前言:我们精心挑选了数篇优质数学中的反证法文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。
何 昊
(江苏省南京市第十三中学锁金分校)
摘 要:系统地介绍了理论基础,对反证法的逻辑形式,唯一的负命题,命题,肯定命题三用反证法适用的命题类型进行了详细讨论。
关键词:反证法;否定性;唯一性
在数学的诸多方法中,反证法是一种重要的证明方法,尤其在数学证明中,它是一种间接的证据,被称为“一个最先进的武器”的数学家.反证法经常被用来证明存在性、否定性、唯一性等一些不易直接下手的命题.用反证法证明命题成立的基本步骤可以简单地概括为“否定―推理―反驳―肯定”四个步骤.一个数学问题的解决方案,如果你觉得不足或没有启动的“条件”,不妨考虑反证法的使用.反证法的应用范围很广,比如代数、数论、几何、组合等方面的应用.
一、反证法的概念及类型
反谓反证法,就是在要证明“若A则B”时,可以先将结论B予以否定,记作,然后从A与出发,经正确的逻辑推理而得到矛盾,从而原命题得证.
反证法大致可分为以下两种类型:
归谬法:论题结论的反面只有一种情况,只要把这种情况就达到了目的.
穷举法:论题结论的反面不止一种情况,要一一驳倒,最后才能肯定原命题结论正确.
二、反证法常用于以下几种命题的证明
1.存在性命题
例1:证明A,B,C,D,E五数之和等于5,则其中必有一个不小于1.
分析:这个问题似乎很简单,但直接的证明是不容易的.因此,应用反证法,它可以很容易地证明.
证明:假设A,B,C,D,E都小于1,那么A+B+C+D+E
所以5个数都小于1不成立,故必有一个数不小于1,即原命题是正确的.
2.否定性命题
例2:设平面上有六个圆,每个圆的圆心都在其余各圆的外部.试证明:平面上任一点都不会同时在这六个圆的内部.
分析:直接证明某点在哪些圆的内部,在哪些圆的外部,有些困难,故最好用反证法来证明.
证明:假设平面内有一点M同时在这六个圆的内部,为了方便,我们把绕M的六个圆心从某个开始按顺时针方向分别记为A,B,C,D,E,F,连结MA,MB,MC,MD,ME,MF.
考虑AMB,M在A内,B在A外,所以有AB>AM,同理,AB>BM,即在AMB中,AB大于其他两边.
由“大边对大角”知,∠AMB>∠ABM.同理,∠AMB>∠BAM.
所以,3∠AMB>∠ABM+∠AMB+∠BAM=180°,
所以∠AMB>60°.
同理∠BMC、∠CMD、∠DME、∠EMF、∠FMA均大于60°.
所以∠AMB+∠BMC+∠CMD+∠DME+∠EMF+∠FMA>360°.
但是,很显然,这个角围成了一个周角,它们的和不可能大于360°,出现矛盾.
故而假设不正确,所以原命题成立.
3.唯一性命题
例3:求证方程x=sinx+a(a为常数)的解唯一.
分析:直接解或证明是非常困难的,作为唯一的命题往往采用反证法证明.
所以原方程的解是唯一的.
从上面的例子中,我们可以看到,最大的优势是反证法――超过一个或几个条件,从相反的结论来看,与一些已知的条件下,原出口的冲突,从而达到负的假设、肯定原命题的目的.从上面,我们应该充分利用反证法,必须正确把握灵活运用“反设”“归谬”这两个反证步骤.反设是反证法的第一步,能否正确否定结论,对论证的正确性有着直接的影响.
反证法是很巧妙的,它的应用是很广泛的,但究竟怎样的命题证明才适于用反证法,却很难回答,这是一个经验问题.
参考文献:
[1]李建泉.中等数学[M].中国学术电子出版社,2004.
[2]刘广云.数学分析选讲[M].哈尔滨:黑龙江教育出版社,1993.
[3]张顺燕.数学的思想、方法和应用[M].北京:北京大学出版社,2003.
关键词: 中学数学教学 反证法 使用条件
在生活中,我们都有这样的常识,去掉大米中的砂粒,有两种方法.一种是直接从大米中把砂粒一粒一粒地拣出来;一种是用间接的方法――淘洗法,把砂粒残留下来.这两种方法虽然形式不同,但结果却是一样的,都能达到去掉砂粒的目的.有时用直接方法很困难,而用间接方法却容易得多.牛顿曾说:“反证法是数学家最精当的武器之一.”当一些命题不易从正面直接证明时,就可考虑用反证法.
一、反证法的基本概念
1.反证法的定义
法国数学家阿达玛对反证法的实质做了如下概括:“若肯定定理的假设而否定其结论,就会导致矛盾.”这是对反证法的极好概括.其实反证法也称作归谬法。反证法适合一些正面证明比较困难,但是否定则比较简单的题目,在高中数学中的应用较为广泛,在解决一些较难问题的时候,反证法能体现其优越性.
2.反证法的基本思想
反证法的基本思想就是否定之否定,这种基本思想可以用下面的公式表示:
“否定推理矛盾肯定”,即从否定结论开始,经过正确无误的推理导致逻辑矛盾,达到新的否定.
3.反证法的逻辑依据
通过以上三个步骤,为什么能肯定原命题正确呢?其逻辑根据就在于形成逻辑的两个基本规律:“排中律”和“矛盾律”.在同一思维过程中,两个互相矛盾的判断不能同时都为真,至少有一个是假的,这就是逻辑思维中的“矛盾律”;两个互相矛盾的判断不能同时都假,简单地说“A或者非A”,这就是逻辑思维中的“排中律”.反证法在其证明过程中,得到矛盾的判断,根据“矛盾律”,这些矛盾的判断不能同时为真,必有一假,而已知条件、已知公理、定理、法则或者已经证明为正确的命题都是真的,所以“否定的结论”必为假.再根据“排中律”,结论与“否定的结论”这一对立的互相否定的判断不能同时为假,必有一真,于是我们得到原结论必为真.所以反证法是以逻辑思维的基本规律和理论为依据的,反证法是可信的.
二、反证法的步骤
用反证法证题一般分为三个步骤:
1.反设.假设原命题的结论不成立;
2.归谬.从这个结论出发,经过推理论证,得出矛盾;
3.结论.由矛盾判定假设不成立,从而肯定原命题的结论正确.
即:否定结论推导出矛盾结论成立.
三、反证法的种类
1.归谬反证.结论的反面只有一种情形,只要把它驳倒,就能达到证题目的.
2.穷举反证.结论的反面不止一种情形,必须将它们逐一驳倒,才能达到证题目的.
四、反证法的典型例题
例1:已知:AB,CD是圆内非直径的俩弦(如图),求证:AB与CD不能互相平分.
证明:假设AB与CD互相平分与点M,则由已知条件AB,CD均非圆O直径,可以判定M不是圆心O,联结OA,OB,OM.
因为OA=OB,M是AB中点,所以OMAB(等腰三角形底边上的中线垂直于底边).同理可得:OMCD,从而过点M有两条直线AB,CD都垂直于OM.这与已知的定理相矛盾.故AB与CD不能互相平分.
五、反证法的使用条件
任何方法都有它成立的条件,也都有它适用的范围.离开了条件超越了范围就会犯错误,同样,问题解决也就没有那么容易.因此,我们应该学会正确使用反证法解题.
虽然用反证法证明,逻辑推理严谨而清晰,论证自然流畅,可谓是干净利落,快速而可行,是一种很积极的证明方法,而且用反证法证题还有很多优点:如思想选择的余地大、推理方便等.但是并不是什么题目都适合用反证法解决.
例2:如果对任何正数p,二次方程ax+bx+c+p=0的两个根是正实数,则系数a=0,试证之.
分析:看了本题的证明过程似乎很合理,但其实第三步,即肯定原结论成立的论证错了.因为,本题的题设条件为对任意正数p,y=0有两个正实数根,结论是a=0,但本题的题设条件与结论是矛盾的;当a=0时,二次方程就变成了一次方程bx+c+p=0,此一次方程在b≠0时,对于任何正数p,它只有一个根;在b=0时,仅当p=-c>0的条件下,它有无数个根,否则无根,但总之不会有两个根.题设条件和结论矛盾.因此,本题不能反证法来处理.若原题改为“如果对于任何正数p,只存在正实根,则系数a=0”,就能用反证法证明.
因此,对于下列命题,较适用反证法解决.
(1)至多至少型命题;(2)唯一性命题;(3)否定型命题;(4)明显型命题;(5)此前无定理可以引用的命题.
例3:设a,b都是正数,求证:(a-b)/a≤ln(a/b)≤(a-b)/b.
证明:反设ln(a/b)≤(a-b)/b不成立,便有ln(a/b)≥(a-b)/b,由对称性知:ln(b/a)≥(b-a)/a,相加得:ln(a/b)+ln(b/a)>(a-b)/b+(b-a)/a
即:0>(a-b)/a≥0这一矛盾说明ln(a/b)≤(a-b)/b
即:ln(b/a)≥(a-b)/b
交换位置:ln(a/b)≥(a-b)/b
合并得:(a-b)/a≤ln(a/b)≤(a-b)/b
反证法是数学中的一种重要的证明方法.牛顿曾说:“反证法是数学家最精当的武器之一.”它是从命题的否定结论出发,通过正确的逻辑定理推理导出矛盾,从而证明原命题的正确性的一种重要方法.反证法之所以有效是因为它对结论的否定实际上增加了论证的条件,多一个条件,这对发现正确的解题思路是有帮助的.对于具体、简单的命题;或者直接证明难以下手的命题,改变其思维方向,通过逆向思维,从结论入手进行反面思考,问题就能迎刃而解.在现代数学中,反证法已成为最常用和最有效的解决问题的方法之一.
参考文献:
[1]赵振威.中学数学教材教法[M].华东师范大学出版社,2000.
[2]刘世泽.反证法的逻辑依据[J].高等函授学报,1997(4).
[3]耿素云.离散数学[M].北京:高等教育出版社,1998.
[4]赵杰.反证法―――化难为易的法宝.中学生数理化(高二版),2010,(3).
[5]路从条.“反证法”思想在中学教学中的运用.福建教育学院学报,2003,(3).
关键词:反证法;证明;矛盾;命题;假设
有个很著名的“道旁苦李”的故事:从前有个名叫王戎的小孩,一天他和小朋友发现路边的一棵树上结满了李子,小朋友一哄而上,去摘,尝了之后才知是苦的,独有王戎没动,王戎说:“假如李子不苦的话,早被路人摘光了,而这树上却结满了李子,所以李子一定是苦的。”这个故事中王戎用了一种特殊的方法,从反面论述了李子为什么不甜,不好吃.在数学里这种方法叫反证法.
反证法不但在实际生活和初等数学中有着广泛的应用,而且在高等数学中也具有特殊作用.数学中的一些重要结论,从最基本的性质、定理,到某些难度较大的世界名题,往往是用反证法证明的.即:提出假设――推出矛盾――肯定结论.
“反证法”虽然是在平面几何教材中出现的,但对数学的其他各部分内容,如代数、三角、立体几何、解析几何中都可应用.下面通过具体的例子来说明其应用。
一、否定性命题
证明:假设AB,CD不平行,即AB,CD交于点P,则过P点有ABEF,且CDEF,与“过直线外一点,有且只有一条直线垂直于已知直线”矛盾.假设错误,则AB∥CD
否定结论导出矛盾是反证法的任务,但何时出现矛盾,出现什么样的矛盾是不能预测的,也没有一个机械的标准,有的甚至是捉摸不定的.一般总是在命题的相关领域里考虑(例如,平面几何问题往往联系到相关的公理、定义、定理等),这正是反证法推理的特点.因此在推理前不必要也不可能事先规定要得出什么样的矛盾.只需正确否定结论,严格遵守推理规则,进行步步有据的推理,矛盾一经出现,证明即告结束.
反证法推理过程中出现的矛盾是多种多样的,推理导出的结果可能与题设或部分题设矛盾,可能与已知真命题(定义或公理、或定理、或性质)相矛盾,可能与临时假设矛盾,或推出一对相互矛盾的结果等.