前言:我们精心挑选了数篇优质高层建筑抗震结构设计文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。
【关键词】高层建筑;抗震;结构设计
现今,我国的大部分城市内都是高楼耸立,对于高层建筑结构的设计是一项较复杂责任繁重的系统工程,尤其是抗震的结构设计,其设计的好坏将直接影响高层建筑的工程质量,特别是在地震多发区,因此,这就需要设计人员要充分认识高层建筑抗震结构设计中容易出现的问题,不断进行总结和改进,以完善高层建筑的抗震结构设计。
1 高层建筑抗震结构设计中的常见问题
1.1 高层建筑的高度问题
根据我国现行的相关结构技术规定,在一定设防烈度和一定结构型式下,钢筋混凝土高层建筑要有一个适宜的高度。也就是说,在这个高度的范围内,建筑的抗震性能是比较可靠地,但是目前,存在少数的高层建筑的高度超过了规定的范围,如果在地震力的作用下,极易改变超过限制的高层建筑物的变形破坏性态以及其他影响因素,那么就会大大降低高层建筑的抗震能力,对于抗震结构设计的一些相关参数也要重新选取。
1.2 结构体系以及建筑材料的选用
结构体系以及建筑材料的选用对于高层建筑的抗震性能具有非常重要的意义,尤其是在地震的多发区,更应该重视科学合理的结构体系以及建筑材料的选用。在我国,多部分的高层建筑结构体系是钢筋混凝土核心筒以及混合结构为主,所以对于变形的控制通常要以这种结构的位移值为基准。但是,这种情况下,如果发生弯曲变形,导致的侧移会比较大,进而增加钢结构的承受压力,为了保证效果,使其控制在规范的侧移值内,通常需要设置伸臂结构或加大混凝土筒的刚度。
1.3 抗震设防烈度过低
根据可靠的数据以及专家分析,我国现行的高层建筑抗震的结构设计的安全度远远不能满足社会的需求,有数据显示,我国的高层建筑抗震实际的安全度很可能是世界上最低的一个国家。在经济科技都快速发展的情况下,我国的高层建筑抗震结构的设计原则,即“小震不坏,中震可修,大震不倒”,在这种新形势下,有必要进行重新的修订。由于我国现行的高层建筑抗震结构的设防标准过低,由于其结构失效,经常会导致严重的后果。
1.4 轴压比与短柱问题
在高层建筑结构设计中,如果是采用钢筋混凝土的结构体系中,为了控制柱的轴压比,增加柱的横断面,而柱的纵向钢筋却为构造配筋。对柱的轴压比进行限制主要是为了使柱子处于较大的偏压状态下,避免受拉钢筋的破损,进而降低高层建筑的整体结构延性。
2 高层建筑抗震结构设计的原则以及基本方法
2.1 抗震结构的设计原则
2.1.1 结构设计的整体性
高层建筑的楼盖对于其结构的整体性占据着不可或缺的位置。楼盖就类似于一个横向的水平隔板,将惯性力聚集起来,并向各个竖向抗侧力的子结构传递,尤其是当这些子结构的布置不均匀或过于复杂时,楼盖就可以很好的将这些抗侧力子结构组织起来,进行协同合作,来承受地震的作用。
2.1.2 结构设计的简单性
高层建筑结构设计的简单性主要是指在地震的作用下,具有极其明确清晰的直接传力方式。在相关的规范中对于结构体系有明确的要求,即结构体系要有明确的计算简图以及合理的地震作用传递途径。换句话说,只有高层建筑结构的设计越简单,才能够分析出结构的计算模型、内力以及位移,进而提高对高层建筑结构的抗震性能的预测的可靠性。
2.2 抗震结构的设计方法
2.2.1 基于水平位移的抗震结构设计
基于水平位移的抗震结构设计主要是为了使结构的变形能力能够保持在预期的地震作用下(通常是在大地震的情况下)的变形要求。此外,要根据界面的应变大小以及分布,来确定建筑的构件标准,同时在确定构件的变形值时,要以构件的变形以及其与结构位移的关系来确定。首先,要充分研究高层建筑的一些简单结构的构件变形,以及其与配筋的关系,严格按照变形的要求来设计合理的构件,进而对建筑的整体结构进入弹塑性后的变形与构件变形的关系。因此,这时就要设计在大地震的作用下的变形,这也将是高层建筑抗震结构的未来的发展趋势。
2.2.2 推广使用隔震和消能减震设计
现今,在高层建筑的抗震设计中,多采用的是传统的抗震结构体系,也就是延性结构体系,主要是控制建筑结构的刚度,如果发生地震,就会使建筑的构件进入非弹性的状态中,使其具有较大的延性,进而有助于地震作用下的能量的消耗,尽可能的减小地震效应,避免建筑物的倒塌。此外,通过采用相关的隔震措施,如软垫隔震、摆动隔震以及滑移隔震等,可以改变高层建筑的动力特性,进而减少所受到的地震能量的作用,同时通过采用高延性构件,也可以增加高层建筑结构的耗能能力,有助于减轻地震效应。
2.2.3 降低高层建筑结构的自重
如若是在相同的地基承载能力条件下,降低高层建筑结构的自身重量可以使在不增加地基以及其造价的情况下,可以在相关的规定范围内,尤其是在软土层的地基上,可以增加高层建筑的层数。研究显示,由于高层建筑的高度很大,重心也相应较高,所以,建筑的重量越大,受地震作用的倾覆力矩的效应就越大。
因此,在高层建筑的抗震结构设计中,要尽量采用轻质材料来填充高层建筑物的填充墙及隔墙。
2.2.4 设置多道抗震防线
通常在地震后都会伴有多次的余震,那么对于高层建筑结构如果只设置一道抗震防线,往往会只因首次的强烈地震就会遭到严重的破损,甚至倒塌。因此,有必要对高层建筑设置多道抗震防线。在一个高层建筑的抗震体系下,应该由多个延性较好的分体系组成,当第一道抗震防线遭到冲击时,其他的抗震防线便能够接替第一道防线继续抵挡随后的地震冲击,通过多道防线的协同合作,可有效地防止高层建筑的倒塌。
3 高层建筑抗震结构设计的前景
虽然我国的高层建筑水平稳步的提升,但是在高层建筑抗震的结构设计中仍然面临很多新的问题和挑战。其中,首先对于影响高层建筑抗震结构的设计效果的关键因素就是建筑材料的选用,提高每一项建筑材料的抗震指标可以很好地提高高层建筑的整体抗震性能,因此,科研人员要加强对于新型复合高性能的建筑材料的研发,以促进抗震技术,进而满足高层建筑抗震结构设计的需求。其次,对于不同的抗震能力的需求,要采取相应的抗震措施,设置是对于同一个高层建筑的不同部位和楼层以及对于性能的要求不同时,都要选用不同的标准的构件。因此,高层建筑抗震结构的设计人员在实际工作中,要根据自身的专业水平知识以及实际经验,并结合对具体的高层建筑的抗震性能要求及措施,来设计出符合抗震设防烈度标准的高层建筑结构。另外,高层建筑的抗震结构体系也开始逐渐以柔性为主,而不在是传统中的以硬性为主的结构体系。最后,对于高层建筑抗震结构的计算方式也发生了改变,即从线性分析向非线性分析转变,从确定性分析向非确定性分析转变,从振型分解反应分析向时程分析法转变。
4 总结:
综上所述,高层建筑的抗震结构设计是整个建筑工程的关键环节,但是在我国高层建筑的抗震结构设计上处于起步阶段,仍需要进一步的完善。因此,设计人员用综合多方面的因素进行分析,同时,结合新型的高性能材料以及抗震结构理念,以提高高层建筑抗震结构的设计水平,进而促进我国高层建筑的抗震结构设计方法的发展。
参考文献:
[1]李志.高层建筑抗震设计分析[J].中外建筑,2010(1).
关键词:高层建筑;结构;抗震设计
1引言
随着当前我国建筑行业的不断发展,高层建筑的数量越来越多,相应高层建筑的设计应用需要切实围绕着结构进行详细分析,保障具体高层建筑结构能够体现出较强的稳定性和可靠性,规避可能形成的较大隐患威胁。在高层建筑结构设计处理中,抗震设计是比较基本的要点内容,其同样也是维系高层建筑整体结构应用性能的重要条件,应该从设计方案入手进行详细把关,有效规避可能形成的各类不良干扰,为后续高层建筑物的实际应用以及人员安全提供较强保障作用。
2高层建筑抗震结构设计原则
对于当前高层建筑的设计处理,其标准化要求越来越高,为了更好实现对于高层建筑的设计水平优化,必然需要切实围绕着抗震性能进行详细关注,确保其满足于相关标准需求,遵循较为合理的设计原则和标准也就显得极为必要。现阶段高层建筑抗震结构设计应该遵循“小震不坏,中震可修,大震不倒”的整体原则,保障后续高层建筑的应用能够体现出较强的可靠价值,避免了可能形成的高层建筑变形或者是坍塌威胁。
为了较好实现对于高层建筑抗震结构设计优化,必须要切实把握好各个方面的核心设计要点,确保其能够体现出较强的实用性效果,有效规避可能形成的较大威胁隐患。结合这种高层建筑抗震结构设计工作的落实,其主要涉及到了三个方面的基本要求:首先,抗震设防标准是比较重要的一个核心要素,其对于最终高层建筑抗震性能的影响较为直接,需要结合本地区相关标准进行合理选择和明确,避免在设置中出现较为明显的不匹配问题,应该注重整体性能的优化;其次,还需要重点明确基本设计方案要求,尤其是需要把握好抗震结构设计的基本影响因素,对于高层建筑结构的抗变形能力以及强度进行详细分析,避免在这些方面形成较大的不良干扰,确保抗震性能;最后,对于高层建筑抗震结构设计的保障,其还需要从施工入手进行重点把关,确保施工质量较为可靠,如此才能够营造较为理想的基本结构稳定性效果,避免形成较大的抗震隐患威胁,将抗震性能落实到实处。
高层建筑抗震结构设计工作的落实往往还需要切实把握好具体设计流程,这些基本流程中必然也涉及到了相应设计要求和基本原则。当前高层建筑抗震结构设计中比较核心的基本流程环节涉及到了以下几项内容:首先,需要切实做好概念设计工作,概念设计有助于实现对于高层建筑结构的整体把关,对于各个基本抗震原则和落实具备较强作用价值,应该在设计工作中予以首先考虑;其次,抗震计算分析同样也是比较核心的基本内容,其落实难度同样也比较大,并且很容易在实际操作过程中表现出较为明显的错乱和偏差威胁,如此也就需要在具体计算分析中进行精确把关,规避可能出现的较大威胁;最后,还需要切实把握好对于构造措施的规范,其主要就是为了保障结构的完整性,确保各个基本结构单元的协调性,避免在相应结构中出现较为明显的薄弱环节。
3高层建筑抗震结构设计要点
3.1恰当选择抗震结构体系
为了较好实现高层建筑抗震结构设计方案优化,必然需要首先围绕着抗震结构体系进行恰当选择,确保其能够和高层建筑相吻合,体现出较强的可靠性,有效规避可能形成的较大威胁隐患,尤其是在各个方向的作用力方面,更是需要予以高度重视,避免在任何环节中出现较为明显的不稳定威胁。结合当前高层建筑常见结构体系的应用,其主要涉及到了框架结构、剪力墙结构、框架-剪力墙结构以及筒状结构等,这些结构体系类型的应用存在着较为明显的差异性,具体应用存在的抗震性能也各不相同,需要结合高层建筑的要求进行详细分析,避免形成较大的不良威胁和隐患。在具体抗震结构体系的选择中,重点关注抗侧力结构的表现是比较重要的一点,需要分析水平荷载以及垂直荷载,尽量选择一些规则图形进行设计,避免随意应用较为繁杂的结构类型二影响到最终结构体系的稳定性,规避可能形成的结构抗震性能较大不良干扰,同时保障自身结构体系的协调性。
3.2设置多道防震体系
对于高层建筑抗震结构设计工作的落实,其还需要重点围绕着具体防震体系的有效设置进行把关,确保这些防震体系都能够表现出较强的作用价值,较好实现对于相关问题的规避控制效果。基于这些防震体系的有效设置,其一般需要结合高层建筑结构的具体类型进行详细分析,尤其是要把握好高层建筑的高度以及楼层状况,进而也就能够选择合理的防震装置进行有效加装,提升整体高层建筑结构的抗震水平,解决高层建筑抗震性能不足问题。当然,在具体防震体系的设置中,往往还需要重点把握好对于具体装置的详细分析,确保这些装置能够应用较为匹配,并且自身能够和周围其它结构较为协调,维系高层建筑结构的整体稳定性效果,能够发挥出最强作用价值。
3.3选择恰当抗震等级
在高层建筑抗震结构设计处理中,切实做好抗震等级的恰当选择也是比较重要的一个方面,这种抗震等级的选择主要就是考虑相应国家高层建筑结构设计标准,结合当地地质条件以及地震发生状况进行分析,避免因为抗震等级的选择不合理而形成较为明显的威胁和不良干扰。基于此,必然需要相關高层建筑抗震结构设计人员能够在设计开始前,做好对于相关资料信息的全方位搜集,保障高层建筑抗震结构设计能够有序推进,并且能够体现出较强的实际作用价值,尤其是对于维系建筑结构体系的稳定性,能够发挥出较强优势,适应于当地地质状况,避免在后续因为遭遇外界作用力变化而影响自身稳定性。
3.4合理选择施工材料
对于高层建筑抗震结构设计工作的落实,其必然还和施工材料存在着较为直接的联系,因为施工材料的选择不合理而带来的不良威胁是比较明显的,应该在实际操作中予以高度重视。在当前高层建筑抗震结构设计中,其最为常见的基本材料就是钢筋混凝土材料,这也是高层建筑施工建设的主要材料类型,应该结合具体结构抗震性能要求进行恰当选择。此外,为了更好实现对于结构施工材料选择的优化,还应该重点结合新型材料的适当应用进行添加处理,比如对于各类聚合物材料的应用,就能够明显提升整体高层建筑结构抗震性能,应该结合原有材料进行恰当选用。
4结束语
关键词:高层建筑;抗震结构;设计
随着我国城镇人口的持续性增多、城市规划的进一步拓展,在一定程度上促使我国高层建筑得到了迅速的发展。可是,受到地震等各种自然灾害频频出现的影响,人们的正常生活及生命财产受到了巨大的威胁,为此,高层建筑设计中,做好抗震结构设计有着十分重要的意义。
1高层建筑抗震结构设计原则
一是整体性原则。大家都知道,高层建筑的楼盖对于其结构的整体性占据着不可或缺的位置,楼盖就类似于一个横向的水平隔板,将惯性力聚集起来,并向各个竖向抗侧力的子结构传递,尤其是当这些子结构的布置不均匀或过于复杂时,楼盖则可以很好地将这些抗侧力子结构组织起来,然后进行协同合作,来承受地震的作用;二是简单性原则。高层建筑结构设计的简单性主要是指在地震的作用下,要具有极其明确清晰的直接传力方式,在相关的规范中对于结构体系也是有着明确的要求,即结构体系要有明确的计算简图以及合理的地震作用传递途径,换句话说就是,只有高层建筑结构的设计足够简单,才能够分析出结构的计算模型、内力以及位移,从而促使高层建筑结构抗震性能得到真实性的可靠预测。
2高层建筑抗震结构设计方法介绍
2.1正确挑选施工场地
对于高层建筑而言,挑选正确的施工场地是非常重要的。需遵循场地的种类对建筑的地震力进行相应计算,同时需对场地做出系统性浅析,将地震的危害度进行了解,按照相关规范做好建筑地基的处理,通过对地震强度、场地土层实际厚度、断裂地质的历史等因素的分析确定地震的断裂情况,这样便能够确定建筑物要避让的距离,从而成功地避开对施工不利的地段,若没办法成功避开这些地段,那么就要选择适合的抗震措施来加入到建筑抗震结构设计内容当中。高层建筑抗震结构设计过程中,需在性质一致的地基中进行同一结构单元的设置,尽可能地选择相同的结构形式。当地基中包含液化土、新近填土、土层严重不均匀等问题存在的情况下,需采取相应的措施来进一步强化地基的整体性和刚性,这样才能够促使高层建筑的稳定性得到基础的保证。譬如,底层框架结构因其实用性是非常显著的,为此得到了大范围的投入使用,可是,此结构的上层刚度非常大,下层刚度比较小,其上下属性存在明显的差异性,在地震发生的情况下,整个建筑的抗扭曲性能是非常低的,极易导致建筑的倒塌、断裂。所以,在抗震区域要尽可能地不用此种结构,或者将其上下层刚度性质做出调整,这样才能够确保其抗震性能得到基本的保证。
2.2减少地震时的能量输入
高层建筑抗震结构设计过程中,可选择基于位移的结构抗震法实施定量性分析,这样才能够确保建筑结构的变形性能达到预期地震作用下地形的变形需求。我们需在对建筑结构的承载性能进行验算的基础上,对建筑结构在地震作用下的层间位移角限值、位移延性比进行科学合理性的掌控。按照建筑构件的实际变形与建筑结构位移间的联系,将构件的变形值加以最终的确定。通过建筑截面的应变情况确定建筑构件的构造需求。针对高层建筑若是在比较坚硬的场地进行施工的话,那么就能够将地震发生时的能力输入降到最低的程度,将地震给高层建筑造成的影响减少到最小。
2.3隔震与消能减震设计
在当前的高层建筑抗震结构设计中,通常运用的是以往的抗震结构体系即延性结构体系。这种抗震结构体系是对建筑结构刚度进行的系统性掌控,在有地震发生的时候,会使得整个建筑构件处在一种非弹性状态下,这样会使得其延性得到进一步增加,对地震发生时能量的消耗起到一定的辅助作用,将地震效应产生的影响降到最低,可有效避免建筑物倒塌的发生。除此之外,可采取相应的隔震措施,将高层建筑的动力特性进行科学的更改,这样能降低地震作用于建筑物的力,并且可利用高延性结构将地震效应降到最低。
2.4充分重视抗震结构设计
高层建筑结构设计过程中,我们在提升建筑抗震性能的同时,需兼顾到建筑整体结构的抗震性能情况。一般情况下,高层建筑会选用框、筒框架、支撑结构体系。当前,我国的钢材生产数量非常大,钢结构加工制造水平得到了明显升高,所以,在高层建筑中可最大限度上以钢骨混凝土结构、钢结构、钢管混凝土结构为主,这样能够使得柱断面尺寸大大缩减,对于建筑结构抗震性能的改善是非常有利的。
2.5减小高层建筑结构自重
若是在相同的地基承载能力条件下,减轻高层建筑结构的自身重量,就可以使其在不增加地基以及造价的情况下,增加高层建筑的层数,研究显示,由于高层建筑的高度很高,所以其重心也相应较高,然而建筑的重量越大,受地震作用的倾覆力矩的效应也就越大,所以,在高层建筑的抗震结构设计中,我们要尽量采用轻质材料来填充高层建筑物的填充墙及隔墙,以减轻建筑的自重。
2.6设置多道抗震防线
我们提倡采用由两个与两个以上同时延性较好的分体系组成的一个抗震结构体系,这是由于在发生地震时通常都会带有余震,倘若只有一道抗震防线,那么就很难防止由于某一结构损伤而导致整个结构坍塌的情况发生,所以,在构建高层建筑抗震结构体系时,我们首先要有最大可能数量的内外部冗余度;其次还要建立一套分布完整的屈服体系;最后,该体系的主要耗能构件一定要有较高的延性和充足的刚度,以确保建筑物在遭遇地震灾害时,其强烈的地震作用对其的危害,这样在第一道防线崩溃的状况下,抵挡后续地震波的冲击还有第二道防线和第三道防线。
3高层建筑结构抗震设计的前景分析
从目前的形势来看,今后若干年,中国仍将是世界上修建高层建筑最多的国家,这也将会给高层建筑抗震设计带来新的难题,一是对于影响高层建筑抗震结构设计效果的关键因素就是建筑材料的选用,提高每一项建筑材料的抗震指标可以很好地提高高层建筑的整体抗震性能,因此,科研人员需要加强对于新型复合高性能的建筑材料的研发,以促进抗震技术的发展,进而满足高层建筑抗震结构设计的需求;二是对于不同抗震能力的需求,要采取相应的抗震措施,甚至是对于同一个高层建筑的不同部位和楼层以及对于性能的要求不相同时,都要选用不同标准的构件;三是计算机模拟抗震试验都得到广泛应用,将制作好的模型或结构构件放在模拟地震振动台上,在台面输入某一确定性的地震记录,就能够较好地反映该次确定性地震作用的效果,计算机模拟环境可以拟真抗震效果,进而帮助改进各因素,从而做到有效抗震,另外,高层建筑结构的抗震设计的计算方法也会有新的转变。即从线性分析向非线性分析的转变,从确定性分析向非确定性分析的转变,从振型分解反应分析向时程分析法的转变。
4结语
高质量的高层建筑抗震结构设计是在达到建筑设计与结构设计的密切配合的前提下加以完成的,高层建筑的抗震结构设计是整个建筑工程的关键环节,因此,设计人员一定要综合多方面的因素进行分析,同时,还要结合新型的高性能材料以及抗震结构理念,提高对高层建筑抗震结构的设计水平,进而促进我国高层建筑的抗震结构设计技术的发展。
参考文献
[1]于险峰.高层建筑结构抗震设计[J].中国新技术新产品,2010(1):171.
[2]祝英杰,谷伟.结构抗震设计[M].北京:北京大学出版社,2009.