空推理是研究时间、空间及时空结合信息本质的技术,通过时空推理技术将现有面向农业领域的时空分析技术进行整合和规范化表示,形成农业时空分析方法库。对领域农业时空知识进行归纳、整理,同时通过数据挖掘方法从基础数据中提炼知识,建立农业时空知识库。
(4)农业时空本体库
在(2)、(3)中存储的数据、方法和知识需要一个有效的机制进行组织和管理。就目前技术而言,本体是表达一个领域内完整的体系(概念层次、概念之间的关联等)的最有效工具,所以本文选择建立农业时空本体库。具体包括本体获取、本体管理、本体服务与展示三个模块。使用Protégé做本体开发环境编辑。Protégé是斯坦福大学开发的基于Java的本体编辑与知识获取工具,带有OWL插件的Protégé可以支持OWL格式的本体编辑与输出。
以上三个库通过WebService方式提供基于Internet的服务,可以在线对库中信息进行维护和检索,并能无缝集成到应用系统中。
(5)系统体系结构
系统工作原理如图1所示。首先,外部系统的时空数据转换成GML格式(现在绝大多数系统支持该数据标准),进入农业基础时空数据库。通过本体获取与编辑模块将时空数据和时空知识整理,形成本体库。外部系统的请求通过WebSer-vices发给仲裁者,仲裁者区分各类情况调用三个库调用服务、提取数据和执行操作,结果返回给用户。
(6)基于平台开发农业生产智能应用系统
基于数字农业时空信息管理平台建立数字化测土施肥系统、作物种植标准化管理系统、无公害水果蔬菜栽培指导系统等一批农业生产智能应用系统,解决实际问题。
3相关系统对比分析
3.1数字农业空间信息管理平台
平台基于信息和知识支持的现代农业管理的集成技术,对农田信息进行动态采集、分析、处理和输出,从而根据农田区域差异、农事安排进行模拟分析、决策支持管理和指挥控制,并对农业生产过程的区域差异进行精确定位、动态控制等定量操作[17]。
3.2全国农业资源空间信息管理系统
全国农业资源空间信息管理系统(NASIS)实现对全国农业资源空间信息的查询分发,具有系统管理、动态数据字典、数据检索、查询、数据分发、制图、报表统计、数据分发等功能。该系统已经用于全国农作物遥感监测、农业资源调查、农业科研和农业政策信息支持服务等方面[18]。
3.3中国西部农业空间信息服务系统
计算机技术、互联网技术的迅速发展为建立基于Web的中国西部农业空间信息服务系统提供技术支撑。本文从西部农业空间信息服务系统的数据库构建开始,全面地介绍了系统的运行模式和数据库访问技术,详细论述了系统的总体结构、平台环境和开发实现等。
(1)基于平台提供的开发框架,能方便、高效地建立大量的数字农业智能应用系统,基层农业科技人员也能快速开发出技术含量高的应用系统,各应用系统能互通、共享,便于升级维护。
(2)由于大量的底层服务、数据、知识和方法由平台集中统一提供,简化了开发数字农业应用软件的工作,节约了成本。
4结束语
数字农业时空信息管理平台从系统目标、适用范围、采用技术、系统接口等方面不同于任何现有的基础农业空间数据管理平台,是一个概念全新的系统,定位于基础农业空间数据管理平台的上层,更便于开发数字农业应用。其中的本体库等机制为将来建立农业时空数据网格奠定了良好的基础。
参考文献:
[1]于淑惠.数字农业及其实现技术[J].农业图书情报学刊,2004,15(7):5-8.
[2]唐世浩,朱启疆,闫广建,等.关于数字农业的基本构想[J].农业现代化研究,2002,23(3):183-187.
[3]Geographymarkuplanguage(GML)[EB/OL].(2003).
[4]RANCOURTM.GML:spatialdataexchangefortheinternetage[D].NewBrunswick:DepartmentofGeodesyandGeomaticsEngineering,UniversityofNewBrunswick,2001.
[5]ZHANGJianting,GRUENWALDL.AGML2basedopenarchitectureforbuildingageographicalinformationsearchengineovertheinternet[DB/OL].(2002).
关键词:农业机械设计;数字化设计技术;现代化
农业机械产品具有种类多、结构复杂、易操作等特点,我国是农业大国,农业机械具有非常广阔的市场潜力。然而,受到传统设计理念与设计工艺的影响,我国机械产品的整体设计水平偏低,数字化设计技术的应用,颠覆了农业机械的传统设计模式,极大地提升了农业机械设计的效率与质量,尤其是CAD、CAE等技术,更是改变了产品的生命周期,实现了对农业机械设备整体设计的优化。
1数字化设计技术的内涵与优势
1.1数字化设计技术的内涵
数字化设计技术指的是一种将声音、图文转化为数据,之后再转化成二进制代码,经过计算机进行信息传递与处理的技术。在信息化时代,数字化设计技术逐渐演变成为依靠计算机进行辅助的新型设计技术,故计算机是数字化设计的基础,也是核心。从另一个角度来说,数字化设计技术,即以计算机为核心构建数字化模型,再通过数字化平台展开产品研发的一种技术,数字化技术最明显的特点即不需要实物模型。
1.2数字化设计技术的优势
(1)数字化设计技术视为一种产品定义模型,其可以在各行业领域发挥作用,且具有较大的发展空间;(2)数字化设计技术可进行仿真模拟处理,不需要实物模型,因而可有效降低设计成本;(3)相比传统产品设计形式,数字化设计技术依托数字化平台,以计算机为基础,产品设计更具灵活性,不受时间、地点的限制;(4)在数字化设计中,可以采取分工合作模式进行多元设计,将不同板块的设计交由不同小组同步进行设计,整体设计更加系统化,提高了设计效率。
2农业机械设计的特征与现状
农业机械设计的特征主要体现在:第一,我国农作物类型比较丰富,所以农业机械种类繁多,例如播种机就包括条播机、精密播种机、穴播机等多个类型;第二,虽然农业机械种类丰富多样,但大多数功能比较简单,上手难度低,操作也比较便利。目前我国的农业机械设备大部分是由传动系统、机件、镇压器、轴轮等构件组成。这些均为数字化设计技术在农业机械设计中的应用,提供了良好基础与广阔前景。目前,数字化设计已经在国内外农业机械设计中得到了广泛应用,主要应用技术包括CAD、CAE等技术。数字化技术的应用,不仅提高了设计效率,降低了设计成本,而且也极大地缩短了农业机械的设计周期,更便于达到设计要求。而且,为了给农业机械后续维修工作提供便利,在初期设计时,更注重农业机械的整体化设计。随着农业机械化水平的不断提升,农业机械的市场需求增加,产品定制需求增多,而且对产品的品质要求也更加严格。在这一新的商业环境下,农业机械设计更应注重数字化设计技术的应用,必要时进行跨部门合作,更好地展开农业机械产品的设计与制造,为农业生产的规模化、自动化发展,提供保障,为农业经济发展水平的进一步提升,提供内动力。
3数字化设计技术的应用热点
3.1计算机辅助技术
计算机辅助技术简称CAD,以现代设计理念为基础,不仅具有开放性较强的产品设计模式,而且开发程序也具有较强规范性。从数字技术层面来看,CAD技术在概念、任务、技术等层面均有所优化,可以设计更多优秀产品。以CAD技术为核心设计的产品,大部分是以概念设计产品与构型设计产品。其中,概念设计即制定产品设计方案的具体内容,而构型设计即明确具体细节。
3.2虚拟原型技术
虚拟原型技术简称VR是最近5年内数字化设计技术的翘楚,得到了设计领域的重点关注。VR技术是在CAD、CAM、CAE技术的基础上发展而来的,其可以在特有技术基础上,对多方面技术进行全面整合。VR技术可以实现成品信息与基本概念的整合,并从行为、感官以及功能等方面不断对其进行优化。在该技术中,产品设计的整个过程被视为多个不同极端,且逐渐向全生命周期进行转变,以此推动产品设计与生产两个阶段的融合,在很大程度上推动了各行业的发展。
3.3知识工程技术
知识工程技术简称KBE,是现阶段应用率最高,且特色最明显的一种数字化设计技术。KBE技术主要应用在提前预测未来市场技术发展趋势,因而该技术的应用比较依赖新知识内容。同时,KBE技术在信息传递、知识展示等方面,也具有较好的应用效果。而且,还能够单独构建显性、隐性知识统一建模,有利于技术创新的横纵向发展。
4数字化技术在农业机械产品中的具体应用
4.1VR技术的应用
VR技术在农业机械产品设计中的应用,将影音资料、3D影像、多媒体等进行整合,使设计人员可以更好地利用个人想法,创设相应的设计情境,所以应用VR技术,设计人员可以享受身临其境般的设计体验。目前,VR技术主要应用在大型设备的设计中,对设备的特殊性能进行模拟,之后逐步实现设备与功能之间的优化。与此同时,通过其创设的信息反馈平台,能够加速产品的投放,提升产品应用效果,让用户直接了解产品的优势,进而更好地掌握设备应用要点。在国外,应用VR展开农业机械设计的技术有很多种,最具代表性的即可视化技术,该技术以CAD技术为基础,构建功能性模型,再通过模型输入的方式,将其传递到VR环境中,最终实现设备强化。例如,用户可以通过VR头盔显示器,直接对农业机械设备进行操控体验。同时,VR技术在农业设备拆装中也有广泛应用,如小麦联合收获机的各方面功能,均可以通过VR技术展现出来,包括原理展示、内部结构等,让使用者可以进行拆装练习,不断提升自身对机械设备的操控与应用能力。此外,VR-CAD系统在虚拟环境设计中也可以发挥作用,优化农业机械设备的设计模式与功能效果。
4.2农业机械设备产品的创新
数字化设计技术在农业机械设计中的应用,主要体现在农业机械设备产品的创新方面,即利用数字化设计技术对农业机械产品的使用性能、使用效果等进行创新,增强产品的新颖性,并提供给消费者更多选择。目前,在农业机械产品的数字化设计中,主要从该类型农业机械设备的常见使用问题或故障入手,从设计层面针对性地采取改进措施,进而降低故障发生率以及农业生产成本,提升该类型农业机械设备的市场竞争力,扩大市场份额。一般情况下,在利用数字化设计技术对农业机械产品进行创新时,主要从技术分析、材料优选等方面进行。例如,近几年我国研发出了一种新型拖拉机,该拖拉机不同于传统低功率拖拉机,其采用了数字化同步器与动力换挡配合静液压传动系统,具有独立的控制机构与控制面板,不仅更易操作,而且系统更加灵活,功率更高。
4.3协同化优化设计
在当下复杂的市场环境下,农业机械生产不仅涉及市场竞争,而且为了更好地满足消费者个性化的定制需求,必要时还需要进行跨企业合作。所以,农业机械设计中,数字化设计的应用与协同化发展,已经成为农业机械设计与制造企业生存的关键。因此,数字化设计技术在农业机械产品的协同化设计中具有较好的应用效果。为了从海量的技术信息与零件资源中,找到所需要的信息与数据,必须利用数字化技术对搜索技术进行优化,进而实现对所需零件参数与性能的高效率搜索。例如,PTC企业的Web服务器,其中储存了海量的技术型方案,我国的农业机械产品制造企业应借鉴这一做法,以不断地提升数字化设计技术的应用效果。此外,随着环保理念不断深入人心,为了建设环境友好型社会,农业行业也应朝着绿色化方向发展,而数字化技术的应用,极大地促进了农业行业的可持续发展。数字化技术的应用,显著提升了农业机械产品的节能效果,降低了能源损耗,充分发挥了环保能力。
5结语
总而言之,我国农业机械设计的数字化发展还处在探索性阶段,很多理论、方法等还不够成熟。在进入数字化时代后,农业机械设计更应注重数字化设计技术的应用,充分利用数字化设计效率高、成本低、可控性强等优势,持续提升农业机械设计的科学性、高效性,并不断利用数字化设计技术展开农业机械产品设计的创新,以不断促进农业生产的现代化发展,实现农业生产的智能化、规模化,进而推动农业经济发展水平更上一层楼。
参考文献:
[1]马云红,董中辉.现代设计技术在农业机械工程设计中的应用[J].农业与技术,2019,v.39;No.329(12):47-48.
[2]薛先斌,高刚毅.现代农业机械中计算机智能化技术的应用与研究[J].南方农机,2020,v.51;No.343(03):62-63.
[3]缪兴龙.浅谈数字化设计技术及其在农业机械设计中的应用[J].南方农机,2020,v.51;No.361(21):51-52.
关键词:数字化;测绘;重要性
中图分类号:P258 文献标识码:A 文章编号:1674-0432(2011)-03-0049-1
随着信息更新机制不断完善,不断建立和完善控制网数据库、地形图数据库、数字高程模型数据库、数字正射影像数据库等,现代测绘技术建立了规模化的数字化生产和数据管理机制,切实担负起各项测绘数据的及时获取、处理、加工和提供的重任,构建了完整的空间数据基础设施的数据集,形成庞大而实用的数据体系。在信息标准化方面,制定统一的基础地理信息数据技术标准有利于行业稳步快捷的发展。
1 数字化扩展了测绘学的内涵和外延
测绘学由于数字化技术的不断突破已日益向相关地学领域渗透,作为一门新的信息科学在经济和社会可持续发展的诸多领域正发挥着愈来愈大的作用。例如数字化测绘技术在矿山测量方面、湿地保护方面、水利工程方面和精准农业方面的应用,在各个相关领域上互用数据,极大的减轻了科研或者测绘人员的工作量,工作时间缩短,工效大大提高,直接生产成本大幅度下降。数字化产品既可以存储在软盘上,也可以通过绘图仪绘在所需的图纸上,线条、线划粗细均匀,注记、字体工整,图面整齐、美观,且便于修改,能更好地保证图形的现势性和不变形性,避免重复测绘造成的浪费,增加地形图的实用性和用户的广泛性。
例如大地测量更成为研究地球动力学(包括海洋动力甚至大气动力)的重要技术手段,GPS监测已能提供全球板块运动和地壳形变精密数据,可用于研究地学灾害(地震、滑坡和火山爆发等)的预测;GPS已可以和VLBI相近的精度和频谱分辨率监测地球自转的变化,由此研究地球深部结构和动力过程及全球变化;专题GIS也成为环境灾害问题分析预测工具[1]。数字地球最重要的功能之一是为解决21世纪人类面临的环境和灾害问题提供一个可供观察、分析、模拟和预测的全球信息系统,以期协调人与自然的关系。
为了有效地研究和解决有关地球的重大问题,目前世界上许多国家都在积极地发展和运用先进的科学技术,如以遥感(RS)、地理信息系统(GIS)、全球定位系统(GPS)为代表的地球空间信息技术,以数字的方式获取、处理、分析和应用关于地球自然和人文要素的地理空间数据,并以此为基础提出解决资源环境问题的科学方案和有力措施,增强对地球的认识能力。人们利用空间信息去认识、开发和保护人类有限的生存空间,研究国民经济建设和社会发展在地域空间上的分布特征、运行状况、资源环境条件和社会经济基础等,进行规划、监测、管理、决策等。与此同时,随着席卷全球的信息技术革命的迅猛发展,人类组织、传输和实现各类与地理坐标有关的海量信息的观念和方式正在发生翻天覆地的变化。随着计算机技术、互联网技术的蓬勃发展,人们设想把有关地球的海量的、多分辨率的、三维的、动态的数据按地理坐标集成起来,形成一个数字地球[2]。借助这个数字地球,人们不论走到哪里,都可以高速地、直观地、按地理坐标了解地球上任何一处、任何方面的信息。
通过网络和技术的不断提升,人们可以了解到世界上任何地方最新、最全面的实时情况。因此,数字测绘技术在许多方面具有潜在的广泛的应用前景,如:生态环境的保护、气候变化的预测、精细农业、减灾、打击犯罪活动、外交、国防等等。数字地球将使我们有可能对人为的和自然界的灾害作出快速响应,所以必能产生广泛的社会和经济效益。
2 测绘工作的重要性不断攀升
数字化测绘技术的迅猛发展彰显其重要性。客观地说,整合利用共享已有数据和信息资源,数字化测绘技术将成为可持续发展中信息资源的主体与核心,在社会发展、经济建设、国防安全中有重要作用。数字化测绘技术展现了地球科学技术、空间科学技术、信息科学技术等学科领域交叉融合、服务人类发展的一个重要方向。作为测绘学科,测绘行业反应更显强烈,数字化的概念为测绘事业发展提供了新的机遇和更高层次的发展前景。
测绘工作是国民经济建设和社会发展的一项前期性、基础性工作,是构成地理信息产业的基础和主干。它为国家经济建设和社会发展提供与地理位置有关的各种专题性和综合性的基础信息,其成果是进行资源调查、环境监测、农田建设、能源、交通、水利等大型工程建设、城乡规划建设、土地开发利用、重大灾害监测预报和科学研究、国防建设以及国家宏观管理决策必不可少的基础资料。
目前,数字化的测绘技术已经成为信息时代的战略制高点,运用新型的测绘战略,我国的“数字中国”规划已经提上议事日程,而作为其重要的组成部分之一的“数字城市”的建设必将扮演举足轻重的角色。城市遥感信息是“数字城市”的多源信息的一个重要的分支,与城市的其他信息相比,有其特点和应用优势[3]。遥感技术也是“数字城市”建设中的关键技术之一。遥感信息的获取与处理技术随着信息时代的到来正在高速发展,人们对遥感信息内在规律的了解也愈加深入,因此,遥感信息在城市领域的应用将越来越广泛,必将推动“数字城市”乃至“数字中国”和“数字地球”的建设,对于提高城市建设的环境、经济、社会等的综合效益,以及城市的可持续发展规划将起到十分重要的作用。
随着数字化测绘技术的广泛应用,测绘学面临一个历史性的发展新机遇,拥有智能化、自动化、精准化、数字化、人性化等诸多优点的数字测绘技术必将屹立于科学技术之林,以其快速、人性、精准优势,以更强的活力向前发展,前景良好。
参考文献
[1] GIS能源和公用事业市场报告,Gartner研究与顾问咨询公司,
2009(3).
[2] 陈运迪.数字地球――将世界放在手掌中.网络世界,1999
(1).
近年来,浙江省嘉兴市委市政府把加快农村信息化建设作为和谐新农村建设的新亮点,并取得了一些成效,网络村村通,电脑村村会,2005年宽带网络覆盖全市所有行政村,2006年宽带网络覆盖全市共14150个所有自然村,全市34%的行政村建成“信息化示范村”,已建成30多个村级网站,农村信息化建设走在全国前列。
搭建农民获利增收的新平台
嘉兴市先后出台了《“数字嘉兴”建设纲要》,提出了加快推进农村信息化的战略目标,编制了《电子政务“十一五”建设规划》,把“金农工程”列为政府公共服务的“一号工程”,全市各级各有关部门响应市委市政府的号召,积极参与农村信息化建设,形成了“各地政府搭台,通信公司支撑,涉农组织唱戏,广大农民受益”的农村信息化建设良好局面。
嘉兴市委市政府鼓励各基础网络运营商完善农村基础网络,搭建“信息高速公路”,形成多网进村、有序竞争格局。同时,整合农村信息化资源,把农村数字家园、爱农信息驿站、远程教育站点等构建成农民网上行政办事、农村市场信息服务、农村科技信息等一系列综合服务。
煅造农民获利增收的助推器
已建立的“信息示范村”主要探索农村科技知识普及、农业市场信息应用、农村党员干部教育、村务管理方面的新农村信息化应用。
目前,“信息化示范村”的农民能做到“政策文件网上看、科技知识网上学、农业产品网上卖”。真正“把干部请到家里,把市场带到家里,把文明留到家里。”2006年12月,嘉兴所辖的桐乡市在全省首次命名50户农业信息应用示范户,他们都是乡亲眼中的“大能人”,其中桐乡市濮院镇新东村农业信息应用示范户李其芳,在今春蚕种紧缺时,运用农民信箱向省领导求援,很快为乡亲们解决300张蚕种。
近几年,全市通过农业信息网络销售的农产品交易额年均达到5000余万元,通过农民信箱达成交易400多笔,节约营销成本150多万元。农民卖猪、求购饲料、卖鱼卖虾、卖水果蔬菜等等都可在网上寻求交易。我市还把信息化技术与加强农村党员干部教育培训有机结合,每个网点配备了电脑、数字电视,接通互联网、有线电视,党员干部和农民通过网络都可以看到“党员教育、科技培训、保健知识”等内容。信息化使政府公共服务向农村延伸,创新了农村管理方式,给乡镇站所与村委会联网,实现信息资源共享。
关键词:县级数字农业系统建设总体构想
农业现代化是相对于传统农业而言的,其实质体现了当代科学技术在农业上的综合应用,它是一个历史的和动态的概念。在经历了原始农业、传统农业、工业化农业(石油农业或机械化农业)后,农业正在进入以知识高度密集为主要特点的知识农业发展阶段。近些年来,随着现代科学技术的迅速发展,世界上兴起了以生物技术和信息技术为主导的新的农业科技革命浪潮,新型的农业模式――“数字农业”应运而生。
一、数字农业在世界及我国的发展
1998年1月31日,美国副总统阿尔.戈尔在加利福尼亚科学中心发表了题为“数字地球:21世纪人类认识地球的方式”的演讲,提出“数字地球”(DigitalEarth)的概念,“数字地球”很快成为世界各国21世纪的发展战略。“数字农业”(DigitalAgriculture)是“数字地球”的组成部分,是“数字地球”的子系统。依据“数字地球”的概念和含义,“数字农业”是指在数字地球的框架下,以有关标准和规范为指导,以“3S”技术(即,GPS技术,全球卫星定位系统;GIS技术,地理信息系统;RS技术,遥感技术)为支撑,运用计算机网络技术、通讯技术,使数据获取自动化,解决海量数据的存储与分析问题,实现农业数据的网络化,农业预测决策的智能化,最终实现农业的信息化。数字农业同时也叫信息农业、智能农业、精细农业和虚拟空间农业。海湾战争后,卫星定位系统(GPS)技术的民用化,促使它在国民经济许多领域的应用研究迅速发展,推动了“数字农业”技术体系的广泛实践。1993年,美国开始试行数字农业模式。1993-1994年,数字农业首先在美国明尼苏达州的两个农场进行试验。结果用GPS技术指导施肥的产量比传统平衡施肥的产量提高30%左右,而且减少了化肥施用总量,经济效益大大提高。数字农业的试验成功,使得其技术思想得到了广泛发展。目前,美国20%的耕地、80%的大农场都已实行这种模式,数字农业必将得到普及和发展。1996年,北美约19%的300公顷以上的规模化农场已经利用GPS技术,目前北美已有2000台谷物康拜因安装有产量传感器。近些年来,欧美等若干国家已开始对玉米、甜菜、土豆、甘蔗、棉花等联合收割机进行产量计量传感的研究,以处方图读入装置的可自动选择种子类型、按处方调节播量的小麦精密播种机、自动施肥施药机、可控喷水量的喷灌机等,均有商品化生产。与智能化农业机械配套的GPS定位系统,可用于农田土壤、苗情、病虫、草害的信息采集和操作,通过电子传感器和GPS装在联合收割机上的仪器,在整个收获季节,可以不断地记录下几乎每平方米面积的产量及其它信息。GIS用于数据存贮、分析、处理和表达地理空间属性数据的计算机软件平台,主要作用于土地管理、土壤成份、土层厚度、土壤中氮磷钾有机肥含量、当地历年来的气温、降雨、雷灾及大风风速等,以及作物苗情、病虫草害的发生发展趋势、作物产量的空间分布等方面的空间信息数据库和进行空间信息的各种处理,为建立作物栽培管理的辅助决策支持系统,投入产出分析模拟模型和智能化专家系统,作出诊断,提出科学处方,指导科学调控制作。
进入90年代以来,信息技术的飞速发展,真正使农业产业产生新的变革。我国农业在过去的20多年时间里,有了很大的发展。但是,与国外发达国家农业相比,还有很大的差距,而且差距是全方面的,主要问题是:目前我国农业生产投入大、产出少,科技含量低,资源的利用率和转化率偏低。据统计,国外发达国家农业产量的提高,83.3%依靠科技投入,只有16.7%依靠耕地面积的扩张。因此,解决我国农业存在的问题,必须依靠科技进步,新型的现代农业取代传统农业已成必然之势。我国对数字农业的认识尚处于启蒙阶段,但政府对此已予以高度重视。1998年6月1日,主席在接见出席中科院第九次和中国工程院第四次院士大会时,提出了发展“数字中国”的战略。1999年12月,数字地球国际会议在我国召开,作为数字地球的主要应用领域之一的数字农业,成为大会讨论的主要内容。我国也已经在新疆和北京分别建立了用GPS技术和遥感技术控制农业机械操作的试验地。尽管在实现数字农业模式方面还有许多基础工作要做,需要大量投入,但进入实质性阶段,应该为时不远。数字农业反映了农业现代化的大趋势,它必将成为21世纪农业的崭新模式。
二、县级数字农业系统建设的必要性
县级农业在全省乃至全国有着重要的地位,起着特殊的作用。县级数字农业系统建设,可以使农业各个方面(包括种植业、畜牧业、林业)的各种过程(生物的、环境的、经济的)基本实现数字化;各种农业信息技术广泛地应用于农业;在农业的各个部门(生产、科研、教育、行政、流通、服务等)基本实现数字化与网络化管理。黑龙江省庆安县是全国绿色食品之乡、国家级生态示范区、全国商品粮基地县和国家A级绿色食品水稻生产基地。现以庆安县数字农业系统建设的必要性为例,来说明县级数字农业系统建设是必需的和重要的。这样,不仅可以促进县级农业信息化的发展,而且,也可以对全省乃至全国农业信息化的发展起到示范、引导和推进作用。
(一)提高农业生产技术水平的需要
我们现在的农业生产技术还相对落后,农业品种繁杂,优良品种普及率不高,农业生产技术还主要停留在经验型阶段,农业先进技术的推广应用速度不快,传统的农业生产方式还制约着农业的发展。实现数字农业,可以使各种农业科学技术与专家经验通过网络系统,直接传播到农民的千家万户,各种现代化的种植、自动化的灌溉、科学化的施肥、智能化的温室以及现代化的养殖、现代化的育林系统,将在县级逐步普及,从而加快提高县级农业生产技术水平。
(二)加快农业生物技术应用的需要
农业生物技术是现代农业中增加产量、提高品质的重要手段,而县级农业生物技术的应用还十分有限,以农业生物技术促农业发展和加速发展的潜力还非常巨大。只有实现数字农业,才能把农业生物技术信息与农业的发展紧密地结合起来,进而加大县级农业生物技术的应用范围。
(三)增强农民科学文化素质的需要
农民科学文化素质对农业的发展至关重要。但是,县级农民的科学文化素质还普遍不高,不能适应现代农业发展的要求。实现数字农业,通过网络的信息传递,农民将终身地接受最先进地科学文化教育和农业技术教育,必将加快提高县级广大农民的科学文化素质。
(四)促进农业向优质、高产、高效发展的需要
发展“两高一优”农业是市场经济的客观要求,县级各种农产品虽然单产不低,但农产品的品质普遍不高,直接影响农产品在国内外市场竞争的能力和农民的收益。实现数字农业,可以使农民通过先进的信息手段,运用先进生产模式,促进“两高一优”农业的发展。
(五)加大产加销一体的农业产业化步伐的需要
农业与工业不同,它既受自然规律的影响,又受市场规律的制约,属于弱质产业。农民一家一户的生产经营,规模小、风险大、效益差,很难形成主导产业和主导产品,很难形成区域优势。只有走销、种养加、贸工农、农科教一体化经营服务的农业产业化之路,才是农业走出弱质产业的根本途径。实现数字农业,各种农产品加工、保鲜、储藏都将得到电子信息技术的武装,提高自动化的程度;电子商务的应用,必将扩大县级农产品的国内外市场,广大农民将直接与国内外市场建立联系,了解国内外的市场动向,以便对农业的生产与销售做出相应的决策。
(六)保持农业可持续发展的需要
农业的可持续发展决定着人类的生存与发展。县级生态环境还存在着诸多不如人意的问题。实现数字农业,依靠宏观农业模型与宏观决策系统的支持,使县级的农业发展与农业环境资源治理协调统一;农业遥感技术和地理信息系统与农业模型的结合,将使县级对农业环境资源的动态监测工作更为完善;依托网络技术和数据库技术,及时正确地掌握农业环境资源数据,及时地制定和调整政策与对策,使县级农业沿着最合理的方向可持续发展。
(七)加速县级农业与世界农业接轨的需要
入世以后,我国的农业发展受世界农业的影响和制约,这是一个非常现实而又十分紧迫的问题,解决这一问题的关键在于实现数字农业,利用现代信息网络手段,应用最先进的农业技术,提高农产品质量,加强农产品竞争力,使农业技术,农产品质量和价格与世界接轨。
总之,建立数字农业系统,实现数字农业,必将使县级农业面貌得到极大的改观,农业会从一种低水平的依靠经验为主的产业,转变为一种高水平的依靠高新技术的产业,实现传统农业向现代农业的转变。
三、县级数字农业系统建设的总体构想
数字农业是发展现代化农业的大趋势,是一个挑战性的国家目标,是一项巨大的不间断的系统工程。抓好县级数字农业系统建设,将对全省乃至全国发展数字农业起到示范、引导和推进作用。县级数字农业系统建设的技术创新点,在于技术应用上的创新,在于系统管理上的创新,在于运行机制上的创新。
数字农业系统建设的着眼点应该是农业因素和过程的基本数字化,农业运行机制的基本数字化,农业信息技术全面应用的普及化。
数字农业系统建设的立足点应该是利用五年左右的时间,构建县级数字农业系统基本框架。重点是搞好五大系统建设,即农业数据库系统建设、农业控制系统建设、农业监测预测系统建设、农业决策支持系统建设和农业网络信息系统建设。
(一)构建农业数据库系统
农业数据库系统建设,主要侧重于三个方面,即农业生物数据库、农业环境资源数据库和农业经济数据库。农业数据库的建立,是数字农业的最基础工作。在建设过程中,遵循项目设计的规范化,坚持完备性、扩充性和实用性原则,充分保证数据一致性和完整性。在农业生物数据库方面,对各种农作物、畜禽水产生物、食用菌藻生物建立其品种、品系和近缘生物的数据库;各种农业病菌、农业昆虫、农业微生物建立其分类体系,特性特征、生态类型、生理小种的数据库。在农业环境资源数据库方面,建立尽可能完备的气候气象数据库、详尽的土壤资源数据库、水资源数据库和农业环境数据库。在农业经济数据库方面,建立比较完备的人口、土地、耕地,各种作物面积和产量,各种畜禽生物的数量,农民收入、农民消费、农民就业和乡镇财政等数据库。
(二)构建农业控制系统
农业控制系统建设,主要侧重于两个方面,即农业自动化和精确农业。农业自动化是将环境监测、数据采集、数据分析、数据传送与环境控制的软件和设施相结合的整套系统。精确农业由于播种、施肥、灌溉、用药等操作在用量上更为精确,因此,可以达到优质、高产、高效,并且将对环境污染减轻到最低的程度。在农业自动化方面,对粮食、蔬菜、畜禽产品的保鲜、储藏实施自动化技术;对温室大棚进行自动化控制。并且,把自动化技术应用于微生物发酵、农业菌藻生物的培育和农产品加工。在精确农业方面,应用现代信息技术、生物技术、工程技术等一系列高新技术,进行精确播种、精确施肥、精确灌溉、精确用药和精确收获。
(三)构建农业监测预测系统
运用地理信息系统(GIS)与遥感技术(RS),对农业环境资源进行监测和预测。地理信息系统是将系统科学、信息科学、计算机的数据采集、处理和分析模型,数据库技术与计算机图像技术密切结合起来的综合性技术。遥感技术是将空间技术、传感器技术、通讯技术与计算机技术相结合的综合性技术。地理信息系统与遥感技术的结合应用,将使农业资源环境的监测与预测得到根本性的改观。农业监测预测系统建设,主要侧重于五个方面
(1)农业土地、耕地、土壤、森林、草原、水面等各种农业资源的探测、评价与动态监测。
(2)各种农业灾害(洪涝、干旱、风暴、病虫害等)的实时监测与预测。
(3)各种农业作物面积与产量的监测与预测。
(4)农业环境(大气、土壤等)污染的监测与预测。
(5)各种农业作物、畜禽、水产,经济林木的地区适应性分布的研究,为农业产业结构调整提供依据。完成以上任务,需要与各种相应的农业模型相结合。
(四)构建农业决策支持系统
农业决策支持系统是应用各种专门的计算机软件,帮助对农业中的各种问题进行决策。农业决策支持系统建设,主要侧重于四个方面:(1)农业规划系统(PS)∶应用运筹学中的各种数学规划方法(如:线性规划,非线性规划,动态规划,整数规划,决策论等),对农业问题进行决策。
(2)农业专家系统(ES)∶应用专家经验的计算机软件,解决一些主要依靠专家经验进行决策的农业问题。
(3)农业模拟决策系统(SDS)∶将农业模拟与决策相联系,主要采用二种方法:其一,通过计算机的模拟性试验;其二,将模拟与专家系统相结合,这种方法与单纯的专家系统相比,其机理性较强,但在决策中还是要受到专家经验的局限。
(4)农业模拟优化决策系统(SODS)∶将农业过程的模拟与农业的优化原理相结合,在此基础上,做出各种农业决策的完整软件系统。SODS在农业生产指导上,既有很强的应用性,又有很强的通用性。同时,它还有预测的功能,可以提高农业生产的预见性。
(五)构建农业网络信息咨询系统
农业网络信息与咨询系统是向社会公众提供服务的窗口,包括部分业务数据、图形图像数据以及多媒体数据等。农业网络信息与咨询系统建设,主要侧重于硬、软件两个方面建设。就硬件建设而言,数字农业系统建设的各种信息都需要计算机网络荷载,这就需要建设好中心交互平台。就软件建设而言,数字农业系统建设需要搞好各类信息的处理,建设各种数据库,以满足各有关部门及用户的需要,这就需要建设好数字处理中心。搞好中心交互平台建设,中心交互平台是“数字农业”心脏,纵向上与国家、省、市 “数字农业”平台链接,下与各乡镇(林场)平台链接,通过乡镇(林场)平台与村及农户(包括林业生产点、养殖场)联网;横向与农、林、水、畜、机、气象等涉农部门局域网平台链接。搞好数字处理中心建设,数字处理中心是“数字农业”的“数字原料”集散地或贮存库,它把农业的各种原始数据,通过数字处理中心收集、整理、加工后,根据需要,分门别类的贮存于各种数据仓库。同时,它又把接收国家、省、市的需要再加工的各种信息,也贮存于数据仓库,供领导决策和涉农部门提取和使用。各有关系统加工后的“数字产品”和决策系统的信息,通过数字处理中心及时给用户,并在各种数据仓库中历史留存。
以上数字农业的五大系统建设,构成县级数字农业系统建设的基本框架。在其系统建设中,以数据库系统建设为基础,以控制系统建设为手段,以监测预测系统建设为工具,以决策支持系统建设为目标,以网络信息系统建设为窗口,重点突出中心互动平台建设。要在有代表性的重点乡镇,实行数字农业系统建设的试点工作。
参考文献:
[1]彭鹏,谢炳庚,侯伊林. 湖南师范大学.关于“数字农业”.农业现代化研究2000.4
关键词:数字技术 电力电气自动化 应用
中图分类号:TM76 文献标识码:A 文章编号:1007-9416(2015)04-0209-01
数字技术在当前工业生产中的广泛应用是现代工业急速发展的一大典型特征之一,尤其是目前诸多领域中数字技术已经不可或缺的关键技术,对保障工农业的顺利生产有至关重要的意义。目前包括工业生产管理、企业经营、信息化管理等多个领域在内的电力电气自动化控制都离不开数字技术,研究数字技术的应用优势对于进一步推广该技术有重要价值。下面就数字技术在电力电气自动化中的应用情况做简要分析。
1 数字技术
数字技术作为目前广泛应用于各个领域的关键技术之一,已经成为工业电力电气自动化领域必不可少的关键管理手段。数字技术是融信息技术、计算机技术、智能技术等为一体的系统技术,其在应用过程中依托各种电子信息设备集成了强大功能,该技术融声音、图像、文字等为一体实现了综合性技术管理,通过将数字信号及信息转化成为可被计算机识别的二进制数字从而逐步完成运算、加工、存储、传送等,需要注意的是,数字技术的应用本身主要依托信息编码与计算机控制,因此是一种典型的以综合性技术体系为主的数字化控制管理流程。数字化技术的应用是信息技术与计算机发展、推广的必然趋势,也是为了工农业自动化控制的必然选择,就当前发展应用现状来看,数字技术为经济的进步、繁荣与发展提供了强劲支持,为技术的升级、更新换代以及自动化控制水平的提升提供了更加全面且科学的管理流程与举措,其本身以抗干扰能力强、存储状态好、适用性强、保密效果佳等特征为典型优势。
2 数字化技术在电力电气自动化中的应用
数字技术在电力电气自动化中的应用对于技术本身而言是一种极大的推动与促进,也是确保工农业生产持续顺利、健康进行的关键。
2.1 应用特点
数字技术本身作为高新技术与智能化的联合产物,在多个领域应用都获得了青睐与认可,是目前工农业生产中备受关注的关键环节之一。数字技术在电力电气自动化应用发展过程中,着力改进电气自动化管理举措,保障自动化管理效果与效率得到提升,从而降低生产成本,使企业获得更高的收益。
数字技术与以往其他技术相比,可靠性得到提升是一大显著特征,作为融合了智能技术、信息技术与计算机技术等多种高新技术于一体的新型产品,数字技术通常与高端智能化电气系统紧密结合,可实现对管理流程的优化及对管理举措的改进。以目前大力推广应用的光纤技术为例,其在提升工业生产自动化、保障生产安全与生产效率方面有出众表现,代表了数字技术应用的升级与进步,意味着工业仪表应用领域网络化、模拟化与数字化三大典型前进方向。光纤技术本身所拥有的多重优势意味着可对系统运行体系进行更加高技术含量的对比分析,及时发现系统运行中潜在安全问题及隐患,协调系统平衡,从而在应用中获得进步,更甚者谋求技术升级与创新,这也代表了数字技术未来广阔的发展前景。
数字技术相较其他技术拥有较高的性价比。像电气技术应用过程中对专业性要求较高,且本身具有一定特殊性与危险性,应用、控制、管理时就需要对控制精度与安全进行高效管理,计算机技术与通信技术作为实现以上目标的重要技术支柱,意味着其可通过进步与创新以更加高效、便捷的自动化方式完成管理目标。工业电气自动化领域应用数字技术需要对设备进行合理筛选、配置与应用,以提升其运作效率与科学性,从而符合系统整体性与统一性应用需求。尤其数字技术本身融合了通信技术,意味着可更加便利的获得丰富的信息资料,有利于统一标准的推广与践行,在提升智能化水平方面有着较大的运作空间,这对于节约企业生产管理成本、提升工作效率、提升自动化水平有重要价值。
2.2 应用创新
数字化技术之所以在工业电力电气自动化领域得到广泛应用是由于其具有其他技术所没有的诸多优点,且运行效率高、运行效果佳,不过这也不能避免技术应用中的诸多不利因素。数字化技术从出现到应用所经历的时间还较短,实际应用中遭遇了不少问题与阻碍,且缺乏统一的标准规范,高素质的专业人才队伍也亟待建设与培养,尤其是该技术的运行基础及智能化联网程度都偏低,一定程度上制约了技术的推广与应用,因此需要进一步探索与创新。
数字技术实际应用中可运用智能终端技术,该技术创新主要是针对当前应用领域智能化水平偏低、高素质专业操作人员短缺、统一标准采用方式与衡量缺陷、应用时限大等弊端,智能终端依托光纤连接设备,可对数据与信息进行自动收集与控制,通过双重设备的配合提升电力电气自动化保护水平,比如跳闸双重保护可保障生产顺利进行及电力电气安全,电力保护中断可及时高效完成远程测控及信号发送。另外,数字化程序接口解决了计算机平台自动化问题,为工业电气自动化创造优越的运行条件,有利于相关电位系统与执行系统之间的通讯连接。除此之外,在数字化技术中培养程序代码控制观念可为自动化操作的完成提供更加全面完善的保障,在应用中混合面向通用对象的变电站时间端头可全方位完成对全站线路、开关的控制及远程测控,在智能化的基础上最大限度的减少潜在隐患。
3 结语
综上所述,数字技术在电力电气自动化中的应用为工业生产技术的升级、更新换代以及自动化控制水平的提升提供了更加全面且科学的管理流程与举措,虽然本身有一定弊端,但是通过技术创新可予以解决,具有较高的推广应用价值。
参考文献
如今,“一亩田”已经形成了稳定的商业模式,为上海的几万户家庭配送蔬菜。对内,公司采用了数字化管理,用IT技术实现对农业的标准化操作;对外,会员与常客打开网页就能看到自己的“开心菜地”,了解当日的收成。顾客既可以零买,也可以签订一年期的合同。
“一亩田”只是有机农业当下在国内遍地开花的一个缩影。近年来,随着人们对食品安全与友好环境的日益重视,越来越多的商人开始投身到这个颇有前景的行业。
有机农业的推动者们希望,这场运动能一改过去大规模、机械化、高投入的种植方式,向可持续发展的农业模式转型,从而改善水土流失、食品污染、生态失衡等一系列问题。与此同时,蔬菜等农业产品能像一般消费品那样具有品牌,产销双方还能直接见面,避免各种中间环节。
坊间一直流传着这样一组数字:国内的有机农产品占总农产品的0.08%,而在美国,这一比例已达到了2.5%。这意味着,对于这种更健康、更安全的有机食品,中国市场还留有相当大的空间和机遇。
即便如此,“插上科技翅膀”的新农业在国内发展得并非想象的那么顺风顺水。
如何建立起有机蔬菜的品牌,是横亘在不少商家面前的问题。现实的情况是,许多公司培育出了品质上乘的有机产品,却苦于没有足够的销售网络去推广。一方面,普通商业超市的流通成本太高,且无法保证蔬菜的完好无损;而自有实体店的店租同样高昂,且只能辐射到门店周围一小片地区。上海的有机食品专卖店“欧食多”曾经红极一时,但就因为巨大的店面成本使其不得不关门大吉。
据一位曾从事该行业的人士称:“这些农场采取的大多是口碑营销的方式,比如在网上发帖,或在周末组织用户去农场参观,让他们亲自品尝并进行专业讲解等。”不过,仅依靠这种方式,并不能带来用户数的快速扩张。
除了销售渠道的不健全,有机农产品的价格还比普通产品贵5倍左右——消费者是否认为其“物有所值”,是制约人们选择有机农产品的另一个因素。如今,有机蔬菜的主要购买群体依然集中在中产或富裕阶层,而在品类众多的农产品中,要让消费者偏好有机农产品,显然还有漫长的市场教育过程。
在推动有机农业的过程中,法律标准的缺失也导致了生态农业领域的鱼龙混杂。目前,国内还没有制定严格的生态农业的行业标准、企业标准和产品标准,这一方面扰乱了产业的健康发展,另一方面也使消费者更加无所适从。
事实上,昂贵的有机蔬菜的种植成本并不低,首先,农场要租到符合要求的土地,这块土地必须已闲置3年以上,而且足够肥沃。土地的认证审批手续周期也较长。其次,农场要请到专业的农民进行种植,并使用纯天然的有机肥。而采用了有机肥后,农作物的产量也比用一般化肥要低不少,这些因素都导致了有机农场的生产成本居高不下,而且发展较为缓慢。
进一步说,企业需要进行农业与商业两头的探索。要将有机事业发展壮大,既要具备农业的管理经验,还要深谙营销之道。在有机产业刚刚兴起的中国,尚未完全形成促进行业健康成长的土壤,对“一亩田”这样的开拓者来说,这个朝阳产业显然还需要时间的积累。
关键词: 地理信息系统数据库
Abstract: this article Outlines Chinese production of liaoning province precise geographic information system construction and prospects
Key words: the geographic information system database
中图分类号:C922文献标识码:A 文章编号:
地理信息系统是近20年来国际地理科学的一项突破性的技术。它将系统科学、信息科学、计算机的数据采集、处理和分析模型、数据库技术与计算机图像技术密切结合起来,成为一种综合性技术。GIS 早已不限于应用在地理学研究领域,而广泛地应用于资源开发、天气预报、城市规划、社会统计等各行各业,目前在农业领域也越来越广泛地得到了应用,在高科技集约化农业中发挥巨大作用。尤其是精准农业更离不开 GIS的技术支持,它是构成农作物精准管理空间信息数据库的有力工具,田间信息通过GIS系统予以表达和处理,是精准农业实施的重要。本文就我省中药材生产自身情况,研究建立一个能够精准管理这些中药材所有信息,进行农作空间分析,给出准确可靠的农事操作方案,达到精准农业水平,并且今后可以推广的辽宁省中药材地理信息系统。
一、辽宁省中药材地理信息系统目标
在全球定位系统(GPS)、遥感(RS)等现代技术支持下,以辽宁省特色的中药材为突破口,建立辽宁省中药材地理信息系统,为政府、企业、农民提供相关服务信息。
二、辽宁省中药材地理信息系统重点需要解决问题
1、辽宁省中药材GIS 数据库系统的构建
数据库是精准农业农田地理信息系统的基础,数据来源于地理背景、本底调查、实时农田采集、以及经济的数据,主要的数据库有:
(1)地理背景数据库:试验示范地在辽宁省辽宁东部山区的新宾、桓仁、西丰和盖州等位置,1:1000地形图和全要素底图,农业设施,地形,土地利用等;
(2)GPS数据库:GPS控制点,土壤、环境、水分、气象等采样点的GPS点数据。其中土壤数据库包括土壤类型、土壤剖面、土壤质地、耕作层厚度、土壤养分及淋洗特征、土壤容重、土壤微量元素、土壤含水量、土壤渗透性、田间持水量数据等,与地理背景数据叠加可以形成土壤要素空间分布图,不同深度土壤图等;环境数据库包括水(井水)、土壤、植物、空气等,分析铅、汞、镉、 砷、总氮、速效氮、总磷、速效磷、有机质、有机磷等项目;气象资料数据包括经纬度、海拔、日照时数、日平均温度、日温度极值、空气相对湿度、风速、日降水量、水汽压等;
(3)中药材数据库:分基本指标、生产条件、化肥农药使用等。基本指标包括中药材种类、中药材品种、生态适应性、生长发育,农艺形状,抗性,品质,经济技术指标,中药材营养需求(水分、养分等),病虫害等;中药材生产条件数据库包括种植选地、栽培技术、化肥投入、灌溉条件、播种面积、种植制度、产量水平、农药使用量、价格等;化肥农药数据库包括中药材可以使用的化肥农药品名、价格、形状、作用等;中药材禁止使用的农药种类。
(4)影像数据库:航片、卫星数据等;
2、辽宁省中药材精准农业的空间分析系统
辽宁省中药材精准农业需要特别的程序进行空间分析,以决策施肥、灌溉、播种、除草、灭虫、收获、采集种子等农事操作,因此要开发适合我省省情的空间分析软件。通过准确可靠的综合分析专家系统,决策结果的空间分布载体,以便于农业机械执行。空间分析系统技术体系至少要包括作物产量空间分布、土壤养分的空间分布、土壤水分空间分布、土壤微量元素空间分析、作物需求空间分析、环境空间分析等。
3、接口
这里所说的接口是指自动农田信息采集数据、自动环境信息采集数据、遥感数据、农机具指挥系统与GIS的接口等完成以上任务,往往需要与各种相应的农业模型相结合。
三、结论
辽宁省中药材GIS 数据库系统中数据主要组成部分是数字地图,以数字形式存贮地图的地理信息系统,是当代测绘科技的重要成果,它将测绘科学作为基础,利用地理信息系统背景本底数据库,对中药材的育种、施肥、生长、病虫害防治等实行监测,精确地计算出一块地所需的投入,从而达到减少不必要的投入、避免资源浪费及提高效益的目的,以确保农业可持续发展。它不但改变了传统的农业耕作,更体现了测绘高科技产品在农业中的应用,具有较好的发展前景。
参考文献:
1.1构建化学实验中心全方位数字化网络管理体系
通过对国内同类兄弟院校进行学习考察,结合化学实验中心的实际情况,对实验中心数字化网络科学管理平台项目进行设计,对网络平台建设的内容进行制作和完善。化学实验中心数字化网络科学管理系统建设的内容主要包括:中心简介、规章制度、实验队伍、仪器平台、教学改革、创新培养、耗材管理、下载中心、友情链接、联系我们、在线答疑等诸多单元栏目,以便更好地实现办公的网络化、自动化、现代化,实现网络资源共享与检索和信息的交流。我们不断地通过管理体制和管理制度的改革创新,加快实验中心整体改革的步伐。我们采用微软公司的.PHP和.NET网络制作技术编制软件,建设《东北农业大学化学实验中心数字化网络管理平台》系统。本系统的开发是基于windows7.0环境下进行,具有操作简单、运行效率高和使用功能强大等诸多优点,将其挂靠在东北农业大学校园服务器上为广大师生提供良好的服务。通过对化学实验中心数字化网络管理平台的建设与实践,实现对实验中心交流信息方便、快捷查询的目标,为化学实验中心的宣传和发展创造了有力的条件。实验中心数字化网络管理平台的建设,对实验中心的各项管理具有一定的创新性,在我国高等农业院校中处于领先地位。
1.2构建仪器设备立体化网络科学管理体系
为了进一步提高化学实验中心大型仪器设备的利用效率和管理水平,构建大型仪器设备网络化、现代化、规范化科学管理模式,我们结合东北农业大学化学实验中心大型仪器设备的具体情况,于2012年9月开始设计大型仪器网上预约系统,开发基于In-ternet的大型仪器设备网上预约功能。2013年12月仪器设备网络管理平台进入试运行阶段(化学实验中心仪器设备网络管理平台网址:115.47.52.216:8088/)。目前,化学实验中心仪器设备数字立体化网络管理平台建设的内容主要包括:站点首页、仪器查询、共享预约、使用情况、规章制度、仪器厂家、联系我们、操作规程、原理演示、下载中心、帮助中心等单元栏目。通过试运行及技术的不断更新和功能的不断完善,将正式投入到实验教学和仪器设备管理上使用。化学实验中心大型仪器设备网络管理平台通过一年来的测试,我们发现还需要对大型仪器设备预约单元进行完善,对页面进行美工处理,对数据进行加工、上传和维护等工作。化学实验中心仪器设备网络管理平台投入使用,可以将分散的仪器设备采用集中化的管理模式、网络化开放服务,并通过管理体制的改革和创新来实现仪器设备资源的开放和共享。让广大师生随时了解大型仪器使用动态,方便仪器的使用预约,提高大型仪器使用效率和管理水平。使实验中心大型仪器设备的管理进一步向网络化、现代化方向发展,为国内高等农业院校提供宝贵的借鉴经验。
1.3构建实验耗材“超市化”管理新模式
化学实验中心的实验项目数量较多,单个实验需要的实验耗材种类繁多。随着我校本科教学和开放性实验的展开,实验耗材的需求数量、品种、领用药品人数和频率都有较大的增长,传统的账本管理或单机电脑管理模式很难满足日益增长的化学实验耗材数量需求,加上化学药品管理有着严格的规定,特别是易燃易爆危险品、、强腐蚀剂等,其库存数量、存贮时间、出库数量和去向等信息都要及时更新和方便查询。为此,对实验耗材管理模式进行了探究,提出建设有人值守的实验耗材“超市化”管理模式的建设目标。构建实验耗材“超市化”管理模式的网络版管理系统,实现实验耗材管理数字化、信息化、超市化。化学实验中心实验耗材管理系统建设的内容主要包括:入库管理、出库管理、库存管理、统计报表、系统管理、财务管理等单元栏目。化学实验中心实验耗材“超市化”管理模式的建设,规范了实验耗材的申购和领取,有力支持了本科教学、科研、大学生创新创业和开放性实验的顺利开展;同时,药品的库存,科研的药品用量,均一目了然。有利于各部门和领导对化学药品的监控,有利于各研究生导师对本课题组药品用量、用于实验耗材的经费等信息的掌控。实验耗材信息数据透明、管理高效,防止化学药品的积压浪费,堵塞经验管理的漏洞,提高实验耗材的科学管理水平。应用计算机网络技术对实验耗材进行科学管理,是当今适应科研和教学管理发展的必然趋势。这种方便、快捷、自主、灵活、高效的管理方式,使实验耗材的管理水平得到了显著的提高。
2建设流程图
通过采用诸多研究途径和方法对化学实验中心数字化网络管理平台建设进行了研究,最终确立了实验中心数字化网络平台的研究方法。在实施的过程中通过对其效果的评价,对方案进行不断改进,最后经实践检验后得以推广应用。
3结语
“创意族”:设计类职业红红火火
“族群”成员:形象设计师、首饰设计制作员、景观设计师、建筑模型设计制作员等
“群体像”:在新职业“族群”中,与“设计”、“策划”等直接相关的数量最多,粗略统计有20多个,加上以设计、策划为主要工作职能的,“创意族”新职业有近30个,占了总量的三成多,且分布的行业领域十分广泛。这类岗位从业者将成为新一年乃至未来几年职业市场的弄潮儿。
市场前景:如今各行各业都更加强调自主知识产权,强调自主研发、设计。在传统的制造业领域,设计师是现代企业参与国际国内市场竞争的关键人物。而在新兴行业领域,如会展、景观设计等行业,设计师的价值早已得到认可。
“顾问族”:分析、评估类职业崭露头角
“族群”成员:职业信息分析师、黄金投资分析师、企业文化师、农业技术指导员、灾害信息员等
“群体像”:信息时代,信息就是价值。专门为个人、企业、社会提供各类信息分析、咨询、价值评估等专业顾问式服务的新职业数量引人注目。这类职业的从业者以收集、综合、分析各行业的信息为主要工作内容,为个人、企业和社会提供经过加工和提炼的有价值的信息,并从中获取收益。
市场前景:随着专业服务类产业的发展,这类新职业受到了人们前所未有的重视和追捧。一方面这是时代的发展,信息的讯达,以及对事物量化价值强烈的认识欲造成的;另一方面,这也体现了脑力劳动所能创造价值的进一步延伸。
“科技族”:IT、技术职业风华正茂
“族群”成员:数字视频(DV)策划制作师、智能楼宇管理师、计算机软件产品检验员、可编程控制系统设计师等
“群体像”:IT及其相关产业的快速发展催生了一大批新职业。这类新职业的从业者均具备了良好的计算机操作、编程及应用能力,活跃在IT产业或传统产业的数字技术部门,他们的“生产工具”是计算机、网络、软件等数字产品,以电脑和网络为伴。
市场前景:信息化已经成为全球范围内的发展趋势,一些新兴的行业人才紧缺,需要大批掌握先进技术的优秀人才。
“保健族”:营养、健康类职业异军突起
“族群”成员:健康管理师、公共营养师、医疗救护员、水产品质量检验员、芳香保健师、宠物健康护理员等