美章网 精品范文 中学数学教育学范文

中学数学教育学范文

前言:我们精心挑选了数篇优质中学数学教育学文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。

第1篇

(一)教学方法不同

教学方法是教师向学生传授数学知识的重要手段,也是影响学生数学学习方法和逻辑思维的重要因素。相比大学数学教育,中学阶段的数学教学方法显得十分落后、刻板,这是由于中学阶段的数学教学的主要目标是掌握理论知识,会用数学知识解决简单的实际问题。实际是要求学生在高考时能够拿到优异的分数,因此,即使是在大力提倡素质教育的今天,数学教育尤其是高中数学教育由于时间短、任务重,仍然沿用过去的题海战术,忽略了学生在数学学习上的主体性地位。而在大学数学教育阶段,数学教育的目的是培养学生的逻辑思维和综合能力,因此大学数学课堂教学的方法大都是点拨式、问题导入式等,大学教师将知识点和问题摆在学生面前,学生通过自主学习和自我研究获得答案。截然不同的教学方法让很多的学生在短时间内无法很好地适应大学数学教育,给他们的数学学习造成了较大的困难。

(二)教育内容存在脱节和重叠的现象

在教育内容上,大学数学教育与中学数学教育存在着脱节和重叠的现象。在新课程改革的要求下,中学数学教育在知识体系结构与内容设置方面与过去相比已经发生了很大的变化,但是大学数学教育的内容却没有发生相应的改变,这种不对称的发展趋势使得大学数学教育与中学数学教育在教育内容的衔接上出现较多问题。首先,两者之间的重复内容较多,中学数学对函数、微积分、概率统计等相关概念和内容都有所涉及,但是在大学教育阶段,大学数学教师仍然从最基础的内容进行数学教学,这不仅浪费了课堂教学时间,相对影响了学生对其他内容的学习,而且也会造成学生学习积极性下降、学习兴趣不高等问题。其次,大学数学教育内容与中学数学教育内容存在脱节现象,例如“傅里叶级数”“线性回归”等内容。中学生的知识构架不完善,只对相关基础性内容进行学习,没有进行深入分析;在大学教育阶段,具有高度实用价值的内容也没有相应涉及,导致学生对这一部分内容一知半解,无法在实践中很好地运用。

(三)学生的学习观念和学习方法有所不同

首先,在学习观念方面,学生在中学数学学习阶段处于被动地位,学习方案的制定、学习进程甚至是学习方法都是由教师包办的,但是在大学数学学习阶段,自主学习是最主要的学习方法,大学数学教师在数学教育中扮演着指导者的角色,往往提出问题后就将学习的主动权交给学生,这对学生提出了较大的挑战,在短时间内,很多学生无法完成从“服从”到“自主”转变,因而无法开展有效学习;还有部分学生在脱离中学阶段的束缚式学习后,容易产生自我放纵的心态,这都对大学数学学习产生极为不利的影响。其次,在学习方法方面,“听课—练习”是中学阶段的学生学习数学的主要方法,多数学生只要在课堂上认真听课,在课后认真练习、复习,就能很好地掌握数学知识,取得较为满意的学习成绩。但是在大学数学学习阶段,教师的课堂教学骤减,面对内容繁杂的数学知识,学生只能通过自主学习来掌握数学知识,学习方法的不同也对大学数学教育与中学数学教育的衔接产生了一定的影响。

二、大学数学教育与中学数学教育的衔接策略

(一)教育方法的衔接策略

首先,中学教师在教学过程中应突出学生的主体地位,注重对学生思维的培养,引导学生自主学习,在课堂教学中可以根据情况进行“微型探究”数学教学,这样既可以满足中学数学教学任务重、时间紧的特点,也能够有效地培养学生运用数学解决问题的能力,并且通过潜移默化的影响让学生在进入大学之后,很快地适应大学数学的教学方法,更好地掌握大学数学的学习步骤。其次,大学教师应对学生实际情况进行分析,并根据学生的实际能力因材施教,尽量将一些复杂的问题简单化处理。大学数学教育不再像中学数学一样,追求数学成绩,应当将一些抽象的概念与实际生活进行紧密的联系,要注重大学数学教学的实用性。

(二)教育内容的衔接策略

在教育内容上实现大学数学教育与中学数学教育的有效衔接主要依赖于大学数学教学工作者,这是由中学数学教育的目的性决定的。中学数学教育的直接目的是为了提高学生的数学成绩,让学生在高考中获得理想的分数。因此,为了学生获得更好的发展,大学数学教育工作者在教育内容衔接的问题上应当履行主要职责,要对中学数学教学的内容进行充分的了解,明确应删改、增添的教学内容,对大学数学教学内容进行合理的取舍,避免重复和脱节的问题出现,在编写数学教学大纲时要注重参考中学数学的教育内容,做到有的放矢。

(三)引导学生数学学习观念和学习方法的有效衔接策略

要想在大学数学学习阶段取得优异的成果,学生就必须在学习观念和学习方法上做出改变,而这种改变要中学数学教师、大学数学教师和学生自身共同努力。首先,在中学数学教育阶段,教师应当注重对学生自主学习观念和探究式学习方法的培养,在授课过程中不时地向学生介绍大学数学教学方法,让学生对大学数学教学有一个前期的认识。其次,在大学数学教育阶段,教师应当给予学生充分的关心,要与学生多沟通、多交流,要将大学数学教学的目的与学生进行分享,从而循序渐进地引导学生逐渐地适应大学数学教学。最后,学生要从自身做起,努力的改变自己的学习观念和学习方法,在养成预习、听课、复习的良好学习习惯的基础上,在学习过程中注重方法的总结,要注重对自己思维方面的训练和培养,要学会运用数学逻辑思维将数学概念、数学公式等知识点串联起来,努力的构建自身数学知识体系,从而更好地适应大学数学教育。

三、结语

第2篇

关键词 高等数学 教学衔接 有效方法

中图分类号:G424 文献标识码:A

Cohesion of Advanced Mathematics Teaching and

Middle School Mathematics Teaching

LIN Weiwei

(School of Mathematics and Information Science, Shaanxi Normal University, Xi'an, Shaanxi 710062)

Abstract Advanced mathematics is the compulsory basic course in college mathematics and science and engineering students, but freshmen who are generally considered higher mathematics learning is difficult to learn in all college subjects. The reason, the cohesion of middle school mathematics and advanced mathematics teaching not in place is an important factor. Thus, higher mathematics teachers need to brainstorm ways to solve the problem of convergence between the two, which is the key to improving the quality of higher mathematics teaching.

Key words high mathematics; teaching cohesion; effective methods

0 引言

高等数学是一门基础课,是许多专业的必修课。但在教学中老师发现,大学一年级新生普遍反映数学难学,其原因是多方面的。但不容置疑的是,高等数学和中学数学教学衔接中出现的“脱节”是一个重要因素。为此,针对教学内容的差异,采取不同的教学方法和教学思路,比如将教学知识进行延伸、对教学内容进行贯通等等,则有可能保证知识结构的完整性,实现知识层次由低到高的过渡。 希望通过这样的自然过渡使其在新课程改革的背景下,更好地进行衔接教学,从而使高等数学的教学质量得到进一步的提高,促进学生数学思维的纵深发展。

1 高等数学教学与中等数学教学的脱节

1.1 教学管理模式的脱节

目前中等数学的教学方法是以课堂讲授法为主,而高等数学相对初等数学有较大的不同,对学生的各项能力有较高要求,高等数学的教学中,学生只有在理解概念,掌握定理,理清思路的基础上才能较好地运用所学知识解决问题,因此,要解决好高等数学与中学数学教学的衔接,必须改进传统的教学模式,数学教学不仅教给学生数学知识,更重要的在于培养学生的数学应用能力和数学应用意识,只有这样,才能在衔接中增强学生的适应能力和自学能力,让他们学会用数学的理论、思想方法分析、解决专业和生活中的实际问题。

1.2 教学内容的脱节

高等数学与初等数学在概念的理解上是有很大的不同的,其中高等数学的概念基本上都是以抽象的形式出现的,而初等数学则是用具体的形象的观点研究问题。在初等数学中,研究对象基本上都是常量,而高等数学研究的对象基本都是变量,而这两者的区别,是抽象与具体之间的体现。

1.3 学习方法的脱节

进入大学后,高等数学的学习方法是与中学数学不同的,主要表现在:中学是以教师为主导,进行模仿学习,而大学则要求学生在教师的指导下进行创造性的学习。大学阶段的学习重点的是每门课程的内涵,即思想方法。而新生常常不理解学习数学思想方法的重要性,导致对基本概念的理解出现偏差,从而没有学好高等数学。

2 高等数学与中等数学教学衔接的必要性

2.1 两者教学内容衔接的必要性

教材是承载教学内容的载体,是教师教学的依据。对教学质量起着不可忽视的关键的作用,它不仅需要适应时展的特征,也需要适应学生身心发展的特征,而高中教材虽然在必修部分加入了大学的课程,但是学习的内容却不多,而这也是导致高等数学在大学的教学中出现困难的其中一个方面的因素,而初高中的教材在内容上忽略新的教育思想和改革成果的影响,则是导致高等数学与高中数学课程改革不同步的主要原因,而其直接后果则是使高等数学的教学质量下滑。

2.2 两者学习方法衔接的必要性

随着时代的发展,终身教育作为“本世纪最富冲击力的教育理念”所引发的传统教育的革命性变革,被认为是教育领域里的“哥白尼革命”。中学数学课堂通常是由教师引出概念,讲解例题,布置作业为基础的这一套基本的教学模式。中学生基本处于被动学习的状态,并且在应试教育的前提下需要完成大量重复的习题以达到巩固新知的效果,这样一来,学生的实践能力得不到提升,学习中的情感态度和价值观得不到认可。而对高等数学学习则是通过引导学生在理解基本思想概念的基础上,启发性地进行学习,从而加强了学生学习过程中创新思维和创新能力的培养。

3 高等数学与中等数学教学衔接的有效方法

3.1 高等数学与中学数学教学方法的衔接

(1)了解学生的心理特点,找准情感育人的教学方向。高等数学是大学学习中学习其他课程的基础。在教学过程中,其学习过程中的情感态度将直接影响学习的效果和质量。而这就要求教师必须调整教学理念,将教育的内容与学生的身心发展水平、个性、智力特点相结合,使得知识、技能、情感态度和价值观和谐统一起来,做到以学生为主体的课堂教学,真正做到“以人为本”,以学生为本。

(2)高等数学与中学数学教学方法的差异对于学生能力的影响。中学数学教师通常是利用生动、形象的语言吸引学生的注意力。而大学数学教师在课堂上基本上是教授、讲师在课上讲,学生在上面听,缺少互动。大学教师强调数学语言的准确性和数学学习中思想方法的应用和理解,并将许多问题和习题的解答都留给学生自己思考。这也是与中学数学的教学有所不同的。

3.2 高等数学与中学数学教学内容的衔接

(1)放慢教学速度以实现新旧知识的接轨。在大一年级的教学中。教师要注意放慢课程进度以帮助学生熟悉大学数学教与学的学习规律。有一部分学生期望大学教师能像中学教师一样把知识讲深讲透,并且在课堂讲解习题,这种心理则并不适合大学的教学特点。在开始学习初期,教师则要注意引导学生调整学习方法和学习心态以适应大学数学的课堂教学,并且培养自学的能力。

(2)把握两者之间的教学关系以实现教学模块的过渡。新知识是建立在旧知识之上的,因此教师在备课时,就要了解中学的有关知识及中学知识和高等数学知识之间内在的联系,这样才能在课上正确把握授课的难易程度。其次,教师在教学中应遵循“由浅入深,深入浅出”的原则。数学概念的引入要适应学生的思维发展规律。在教学中要研究高等数学概念的认识过程的特点和规律性,根据学生的认识能力发展的规律来选择适当的教学形式,这样才能使学生较快地理解所学的知识,并产生极大的兴趣与求知欲。

3.3 高等数学与中学数学学习方法的衔接

(1)引导学生掌握学习方法,形成良好的学习习惯。高等数学不仅仅是学生掌握数学工具学习其他相关专业课程的基础,更是培养学生逻辑思维严谨性的重要载体,其重要性是不言而喻的。而高等数学的学习也讲究一定的方法,学生应在掌握其学习规律的基础上进行有效率的学习,而这些学习方式方法和中学数学也是有所不同的,在大学期间,学生有充足的时间可以自由安排学习活动,调节自己的作息时间,在保证劳逸结合的前提下,使自己的学习效率达到最大化,而在大学中的教师也应指导学生做好课前预习和课后复习的工作,并且引导学生养成良好的学习习惯,良好的学习习惯的形成也是取得优异成绩的前提条件。

(2)指导学生正确使用数学语言。数学语言体现了数学学科的准确性、精简性。数学教师在课堂教学时,则要引导学生正确使用数学语言,体会其准确性、精简性的内涵。经过练习,学生会发现数学语言是多么的严谨精辟,再者,通过这方面的训练,学生会感到数学也有其自身的特点,是其他学科所无法比拟的,数学不再是枯燥乏味的,而是解决问题的有效工具。

(3)营造良好的学习氛围,摆脱枯燥乏味的传统定势。在不少学生的头脑中一直存在着“数学难”、“数学枯燥”的想法,如果带着这样的情绪去学习数学,那么效果是可想而知。但是如果数学教师能让学生觉得高等数学并非他们想象中的那么难,那么枯燥,并且在教学过程中加入多种教育方法和手段,让他们觉得学习高等数学是一项充满挑战、充满乐趣的活动,那么学生就能逐渐适应高等数学的学习节奏,最终取得良好的教学效果。

参考文献

[1] 张彦春.大学与中学数学的衔接教育研究[J].乐山师范学院学报,2006(12).

[2] 季素月,钱林.大学与中学数学学习衔接问题的研究[J].数学教育学报,2000(4).

[3] 吕世虎等著.从高等数学看中学数学[M].北京:科学出版社,1995.

[4] 季素月.数学教学概论[M].南京:东南大学出版社,2000.

[5] 裴娣娜.教育研究方法导论[M].合肥:安徽教育出版社,1995.8.

[6] 庞维国.当前课改强调的三种学习方式及其关系[J].当代教育科学,2003(6).

[7] 赵振武.中学数学教材教发[M].上海:华东师范大学出版社,1994.

[8] 冯国平,杨明,郑素琴.结合中学数学教学实际教法课的教学改革[J].数学教育学报,2000(2).

第3篇

      一、数学教育在中学教育中的地位、作用

      在中学阶段,数学是一门重要的基础学科。数学的重要性不仅在于它与其它学科有着密切联系。以及它在社会实践中有着广泛应用,更重要的是数学的学习能训练人的思维方法,完善人的个性品格。从这个意义上讲,数学所代表的进步观念已经超越了自身的范畴,数学的发展水平在一定程度上影响着人文科学的进步,影响着社会文明的进程。

      中学数学内容蕴含着丰富的教育因素,表现出科学性、知识性和思想性的统一。数学教育具有巨大的智力价值,它以数学知识内蕴的思想方法引起人们思维方式的建立、完善和变革;不仅如此,它还具有极大的精神道德价值,能够引起人的思想品质、观念和道德价值的深刻变革。比如,通过数学思想教育,可以培养学生的整体观念、辩证唯物主义观点、爱国主义思想立场和良好的个性品质;通过数学审美教育,可以培养学生的审美情趣,使学生在美的感染中变得精神丰富和道德高尚。一言以蔽之,就是数学教育在全面提高人素质方面具有极大的作用;在新的时期,应该倍加重视数学育人的作用。

      二、数学教学中实施德育的主要内容及方法 

      1、爱国主义教育

      中国数学史是我国中学数学教材的一个重要组成部分。据不完全统计,中学课本中直接介绍中算史的就有17处,涉及数学家、数学发现、数学方法等近50个方面的内容,并以习题、注解、课文(如“勾股定理”一节)、附录等多种形式出现。这些内容都是进行爱国主义教育的生动素材。教师应当结合教材介绍我国在世界数学发展史中所占的重要位置。我们的祖先很早就产生了从有限中认识无限、从近似中认识精确以及以等积变换求体积等朴素的数学辩证思想,刘徽的“割圆术”就是最好的例证。我国在现代数学发展中也取得了丰硕成果,例如:我国在数论、微分几何等领域的研究都处在世界领先地位;我国中学生参加国际数学奥林匹克连续夺魁……这些史实和事例,说明中华民族不仅创造了光辉灿烂的古代文化,而且也为整个世界的现代文明做出了巨大贡献。

      2、辩证唯物主义教育

      数学是辩证的辅助工具和表现形式。中学数学中含有极其丰富的辩证唯物主义教育因素。教学中应当注意渗透以下观点:①运动、发展的观点。在中学数学中,任何一个数学概念、判断、推理都有自身的内在矛盾,都是运动、发展的,使学生充分认识一个数学对象自身的矛盾形态,而且利用这种矛盾揭示事物间的相互联系、相互转化,能有效地达到教育的目的。例如中学数学中的曲线与直线、点与圆、点与椭圆、无穷小量与零等都处在这种矛盾形态中,而这种矛盾恰恰为解决问题提供了过渡和说明。例如:过圆上一点p的圆的切线方程,就可视为该圆与p点所对应的“点圆”的公共弦方程。

      ②对立统一的观点。中学数学中的对立统一关系比比皆是。 

例如:“未知与已知”、“相等与不等”、“常量与变量”、“有限与无限”、“动态与静态”等等。我们在解某些系数中会有字母的方程组时,可视未知数为已知数、已知数为未知数;在解一个含有两个未知数的方程时,可以考虑用不等式取等号的条件求解;在含有参变数的问题中,参变数既是变数,又是常数;在处理极限问题时,往往是变无限为有限来处理;几何中探求动点的轨迹的本质,就是寻求处在动态的对象中的不变因素……这些方法就是对立统一观点在数学中的具体运用。

    ③量变质变的观点。数学对象的运动、变化过程,往往也是一个量变质变的辩证过程。如,圆的切线就是割线运动的特殊状态……在教授这些内容时,教师应尽量创造条件,如使用彩色粉笔作图,或利用电化教学手段,把其间的关系表现得更为生动逼真,淋漓尽致。

      ④普遍联系的观点。任何一个数学问题内部的诸因素都是互相联系的。例如一个命题中的条件与结论总是互相制约的;一个数学分支的因素与其它分支的因素也存在着横向联系。要教育学生从不同的侧面把握数学对象以及它们之间的内在联系,类比、联想、变换、数形结合等,既体现了普遍联系的观点,又提供了探寻这种联系的方法。

      3.个性品质方面的教育

      严谨与抽象是数学的特征,也是数学对于一般文化修养所提供的不可缺少的养分,通过数学中严密的推理、论证,通过错例分析、检验解题过程的合理性及条件的等价性等,可以培养学生严密思考、言必有据以及实事求是、不轻率盲从的科学态度和作风。

      数学需要智慧,更需要热情和毅力,尤其需要开创精神。数学是发展的,其历程又是艰难曲折的。通过数学教学,要培养学生坚韧不拔的意志;还可以通过一题多解、推广命题、难题巧解等手段,培养学生勇于探索创新的精神。

      4.审美方面的教育

      “哪里有数,哪里就有美。”中学数学中有着丰富的美育素材,数学语言的简练,数学思维的灵巧,数与形的融合,数式形的对称……它们无不展示了数学的美,数学的美,具有无比的感染力。

      易被忽视的,是发挥数学美在学习知识、深化理解这方面所起的作用。其实,这时数学美是有其独到之功的。比如,可以根据数学美的和谐性特征,让学生对前后知识进行比较、串联,沟通它们的内在联系;适时阐述解题中的和谐化思想原则、方法等等。揭示了数学真与美的有机统一、岂不是使学生的思想在数学学习中步入新的天地!

      数学教师,不要忘了美的诱因,美的魅力。

      三、数学教师要强化德育意识

      教育的核心是培养什么人的问题。新时期的数学教师,应该强化德育意识,更加重视发挥数学科的教育功能。

免责声明

本站为第三方开放式学习交流平台,所有内容均为用户上传,仅供参考,不代表本站立场。若内容不实请联系在线客服删除,服务时间:8:00~21:00。

学术顾问

免费咨询 学术咨询 期刊投稿 文秘服务