美章网 精品范文 高层建筑结构优化设计范文

高层建筑结构优化设计范文

前言:我们精心挑选了数篇优质高层建筑结构优化设计文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。

高层建筑结构优化设计

第1篇

[关键词]高层建筑;结构设计;优化设计

随着社会经济的不断发展,城市人口的不多增加以及建设用地的日趋紧张,使得高层建筑如雨后春笋般发展。从现在的建筑水平来说,高层建筑或高层住宅是今后整个建筑业的重点。所以高层建筑结构优化设计的重要性就日益凸显出来。

所谓结构优化设计,就是指工程结构在满足约束条件下按照预定目标求出最优方案的设计方法。

1.高层建筑的发展方向

1.1新材料的开发和应用

随着高性能混凝土的研制和发展,混凝土的强度等级和韧性得到了很大程度的改善,尤其是高强度混凝土的出现,使用高强度混凝土可以减小结构构件尺寸,从而减小结构的自重;高层建筑钢结构中FR钢提高了高温时铁的强度,使钢材的防火保护层厚度减小,从而降低钢结构的造价。

1.2隔震和消能减震设计得到推广

目前我国和世界各国普遍采用的传统抗震结构体系是“延性结构体系”,即适当控制结构物的刚度,但容许结构构件在地震时进入非弹性状态,并具有较大的延性,以消耗地震能量,减轻地震反应,使结构物“裂而不倒”。高层建筑结构的减震是通过在结构中设置被动耗能装置,为结构提供一定的附加刚度或附加阻尼,从而消耗本来由结构构件所需承担的地震能量,以减轻结构的动力反应,从而大大减轻了高层建筑结构的变形和损伤。

1.3智能建筑技术得到发展

现代建筑技术和高新技术产业的结合促成了智能建筑的产生,在高层建筑中有更广阔的应用前景。智能建筑是建筑、装备、服务和经营四要素各自优化、相互联系、全面综合并达到最佳组合,以获得高效率、高功能与高舒适的建筑物。智能建筑是通过对建筑物的4个基本要素,即结构、系统、服务和管理,以及它们之间的内在联系,以最优化的设计,提供一个投资合理又拥有高效率的幽雅舒适、便利快捷 高度安全的环境空间。智能建筑的构成至少必须具备三大系统:设备管理自动化系统、通讯网络系统、办公自动化系统,并以此应用现代4C技术构成智能建筑结构与系统,结合现代化的服务与管理方式给人们提供一个安全、舒适的生活、学习与工作环境空间。

2.高层建筑优化设计过程中出现的问题

目前,结构优化的应用远远落后于理论进展,特是高层建筑土木建筑结构的优化设计应用还不普遍。其主要原因有:

2.1高层建筑结构优化工作量比较大

高层建筑优化理论相对落后,而且目前没有实用的结构优化软件,高层建筑结构优化变量个数比较多,且变量随着结构的复杂程度而急剧增加,又难以区分主动变量和被动变量,只能求出相对最优解。高层建筑结构优化问题需要通过反复多次寻优,结构优化分析极少能一次成功,这就大大增加了高层建筑优化分析的工作量。

2.2结构尺寸

如果只重视结构尺寸的优化(即在给定结构的几何形状、荷载和材料的情况下,求出满足约束条件的最优构件截面),而忽视结构整体的优化。现在结果表明,形状优化比尺寸优化更有意义。单纯的尺寸优化无法接近最优的结果,也不能令人信服。设计人员较普遍地认为,结构设计只要结构方案和布置合理,结构又有比较成熟的计算机软件进行分析计算。构件截面只要通过计算结果满足规范即可,认为上部结构相对下部结构,即地基基础部分,特别是软土地基的意义不大,因此对上部结构截面的优化所能达到的经济效益未予以足够的重视。

2.3对离散变量无法做出准确的分析

建筑物尺寸以及钢筋、型钢规格型号等都不是连续变化的,因此,传统的优化方法,如各种梯度算法、对偶算法等解析算法均无法胜任。而且,由于问题的规模较大,随之带来的计算量急剧增加的“组合爆炸”问题也会使计算量急剧增加。

3.高层建筑结构优化设计的方法

3.1方法

对高层建筑结构方案进行优化采用何种方法,首先应分析这一问题的目标函数、目标函数中的各种变量,这些变量之间的各种数学解析关系以及与各种变量有关的约束条件,在分析的基础上是采用间接优化还是直接优化方法来确定。高层建筑结构方案优化的目标就是材料耗量,材料耗量决定于构件的截面尺寸大小,截面尺寸必须满足通过力学分析得到各构件内力后的强度计算及位移变形等条件。因此,目标函数很难用明确的数学解析式来表达,不能用数学上求极小值的方法,也就是一般所说的间接优化方法来优化。高层建筑结构方案的优化只能采用直接优化法来解决,即给目标函数中变量以已知值,经过试算使其满足一定的约束条件,求得其目标值,并找出使目标值逐步变小而趋向最佳值的路线或方向,以达到目标函数的最优值。因此,可以采用满应力法进行高层建筑结构优化设计。

3.2满应力设计法是在桁架等杆系结构的设计中发展起来的,是结构优化中最简单、最易为工程人员理解的一种准则法。所谓满应力是指结构构件在荷载作用下的最大应力达到所用材料的容许应力,此时材料的强度得到充分利用,构件截面面积将是最小,故可作为桁架最轻设计或体积最小设计的一个准则。满应力设计法是结构在规定材料和几何形状的条件下,按照满应力准则的要求,修改构件的截面尺寸,使每一构件至少在一种工况下达到或接近其容许应力限值的优化算法。如果结构除了应力约束外还有界限约束,则要求每一构件应力约束和界限约束中至少有一个达到临界值。

3.3利用满应力设计法进行高层建筑的结构优化设计要遵循以下步骤:①要根据常规做法和经验确定结构构件的初始截面尺寸,并按构件分类分别建立柱、墙、梁可供选择截面尺寸的数据库;②要对结构构件进行力学分析,算出各工况下结构的位移及内力,并对结构构件进行承载力计算;③要根据计算结果,对构

件截面尺寸进行调整,在满足位移条件的前提下,尽量充分发挥

构件材料的性能,即按规范计算使其接近满应力状态。

总之,由于目前我国高层建筑发展迅速,在其结构设计中经常遇会到各种问题,这就需要结构设计人员不断地积累经验,自主创新,利用正确概念进行结构设计。因此,结构工程师必须在每一个工程项目的设计中都能做到不断地探求自然法则,不懈地追求相对的最优,要通过反思比较,在经验积累中不断提高自己的判断力和创新力。通过结构优化设计来降低工程造价是控制工程投资的一个有效途径,而正确处理技术与经济的对立统一是控制投资的关键。不能片面强调节约投资,而降低技术和质量标准,又要反对重技术、轻经济,设计保守浪费的现象。建筑结构设计的首要任务是满足建筑功能的需求,实现建筑物适用、安全、美观、经济的目标。

参考文献

[1]沈蒲生.高层建筑结构设计[M].北京:中国建筑工业出版社,2006.

第2篇

关键词:高层建筑结构;优化设计;成本降低

1研究背景

伴随着城市化进程的加快,全球经济一体化形式的构成,越来越多的农村人口向城市涌进,这无疑将增大城市的人口压力和住房压力,而为了有效地将这些压力缓解,避免社会矛盾激化,因而在技术水平的支持下不断出现了高层建筑,显然这在一定程度上将住房压力缓解了。然而,正如我们所知,技术是在不断进步的,以往的设计方式弊端也会在使用中不断显露出来,为了更好地保证人们住房的安全,非常有必要对现有的高层建筑结构进行优化设计。笔者根据自身的工作经验,在文章中将以A市的某个高层建筑作为实际案例进行分析阐述。该高层建筑共有10层,30m高,建筑物内部各项系统部件构成完整。

2关于未来高层建筑发展的趋势分析

2.1新型材料的开发与运用

科技水平的进步,不断研究和开发出了新型的高性能混凝土材料,在很大程度上改善了传统混凝土的韧性及强度等级,尤其是在建筑施工中出现了高强度的混凝土之后,施工人员在施工操作中有效地将结构构件的尺寸减小了,这有助于结构的自重也随之减小。另外,存在于高层建筑中钢结构中的FR钢能够有效地将高温时铁的强度提高,从而减小钢材中防火保护层的厚度,最终使钢结构在整个工程建筑中的成本造价降低了。

2.2逐渐推广的消能减震和隔震设计

现阶段,延性结构体系作为传统的抗震结构体系是在全世界范围内被普遍采用的,我国也是如此,一直沿用着这样的结构体系,其通过适当的对结构物的刚度进行控制,容许在地震时结构构件能够自行进入非弹性的状态,并在保持较大延性的情况下,尽可能的将地震能量消耗掉,有利于将地震带来的不良反应减轻,最终保证建筑结构能够长久地伫立而不坍塌。在高层建筑的结构中,是否能够有效地减震,其前提是需要提前将被动耗能的装置设计出来,以便将一定的附加阻尼或者附加刚度提供给建筑物结构,从而将结构构件需要承担的那一部分地震能量消耗掉,以便将结构中的动力反应降低,最终有利于将高层结构建筑中的损伤和变形程度降低。

2.3大力发展智能建筑这一技术

在高新技术和现代建筑技术产业的结合之下,产生了新型的智能建筑产业。从其自身所具有的特点和应用的特性分析,该技术能够广泛地应用在高层建筑的结构设计之中。简单讲就是,服务、建筑、经营及装备等四部分内容的结合体就是智能化建筑,在有效全面的综合、各自优化以及相互关联的情况下,能够使四者之间达到最佳的组合状态,从而确保建筑物的结构设计是符合高舒适、高效率和高功能的要求的。通过服务、结构、管理和系统等四个基本的要素在智能化建筑中所建立起来的内在联系的作用,随后在优化设计的利用下,能够将一个高效率运用、投资合理的安全、干净、舒适的环境空间提供给用户。若想有效地构成智能化建筑,必须同时具备三大系统,分别是办公自动化系统、设备管理的自动化系统以及通讯网络系统,只有在这样的结构设计背景之下,才能够将一个舒适、安全的工作和生活环境提供给客户。

3存在于高层建筑优化设计中的弊端

现如今,有关高层建筑结构设计的理论基础已经十分成熟,但是将理论基础应用到实际的施工设计和操作中还存在很多的问题,这极大地阻碍了高层建筑结构优化设计的进一步发展。

3.1高层建筑结构设计的工作内容复杂

相较于国外的高层建筑发展现状而言,我国的高层建筑发展时间较短,因而还有很多的实践理论在高层建筑的结构设计中较为缺乏,从基本国情出发,符合我国建筑结构设计的软件技术十分有限。但由于有较多的变量个数存在于高层建筑的结构优化之中,并且在结构复杂程度增大的情况下变量个数也会不断增加,现有的软件技术又难以有效地将被动变量和主动变量区分出来,只能够简单地将相对最优解求出来,因而在这样的发展背景下,难以促进高层建筑的结构设计在我国的进一步发展。在多方调查后认为,只有多次反复地寻找探索,才有可能将存在于结构设计中的弊端一一解决掉。从总体上分析,极少有一次性设计高层建筑结构成功的案例,文章所列举的这一案例也是在多次反复的设计研究再设计以后才成功的,因而从这一方面便可以看出有较大的分析工作量存在于高层建筑的结构优化设计之中。

3.2过多的优化结构尺寸

在建筑物结构材料、几何形状以及荷载给定的情况下,将满足于设计条件的最优化构件的截面求解了出来,却在一定程度上将结构整体的优化工作给忽视了,但是从实际的研究证明中可以看出,更具有实践和应用意义的就是形状优化。简单地说便是最优结果的得到是不可能通过单纯的优化来实现的,其需要做到全方位的考虑。然而大多数的建筑物结构设计的工作人员都认为,只需要合理的方案设计和结构布置,便可以在计算机软件中将准确的结构尺寸计算出来,可见,对于软土地基的设计并没有太大意义,这对于设计结构的最终结果自然也是难以保证的。

4优化设计的措施

4.1合理设计方法的选择

首先需要分析建筑物结构的使用性质,在各种变量的掌握下,将有效的设计方法提取出来,如:直接优化或间接优化。其中,材料耗量便是高层建筑结构优化设计的目标,因而需要从构建截面的大小尺寸上分析。针对于本次案例中所采取的直接优化的设计方法,笔者认为是合理的,其在已知目标函数变量的情况下,满足了一定约束的条件。在进一步对高层建筑中结构设计优化所具备的条件进行分析以后发现,从现代化建筑设计的角度出发,满应立法的使用更加有利于优化高层建筑的结构设计。

4.2发展于桁架等杆设计中的满应力法

其作为准则法的一种,是最容易理解、最容易操作的。其是在建筑结构有规定几何形状和结构的情况下,根据满应力法则的标准,对截面构建的尺寸进行修改,确保一次的应力限值计算都是在最优化的算法中进行的。

4.3优化设计的合理性

需要在实践经验和常规做法的遵循下,将初始结构构件的截面尺寸确定出来,并在构建分类的参照下,将有关于梁、柱及墙的数据库分别建立起来;通过计算结果的提供,调整构建截面的尺寸,并在位移条件的满足之下,将构件材料的性能有效地发挥出来。

5总结

综上所述,为了更好地满足人们的要求,与社会的发展相适应,就必须进行高层建筑结构设计的优化设计,在合理设计方式的选择下,充分地将结构构件的作用发挥出来。

作者:张海良 单位:福建经福建筑设计工程有限公司厦门分公司

参考文献:

[1]吕杨.高层建筑结构地震失效模式优化及损伤控制研究[D].天津大学,2012.

[2]陈耀.高层建筑剪力墙结构优化设计分析探讨[J].福建建材,2011(04):36-37+39.

[3]曹鹤.基于绿色建筑的高层剪力墙结构优化设计[D].西安:长安大学,2015.

[4]姜勇.超高层建筑核心筒优化设计研究[D].西安:西安建筑科技大学,2015.

第3篇

关键词:高层建筑 结构 特点 设计 原则 要求

中图分类号: TU97 文献标识码: A

正文:

一、高层建筑结构类型

高层建筑结构体系按照结构形式可以分为框架、剪力墙结构,框架结构,剪力墙结构。框架结构因为是利用柱、梁等结构来承重的,所以这种结构体系的侧向位移相对较大,一般适用于低于50m的建筑。剪力墙结构因为是靠高层建筑的墙体来承重的,所以这种结构的整体性能相对较好,不易产生水平方向的变形,一般多应用于高层建筑,但是因为其在平面上的布置不够灵活,所以很少在公共建筑设计中使用。而框架、剪力墙组合结构则是结合了两者的优点、改善了其中的缺点,所以被广泛应用于高层建筑的结构设计中。

二、高层建筑结构设计原则

2.1 选择合适的基础方案

现在的设计一大特色就是不能因工程而破坏周边的环境,而改变的周边的生态环境。一切的工程围绕环境进行设计施工,使工程与自然很好的融入到一起,使得两者和谐共存。在基础方案的设计中,要把所有的相关因素全部的包括在内,综合各方面的因素,再考虑经济性对工程进行整体的评估,然后对方案进行正式的审核,最后施工,一切立足由可持续发展的观念进行施工,工程的质量一定会得以保障。

2.2 选择合理的结构方案

高层建筑作为近几年刚刚兴起的一门学科,具有很复杂的结构特点,在施工的过程中要考虑的方面很多,像是供水问题、线路等各方面都是我们要考虑的。结构设计方案中重要的有以下几点:材料的要求、施工的环境、还要充分的考虑抗击自然灾害的能力。我们要严格的遵循平面和竖直的设计原则。结构方案不仅仅是施工单位一方的事情,施工单位与使用方要达成一致,在设计方面以及今后的发展方向要进行详细的展望,为了所选取得结构方案更加的合理,最大限度的达到预期的目的。

三、工程设计案例分析

某高层建筑设计使用功能为餐饮、办公一体属综合性公共建筑。地下 2 层,裙楼 4 层,裙楼上南、北两塔楼分别高 19 层(72.5m)、25 层(90.5m)。两塔楼于 17、18、19 层连体(结构上为两塔楼分别悬挑梁处理)。

1. 结构承重体系设计

根据国家抗震区划图, 待设计建筑地区的基本烈度为七度,相应地主楼结构部分的抗震等级为二级, 裙楼部分的抗震等级为三级。结构设计中裙房部分主要考虑由恒载及使用活荷载等竖向荷载引起的荷载效应, 主楼部分结构设计不仅考虑竖向荷载效应, 还要考虑水平地震作用及风荷载作用下产生的荷载效应的组合。综合考虑裙楼部分大空间的设计使用要求以及主楼部分的抗侧移设计要求, 裙房结构承重体系采用钢筋混凝土框架结构形式,主楼采用框架- 剪力墙承重结构体系。本建筑结构在主楼抗侧力构件设计中, 剪力墙主要承担水平作用,框架承担少部分水平荷载作用和大部分竖向荷载作用。主楼平面形状基本上为正方形,因楼梯、电梯间均设置在核心筒内,为提高主楼结构的抗扭能力,剪力墙结合楼电梯间在主楼范围内采取了加强处理, 具体厚度根据高层建筑结构设计的变形限值,由刚度、承载力和延性三者间的最佳匹配决定。

2 结构优化设计策略

钢筋混凝土框架- 剪力墙结构是高层建筑结构中最常采用的承载体系之一,它同时具有框架结构建筑平面布置灵活,能获得大空间,建筑立面易于处理,以及剪力墙结构抗侧移刚度大、整体性好、抗震能力强的优点。在水平荷载作用下,具有较纯框架和纯剪力墙结构更为有利的水平变形曲线。但钢筋混凝土框- 剪结构是一个具有双重承载体系的非常复杂的空间受力体系,力学分析难度较大,其优化设计就更为复杂和难以实现。所以,笔者以下谨通过已有的工程设计经验提出步骤性的建议,不作深入的学术探讨。

2.1 框架结构的分部优化设计技术

钢筋混凝土框架结构属于具有多个多余约束的超静定结构,其荷载效应不仅与外荷载大小有关, 还与结构构件的材料特征、几何构造特征有关。钢筋混凝土框架结构的分部优化设计,即是在结构整体内力分析完成后,根据梁柱各构件的控制内力进行截面优化设计,确定满足荷载效应水平要求的各结构构件的几何特征和配筋量的优化结果,由此导致原结构的几何特征和荷载特征发生变化, 优化结构在现荷载作用下内力分布特征发生变化,各构件控制截面上的控制内力也发生相应变化,据此再进行新一轮的优化设计。因此框架结构的分部优化设计实际上是一个迭代、渐进的寻优过程, 计算结果虽不总能等价于整体优化设计结果,但通常能给出工程实用的满意结果。钢筋混凝土框架结构的分部优化设计方法的具体步骤为:

(1)初始选型:根据结构平面、立面布置及建筑物设计使用功能,分析结构所受的竖向荷载和水平荷载及其传力路线,并考虑施工因素,归并框架梁、柱的类型,初选梁柱的几何尺寸;

(2)结构分析:按照结构的实际几何构造特征,计算结构所受竖向荷载及水平荷载,对钢筋混凝土结构进行空间内力分析。根据结构分析结果,将截面尺寸相同的构件的控制截面内力,根据其大小进行分类,并确定每一类构件的设计控制内力;

(3)截面优化设计:针对每一种梁柱构件的控制内力进行优化设计, 得出优化约束条件下的结构几何构造特征和配筋特征的优化设计结果,从而构成新的优化意义上的设计结构;

(4)收敛性判断:在工程精度意义上选取一个较小的数值,作为检验结构收敛性的条件,进行收敛性判断。若优化结构与原结构基本一致,则认为优化结构是收敛的,可以转入下一步的可行性判断,否则转回第②步重新进行结构分析、优化设计;

2.2 框- 剪结构的三阶段优化设计策略

框- 剪结构的设计主要涉及 3 个方面的优化问题:①结构最优设防水平的决策,②框架与剪力墙结构协同工作,以及承载力、刚度与延性变形能力间的最佳匹配设计,③框架- 剪力墙结构构件的优化设计问题。

高层框- 剪结构在水平荷载作用下的协同工作问题,主要是水平荷载在框架和剪力墙结构之间的分配设计, 因此剪力墙数量和位置的设计是关键问题。这里,我们将框- 剪结构的优化设计过程分为三个阶段进行,对不同阶段的不同问题,采取不同的优化准则进行优化设计。

2.2.1 第一阶段:最优设防水平 Id的优化决策

根据地震危险性分析结果或地震区划规定, 在预测地震烈度概率分析基础上, 用模糊综合评判法计算结构的模糊延性向量和模糊抗震强度、损伤等级概率和震害损失的预估期望值 E(Id),在满足最大投资约束和最大损失约束条件下,使 k1C(Id)+k2k3E(Id)达到最小,求出最优抗震设防烈度 Id。

2.2.2 第二阶段:剪力墙构件的优化设计

剪力墙结构构件的优化设计主要是结构刚度与延性指标的最佳组合,可用力学准则进行优化。结构刚度对结构的影响主要为结构的自振周期和侧向位移, 结构延性对结构的影响主要为保持承载力前提下的变形能力。因此,可用结构整体的侧向位移量来协调结构的刚度和延性。我们根据高层结构设计规范对结构层间位移和顶点总侧移的限值来控制结构的刚度设计和延性设计。

2.2.3 第三阶段:框架结构的优化设计

框架结构的优化设计准则是一个结构准则, 在一次整体分析完成之后,可按照前述方法对框- 剪结构中的框架部分进行优化设计。

四、结语

总而言之,高层建筑混凝土结构的优化设计方法多种多样,但是不论使用哪一种方法都要建立在施工的可行性的基础之上,施工技术必须严格依照设计标准,如果出现施工不可行的情况下,重新审视设计规范。高层建筑混凝土施工技术是科学元素和技术元素的融合和应用,它的实现过程必然需要建筑施工各环节基础技术的支持和管理理论的强化。所以,设计与施工的相辅相成才是实现合理、科学节约成本的有效措施。

参考文献

[1] 孙 凯.高层建筑结构设计的问题及对策探讨[J].价值工程,2011(06).

第4篇

关键词:建筑结构;优化设计;分析;研究

Abstract: with the increasing urbanization construction, social development of rapid advance, buy a house for ordinary people to become a indispensable thing, this makes the real estate trade is more and more active on the trend. But in the real estate industry progresses day by day, the construction quality safety and so on also receiving more and more attention. For the design requirements of building structure more and more is also high, this paper based on this, the first introduced the general structure of the high-rise building system, and then analyzes the defects existing in the architectural design, and finally the optimization measures related to perform some of the research and analysis, so as to provide some reference for many designers direction.

Keywords: building structure; Optimization design; Analysis; research

中图分类号:S611文献标识码:A 文章编号:

一般而言,在建筑结构的设计方案产生之初,建筑的结构从各个方面就存在一定的优劣问题,然后再利用建筑的后续设计以及相关工序的计算研究设计等等,选择合适的材料可以对设计的结构进行一定的优化。本文重点谈论了对于建筑结构优化的相关措施,指出平常设计中存在的一些缺陷,作为专业的结构设计师,应把握结构设计中的原则特点,重视质量,设计出符合规定的建筑。以下种种,仅当各位借鉴参考之用。

一、高层建筑的一般结构体系

1、 框架――剪力墙体系

何谓框架――剪力墙体系,即在有些框架体系的硬度和强度达不到预期的要求,需借助外力来维持其正常形态时,可以在建筑平面的相关地方设计能承受相当力量的剪力墙以替代一部分的框架,这样的建筑体系即为框架――剪力墙体系。一般而言,体系中的剪力墙需要承受建筑的水平方向的剪力,而框架则需承受垂直方向。该墙的设计,在某方面而言大大的加强了结构在侧向方面的刚度,减少建筑水平位移,使得建筑在各个平面上的受力更为均匀,因此在结构设计中来说,这种体系要优于框架体系。

2、 剪力墙体系

剪力墙体系的主要特点是建筑的受力主体基本上全部为剪力墙构成,其中,单片剪力墙需要承受建筑的所有垂直方向的负载。该体系在结构的刚度等方面要优于框架体系和框架――剪力墙体系,它的位移曲线一般是弯曲的,这使得它具有很好的延伸能力,建筑各面受力更为均匀直接。同时也具有很好的整体性,能够抵抗相当的倒塌力,是一项相当不错的结构体系。

3、筒体体系

筒体体系是指建筑的筒体的结构体系为抗测力构件组成的体系。其中包含了很多建筑型式,主要是单筒体、多束筒或是筒中筒等等。筒体属于空间构件之一,一般分为实腹筒和空腹筒。其中前一种一般是用相关的结构单体在建筑的平面或者曲面方向围成三维竖向结构体,而后一种则是指一定的空间受力构件,这些构件主要由密排柱或开孔的钢筋等组成。这种体系的构件受力合理,建筑的抗风、震能力突出,结构刚度强度较大,一般用于高层建筑。

二、现代高层建筑结构设计存在的缺陷

其实对于大部分建筑来说,基本在横向和侧向方面的设计原理没有什么差别的,不管该建筑是高层低层或是多层。但是,高度越高,侧向方面需要考虑的设计因素要求更多,究其原因有二,一是因为楼层越高,建筑在竖向需要承受的压力越大,这就要求设计更大的柱、筒、墙等等。二是在建筑中一般的侧向力比横向力产生的倾覆与变形压力要大很多,对于竖向负载而言,压力的变化不是线型增加而是急剧增加,这使得建筑在抗压抗震等方面的效果更为明显。而在现代具有较高楼层建筑,存在的问题绝不仅仅只体现在结构的抗剪中,更为重要明显的问题出在建筑整体的抗弯曲和变形上。在低层建筑与高层建筑的结构受力方面一直存在很大的差异,设计中尤其需要注意这一问题,其中的共振、水平侧向位移或是剪重等等也是不可忽视的问题之一,设计师在设计时应综合考虑并研究其受力分析。

三、优化建筑结构设计的措施

1、重视建筑的概念设计

概念形成是人们从感性到理性的升华,反映了人们对事物的客观认识。而结构设计师在必须掌握基本的概念设计,因为只有正确的概念设计才能设计出结构合理、构件平衡、安全经济的建筑,这一概念是工程设计的基本思想并被贯穿于设计的整个过程。设计师运用自己深厚的设计理论及自身积累的经验,形成自己的设计概念,并运用这一概念完成高水平的设计工程。是以概念设计是设计师应具备的水平之一。

2、加强抗震设计的理念

总所周知,对于高层建筑而言,除了需要承受建筑物本身的垂直负荷之外,还需要承受相当的侧向风负载以及地震的冲击,显然后一种更为重要。而在高层建筑中不同高度在抗侧力方面的强度也不尽相同,这就导致了薄弱层面的出现,这在设计中应要尽量避免或是减弱。目前,在我国的建筑抗震设计规范中,对于抗震有着两个阶段的设计方式,以求提高建筑的抗震能力。在第一个阶段中,设计师在设计时要充分运用地震参数对建筑结构在弹性的状况下产生的地震效应等进行相应的计算。而在第二个设计阶段中,则采用相应的地震参数计算建筑的薄弱楼层,然后对薄弱环节进行侧向位移或者是转角处理,但得使设计要小于规定的限值,这样才能在不影响建筑本身的情况下尽量减弱薄弱层的影响。

3、综合考虑优化结构设计

设计师在设计建筑时要考虑结构设计中的几种优化方案,并同时综合考虑各方面的外界和内部因素。内部因素包括各个构件的可能承受的受力负载,特别是高层建筑需要重点考虑其竖向方面的受力承受,采取那种结构体系更为合理,但也要遵循经济的原则,而水平受力方面则要考虑建筑的抗倒塌等能力,外界因素则要考虑建筑所在地方的平常风力,抗震以及温度应力等等,综合各个方面进行设计。在设计地基时,应理论结合自己的实践经验综合设计,同时预测可能出现的各种问题,并分析提出一定的解决措施。在对建筑的受力等进行计算时要记住“强柱弱粱、强剪弱弯、强压弱拉”的这一原则,切不能凭自己的想象随意增加建筑的配筋量,而要仔细考虑构件本身的各项性能,对于建筑的薄弱环节重点关注,尽量减少危害发生的可能。同时也要对建筑的组成材料考虑温度应力的问题,对于钢筋等材料而言,温度具有一定的影响。总而言之,在设计过程中,从建筑结构选型、设计布置以及相关的计算过程,都要综合考虑每个可能出现的因素及问题,最好进行一下建筑受力极限验算,这样才能保证该设计方案的可行性与安全性。

总而言之,高层建筑的结构设计是一项相当繁重的任务,设计师在设计时在设计时应考虑的问题很多,需充分应用自己的理论知识,结合自己多年丰富的经验,按照需求,科学的计算设计出符合的建筑,并对其进行一定优化完善,保证建筑的安全与经济。

参考文献:

[1]李志;高层建筑抗震设计分析[J];中外建筑;2010年

第5篇

【关键词】高层建筑;结构优化;对策探讨

1 现今的高层建筑结构的发展研究

1.1 新型结构形式的应用不断增加

框架体系、剪力墙体系和框架- 剪力墙(支撑)体系是高层建筑的传统结构体系。根据筒体的不同组成方式,分为框筒体系、筒中筒体系和多束筒体系3种类型。筒体最主要的受力特点是它的空间受力性能。无论哪一种筒体,在水平力作用下都可以看成固定于基础上的箱形悬臂构件,它比单片平面结构具有更大的抗侧刚度和承载力,并具有很好的抗扭刚度。

1.2 组合结构的高层建筑发展迅速

采用组合结构可建造比混凝土结构更高的建筑,不但具有优异的静、动力工作性能,而且能大量节约钢材、降低工程造价和加快施工进度。在不同的情况下,可以取代钢筋混凝土结构和钢结构,科技含量也较高,对环境污染也较少,已广泛应用于冶金、造船、电力、交通等部门的建筑中,并以迅猛的势头进入了桥梁工程和高层与超高层建筑中。

1.3 智能建筑的发展异军突起

现代建筑技术和高新技术产业的结合促成了智能建筑的产生,在高层建筑中有更广阔的应用前景。智能建筑是建筑、装备、服务和经营四要素各自优化、相互联系、全面综合并达到最佳组合,以获得高效率、高功能与高舒适的建筑物。

2 高层建筑结构优化设计的对策分析

2.1 高层建筑结构概念设计的优化设计目标分析

每项建筑结构的设计都受到了多项客观目标的影响’而且通常这些目标之间具有一定的矛盾性者要提高某项目标的要求,往往以降低其他目标的要求为代价。而建筑结构概念设计的优化,首当其冲就要考虑一种最为合理的方案,使这些相互矛盾的客观目标之间达到一定的平衡。

要实现各项目标的平衡需要考虑大量的因素广般而言,最具代表性的就是要达到初始总投资、年运行成本和收入这三个目标的平衡。即通过概念设计的优化,尽可能地保证初始总投资和年运行成本的最小化,同时保证收入的最大化。其中,初始总投资的影响因素很多,包括土地成本、建筑结构及装饰成本、水电暖通成本、智能系统成本、消防系统成本等等,但归根到底,就是取决于建筑总面积和单位面积造价;年运行成本是对建筑结构和设备进行清扫、维护、管理等的费用;而收入则是建筑投入使用的所得费用,包括出售、出租及投入生产所得盈利等等。

通常在合理的范围内,往往初始总投资越大,相应也会增加年运行成本,但同时收入也会得到提高。因此建筑结构概念设计的优化,就是要在业主能够承受的初始总投资和年运行成本的范围内,实现收入的最大化,当然其中还要考虑投入产出比等细节问题,总之保证设计成果的利益最大化。

2.2 高层建筑结构选型分析

第一.高层建筑结构体系选型与建筑施工的关系

高层建筑施工工艺的不同,不仅会影响到材料消耗、劳动力、工期及造价等技术经济指标,而且也会影响到建筑结构的受力状态,抗震性能等。所以在高层建筑结构体系选型时就要对施工工艺连同其它因素加以权衡,综合考虑。现浇钢筋混凝土高层建筑结构的造价主要包括材料、模板及施工三部分。

第二.高层建筑结构抗震体系选定的原则

(1)具有明确的计算简图和合理的地震力传递路线;(2)具备多道抗震防线,不会因部分结构或构件失效,而导致整个体系丧失抗侧力或承受重力荷载的能力;(3)具有必要的承载力、良好的延性和较多的耗能潜力,从而使结构体系遭遇地震时具有足够的防倒塌能力;(4)沿水平和竖向结构的刚度和强度分布均匀,或按需要合理分布,避免出现局部削弱或突变,形成薄弱环节,从而防止地震时出现过大的应力集中或塑性变形集中的危险。

2.3 高层建筑中混凝土结构优化分析

确保建筑结构设计均匀在高层建筑的一个独立结构单元内,宜使结构平面形状简单、规则,刚度和承载力分布均匀,平面长度不宜过长,突出部分长度不宜过大;高层建筑的竖向体型宜规则、均匀,避免有过大的外挑和内收,结构的侧向刚度宜下大上小,逐渐均匀变化,不应采用竖向布置严重不规则的结构。

相信大部分的结构工程师都曾遇过类似情况:当一幢高层建筑的结构平面布置和竖向布置简单、规则、均匀,那么其各项指标的校核验算会很容易满足规范的要求,反之,则需花一番苦功才能令各项指标勉强满足规范要求。

结果可能是墙柱截面尺寸大得惊人,单位面积重量严重超标,不仅造价上去了,而且还影响部分建筑功能的使用。结构设计人员一定要注重概念设计,在建筑方案阶段就应积极介入,运用自己的专业知识提出建议,在满足美观、适用的前提下,尽可建筑结构的平面布置和竖向布置简单、规则和均匀。

这样一来,结构体系就会具有合理的刚度和承载力分布,避免因局部削弱或突变形成薄弱部位,产生过大的应力集中或塑性变形集中。只有这样,到扩初设计和施工图设计阶段的截面尺寸优化才会有实质性的意义。

2.4 高层建筑结构经济性分析

建筑结构经济性包括内容注重经济性的建筑设计包含非常广泛的内容。传统中只强调改进建筑材料保温性、改善建筑体形系数、提高建筑材料的气密性等一系列节能降耗措施,现在建筑随着形势的发展,人们对居住环境不仅从结构性出发,更要在建筑结构的经济性角度考虑,如空间组织、技术组织、结构设置、能源与资源利用,以及建筑循环再利用等方面全面地确立经济性的原则、方法。

建筑结构的经济性就是只以较少的成本来获得最大的效用。其中由美国建筑师、工程师R•B•富勒提出的“少费多用”原则是较常用普通的原则。“少费多用(more withless)”原则的含义是,凭借有效的手段或方式,利用最小化的量的材料、资源来投资,目的在于获得尽可能大的发展效益。“少费多用”原则,顺应目前的发展形势,在建筑坚持可续费发展的思路上,该原则是一条重要的、有效的、节约型的设计方式。

2.5 高层建筑结构设计优化方法的理论分析

在从事工程项目和结构的设计时,除了要考虑设计对象的基本使用功能及安全可靠性外。还应该考虑到把它设计对象设计得尽可能完美。这就是工程和结构的最优化问题。用科学的语言来描述就是:利用确定的数学方法,在所有可能的设计方案的集合中,搜索到能够满足预定目标的、最令人满意的方案。

结构设计优化方法从建筑理论上分析,具体体现在房屋工程分部结构的优化设计和房屋工程结构总体的优化设计两方面。后者的优化设计包括:屋盖系统方案的优化设计、围护结构方案的优化设计和结构细部设计的优化设计。穿插其中的,还包含选型、布置、受力分析、造价分析等项目,在实施过程中,还应该按照一切从实际出发的原则,结合具体工程的实际情况,围绕房屋建筑的综合经济效益的目标进行结构优化设计。

建筑师在保证设计安全的前提下,应该敢于挑战新的结构形式。在建筑结构设计的过程中,在基本满足建筑师设计意图的基础上,平面布置应尽量规则,对称,尽量缩小质量中心和刚度中心的差异;使建筑物在水平荷载作用下不致产生太大的扭转效应。

参考文献:

[1]顾渭建,邱鸿.高层剪力墙结构墙体间距方案比较研究[J].建筑结构,1998(4).

[2]冯泳.高层住宅墙体的合理等效惯性矩[J].建筑结构,1998(6).

[3]赵西安.高层建筑结构选型、构造及简化计算[M].北京:中国建筑工业出版社,1989.

作者简介:

李岩,女,1969.05出生,籍贯:山东滨州,单位:山东省日照市建筑设计研究院有限公司 ,研究方向:建筑结构,职称:工程师

第6篇

关键词:高层建筑 结构设计 优化措施

一、前言

随着社会经济的迅速发展和建筑功能的多样化,城市人口的不断增多及建设用地日趋紧张和城市规划的需要,促使高层建筑得以快速发展,另一方面由于轻质高强材料的开发及新的设计计算理论发展,抗风和抗震理论的不断完善,加之新的施工技术和设备的不断涌现,特别是计算机的普及和应用以及结构分析手段的不断提高,为迅速发展高层建筑提供了必要的技术条件。本文对高层建筑结构设计时若干优化措施进行了探讨,并提出了自己一些见解与看法,谨供大家作参考之用。

二、地下室外墙的设计方法

在一般情况下,地下室外墙所承受的主要荷载为结构自重、地面活载、侧向土压力等。在我国已建成的高层建筑中,地下室外墙的墙厚和配筋相差很大,墙厚在200~700mm之间,配筋在565~4909mm2之间,可见在结构可靠与经济之间选择一个合理的平衡,始终是一个值得探讨的课题。地下室外墙的受力状况与上部结构类型及平面布置有很大关系。当上部结构为框架结构时,上部填充砌体及±0.00楼板对地下室外墙顶端的约束程度很小,此时可假定墙体顶端为铰接。当上部结构为钢筋混凝土剪力墙结构时,剪力墙及±0.00楼板对地下室外墙项部的约束程度很大,此时可假定墙壁顶端为固接。基础的刚度一般远大于墙体刚度,所以墙的下端一般视为固定端。在实际情况中,考虑到边界条件不十分明确,为安全起见,可对同一边界采用两种不同的假设,如按端部固定计算墙端弯矩,按端部铰接计算墙跨中弯矩。一般来讲,当上部结构为框架时,地下室外墙的墙厚和配筋要大些;当上部结构为剪力墙时,由于正压应力的存在,墙体厚度和配筋相对要小些。计算表明,外墙壁配筋满足裂缝宽度要求后,一般能同时满足承载力计算和构造要求;而当外墙配筋满足承载力计算时,却不一定满足最大裂缝宽度允许值要求。有人认为外墙内外侧配筋应根据内力值计算大小分别配置,其实没有必要,最好等量对称配筋。另外,外墙厚度还要考虑防水要求,不应小于250mm,混凝土的抗渗等级不应小于S6(O.6MPa)。

三、关于框架柱截面大小的选择

3.1对于框架柱来讲,轴压比越小,在往复水平荷载作用下其滞回曲线越丰满,即其耗能能力越大、延性越好;相反对于短柱,即柱净高与截面高度之比小于4的柱,在往复水平荷载作用下其滞回曲线呈较瘦的反s形,耗能能力降低、延性较差,呈剪切破坏。对高层建筑的底部柱而言,为了满足轴压比限值的要求,故将柱截面取得很大,随之而来,由于层高的限制,就使得框架柱成为短柱。这就带来一个问题,到底是柱截面大好还是柱截面小好。在实际工程设计中,常采用以下几种措施:

⑴框架柱的截面首先要满足规范轴压比的要求,这对于保证结构的竖向承载力、底板的抗冲切承载力有很大的好处,对于形成的短柱则通过增加体积配箍率及沿柱身全高加密箍筋来提高延性。

⑵采用高强混凝土、钢管混凝土柱或劲钢混凝土柱。

⑶使柱的轴压比满足规范限制要求即可,不能使其过小。另外,对于底层框架柱来讲,柱的抗弯刚度远远大于梁的抗弯刚度,梁板对柱的约束程度相对较小,因此底层柱很有可能是长柱并非短柱,所以采取上述措施,并符合强柱弱梁、强剪弱弯的原则后,底层框架柱在地震时是能够做到不发生剪切破坏的。

3.2同一楼层中各柱要尽量等刚度,即截面差异不要太大。在柱截面选择时,有的是根据柱负荷面积进行的,中柱截面最大、边柱次之,而角柱最小,这样在同一楼层特别是在建筑底部会出现长短柱共存的现象。地震震害表明,长短柱共存时,很容易因构件刚度及受力大小悬殊而各个击破,先后依次破坏。就结构平面布置而言,对板式建筑,尽量避免三排柱结构方案,因为这样布置的结果使中柱的轴力大于或等于边柱轴力的2倍或更多,若处于同一轴压比水平,中柱截面很大,边柱截面却很小,从而刚度不匹配,要使刚度匹配,则要增加边柱的截面及配筋,从而造成经济上的浪费,另外由于中柱轴力过大,使得基础底板厚度增加,造成更大的浪费。

3.3在框架体系或框筒体系中,角柱的受力要比其它柱差,这是因为:在双向刚接框架中,角柱沿纵横两个方向都是单边有梁,即在重力荷载作用下,角柱已处于双向受弯状态;在高层建筑中,水平荷载引起较大的倾覆力矩,框架整体弯曲时,使角柱所受的附加轴力最大;地震动的斜向或双向输入,使角柱双向受弯或双向受剪,由此引起的双向偏心将与重力荷载作用下的双向偏心叠加,使其双向偏心值很大,角柱处于更加危险状态;结构的质心与刚心不可能完全重合,在结构的扭转振动过程中,角柱的相对侧移最大,即扭转也使角柱处于不利状态,因此为了防止角柱的斜向压弯及扭转破坏,不能使柱截面太小,同时要特别注意箍筋的加密,增加箍筋对受压区混凝土的约束作用。

四、关于现浇混凝土楼板的配筋

对于高层建筑中的现浇混凝土楼板,计算时分为单向板和双向板两种,四边都是固定的,按弹性理论利用微机或图表进行计算,但是图表有好多种,计算结果不尽一致,再者粱对板的约束难以达到绝对固定的效果,特别是边梁对板的约束、活荷载的不均匀分布、梁的转动卸荷以及塑性变形等因素都将引起内力重分布,结果使板跨中内力增大、安全度降低;另外还有一个施工因素,支座上的上层钢筋,在施工过程中由于浇筑混凝土的倾压、操作人员的践踏等原因造成不同程度的下沉,使内力臂减小,从而降低板的支座内力,而抵抗正弯矩的下层钢筋容易保证,结果使板支座部分安全度提高,相对而言跨中安全度降低,所以在实际设计中,板跨中弯矩应乘以一个调整系数,支座弯矩不调整。对于边区板跨中弯矩放大系数为1.2~1.4,中区板跨中弯矩放大系数为1.1~1.3。

五、超长结构的温度变形

钢筋混凝土结构规范规定,在室内条件下现浇框架结构伸缩缝的最大间距为55m,现浇剪力墙结构伸缩缝的最大间距为45m;在露天条件下,结构伸缩缝的间距还要小,这样规定的目的就是解决两个方面的问题:

⑴现浇混凝土在凝固硬化时会产生收缩应力,以致在结构中形成干缩裂缝,结构越长,干缩的影响越大。

⑵结构在使用其间必然要经过春夏秋冬季节的变化,大气温度的变化会使结构产生热胀冷缩,从而在结构中造成温度裂缝,同样,结构越长,温度的影响越大。但是,在实际工程中超长建筑物常常出现。如果按规定去设伸缩缝,就会出现双墙、双柱、双梁,给建筑物的立面处理、防水构造带来很大的困难。为了解决超长结构混凝土干缩裂缝的问题,目前常常采用的一种办法是设置混凝土后浇带,即将较大的楼板面积划分成小的区格,首先用混凝土浇筑小的区格,当小区格混凝土干缩变形大部分完成后,再浇筑区格之间的预留带。这样在很大程度上减少了结构的干缩裂缝。但是,后浇带不能代替结构的温度伸缩缝。因为后浇带混凝土硬化后,楼板连接成一个较长的整体,后浇带的作用不再存在。

根据以上温度应力变化规律,对于超长结构就可以加强屋面、外墙面的保温隔热措施,减少阳光对结构的直接辐射;对温度应力较大的部位加强配筋,温度钢筋要设置的细而密;对屋顶外露挑檐板、女儿墙等构件,每隔15m左右设置一道缝,缝宽20mm,缝内纵向钢筋可以不断开。

第7篇

关键字:高层建筑;框剪结构;优化设计;必要性;措施分析

中图分类号:TU74文献标识码:A

引言

在高层建筑施工设计的过程中,为了能够达到最佳的使用效果,需要采用恰当的结构设计形式,而框剪结构以其独特的优势成为目前在高层建筑结构设计过程中应用较为广泛的结构形式。框剪结构能够为建筑提供较大的平面空间,并且其具有较强的抗侧力刚度,能够更好的保证建筑物的稳定性。本文就在分析框剪结构优化设计必要性的基础上,对于剪力墙的合理选型和优化设计的措施进行分析,并指出抗震概念设计思想在该结构优化设计中的应用。

一 高层建筑框剪结构优化设计的必要性分析

和传统的高层建筑结构设计方法相比,框剪结构具有一定的优势,能够更好的发挥建筑物的使用性能。传统的结构设计方法中,一个很大的制约因素就在于其求得的一组截面并不一定是最好的,工程结构建设起来之后可能会出现重量大造价高的现象,这和之前的结构设计过程密不可分。但是框剪结构优化设计虽然和传统的结构设计有着一样的设计过程,但是其最终的目标是使得高层建筑具有良好的使用性能,并且能够最大限度的降低工程的施工造价,实现经济性和实用性的统一。

高层建筑框架剪力墙结构具有良好的受力性和适用性,在现代高层建筑设计的过程中应用非常广泛。随着高层建筑的快速增长,对框剪结构的合理选型和优化设计对于节约施工建设的成本来说也具有一定的指导意义。当前的《高层建筑混凝土结构设计规程》中对于高层建筑结构选型,尤其是对于合理布置结构还没有形成一个明确的规定,这样就为高层框剪结构的优化设计提供了更为充足的设计理由。

二 高层建筑框剪结构选型和优化设计的措施分析

高层建筑框剪结构在选型和优化设计的过程中需要注意很多事项,例如影响剪力墙用量的因素和相应的确定方法、剪力墙的截面尺寸大小以及剪力墙的平面设计等相关因素,下面本文就对这几点进行详细的分析。

(一)影响剪力墙用量的要素分析

在高层建筑框剪结构设计的过程中需要满足位移角限值的要求,还要充分的发挥该结构中各抗侧力构件的作用,以此来保证建筑的稳定性和安全性。在设计中,因为剪力墙是框剪结构中的主要抗侧力构件,所以剪力墙的用量和框剪结构的平面设计有着密切的关系,在设计中需要按照分散、均匀、对称和周边的原则进行。分散就是剪力墙的设计需要考虑到地震力分散作用在相等的多片剪力墙上,以避免地震集中造成剪力墙的破坏;均匀就是要同方向的各片剪力墙需要均匀的布置在建筑平面的每一个区域内,并且要保证每道剪力墙的承受水平力不能够超过总体水平力的40%;对称指的是剪力墙要最大限度的对称布置,以减弱地震时结构的扭转效应;周边就是要保证剪力墙沿着结构的周边进行布置,以此来提升结构的整体抗扭能力。

其次影响剪力墙用量的因素就是地震等级的大小。结构总水平地震作用将会随着剪力刚度的增加而增加。剪力墙增多,结构刚度增大,地震作用就会越强。为了能够发挥框剪结构的特性,剪力墙承担的地震倾覆力矩值需要大于地震总倾覆力矩值的50%。剪力墙不能够无限制的增加,需要根据实际的情况进行设计,以满足底部一般剪力的要求。当地震力过大的时候需要适当的减少剪力墙用量。

在剪力墙用量的设计中还需要考虑到抗震设防烈度、场地土、近场远场的影响以及结构侧移限值的影响等多个方面,在设计的过程中需要认真考虑各种因素,要在满足规范规定的位移限值条件下减少剪力墙的数量,实现经济效应和稳定效果的统一。

(二)剪力墙的平面设计

通常来讲,剪力墙需要沿着纵横两个方向布置,否则将会造成建筑物平面两个方向的刚度差异较大,增加了建筑物的扭转效应。剪力墙在设计时要尽量的设置在竖向荷载较大的地方,平面形状变化处或者是楼梯间、电梯和管道井的位置。当剪力墙不能够在结构纵横两个方向进行设计时,需要在刚度较弱的方向采用壁式框架等抗侧力构件以拉近两个方向在水平力作用下的位移值。

(三)剪力墙的截面尺寸确定

在框架剪力墙结构中,剪力墙需要有边缘的约束构件,即边框柱和边框梁。根据相关的规定,抗震要求的一二级剪力墙的底部加强部位的厚度要在200毫米以上,并且不能够小于层高或者是无支长度的十六分之一,其他的情况下要在满足不小于160毫米的基础上还需要小于层高或者是无支长度的二十分之一。在实际的设计过程中需要严格的按照规定进行,保证设计的顺利完成。对于框剪结构的边框梁的宽度来讲,需要和墙的厚度保持一致,高度可以为厚度的两倍。

(四)框剪结构优化设计

在对框剪结构进行优化设计的过程中需要对框架和剪力墙分别进行优化。对于钢筋混凝土框架结构的优化需要遵循以下步骤。首先要进行初始选型,确定之后进行结构分析,分析完成之后需要根据实际的情况,并结合自身的设计经验进行截面的优化设计,设计完成之后进行收敛性判断和可行性判断,确定之后再进行施工建设。需要注意,根据框架结构构件内力的计算结构分别对框架柱、框架梁和楼板结构实施优化设计。

剪力墙结构的优化设计则包括最优厚度设计和设置位置设计。对于框剪结构中剪力墙抗侧移构件的水平截面面积进行优化设计,需要在水平地震的租用下保证结构水平侧移值最大程度的接近相关规定中的最大侧移值。在所有优化设计完成之后再将框架结构计算得出的尺寸和剪力墙构件的最优厚度进行重新组合,形成新的框剪结构体系,对其结构内力进行分析,并且按照得到的结果对框剪结构的构件进行重新的优化设计。

三 抗震概念设计思想在该结构优化设计中的应用

通常来说,高层建筑框剪结构的优化设计体现为抗震设计,在抗震设计的过程中,概念设计思想十分关键。概念设计就是通过对建筑物的总体结构进行控制之后,再选用体型较为简单、平面对称性良好、抗侧力体系的刚度和承载力上下变化连续的方案来设计出抗震性能良好的建筑,以保证建筑物的稳定性和安全性。

框剪结构的本身就是抗震概念设计的一个重要体现,因为框架结构柱网布置十分灵活,能够满足使用的功能要求,并且是主要竖向受力构件。除此之外,框剪结构设计的过程中,对于连梁的设计也充分的体现了这一设计思想。在小震和风荷载的作用下,连梁能够起到联系墙肢并且增大剪力墙侧向刚度的作用;在中震的作用下,连梁需要先出现弯曲裂缝,之后通过塑性耗能减小墙肢在地震作用下的受损程度。

结束语:在高层建筑设计过程中,框剪结构以其优势获得了较为广泛的应用空间,在设计的过程中对于框剪结构的选型和优化设计十分关键。本文就以高层建筑框剪结构优化设计为中心,从结构优化设计的必要性、选型和设计措施以及抗震概念设计思想的应用三个方面进行了分析论述,希望对于今后的高层建筑框剪结构设计有一定的帮助作用。

参考文献:

[1] 张成秀 浅谈高层建筑的框剪结构设计 建材发展导向,2012年第18期

[2] 刘重光 浅谈高层建筑框剪结构设计 城市建设理论研究,2012年第29期

[3] 石健 高层建筑框剪结构设计探讨 广东建材,2007年第12期

第8篇

关键词:高层建筑;混凝土结构;优化设计

中图分类号:TU972 文献标识码:A

对高层建筑混凝土结构优化设计不仅是提高高层建筑工程质量的重要举措,也是提高企业核心竞争力的必经之路。那么作为新时期背景下的建筑结构设计人员,在实际工作中应如何确保设计的优越性呢?

一、高层建筑混凝土结构设计需要考虑的相关因素浅析

安全始终是一切建筑工程建设的根本前提,尤其是高层建筑更是如此。而对高层建筑混凝土结构进行优化设计就是提高高层建筑工程安全性的重要举措。因而对高层建筑混凝土结构进行优化具有十分重要的意义。但在优化设计之前,笔者认为还应考虑以下相关因素,才能更好的确保设计的优越性,达到优化设计的目的[1]。

(一)充分考虑侧向力因素

所谓侧向力,就是建成之后的建筑物需要承受的各种外力,如垂直荷载、地震力、风力等外力。尤其是高层建筑需要承受的侧向力,会随着层数的增加而增大,而且侧向力对高层建筑结构的变形、工程造价以及结构内力等有着重要的影响,因而在高层建筑混凝土结构优化设计时必须考虑侧向力因素。

(二)充分考虑刚度因素

从胡克定律分析,相同材料刚度的大小主要取决于剪切模量,建筑塑性刚度取决于建筑的形状、构制。因而在高层建筑工程项目施工过程中,其高度是导致一切风险因素形成的原因,在包括侧向力因素的同时还包括侧向位移,同样随着层数的增加而增大,若水平力作用在高层建筑上,就应确保其侧向位移始终保持在一定的范围以内,而这就需要高层建筑具有充足的强度,并严格控制自振周期始终处于最佳范围之内。因而在高层建筑混凝土结构优化设计时必须考虑刚度因素,确保建筑具有合理的刚度。

(三)充分考虑延性因素

当不同高度的建筑同时遭受侧向力的作用时,高度越高的建筑越容易变形,而究其根源就是其柔性较大,抗变形能力差。因而在优化高层建筑混凝土结构设计时,在确保强度充足的前提下,还应考虑如何提高整体和局部结构的抗变形能力[2]。

二、探讨高层建筑混凝土结构的优化设计

分析了高层建筑混凝土结构优化设计应考虑的因素,那么在高层建筑混凝土结构优化设计中应采取哪些措施以达到优化的效果呢?笔者认为应采取以下几点优化设计措施。

(一)精心设计原材料选用方案

在高层建筑混凝土结构中,原材料是影响结构质量的关键因素之一。一般情况下,高层建筑混凝土结构原材料主要有钢筋和混凝土。其中,钢筋用量的多少对工程造价有着决定性的影响。基于此,为降低工程造价,减少钢筋用量,必须在将高强钢筋作为优先选用的材料。在高层建筑工程项目建设过程中,往往由于土地资源的缺乏和实际需要,而不得不建在软土地基上,不仅会提高工程造价,也会给工程带来难度。因而为了降低造价,减少施工难度,减轻建筑对地基的荷载,在选用高强钢筋的同时还应选用高强混凝土,并确保钢筋混凝土构件的界面尺寸得到有效的优化和合理的使用。通常情况下,地震对建筑物造成的破坏程度大小往往取决于建筑物自重的大小。因而尽可能的降低建筑物的自重是主要的减震措施,从而提高自身的安全系数。因而在设计诸如高强混凝土、钢筋时必须合理,才能快速有效地减少各构件截面尺寸,将少钢筋用量,降低建筑物的自重,在降低工程造价的同时提高建筑物的安全性能。

(二)合理设计独立单元结构,注重结构概念的设计

在高层建筑混凝土结构优化设计中,若整个混凝土结构是独立的单元结构。为确保设计的优化,首先应对平面结构性状进行优化设计,即做到简单规则、长度适中、凹凸部分大小适中、竖向体型均匀规则、外挑内收适中。在此基础上,各结构部分的刚度和承载力必须均匀分布,严禁采用竖向布置不规则的结构,而是采用侧向力上小下大、变化均匀的刚度结构。与此同时,在整个混凝土结构优化设计中,虽然能达到上述的各种标准,但是美观性和适用性又降低了,针对这一情况,作为设计人员必须注重结构概念设计,且在整个设计过程中始终以概念设计为底线,在尽可能确保满足外观和适用的建筑结构的原则下,平面和竖向布局应简洁、均匀、规则,以确保各结构部分承载力刚度分布的均匀合理性。

(三)不断优化剪力墙平面布置

对于剪力墙平面布置的优化,笔者认为应采取以下优化措施:第一,布置剪力墙应采取顺周边均匀且集中布置且对建筑原有功能不损坏的基本布置原则,因而建筑剪力墙通常布置在电梯间、楼梯间处和恒载大、平面形状变化大的地方;第二,对于剪力墙的墙肢截面,采取简单规则的原则,且剪力墙结构的侧向刚度较强,但也不能过大;第三,应避免出现过多的短肢剪力墙,尤其是全部均为短肢剪力墙更应避免,这是由于一旦设计过多或全部为短肢剪力墙,其联合剪力效果不佳,抗剪性能差,容易导致结构破裂[3]。

(四)不断优化高程建筑混凝土结构抗震性能

在抗震设计过程中,必须注意混凝土筒体的承载力和延性。对于高程建筑混凝土结构,出于抗震的需要,不同高度的建筑物,型钢柱的设置位置与设置方法是不一样的,型钢柱设置于筒体四角,建筑物高度一般低于130m,并且抗震设防等级多为7级;筒体四角和楼面钢梁与型钢混凝土梁的交接处设置型钢柱,建筑物的高度一般高于130m,同时抗震设防等级为7、8、9级。以此增强框架的刚度及承载力。通过刚性连接框架平面内柱与梁的方法可达到增强框架的刚度和水平承载力的目的。具体可采取如下措施:第一,设置外伸桁架加强层;第二,分段拼装外伸桁架与筒体剪力墙的刚接的方法可以被采用;第三,贯通性的刚接桁架与抗侧力墙体应均匀分布。这样就可以很好地避免楼层在水平力作用下的侧移。

三、结语

综上所述,探讨探讨高层建筑混凝土结构的优化设计具有十分重要的意义。作为新时期背景下的高层建筑结构设计人员,必须以客户需求为导向,以实际情况为基本,在日常工作中不断积累经验和教训,加强自身的学习和锻炼,不断提高自身的专业技术水平,切实做好高层建筑混凝土结构的优化设计工作,以不断提高优化设计效果,提升混凝土结构的稳固性,最终确保工程质量提高,创造更多效益,实现可持续发展。

参考文献:

[1]王艳军.高层建筑剪力墙结构优化设计浅析[J].山西建筑.2010,36(05):73.

第9篇

关键词:高层建筑;混凝土结构;设计

中图分类号:TU97文献标识码: A 文章编号:

引言

近些年来,随着我国社会的不断发展,人们生活水平的不断提高,人们对自己所居住的建筑要求也越来越高,各种高层建筑不断涌现,在提高了土地利用面积的同时,也增强了城市的美观。但是,这些样式多样化的高层建筑并不都是完美的,也有很多存在一定的设计缺陷,给使用者带来不便,或者带来一定的安全隐患,这都是我们不希望看到的。因此,对建筑设计者们来说,建造既美观又实用而且安全的建筑是非常必要的,也需要考虑到各种影响因素之间的平衡问题。曾经在全国各地发生的不良案例已经足够多,像上海出现的“楼倒倒”事件等,我们不希望再次出现,有鉴于此,本文从结构、设计因素、优化方法等多个角度对高层建筑混凝土结构的优化设计进行了分析,希望能为国内的同行提供一定的参考。

1高层建筑混凝土结构

目前来看,经过多年的发展,高层建筑混凝土结构已经衍生出四种类型,下面对其分别阐述:

1.1钢筋混凝土结构

这是最早的高层建筑结构,高层建筑的发展也得益于该结构的诞生和使用,该结构的建筑材料主要包括钢筋和混凝土两大部分,利用两者在刚性和延展性的互补实现整体的承重设计。此结构的整体性较能好,且具有耐高温、位移小、维护方便、成本低和刚度大等特点,钢筋混凝土结构的一系列特点,都是钢结构所望尘莫及的。而且随着各种材料学的不断发展,以及冶金工艺的不断进步,相关的技术不断成熟,建筑技术也越来越丰富,此建筑结构是国内应用最广泛的建筑结构型式。

1.2组合结构

我国对组合结构的研究与应用虽然起步较晚,但发展较快。目前组合结构可以分成两大块,一是钢筋混凝土组合结构,另一种是组合切体结构。前者是用型钢或钢板焊(或冷压)成钢截面,再在其四周或内部浇灌混凝土,使混凝土与型钢形成整体共同受力,通称钢与混凝土组合结构。钢管混凝土结构在轴向压力下,混凝土受到周围钢管的约束,形成三向压力,抗压强度得到较大提高,故钢管混凝土被广泛地应用到高轴压力的构件中。后者是由砖砌体和钢筋混凝土面层或钢筋砂浆面层组成的组合砖砌体构件,适用于轴向力偏心距,超过0.7y(y为截面重心到轴向力所在偏心方向截面边缘的距离),或e较大,无筋砌体承载力不足而截面尺寸又受到限制时的情况。由于组合结构有节约钢材、提高混凝土利用系数,降低造价,抗震性能好,施工方便等优点,在各国建设中得到迅速发展。

1.3新型结构

新型结构的出现主要是对原有结构体系的重新组合设计来区分的,在材料的使用上没有大的不同。该结构主要是以筒体的组成方式来作为区分标准的。相比于传统的单片平面结构体系,新型结构体系中的筒体则具有更大的抗侧刚度,且承载力更大。

1.4智能建筑结构

随着信息化时代的来临,建筑的智能化设计也逐渐成为人们关注的焦点,这代表这一种未来的发展趋势。但是目前国内包括国际上在高层建筑中采用智能建筑的还比较少,BAS、OAS和CAS作为智能化系统的三大代表,未来的前途一片光明,在此不作多述。

2高层建筑结构设计考虑因素

在高层建筑的结构设计过程中,需要考虑的因素很多,经济性、安全性、高度、外形、荷载、风阻等因素众多,因此需要进行优化设计,最终达到强度足够、刚度适宜、延性良好、设计合理的标准。其中,重点需要考虑的有以下几个因素:(1)侧向力,建筑物在建成以后,会收到风力、地震力、自身荷载以及地陷等各种外力的影响,所有建筑都会存在侧向力,其中尤其以风力产生的作用最为明显,建筑高度越高,受力越大,因此在高层建筑中更应该注意。当然,地震力、水平荷载力等因素也要考虑在其中。(2)适宜的刚度,刚度是指受外力作用的材料、构件或结构抵抗变形的能力。材料的刚度由使其产生单位变形所需的外力值来量度。结构的刚度除取决于组成材料的刚度外,还同其几何形状、边界条件等因素以及外力的作用形式有关。建筑结构也要通过控制刚度以防止发生振动、颤振或失稳。 (3)延性良好,延性是指构件和结构屈服后,具有承载力不降低或基本不降低、且有足够塑性变形能力的一种性能,一般用延性比表示延性,即塑性变形能力的大小。当整体结构进入塑性变形阶段仍具有较强的变形能力,在当今的设计技术条件下,通过优良的概念设计和合理的构造措施可以避免高层建筑在大地震作用下而倒坍,确保生命和财产安全。

3高层建筑混凝土结构优化设计的具体方法

3.1合理使用高强砼和高强钢筋

在设计过程中,有两个因素是必须要考虑到的,一个是建筑物的经济效益问题,在当今市场经济体制下,经济效益正在成为人们首要的考虑出发点,建筑既要注重质量,也要注意成本,在安全范围内,如何尽可能的节约成本,对于建筑企业的日后发展来说意义十分重大。因此,在钢筋以及砼等的选择上,并不是越高越多越好,而是应该寻找平衡。另外一个因素就是抗震的问题,建筑物的抗震能力与自身重量也有很大关系,建筑物质量越大,受到的冲击就越强。所以,适当的采用高强砼和高强钢筋对降低造价及安全使用的目的具有十分重要的作用。

3.2注重剪力墙的平面布置

具体应如何注重剪力墙的平面布置,我们应该从以下几方面做起:(1)剪力墙的布置原则在于沿周边均匀、相对集中布置,同时又不损害建筑原有的使用功能。一般布置在建筑物的楼梯间、电梯间处,以及平面形状变化及恒载较大的部位,其间距宜适中,不宜过大。(2)剪力墙墙肢截面应具有简单、规则的特点,剪力墙结构应具有一定侧向刚度,但不宜过大。(3)较多的短肢剪力墙不会起到联合剪力的良好效果,全部为短肢剪力墙的情况更是应该避免出现。

参考文献:

[1]沈汝伟.对建筑结构优化设计的探讨[J].煤炭技术.2011(04)

[2]贺杨,张永胜.高层建筑结构优化设计[J].山西建筑.2012(05)

第10篇

关键词:高层建筑;剪力墙结构;优化设计

中图分类号:TU973+.16文献标识码:A文章编号:1673-0038(2015)52-0107-02

作者简介:李骏如(1975-),男,工程师,大学本科,主要从事结构设计方面的工作

在经济建设不断发展的过程中,人们的生活需求不断变化,基础设施建设的规模逐渐扩大,高层和超高层建筑业随之诞生,很大程度上反应出国家建筑科技和经济发展水平的提高[1]。人口密度不断增长的过程中,高层建筑成为当今城市建设的主要趋势,也代表着城市现代化水平。为了提高高层建筑的抗震性和经济性,国内众多学者开展了对剪力墙结构的研究。针对同一建筑,经济指标的差异会由于结构墙体布置的不同而不同,主要影响因素为混凝土用量和钢材量。

1高层建筑剪力墙结构的概念设计

高层建筑需要保持较高的稳定性,在承受梁内所有重力载荷的同时,必须要承受外界风力和地震的影响,避免出现过大的振动和水平位移,保证建筑内的装饰和填充墙等完好无损,为居住者提供舒适安全的环境。高层建筑结构同时承受水平和垂直载荷,在低层结构中,水平位置的载荷较小,通常情况下可以忽略不计。在高层结构中,水平位置的载荷和地震都会对建筑造成影响,成为共同的控制因素。在建筑物高度不断增加的同时,水平载荷的位移也将发生变化,因此在高层在高层建筑设计的过程中,必须综合考虑建筑的承载能力和抗侧刚度,对水平位置的载荷进行有效控制。在水平力作用下,剪力墙结构会出现侧向变形。剪力墙结构在垂直方向上可以承受较大的载荷,在水平方向上也可以承受较大的载荷,整体性较高,侧向刚度较大,在水平力作用下,发生的位移较小,在不采用梁柱等外凸装置的情况下,提高了房内布局的合理性,但是无法提供更大的住宅空间,结构延性存在一定的缺陷。建筑物的地下室有多层时,需要采用部分框支剪力墙结构,设置科学的过渡层,保证框架-剪力墙结构向剪力墙结构良好过渡。剪力墙结构在水平方向和垂直方向上承受的载荷均较大,可以广泛应用于高层建筑,主要应用于以小房间为主的住宅,例如宾馆、公寓等。宾馆中需要较大的空间时,将其设置在另外的建筑单元中。为了满足不同方向水平力的要求,针对矩形平面,往往将剪力墙设置在纵横两个方向上,针对圆形平面,剪力墙设置在沿径向位置和环向位置上,针对三角形平面,剪力墙结构沿三个主轴方向设置[2]。

2剪力墙结构设计和计算的优化方法

2.1结构设计的优化

剪力墙结构中的空间结构,一般沿主轴方向形成双向布置,如果剪力墙有抗震需求,需要保证多个方向的布置,使多个方向上的抗侧刚度相同,提高建筑物的空间工作性能。剪力墙具有较高的抗侧刚度和承载力,为了充分发挥剪力墙结构的性能,减轻结构重量,需要结合具体建筑增大剪力墙结构的可利用空间,合理控制墙体的布置密度,保证墙体结构具有良好的侧向刚度。在设计剪力墙墙肢截面的过程中,应秉持一定的规则,竖向刚度保持均匀,剪力墙结构的门窗洞口上下对其,在垂直方向上成列布置,保证墙肢和连梁的准确性,另外,需要提高应力分布的均匀性,结合设计图纸,提高设计的安全性和可靠性。在设计过程中,保证墙肢刚度相同,如果剪力墙结构的洞口出现错?或者叠合的情况,必须将墙内配筋设置成框架形式[3]。如果剪力墙结构的长度较长,必须开设合适的洞口,将剪力墙分割成长度均匀的墙段,利用弱连梁将不同墙段连接起来,为了避免剪力墙结构引发剪切破坏,不同的独立墙段的总高度必须为界面高度的2倍以上。在抗震设计过程中,如果小墙肢截面的高度小于墙厚度的4倍,应设置合理的框架柱,并对框架柱的加密区进行全高加密。由于剪力墙结构平面内具有较大的承载力和刚度,而平面外刚度和承载力较小,因此为了提高剪力墙结构平面外的稳定性,必须对剪力墙平面外的弯矩进行控制。如果剪力墙结构和平面外的楼面梁连接时,必须避免梁端弯矩对墙体造成的影响。由于结构的抗侧刚度会受到剪力墙布置方式的影响,因此一般都会将剪力墙自下而上布置,同时在垂直方向山给改变墙体的厚度和混凝土的强度等级,或者可以减少一部分墙肢,减小侧向刚度。必须注意到剪力墙结构如果沿垂直位置不连续,将导致刚度突变,影响建筑结构的抗震效果。剪力墙设计过程中,先结合实际工程对结构进行分析,符合层间位移、周期比等指标的要求,确定出剪力墙厚度,结合建筑的抗震需求,满足结构的构造要求。

2.2计算优化

在剪力墙结构设计中,重点关注结构设计的合理性,如果剪力墙就结构的刚度较大,将不能满足层间位移的要求,结合楼层的最小剪力系数,保证计算结果接近规定值。控制好结构扭转为主的第一自振周期与平动为主的自振周期之比符合要求。考虑地震影响的过程中,高层建筑竖向构件的最大水平位移在楼层平均值的1.2倍以下,同时保证剪力墙连梁和底部加强区的轴压比满足要求。在调整楼层最小剪力系数的过程中,减少剪力墙的布置,保证结构的侧向刚度满足要求,使楼层的最小建立系数达到规范限值。减轻结构自重,减小地震的影响,降低工程造价。在最大层间最大位移和层高之比调整的过程中,充分考虑楼间的弯曲变形,在高层建筑汇总尽可能将扭转变形控制在最小,结合层间位移的特点,增强竖向构件的刚度。在实际工程设计中,不可盲目增加竖向构件的刚度,必须注意实际结构的剪重比,如果剪重比较大,必须先减小对应一侧的结构刚度,减小地震作用的同时,提高结构的整体效果[4]。

3应用实例

3.1工程概况

某高层建筑总高度52.6m,共18层,层高2.9m,建筑面积6500m2,基本地震加速度值为0.20g,抗震设防烈度Ⅷ度,基本风压为0.55kN/m2,采用二级剪力墙结构,混凝土强度等级为C30~C25,钢筋梁强度HRB400,钢筋板强度HPB235。

3.2结构布置

原结构标准层剪力墙结构的布置未优化前采用纯剪力墙结构,墙肢底部加强部位宽度为250mm,底部以上宽度200mm,利用SATWE方法计算后发现该剪力墙的利用率较低,底层墙肢轴压比为0.35~0.40之间,将结构位移控制在1.2以内,结构周期和位移角较小,整体刚度较强。结合实际工程的特点,对主要的问题进行分析,对剪力墙结构布置进行优化调整。优化前和优化后的剪力墙结构对比后可以看出,原结构攻读较大,层间位移不足,优化后的机构刚度适宜,分布也较为均匀,位移角和位移比均有所增加,在结构布置和墙肢长度的调整过程中,将底层轴压比控制在0.50以下,使得剪力墙成分发挥出较高的承载力和刚度,优化后的成根本明显低于优化前。

4结束语

剪力墙结构在高层建筑的应用过程中,设计阶段的成本控制影响着后期的施工成本,项目设计一般都存在较大的优化空间,在建筑领域应用优化设计,不仅可以节约能源,还可以提高建筑物本身的性能。结构优化设计中可以降低成本造价,增大建筑的应用空间,值得在实际工程设计中推广。

参考文献

[1]王艳军.高层建筑剪力墙结构优化设计浅析[J].山西建筑,2010,36(5):73.

[2]黎星才.高层剪力墙结构优化设计与经济分析[J].新建设:现代物业上旬刊,2011,12(8):200.

[3]林小杨.浅谈高层建筑剪力墙结构优化设计[J].河南大学,2015,12(3):74.

第11篇

关键词:高层住宅;结构设计;优化设计

Abstract: Nowadays, with the improvement of people's living standard, people's material and cultural level requirements are becoming increasingly strict, such as construction of residential design requirements from simple to meet the needs of people's lives become can provide leisure and entertainment place to live. Therefore, the author mainly for optimization design of the structure of the high-rise residential design were analyzed briefly, and how at the lowest cost, the scientific method of architectural design for a total of, some corresponding suggestions and measures, hope to discuss with you.

Key words: high-rise building; structure design; optimization design

中图分类号:[TU208.3] 文献标识码:A文章编号:2095-2104(2013)

引言

将建筑结构合理的分析会更加有利于高层住宅结构优化设计的实施,提出结构设计优化方案,目的是在设计满足国家相关建设法规的前提下,提高建筑物的技术质量,降低总成本,使投资利益最大化,并且能保证建筑物抗震性能和安全性。结构设计优化是对设计再次分析,再次加工的过程。尽量使住宅结构刚度适中、整体结构布局均衡,从而减小构件在外力影响下的变形或者破坏,达到既美观又兼顾抗震的效果,这是高层住宅结构优化的目标。

在高层住宅结构优化设计中,每一道工序都要精心设计,做到计算合理准确,方案合理可行,本文对设计优化存在的问题进行分析并提出几点可行建议。

1高层住宅结构设计现状

1.1 住宅结构设计现状

多层建筑和高层建筑横向和竖向的结构体系设计基本原理是相同的,但是建筑高度越高,结构设计越复杂,这也是建筑界正在努力解决的问题之一。住宅结构越高,就要求有截面较大的柱子或者墙来承受竖向压力,这对建筑材料的要求比较高。另外,住宅结构越高,水平力所产生的剪切变形和倾覆力矩就要大得多,而且水平荷载产生的响应并不是线性的,而是随着高度增加而迅速增大。高层建筑与低层建筑结构有着很大差异,需要考虑的因素也很多,例如共振、扭转、水平侧向位移等。

1.2 高层住宅结构设计影响因素

住宅越高,建筑结构的安全性就越来越要重视,设计中要考虑的因素也就增多,主要影响因素有水平荷载、侧向位移、结构延性等。

(1)水平荷载。水平荷载包括风荷载和地震作用。一般来说,垂直方向的荷载只与楼房高度有关,但是水平方向的受力情况却比较复杂。例如,风荷载的大小和建筑物所在地的地貌及周围环境有关,与建筑物本身高度、形状及表面状况有关;地震作用同场地类别及本地区抗震设防烈度有关。所以水平荷载是影响住宅结构设计的主要因素。

(2)侧向位移限制和舒适度要求。在正常使用条件下,高层住宅结构处于弹性状态并且应有足够的刚度,避免产生过大的位移而影响结构的承载力、稳定性和使用条件。过大的侧向位移会使主体结构出现裂缝甚至破坏,会使结构产生附加内力,会使人不舒服影响正常使用。所以在设计的时候,要注意在水平荷载作用下的侧移要控制在要求范围之内。

(3)结构延性。高层住宅建筑在地震作用下允许结构某些部位进入屈服状态,形成塑性铰。这时结构进入弹塑性阶段,结构可以通过塑性变形耗散地震能量,同时必须保证结构的承载能力,结构不能破坏,这种性能称为结构延性。延性越好,抗震能力越强,要特别注意在构造上采取合适的措施,保证住宅的安全。

2 高层住宅结构设计优化

2.1 选择设计结构方案

进行高层住宅结构设计优化时,首先要进行结构方案的选择。结构方案的好坏决定了结构设计的好坏,对于同一个建筑设计要求,其结构方案往往是不唯一的,但是不同的设计方案会影响工程质量和工程造价,在设计时,一定要选择合理的结构设计方案。

首先,根据相关建筑结构规范的规定来完成结构设计方案总体要求,处理好建筑与结构的相互关系,充分发挥结构的最佳受力状态,使结构形式尽可能简单明确,具有足够的承载力,良好的延性和刚度。其次,要保持结构的安全可靠。应该仔细考虑每一个构件,使各个构件能够相互协调,发挥最大功能,保证设计目标水准,使结构既经济又安全。再次,要尽量避免或者减小外力作用下的扭转效应。因为抵抗扭转效应所需要的材料用量很大,而且结构也会很复杂,会提高工程造价,不经济也不实惠。最后,要积极与建筑专业进行沟通。结构设计者往往对建筑做法和材料不是很了解,在设计结构方案时,要与建筑师进行交流,听取他们提出的建议,结构设计师要充分理解结构概念,真实客观地进行设计,通过反复优化、修改,最后设计出质量最安全,造价最经济的结构方案。

2.2 设计优化

在优化设计时,应注意以下几个方面:

(1)正确认识结构设计优化的重要性。

现在房地产已经是一个大产业,人们对住宅要求也越来越高,而作为投资方,追求的是利益的最大化,进行住宅结构设计的优化,不但可以有效降低总成本,还可以使建筑结构更美观安全,更经济合理的节省材料,从而降低工程造价。

(2)设计方案优化。

设计时,首先要进行建筑结构分析,主要由竖向抗侧力构件构成,包括框架、剪力墙、筒体等。主要分析他们的受力状态,使构件充分利用起来。在进行计算分析时,不能盲目地依赖计算机,还要结合工程师的实际经验,选择合适的计算参数,经过多次计算比较,找到最佳参数值。其次是根据住宅结构平面,分析竖向荷载和水平荷载,根据实际情况,合理布置构件,选用合适材料进行结构分析和内力分析,根据分析结果适当调整结构形式。此外,还要进行可行性判断,对优化结果进行内力分析,满足设计要求的前提下,校验可行性;如果不可行,就要调整设计方案,直到方案可行为止。

(3)地基处理的优化。

高层住宅建筑更要注重地基的处理,否则将前功尽弃,在选择地基时,要选择地质条件不复杂,容易施工的地质,因为地质条件越复杂,地基处理的造价越高,而选择相对简单的地质条件,不仅可以降低地基处理的成本,地基安全度也会增加,从而降低工程造价,提高工程性价比。

(4)进行建筑材料的优化。

优化建筑材料目的就是花尽量少的钱,做到经济安全、符合设计要求工程。这就要求在选择建筑材料时,要合理利用材料性能,根据不同的需求来选择不同的材料。实际上,因材料选择不当造成浪费的情况很多,设计时,要充分考虑这些因素。

3 结论

高层住宅结构设计优化能够有效降低工程造价,带来可观的经济效益,不仅能让建筑物安全实用,又能使其经济美观,舒适。所以进行结构优化设计至关重要,实际设计中,要结合实际情况和具体条件来灵活运用设计优化方法,实现住宅结构设计既安全又经济。

参考文献:

[1]高立人等.高层建筑结构概念设计[M].北京:中国计划出版杜,2005.

[2]GB50223-2004.建筑工程抗震设防分类标准[S].北京:中国建筑工业出版社.2004.

[3]王燕;王维.浅谈高层建筑结构分析与设计[J];山西建筑;2008年05期

第12篇

关键词:高层住宅;抗震结构;优化设计

中图分类号:TU97 文献标识码:A

随着社会经济的快速发展,人们的生活水平不断提高,越来越多的人开始追求更高品质的生活条件,由此,建筑行业高层住宅的建筑结构发生了变化,由原来的多层混砖结构变为现在的钢筋混凝土结构。城市化进程的不断加快,城市的规模不断扩大,土地资源日渐紧张,住宅建筑逐渐以高层为主,高层建筑聚集了更多的人民群众,一旦发生地震灾害,由于人员的密集和住宅的高度等因素,会在很大程度上加大地震灾害,因此,为减少灾害损失,就必须做好建筑抗震结构优化设计,提高高层住宅建筑的抗震能力。

1 高层住宅建筑结构抗震设计的重要性

(1)地理位置原因。我国处于太平洋地震带和喜马拉雅山地震带的交界处,受到太平洋板块和印度板块的相互挤压,致使我国的地震频发,遭受了较大的地震灾害,我国的地震活动频率高、强度大、震源浅、分布广,据资料显示,20世纪里,全球共发生三次7.6级以上的地震,中国占两次,并在1920年的宁夏海原地震和1976年的河北唐山地震中分别造成23万和24万多人死亡。20世纪以来,地震也是所有自然灾害中最频繁、伤害性最大的灾害,因此,地震灾害的严重性是我国的基本国情之一,为减少地震灾害,就必须进行抗震优化设计。

(2)测量科技水平的限制。由于现今科技水平方面的局限性,抗震计算的依据还很难确认,当地震灾害发生时,震波由震源传到地面的过程中,要通过岩石或不同土层的折射或者滤波,整个传播过程是复杂多变的非线性传播,所以,地震的强度和传播加速度很难确认。另外,由地震引起的地面运动有六个自由度,而依靠当今科技能记录到的只有三个简单的运动记录,其他的扭转分量还未被掌握。

2 高层住宅建筑结构抗震设计的原则

为保证高层住宅建筑在经受地震等自然灾害时损失最小、安全性最高,就需要在进行住宅结构抗震设计时结合实际的工程情况和施工地点,保证高层住宅建筑具有较好的抗震能力。抗震设计时要采取刚柔并济的原则,选择适合的抗震结构,制定合理的抗震设计措施,保证在遭遇较小的地震时,不影响建筑结构,在遭遇较大地震时也要保证建筑物的变形变化不能太大,且经修复后不影响正常使用。住宅建筑较高时,可以在保证整体结构安全的同时,允许加入弹塑性状态。另外,六级以上地震一般都伴有多次余震,若建筑构件的刚度小,则会导致初次地震时建筑损坏,无法抵御余震的冲击,因此,住宅建筑应既满足变形要求,也要减小地震作用,避免建筑的局部受损。

3 高层住宅建筑结构中抗震设计存在的问题

(1)抗震规范问题。在进行抗震建筑结构设计时,应根据当地的实际情况,对使用抗震材料的延性进行等级划分,利用不同的地震强度来确定所需要的延性,用较小地震的最高强度来确定所需延性的最低要求,同时,在较低烈度的区域使用较低延性的材料,在较高烈度的区域使用较高延性的材料。但是,在我国,没有对地震作用进行细致的划分,而是将不同地震取一个固定数字进行分析,这样就导致不同地震作用下的延性相同,在地震作用较大时,也就无法满足抗震所需的延性,从而增加了灾害造成的损失。

(2)抗震设防目标不明确。我国的抗震设防目标一直是以“大震不倒、中震可修、小震不坏”为原则,来规范抗震建筑的抗震效果,但是,这样的抗震设防目标太过笼统,不适用于所有的建筑,目标范围太过模糊,违背了国际上“多层次、多形态”的控制目标,因此,应对不同地震等级中,不同的抗震建筑进行灵活的等级划分,比如,可以分为,一类是经过地震灾害后可能会出现次生灾害的建筑,另一类是在遭遇地震后影响其使用而必须进行及时的抢修的建筑等。灵活的抗震设防目标才能使抗震工作更细致、更深入,保证抗震设计的抗震作用。

4 抗震结构优化设计方案

(1)地理位置选择。不同的地理位置,发生地震时的破坏程度也是明显不同的,因此,应选择抗震能力较强的地区避免危害性大的地区进行建设,在住宅建筑开始之前,进行必要的地基勘察,根据建设场地的实际情况进行不同标准的分类和等级划分,以便对该地区进行合理的抗震设计。比如根据地区地基液化等级和抗震设防类别,进行相应的消除地基液化或采取巩固地基的措施,以达到更好的抗震效果。同时,避免选择不利于住宅建设的地区,为日后的建筑安全排除隐患。

(2)优化建筑结构。抗震优化设计中的一个很重要的原则是力求对称,对整个建筑结构中的构造和承载能力进行综合的考量,以此来判断整个结构的抗震能力。地震时高层建筑所承受的地震作用取决于它的动力特性,与建筑所具有的刚度、承载力力度分布和延性有关。高层建筑的结构是由纵向和横向的承重结构组成的,承重结构的稳定性和刚度决定着建筑抗震能力的大小,因此,要提高建筑的抗震能力,就应首先增加承重构件的延性,可以采取增加构造柱,并配置钢筋构造的方式来增强结构的整体稳定性。另外也可以配置钢筋圈梁来解决散落问题,增强建筑的抗震性能。在地震作用较大时,就需要结构的延性来避免建筑的变形,因此,建筑的延性也是增强抗震能力的重要因素,为了在地震作用下使钢筋混凝土保持足够的延性,就需要把塑性变形集中在具有良好延性的构件上,首先是选择合适的塑性变形构件,然后人为地增加构件的抗剪力,避免在地震作用下出现剪切破坏,影响构件及建筑的延性,最后通过相应的措施,保证塑性铰的位置具有较强的转动能力和耗能能力。

(3)抗震材料的选择。对于许多多发地震区来讲,结构上的抗震性设计远远无法满足抗震要求,还应当把高性能的资料结合使用,并且结构体系要优质。目前为止,我国住宅建筑中高层建筑使用的结构体系主要有剪力墙、框架、两者结合及简体等。然而,外国地区抗震住宅建筑多采用钢结构,但我国抗震住宅仍有90%以上使用钢筋混凝土,两者相比较,钢结构的延性、韧性和强度都比混凝土结构好得多,因此,钢结构的抗震能力更强。且据实践证明,钢结构出现破坏倒塌的情况较少,是适合做抗震建筑材料的首选,况且,我国的钢产量居世界前列,钢材的品种和类型也在不断增加,因此,应在抗震建筑中多使用钢结构或者钢管混凝土结构,来提高高层住宅建筑的抗震性能。

结语

随着城市化进程的不断加快,人口居住也越来越密集,住宅建筑楼层越来越高,但我国又是处于地震带交汇处、地震灾害频发的国家,为避免在人口密集的地区发生较大的灾害损失,就必须加强住宅结构的抗震设计,从地理位置的选择、建筑结构的优化和建筑材料的选择等多个方面进行优化设计,达到增强建筑抗震能力、减少灾害损失的目的,保证人们的人身安全和财产安全。

第13篇

关键词:高层住宅;结构;优化设计

Abstract: with the improvement of people's living standard, housing is not only a shelter, rest, but also for people to enjoy life place. Now, the construction of residential design of increasingly high demand, optimizing the structure design of high-rise residential buildings, not only can improve the degree of safety, but also can reduce the engineering cost, construction cost savings. Several suggestions are put forward to optimize the design of high-rise residential buildings in this paper, we hope to help design personnel.

Key words: high-rise building; structure; optimization design

中图分类号:TU318 文献标识码:A 文章编号:

引言

高层住宅结构的优化设计是指对建筑物结构进行合理分析,提出结构设计优化方案,目的是在设计满足国家相关建设法规的前提下,提高建筑物的技术质量,降低总成本,使投资利益最大化,并且能保证建筑物抗震性能和安全性。结构设计优化是对设计再次分析,再次加工的过程。尽量使住宅结构刚度适中、整体结构布局均衡,从而减小构件在外力影响下的变形或者破坏,达到既美观又兼顾抗震的效果,这是高层住宅结构优化的目标。

在高层住宅结构优化设计中,每一道工序都要精心设计,做到计算合理准确,方案合理可行,本文对设计优化存在的问题进行分析并提出几点可行建议。

1高层住宅结构设计现状

1.1 住宅结构设计现状

多层建筑和高层建筑横向和竖向的结构体系设计基本原理是相同的,但是建筑高度越高,结构设计越复杂,这也是建筑界正在努力解决的问题之一。住宅结构越高,就要求有截面较大的柱子或者墙来承受竖向压力,这对建筑材料的要求比较高。另外,住宅结构越高,水平力所产生的剪切变形和倾覆力矩就要大得多,而且水平荷载产生的响应并不是线性的,而是随着高度增加而迅速增大。高层建筑与低层建筑结构有着很大差异,需要考虑的因素也很多,例如共振、扭转、水平侧向位移等。

1.2 高层住宅结构设计影响因素

住宅越高,建筑结构的安全性就越来越要重视,设计中要考虑的因素也就增多,主要影响因素有水平荷载、侧向位移、结构延性等。

(1) 水平荷载。水平荷载包括风荷载和地震作用。一般来说,垂直方向的荷载只与楼房高度有关,但是水平方向的受力情况却比较复杂。例如,风荷载的大小和建筑物所在地的地貌及周围环境有关,与建筑物本身高度、形状及表面状况有关;地震作用同场地类别及本地区抗震设防烈度有关。所以水平荷载是影响住宅结构设计的主要因素。

(2) 侧向位移限制和舒适度要求。在正常使用条件下,高层住宅结构处于弹性状态并且应有足够的刚度,避免产生过大的位移而影响结构的承载力、稳定性和使用条件。过大的侧向位移会使主体结构出现裂缝甚至破坏,会使结构产生附加内力,会使人不舒服影响正常使用。所以在设计的时候,要注意在水平荷载作用下的侧移要控制在要求范围之内。

(3) 结构延性。高层住宅建筑在地震作用下允许结构某些部位进入屈服状态,形成塑性铰。这时结构进入弹塑性阶段,结构可以通过塑性变形耗散地震能量,同时必须保证结构的承载能力,结构不能破坏,这种性能称为结构延性。延性越好,抗震能力越强,要特别注意在构造上采取合适的措施,保证住宅的安全。

2高层住宅结构设计优化

2.1 选择设计结构方案

进行高层住宅结构设计优化时,首先要进行结构方案的选择。结构方案的好坏决定了结构设计的好坏,对于同一个建筑设计要求,其结构方案往往是不唯一的,但是不同的设计方案会影响工程质量和工程造价,在设计时,一定要选择合理的结构设计方案。

首先,根据相关建筑结构规范的规定来完成结构设计方案总体要求,处理好建筑与结构的相互关系,充分发挥结构的最佳受力状态,使结构形式尽可能简单明确,具有足够的承载力,良好的延性和刚度。

其次,要保持结构的安全可靠。应该仔细考虑每一个构件,使各个构件能够相互协调,发挥最大功能,保证设计目标水准,使结构既经济又安全。

再次,要尽量避免或者减小外力作用下的扭转效应。因为抵抗扭转效应所需要的材料用量很大,而且结构也会很复杂,会提高工程造价,不经济也不实惠。

最后,要积极与建筑专业进行沟通。结构设计者往往对建筑做法和材料不是很了解,在设计结构方案时,要与建筑师进行交流,听取他们提出的建议,结构设计师要充分理解结构概念,真实客观地进行设计,通过反复优化、修改,最后设计出质量最安全,造价最经济的结构方案。

2.2 设计优化

在优化设计时,应注意以下几个方面:

(1) 正确认识结构设计优化的重要性。

现在房地产已经是一个大产业,人们对住宅要求也越来越高,而作为投资方,追求的是利益的最大化,进行住宅结构设计的优化,不但可以有效降低总成本,还可以使建筑结构更美观安全,更经济合理的节省材料,从而降低工程造价。

(2) 设计方案优化。

设计时,首先要进行建筑结构分析,主要由竖向抗侧力构件构成,包括框架、剪力墙、筒体等。主要分析他们的受力状态,使构件充分利用起来。在进行计算分析时,不能盲目地依赖计算机,还要结合工程师的实际经验,选择合适的计算参数,经过多次计算比较,找到最佳参数值。

其次是根据住宅结构平面,分析竖向荷载和水平荷载,根据实际情况,合理布置构件,选用合适材料进行结构分析和内力分析,根据分析结果适当调整结构形式。此外,还要进行可行性判断,对优化结果进行内力分析,满足设计要求的前提下,校验可行性;如果不可行,就要调整设计方案,直到方案可行为止。

(3) 地基处理的优化。高层住宅建筑更要注重地基的处理,否则将前功尽弃,在选择地基时,要选择地质条件不复杂,容易施工的地质,因为地质条件越复杂,地基处理的造价越高,而选择相对简单的地质条件,不仅可以降低地基处理的成本,地基安全度也会增加,从而降低工程造价,提高工程性价比。

(4) 进行建筑材料的优化。优化建筑材料目的就是花尽量少的钱,做到经济安全、符合设计要求工程。这就要求在选择建筑材料时,要合理利用材料性能,根据不同的需求来选择不同的材料。实际上,因材料选择不当造成浪费的情况很多,设计时,要充分考虑这些因素。

3结论

高层住宅结构设计优化能够有效降低工程造价,带来可观的经济效益,不仅能让建筑物安全实用,又能使其经济美观,舒适。所以进行结构优化设计至关重要,实际设计中,要结合实际情况和具体条件来灵活运用设计优化方法,实现住宅结构设计既安全又经济。

参考文献:

第14篇

【关键词】高层建筑;抗震;结构优化设计

地震是地球上主要的自然灾害之一,也是危害极大的突发式自然灾害,是地球由于内部运动累积的能量突然释放或地壳空穴顶板塌陷等原因,使岩体剧烈振动,并以波的形式向地表传播而引起的地面颠簸和摇晃。随着人们对地震动力特性和结构动力特性理解的不断加深,结构抗震设计理论从最初的静力阶段和反应谱阶段,发展到动力阶段及目前的基于性态的抗震设计理论阶段。高层建筑考虑全系统和全寿命的抗震结构优化设计,应包括五个层次:一是结构功能的优化;二是结构选型的优化;三是结构体系的优化;四是结构尺寸的优化;五是基于最优设防烈度的抗震结构优化设计。

一、高层建筑结构的特点

建筑的结构要同时承受垂直荷载和风产生的水平荷载,还要具有抵抗地震作用的能力。低层结构的水平荷载对结构影响通常较小,但在高层建筑中,水平荷载和地震作用将成为控制因素。随着高度的增加,位移增加很快。但是过大的侧移会使人感觉不舒服,从而影响使用,会造成非结构构件和结构构件的损坏。所以必须将结构的侧移控制在一定的范围之内,于是抗侧力结构设计成为关键。

在高层建筑的设计中,通常采用钢和钢筋混凝土两种材料。钢筋混凝土结构造价低,材料来源丰富,可浇注成各种复杂断面形状,可组成多种结构体系,可节省钢材,承载能力也不低,特别是近年来高强混凝土和超高强混凝土的研制应用,大大提高了混凝土承载力,经过合理设计,可获得较好的抗震性能。因此,我国大都采用钢筋混凝土建高层建筑,但其主要缺点是构件断面大,占据面积大且自重大,而钢材强度高,韧性大,易于加工;高层钢结构具有结构断面小,自重轻,抗震性能好,钢结构构件可在工厂加工,能缩短现场施工工期,施工方便。但是高层钢结构用钢量大,造价很高,而且耐火性能不好,需要用大量防火涂料,增加了工期和造价。而在发达国家,大多数高层建筑采用钢结构。由于钢筋混凝土和钢结构均各有所长,又各有所短,所以更为合理的结构是同时采用钢和钢筋混凝土材料的组合结构,这种结构可以使两种材料互相取长补短,取得经济合理,技术性能优良的效果,通常钢与钢筋混凝土组合于一个结构中有两种方式。

二、高层建筑结构的优化设计

结构优化设计是结构设计理论的重大发展。因为同一个设计任务,可以有多种不同的可用的设计方案,从所有可用方案中选出最满意的方案自然是理所当然的追求,任何情况下“择优而用”是人们无法回避的要求。从结构的宏观整体出发,用结构系统的观点,着眼于结构整体反应,正确处理结构总体方案、材料使用和细部构造等,以达到合理进行结构设计的目的。对一个结构工程师来说,概念设计能力比精确计算能力对确保结构设计安全可靠功能方面更为重要。

1.结构功能的优化

建筑使用对结构功能的要求,对结构的造价影响很大,要求结构具有过高的功能会造成浪费,要求过低会影响整个建筑将来的使用。这是对整个建筑工程项目所形成的结构集合的全局的规划问题,它主要决定于工程建成后用户对工程总的使用功能上的要求,然后在实现总功能要求的目标和有关约束条件下进行对各个结构功能要求的优化。例如,对大跨空间结构,最重要的是确定结构所需覆盖的空间尺寸;对高层建筑,最重要的是确定其高度和每层的空间布局。

2.结构体系选择的优化

决定对各个结构的功能要求之后,就要根据功能及其他要求为结构选型。高层建筑结构体系选择是结构设计应考虑的关键问题,结构方案的选取是否合理,对安全性和经济性起决定的作用。

(l)结构体系应具有明确的计算简图和合理的地震作用传递途径。对于楼屋盖粱系的布置,应尽量使垂直重力荷载以最短的路径传递到竖向构件墙、柱上去;对于竖向构件的布置,应尽量使竖向构件在垂直重力荷载作用下的压应力水平按近均匀,以避免竖向构件之间压应力的二次转移,而垂直重力荷载下竖向构件压应力水平接近均匀是最合理优化的结构选择;对于转换结构的布置,应尽量做到使上部结构竖向构件传来的垂直重力荷载通过转换层一次至多二次转换,即能传递到下部结构的竖向构件上去;整体抗侧力结构必须体系明确,传力直接。抗侧力结构一般由框架、剪力墙、简体、支撑等组成,它们宜尽量贯通连续,若它们沿竖向要有变化,则变化要缓慢均匀。

(2)结构体系应避免因部分结构或构件破坏而导致整个结构丧失抗震能力或对重力荷载的承载能力。抗震设计的一个重要原则是结构应具有必要的赘余度和内力重分配的功能,即使地震中部分构件退出工作,其余构件仍能将竖向荷载承担下来,避免整体结构失效或失稳。

由于对结构的强度、刚度、动力特性、造价、抵御自然灾害的能力、美学效应以及其他社会效应的众多要求,结构选型是一个综合性很强的决策问题,它要求力学、结构、建筑学、美学、经济学等学科的密切配合才能很好地解决。

3.结构体系的优化

结构体系的优化是先从结构的概念设计入手,使结构的平面布置尽量规则、对称,立面和竖向规则,侧向刚度均匀变化。同时,通过计算和定量分析,对关系到体系整体性能的设计变量,如框架结构的柱网布置、框架一剪力结构中的剪力墙的数量、平面布置和刚度特征值等进行优化。

结构体系应包括具备必要的承载能力,良好的变形能力和消耗地震能量的能力。钢筋混凝土结构具有良好的塑性内力重分布能力,能较充分地发挥吸收和耗散地震能量的作用。在地震作用下,合理的破坏机制应该是框架地震破坏机制,节点基本不破坏,梁比柱的屈服可能早发生、多发生,同一层中各柱两端的屈服历程越长越好,底层柱底的塑性铰宜最晚形成。总之,框架的抗震设计应使梁、柱端的塑性铰出现得尽可能分散,充分发挥整个结构的抗震能力。而框架一剪力墙结构和剪力墙结构中剪力墙的各墙段的高宽比不宜小于2,使其呈弯剪破坏,且塑性屈服也宜产生在墙的底部。连梁宜在梁端塑性屈服,且有足够的变形能力,在墙段充分发挥抗震作用前不失效。

4.结构尺寸的优化

在给定结构的几何形状、拓扑和材科的情况下,求出满足约束条件的最优构件截面,即进行结构构件尺寸的最小造价设计。

5.基于最优设防烈度的抗震结构优化设计

对抗震结构而言,在决定了结构的类型、布局、拓扑和材料之后,应该对结构的抗震设防水平进行决策,在设防水平决定之后,再进行结构的尺寸优化,这就是基于最优设防烈度的抗震优化设计。因为抗震设防水平定得太高,就会大大提高结构的造价,而且由于在结构服役期间可能遇不到那样强烈的地震灾害而造成不必要的浪费。相反,如果设防水平定得太低,就可能在地震灾害作用下由于结构破坏带来巨大的经济和生命财产损失,因而对抗震结构设计来说,这也是个重要的决策问题。在方法上,应采用二层次优化设计,第一优化层次为最优设防烈度的决策,第二优化层次为按最优设防烈度进行结构的最小造价设计。这种优化设计思想考虑了多级失效准则,充分利用了建筑场地的地震危险性分析成果,解决了设防烈度针对单体结构而不是针对地区的问题,并可与现行规范接轨。

第15篇

关键词:剪力墙 高层建筑 结构优化设计

中图分类号: TU398+.2文献标识码:A

近年来,随着经济发展和生活水平的提高,人们对住宅,特别是高层住宅平面与空间的要求也越来越高。若采用框架结构,往往因柱楞突出隔墙,妨碍美观,影响使用效果。若采用剪力墙结构,虽无柱体外凸的缺点,但对于底部有停车场等公共设施的情况则矛盾很大,而且,对于房屋高度不太高的小高层建筑,采用剪力墙结构会造成刚度过大,重量增加,导致地震反应过强,使得上部结构和基础造价提高。因此,如何做好高层建筑剪力墙结构的优化设计,真正做到技术先进的基础上经济合理是结构设计人员不断探讨的难题。

1高层建筑剪力墙结构的概念设计

一幢高层建筑犹如一根竖直放置于嵌固于地基的开孔、带横肋的巨型空间构架式的悬臂梁。它不仅要承受梁内所有重力荷载的作用并保持稳定,而且要承受风荷载、地震等水平荷载的作用并保持一定的刚度,避免过大的水平位移和振动,保证梁内各种建筑装饰、填充墙等不受损坏,以提供梁内工作生活的人们有一个舒适的环境。

高层建筑结构同时承受垂直和水平荷载,还要抵抗地震作用,在低层结构中,水平荷载产生的内力和位移很小,通常可以忽略,而在高层建筑中,水平荷载和地震作用将成为控制因素。随着建筑高度增加,位移增加最快,弯矩次之。因此高层建筑设计不仅要有较大的承载能力,而且需要较大的抗侧刚度, 以保证水平荷载产生的侧向变形控制在一定范围内。 剪力墙结构在水平力作用下侧向变形的特征为弯曲型。

剪力墙结构承受竖向荷载及水平荷载的能力都较大。 其特点是整体性好,侧向刚度大,水平力作用下侧移小,并且由于没有梁、柱等外露与凸出,便于房间内部布置。 缺点是不能提供大空间房屋,结构延性较差。

当地下室或下部一层、几层,需要大空间时(如商场、停车库等)即形成部分框支剪力墙结构。在框架剪力墙结构和剪力墙结构两种不同结构的过渡层必须设置转换层。剪力墙结构由于承受竖向力、水平力的能力均较大,横向刚度大,因此可以建造比框架结构更高、更多层数的建筑。但是只能以小房间为主的房屋,如住宅、宾馆、单身公寓。而宾馆中需要大空间的门厅、餐厅、商场等往往设置在另外的建筑单元中。 为了适用任何方向的水平力(或地震作用),因此对于矩形平面,剪力墙在纵横双向均应设置,对于圆形平面,剪力墙应沿径向及环向设置,三角形平面,宜沿三个主轴方向设置剪力墙。

2 剪力墙结构的设计

(1)对于剪力墙结构的设计,其应沿着主轴方向双向或多向布置。不同方向的剪力墙宜联结在一起,应尽量拉通、对直成为工形、T 形、L 型等有翼缘的墙,形成一定空间结构。抗震设计时,为了使其具有有较好的空间性能,不能单向设置剪力墙。应使两个受力方向的抗侧刚度相近,剪力墙墙肢截面宜简单、规则。为了能充分利用剪力墙结构的能力,在设计时必须减轻墙体结构的自量、加大空间面积、提高剪力墙的承载力和抗侧刚度等。除此之外,剪力墙的布置不能太密,使结构具有适宜的侧向刚度。若侧向刚度过大,不仅加大自重,还会使地震力增大。

(2)剪力墙墙段的要求是需要保持墙体规则、简单,竖向刚度均匀,门窗孔洞需整齐布置、上下对齐,形成一个明确的剪力墙肢和连梁。剪力墙肢和连梁的应力要分布均匀有规则,也必须符合目前常用的设计计算简图。避免剪力墙墙肢上的孔洞刚度差异大。

(3)如果剪力墙较长,应先将其平均分成多个墙体,开挖孔洞,各剪力墙之间的链接部分采用弱连梁连接的方法。但值得注意的是,在进行抗震设计时,应尽量避免开挖孔洞,并且在两个孔洞之间形成墙体肢截面高度与厚度比小于 4 的小墙肢。当墙厚大于小墙肢截面的 1/4 时,需按框架柱设计要求对箍筋进行全高加密。

(4)当剪力墙结构平面内的刚度和承重力较大,而平面外刚度和承载力相对较小。为了保证剪力墙平面外的稳定性,就应控制剪力墙平面外的弯矩。

3在剪力墙结构优化设计中的有效措施

3.1需要对转换层结构设计尤为注重

从高层建筑的要求来看,现代居民希望建筑物所拥有的功能多种多样,考虑到现在大楼具有较强的综合性能,尤其是在使用方面,上部与下部的机构不同。因此,在选择高层建筑物自身的结构布置时,就需要考虑相应的变化,在设计布置当中,需要将转换层的结构设置好。我们需要重视剪力墙结构的设计,考虑到在高位转换的底部大空间当中,其结构相对复杂。因为在进行高位转换时,刚度和质量较大的转换层升高,有效的将其本身与上下的刚度调整到接近的地步是非常必要的,而对于转换层自身而言,其质量与刚度都不适宜较大,在最终时,是否能够确保转换层附近的层间位移角基本达到均匀的情况,就需要在水平作用力的。

作用之下,进行空间精确分析,检查其均匀情况。采用转换层结构形式时,在选择上,偏向于重量与刚度皆偏小的材料,在实际的计算中,对于参与到了组合的振型数需要多多的进行选择。通过计算,我们能够计算出在结构当中,哪一部分才是最薄弱的,然后再通过内力分配特点的具体研究,改善薄弱部位的设计性能,适当的对于构件的配筋进行相应的调整,从而达到改善薄弱部位性能的目的。

3.2对于连梁设计的有效优化

在设计连梁的抗震与非抗震的时候,在高跨比的分类之上,主要是有小于2.5和大于2.5两种,并且对于截面配筋以及受剪承载力两个方面都有了相应的规范。而可以使用以下两种方式针对塑性调幅:

1) 在进行内力计算之前,就需要拆减连梁的刚度;

2) 在进行内力计算之后,连梁的剪力与弯矩的组合值还需要乘上一个折减系数。但是,我们应当明确的是,无论是选取了哪一种,都需要确定在实际使用阶段当中的剪力与弯矩的设计值,都要小于调整后的值。此外,在设计弯矩时,也必须大于设防烈度低一度的地震组合所得。从而对于正常使用情况之下,亦或是在小型的地震发生之后,对于裂缝进行有效防止,最终达到确保高层建筑物的安全性能。

3.3转换层上下部结构优化设计

1) 在转换层的上下刚度的传递放纵,剪力墙布置存在的影响。如果要能够准确的传递上下两种不同结构形式的内力,首先需要考虑到刚度突变,而对于转换层上下的结构可以通过两种方式将刚度突变的问题加以解决:

A:将上部的刚度减少,也就是在上部当中,能不设置剪力墙就尽量的避免设置,当满足了轴压比时,确保墙肢尽可能的短;

B:将下部的刚度进一步的加大,在建筑满足了功能之下,再恰当的布置若干的落地剪力墙在大空间层之内,此外需要避免集中,将剪力墙均匀的分布于其中。

2) 需要合理的选择转换层上下部结构刚度。如果剪力墙转换层刚度过大,不但会增大地震的反应以及竖向刚度的提高,更会增加材料的使用量,从经济的角度考虑是极为不合理的。如果剪力墙转换层刚度过小,就可能出现沉降差,进而使得明显的次应力在上部结构与水平结构之间出现(其水平结构是与上部结构相连接的) ,从而增加了配筋量。而表现最为突出的就是在正交主次转换梁结构中对于次梁的转换。在这个时候,不仅需要对于截面尺寸进行合理的选择,也需要考虑到刚度是否满足设计的要求

4 结语

由此可见,在设计高层建筑结构当中的剪力墙结构的使用,需要将结构的抗侧刚度较大以及外观简洁、美观等方面的优点充分的发挥出来,又能够做到降低工程造价,这才是目前高层建筑设计人员应该重视的前提。

参考文献

[1]姚琦,高层住宅剪力墙结构的优化控制因素探讨[D].重庆大学,2006.

[2]陈耀,高层建筑剪力墙结构优化设计分析探[J].福建建材,2011.