前言:我们精心挑选了数篇优质初中数学常用的数学方法文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。
一、配方法
所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和的形式。通过配方解决数学问题的方法叫配方法。其中,用得最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到。
二、因式分解法
因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法,在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除了中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法,还有如利用拆项添项法、求根分解法、换元法、待定系数法等。
三、换元法
换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
四、判别式法与韦达定理
一元二次方程a2x+bx+c=O(a、b、c∈R,a≠0)根的判别,=b2―4ac不仅用来判定根的性质,而且作为一种解题方法,在代数式变形、解方程(组)、解不等式、研究函数乃至几何、三角运算中都有非常广泛的应用。
五、待定系数法
在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。
六、构造法
在解题时,我们常常会采用这样的方法:通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。
七、反证法
反证法是一种间接证法,它先提出一个与命题结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。
八、面积法
平面几何中讲的面积公式以及由面积公式推出的与面积计算有关的性质定理,不仅可用于计算面积,而且用它来证明平面几何题有时也会收到事半功倍的效果。运用面积关系来证明或计算平面几何题的方法,称为面积方法,它是几何中的一种常用方法。
九、几何变换法
在数学问题的研究中,常常会运用变换法,把复杂性问题转化为简单性的问题去解决。所谓变换是一个集合的任一元素到同一集合的元素的一个一一映射。中学数学中所涉及的变换主要是初等变换。有一些看来很难甚至于无法下手的习题,可以借助几何变换法,化繁为简,化难为易。另一方面,也可将变换的观点渗透到中学数学教学中。将图形从相等静止条件下的研究和运动中的研究结合起来,有利于对图形本质的认识。几何变换包括:(1)平移;(2)旋转;(3)对称。
下面介绍的解题方法,都是初中数学中最常用的,有些方法也是中学教学大纲要求掌握的。
1、配方法。所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
2、换元法。换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
3、判别式法与韦达定理。一元二次方程 (a、b、c属于实数,a≠0)根的判别, ,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。
韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。
4、待定系数法。在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。
5、构造法。在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。
6、反证法。反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。
用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。
反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n一1)个;至多有一个/至少有两个;唯一/至少有两个。
归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。推理必须严谨。导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。
7、面积法。平面几何中讲的面积公式以及由面积公式推出的与面积计算有关的性质定理,不仅可用于计算面积,而且用它来证明平面几何题有时会收到事半功倍的效果。运用面积关系来证明或计算平面几何题的方法,称为面积方法,它是几何中的一种常用方法。
面积法的特点是把已知和未知各量用面积公式联系起来,通过运算达到求证的结果。所以用面积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置补助线,即使需要添置辅助线,也很容易考虑到。
8、几何变换法。在数学问题的研究中,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。所谓变换是一个集合的任一元素到同一集合的元素的一个一一映射。中学数学中所涉及的变换主要是初等变换。有一些看来很难甚至于无法下手的习题,可以借助几何变换法,化繁为简,化难为易。另一方面,也可将变换的观点渗透到中学数学教学中。将图形从相等静止条件下的研究和运动中的研究结合起来,有利于对图形本质的认识。
几何变换包括:(1)平移;(2)旋转;(3)对称。
9.客观性题的解题方法。选择题是给出条件和结论,要求根据一定的关系找出正确答案的一类题型。选择题的题型构思精巧,形式灵活,可以比较全面地考察学生的基础知识和基本技能,从而增大了试卷的容量和知识覆盖面。
填空题是标准化考试的重要题型之一,它同选择题一样具有考查目标明确,知识复盖面广,评卷准确迅速,有利于考查学生的分析判断能力和计算能力等优点,不同的是填空题未给出答案,可以防止学生猜估答案的情况。
要想迅速、正确地解选择题、填空题,除了具有准确的计算、严密的推理外,还要有解选择题、填空题的方法与技巧。
(1)直接推演法:直接从命题给出的条件出发,运用概念、公式、定理等进行推理或运算,得出结论,选择正确答案,这就是传统的解题方法,这种解法叫直接推演法。
(2)验证法:由题设找出合适的验证条件,再通过验证,找出正确答案,亦可将供选择的答案代入条件中去验证,找出正确答案,此法称为验证法(也称代入法)。当遇到定量命题时,常用此法。
(3)特殊元素法:用合适的特殊元素(如数或图形)代入题设条件或结论中去,从而获得解答。这种方法叫特殊元素法。
(4)排除、筛选法:对于正确答案有且只有一个的选择题,根据数学知识或推理、演算,把不正确的结论排除,余下的结论再经筛选,从而作出正确的结论的解法叫排除、筛选法。
关键词:初中数学;提示性;练习法
所谓的教学方法,是指教师为了达到自己的教学目的,完成教学任务,在遵循教学规律的基础上运用的一套教学活动方案。因此,教学工作的成败教学方法起着重要的作用。一方面,好的、恰当的教学方法能提高教师的教学质量。另一方面,它也为学生的可持续发展发挥着重要的作用。下面,我们来简要谈谈初中数学教学中常用的教学方法。
一、提示性的教学方法
1.讲授法
讲授法,顾名思义,就是教师在教学过程中运用口头语言向学生传授知识。其中讲授法包括讲述、讲解、讲读、讲演等方式。因为,教师的每堂课中几乎都或多或少地会运用到讲授法,所以,讲授法是教学方法中最基本的教学方法。它的一般教学步骤分为四步:准备―导入―讲解―结束,这是教师必须掌握的教学方法。这个教学方法对老师的要求很严格,教师不仅讲解的语言要恰当,而且感情要到位,这样才能帮助学生更好地接受知识。这在初中数学教学中是最常用的教学方法。
2.演示法
演示法就是教师通过借助教具或者实物,向学生展现生动形象的教学内容,让学生获得知识的教学方法。它具有的特点是趣味性和直观形象性。因此,这要求教师在运用演示法时,要做到以下三点:第一,教师要根据教学的目的、教学的内容和学生的实际情况,恰当地选择使用教具。同时,教具的设计要合理,符合学生的认知。第二,教师在用演示法上课时,要注意自己的讲解语言、板书等,还要顾及全班同学,老师展示教具要在全班进行展示,要保证后面的同学都能看到。第三,演示法很容易抓住学生的注意力,使学生把注意力放在教具上,这时,教学要在恰当的时候,将学生的注意力拉回到知识的学习上。比如,初中数学教学中的三视图教学,教师可以准备实物,这样可以帮助学生更好地理解三视图。
二、问题解决性的教学方法
1.练习法
所谓练习法,就是学生在教师的指导下通过独立完成作业的方式掌握基础知识,也叫课后练习。俗话说,熟能生巧,要检验学生是否把知识掌握得牢靠,最有效的方式就是让学生进行练习,学会运用。但是,教师运用练习法时也要注意以下要求:第一,教师选择布置的练习题要有目的性和针对性。比如,学生的运算能力差,就着重布置运算方面的作业。第二,教师对于学生的练习题要做及时的评讲。俗话说,趁热打铁,对于学生薄弱的方面,教师要及时讲授,这样才能及时弥补学生的知识。第三,教师布置的练习要遵循适度原则和多样性原则。这样更有利于学生的学习,增强学习效果。
2.谈话法
谈话法就是教师以跟学生对话的方式,跟学生探讨知识并得出结论,使学生在谈话中获取知识的一种教学方法。其中,谈话法的核心是为了启发学生的思维。它的教学步骤是:教师提出问题―倾听学生回答―教师做出反馈。在初中数学教学中使用谈话法,教师使用谈话法,不仅有利于营造一种愉快的学习氛围,使学生大脑处于兴奋状态,更能有效地学习新知识,还有利于锻炼学生的数学语言表达能力和逻辑思维能力。
三、自主性的教学方法
1.观察发现法
它的大概意思是教师让学生自己思考、发现问题,教师不直接讲授知识。这个教学方法就是充分尊重学生学习的主体作用,让学生自己独立地思考问题、发现问题以及解决问题。这不仅能激发学生的求知欲和探索欲,促进他们的学习,还减轻了教师的教学负担,教师只需要在教学过程中起一个引领的作用。发现法的一般教学步骤分为以下四步:第一,教师创设问题情境,激发学生的学习兴趣。第二,教师精心设计“最近发展区”,促进学生的迁移。第三,教师鼓励学生大胆提出猜测并进行论证。第四,教师及时反馈学生的学习情况,让学生对所学知识进行巩固。
2.尝试教学法
这个教学法与发现法差不多,最大的差别就是尝试教学法更强调学生的自主学习。换言之,教师就是让学生先自学课文,再尝试做练习,在做练习中发现问题,教师再针对学生的问题进行讲解。它主要分为五个步骤:出示课题―自学知识―尝试练习―学生讨论―教师讲解。这种教学方法不仅有利于培养学生的探索精神和自学能力,还大大提高了课堂教学效率。
以上六种数学教学方法是初中数学教学中最常见的,也是比较有效的。当然,还有其他的教学方法。通过上面的分析,每种教学方法都是比较有针对性的,而且教学步骤也是不一样的。因此,为了提高数学的教学效率,教师应具体情况具体分析。