前言:我们精心挑选了数篇优质数据分析师统计学基础文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。
关键词:数据分析;统计学;课程体系;大数据
中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2014)49-0248-02
随着社交网络的逐渐成熟,移动带宽迅速提升,云计算、互联网应用的丰富,更多的传感设备、移动终端接入到网络,由此产生的数据及增长速度将比历史上的任何时期都要多,都要快。“大数据”时代已经来临,它对人类的数据驾驭能力提出了新的挑战,也为人们获得更为深刻、全面的洞察能力提供了前所未有的空间与潜力。大数据是指海量数据集,其来源包括动漫数据、企业IT应用带来的数据、博客、点击流数据、社交媒体、机器和传感数据等。它是互联网、电子商务的又一次重大革命,对数据处理、数据挖掘、数据分析提出了新的挑战。如今互联网行业、电子商务行业中的数据应用及分析已经相当普遍,为了应对大数据时代的要求,同时要具备较强的统计学功底和娴熟的计算机软件运用能力,而今完全具备这些能力的数据分析专业人才是极其匮乏的。数据分析师便应运而生,不仅互联网行业、电子商务行业需要大量的数据分析师,近年来项目数据分析事务所不断涌现,而项目数据分析师因其专业技能及量化的数据分析为客户以及所在单位控制决策风险、保证利益最大化而备受各界青睐,以待遇优厚和地位尊崇而闻名国际,也被视为我国21世纪的黄金职业。《华商报》将项目数据分析师纳入了新七十二行,《HR管理世界》将项目数据分析师评为七大赚钱职业。本文就如何在统计学专业开展数据分析方向进行了阐述,首先论述了数据分析的重要意义,其次讨论了数据分析方向的课程构建,最后分析了如何加强理论与实践环节的结合。
一、数据分析的重要意义
大数据预测美国总统:美国时代周刊报道称,数据驱动的竞选决策才是奥巴马竞选获胜的关键。数据分析团队在筹集竞选经费、锁定目标选民、督促选民投票等各个环节的决策中都发挥了重要作用。这意味着华盛顿竞选专家的作用极具下降,能够分析大数据的量化分析家和程序员的地位却大幅提升。如今从事专业数据分析工作的企业如项目数据分析师事务所、数据挖掘公司等都应市场需求而大力发展,并且受到风险投资的青睐。如美国社交数据挖掘公司Datasift于2012年宣布,获得1500万美元风险投资。2013年,DataSift成为Twitter的“认证合作伙伴”,主要负责海量微博社交数据分析。这是该公司今年第二笔融资,五月份其曾融资720万美元。又如面向开发者的大数据应用软件平台服务提供商Continuity最近获得1000万美元的融资,目前融资总额已经达到1250万美元。
数据分析的应用无处不在,那什么是数据分析呢?数据分析就是用适当的统计方法对数据进行分析,以求最大化地开发数据的功能,发挥数据的作用。是为了提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。数据分析技术不仅能通过对真实数据的分析去发现问题,还能够通过经济学原理建立数学模型,对投资或其他决策是否可行进行分析,预测未来的收益及风险情况,为做出科学合理的决策提供依据。在提高工作效率的基础上,也增强企业管理的科学性。无论是在国家政府部门,还是企事业单位中,数据分析工作都是进行决策和做出工作决定之前至关重要的一个环节。因此,针对项目可行性、风险承载力、投资回报率以及相关经济效益指标等方面的分析工作显得格外重要。在这个工作过程中,专业的数据分析人员扮演着无比重要的角色,数据分析成果的质量高低直接决定着项目投资、企业经营决策计划最终的方向。所以,各个行业对数据分析人员的需求之多是不言而喻的。传统行业,如政府机构:一类是计委、经委、统计局等一些经济综合管理部门所设有的调研处、研究室和情报所。第二类是商业、粮食、物资、银行等经济主管业务部门会设有信息中心或调研室,从本系统、本部门的业务出发进行专业性调研,提供支持本部门的市场信息。而伴随着数据分析应用的扩大,其在新兴行业中也得到了发展,如计算机软硬件及IT行业、电子商务与网络游戏、金融保险、消费品、咨询业与广告媒体、大型设备与重工业以及房地产行业等对数据分析师的需求量很大,尤其是电子商务,由于利用互联网,能够比传统零售业具有更好的数据收集和管理能力,能积累海量的数据,因此更看重从海量数据中挖掘出用户偏好和市场机会。研究机构:比如市场研究公司、咨询公司、证券公司、研究院。自主创业:取得注册项目数据分析师(CPDA)资格证可以自主创建或就业于项目数据分析师事务所等。所以,数据分析的行业应用是极其广泛的,并且随着大数据时代的到来,数据分析尤其是数据挖掘将借助互联网的发展,逐步形成人们依靠的重点,并可能成为未来发展与竞争的重点之一。由此我们可以看到数据分析师的就业前景是非常广泛而乐观的,无论是数学专业、统计专业,还是计算机专业的学生,都可以通过系统的学习数据分析课程来适应对数据分析人才的要求。
二、课程体系构建
1.主干课程。主干课程包含高代、数分、概率论、数理统计、多元统计分析、时间序列分析、市场调查与分析、统计预测与决策、数据结构、C语言、数据分析、数据挖掘、大数据分析与展示。理论课程的学习可以使学生了解数据分析的基本内容,学会如何对已获取的数据进行加工处理,如何对实际问题进行定量分析,以及如何解释分析的结果。掌握几种常用数据分析方法的统计思想及基本步骤,并具备一定的分析论证能力。
2.实验课程。数据分析的操作离不开计算机。目前数据分析行业常用的一些统计软件有SAS、SPSS和R软件。SAS软件是一个模块化、集成化的大型应用统计系统。它的功能包括数据访问、数据储存及管理、应用开发、图形处理、数据分析、报告编制、运筹学方法、计量经济学与预测等。SPSS软件是一个社会科学统计软件包,是采用图形菜单驱动界面的统计软件,SPSS的基本功能包括数据管理、统计分析、图表分析、输出管理等。R软件是一套完整的数据处理、计算和制图软件系统,包括:数据存储和处理系统、完整连贯的统计分析工具、优秀的统计制图功能、可操纵数据的输入和输入等功能。这三个软件在数据分析中针对不同行业的需求有不同方向的应用。
3.专业课程。从数据分析的行业需求出发,好的数据分析人员不仅要有较强的数据分析能力,还要有该行业的背景及相关知识的储备,这样才能将数据分析与行业特性联系起来,发挥数据分析的最大功能,即所谓的“因地制宜”。同时要兼顾学生的兴趣与学习的联系,需提供多领域的课程选择,如:经济学、金融学、保险学、管理学、会计学等。而在软件学习方面也要拓宽渠道,除了实验课程安排学习的软件,学生可根据自身发展意向再多掌握一些软件如:SQL数据库,熟悉office常用功能,尤其熟练运用Word和PowerPoint、Excel图表及数据分析等。同时还应该结合对数据分析师的要求设置一些相关课程:投资数据分析、市场调研与预测、预测技术分析、现金流量表编制、风险投资项目筛选、不确定性分析、编制数据分析报告等。
三、实践环节
培养数据分析的专业型人才目的就是为了学以致用。数据分析本身就是为了从数据中发现问题、建立模型、预测收益风险企业决策进而做出合理正确的决策判断。因此,学习了基本的知识和技能就要运用到实际操作中。学校可以和本地的数据分析事务所,或者大量需求数据分析人员的互联网行业建立实训基地,进行合作式教学,使得学生在实习的过程中能够理论联系实际,切身体会数据分析的商业操作体系,这样就能够促进学生有目的、有取舍地针对自身情况学习钻研,继而就能够培养出适应经济发展,满足市场需求的应用型人才。
四、结语
在大数据时代到来之时,数据分析在互联网中的应用将会空前广泛,与此同时对数据分析师的需求也将会井喷,无论是在军事、工业、企业还是在政治上,大数据分析都将会十分紧缺。因此,目前对数据分析师的培养刻不容缓。本文从分析数据分析行业发展及其重要意义、数据分析专业课程设置以及教学实践环节方面对构建数据分析课程体系进行了探讨。不仅从教学课程的内容上予以安排,而且更加注重引导学生自主学习,特别强调理论结合实践的合作式教学。希望能够结合行业需求合理地构建课程,培养出专门从事数据分析的项目数据分析师,从而能够满足市场需求和自身发展。
参考文献:
[1]范金城.数据分析[M].科学出版社,2010.
[2]http:///jrt/120922/70953.shtml
关键词:互联网联网 数据分析师 人才培养
互联网行业在快速发展,“互联网+”概念的提出标志着互联网已叩响“万物互联时代”的大门。在这个时代,大数据渗透于各行各业,掌握数据核心价值成为企业脱颖而出并取得胜利的法宝。越来越多的企业承认竞争优势与大数据有关,由此,数据分析师这一职业逐渐得到认可并受到追捧。世界500强企业中,有90%以上都建立了数据分析部门。在国内,已有超过56%的企业在筹备和发展大数据研究,据有关部门预测未来5年,94%的公司都将需要数据分析专业人才。数据分析师的职位需求随之不断增长,全国数据分析师的职位由2014年初的200多个职位增长到接近3000个职位。正如著名出版公司O’Reilly的创始人Tim O’Reilly断言,大数据就是下一个Intel Inside,未来属于那些能把数据转换为产品的公司和人群。
优秀的数据分析师已经成为促进各行各业发展,推动国家经济进步的重要人物。但我国针对数据分析的研究起步晚,市场巨大,职位空缺现象十分严重。因此,培养数据分析人才的项目活动应引起高度重视。
1互联网环境下的数据分析师
1.1数据分析师的定义
谈起数据分析师,很多人都认为其职位高高在上,不可企及,但实际并非如此。让我们从案例出发来探索其内在含义,数据分析最经典的案例便是“啤酒与尿布”,沃尔玛超市将Aprior算法引入Pos机数据分析发现美国年轻的父亲去超市为婴儿购买尿布的同时,往往会顺便为自己购买啤酒,这样便使尿布和啤酒这两样看似不相干的商品有了某种联系。于是,沃尔玛尝试将两种商品摆放在同一区域,进而取得了意想不到的良好销售收入。可见,数据分析是运用适当的方法对收集来的大量数据进行分析整理,筛选有价值的信息并形成相应的解决方案以帮助人们作出判断,采取适当行动的过程。
1.2数据分析师的层级分类
经对多家招聘网站数据分析师的招聘信息进行分析研究,发现目前数据分析师大体分为三个层级:传统行业的数据分析师、互联网初级数据分析师、互联网高级数据分析师。传统行业的数据分析师的主要工作是整理、处理数据,专业技能只要具备一定的数学和统计学知识储备即可;第二层级是互联网初级数据分析师,职位要求在传统数据分析师的基础上掌握少数的计算机工具譬如SPSS、SQL等,从职人员需具备一定的数据敏感度和逻辑思维能力,能够对数据源进行分析并能制作数据报表;互联网高级数据分析师是一类复合型人才,要熟悉业务环境并能与技术相结合解决企业实际问题,并掌握数据挖掘常用算法和一系列相关的分析软件,他们的工作与企业发展密切相连,拥有一名优秀的数据分析师的企业将拥有与同行业竞争的资本。
1.3数据分析师的能力需求
数据分析师的工作分为采集、存储、筛选、数据挖掘、建模分析、优化、展现、应用等一系列过程。接下来从主要步骤详细分析数据分析师的能力需求。数据挖掘过程即从海量数据中提取潜在的有价值的信息,要求数据分析师掌握一系列相关分析方法譬如聚类分析、关联分析、等并能熟练运用数据挖掘算法和相关工具;建模分析即对数据抽象组织,确定数据及相关性的过程,在此基础上要掌握譬如决策树、神经网络、K-means算法、SVM等至少一种相关算法;展现过程要求具备数据整理、数据可视化、报表制作能力,熟练应用D3、Vega实现数据可视化,并能运用R和DateWangler工具将原始数据转化为实用的格式。
2数据分析师的培养现状
2.1国外数据分析师的培养现状
在国外,无论是学术研究还是企业部门,数据分析已发展到较为成熟的地步。斯坦福大学的研究成员着手开发MEGA(现代动态网络图像分析Modern Graph Analysis for Dynamic Networks)并与多家媒体公司紧密合作,研究社交媒体中的用户行为,建立模型并探究其中的规律;哥伦比亚大学已开设了《数据科学导论》和《应用数据科学》课程,从2013年秋季起开设“数据科学专业成就认证”培训项目,并于2014年设立专业硕士学位和博士学位;华盛顿大学开设《数据科学导论》课程,并对修满数据科学相关课程学分的学生颁发数据科学证书。数据分析师在国外已引起了充分的重视,他们均衡分布在各行各业,运用掌握的专业知识并结合相关思维为自身、企业乃至社会的发展做着不小的贡献。
2.2国内数据分析师的培养现状
近年来,在国内,大数据的概念虽被媒体和行业广泛提及,但数据分析算是刚刚起步,数据分析师的培养课程未得到普及,我国目前将数据分析纳入教学体系的高校寥寥无几,开设相关课程并取得一定成果的有:香港中文大学设立“数据科学商业统计科学”硕士学位;复旦大学开设数据科学讨论班,于2010年开始招收数据科学博士研究生;北京航空航天大学设立大数据工程硕士学位;中国人民大学统计学院开设数据分析方向应用统计硕士。
和国外相比,我国数据分析师的人才培养机制还未成熟,高校教育仍存在各种各样的问题,譬如,大学生虽然从多门课程中接触到与数据分析相关内容,但各门课程的教学资源未能实现有效的整合。互联网环境下,大数据带来的是一场革命性的变化,若想把握机遇,实现国家经济革命性发展,首要任务就是数据分析师的培养。
3如何成为优秀的数据分析师
数据分析师作为新时代新兴起的高薪职业,对人员的能力要求是相当高的,下面将根据数据分析师的定义、能力需求并结合互联网环境的时代背景,对数据分析师的成才途径作出详细的分析。
思维变革,数据分析师成才的前提。首先要在思维方面有所改变,培养自身数据思维、多模式思维、逻辑思维和结构化思维。数据思维即量化思维,对数据具有独特的敏感度,相信一切事物皆可量化;多模式思维即构造多种想法和解决思路,拓宽思维,从多角度出发,以寻求最优的解决问题的方案;逻辑思维,在错综复杂的海量数据中要有缜密的思维和清晰的逻辑推理能力才能按照自己既定的目标有效解决问题;结构化思维即系统性思考问题,深入分析内在原因,能够制定系统可行的解决方案。
技能变革,数据分析师成才的工具。作为一名优秀的数据分析师若想在互联网环境下对海量数据进行有效的管理,就要努力学习相关的专业技能。要掌握多种机器学习方法,不断学习相关软件应用,譬如,Java、Python、SQL、Hadoop、R等等,这将成为数据分析全过程的辅助工具;除此,还要掌握一定的心理学知识,能够很好的分析和解释客户行为;在此基础上,最核心的是要掌握一定的业务能力和管理能力。
素质变革,数据分析师成才的保证。在个人素质方面,互联网时代对数据分析师的要求增多,若想成为优秀的数据分析师就应不断学习完善以下素质能力:对工作的态度严谨认真,对数据的变化时刻保持敏锐的洞察力,对方法的运用保持一定的创新性,对团队保持团结合作之心,能与顾客沟通交流并及时了解他们的需求。
实践,数据分析师成才的推动力。数据分析师的职责是帮助企业挖掘市场价值、发现机遇、准确进行市场定位并从海量数据中找出问题,提出解决方案。因此,在数据分析师的成才道路上,实践是必不可少的。相关人员要在掌握理论的基础上,敢于应用于实践,充分考虑数据中存在的价值和风险。使自我能力在实践中不断改进和完善。
4给我国高校的建议
高校为数据分析师的成长提供指导和途径,肩负着为我国社会培养有用人才的重任,因此高校要努力构建数据分析师的人才培养机制,不断输出数据分析相关人才。
高校的首要任务是,强化师资力量,改进教学方法。各大高校应联合共建优秀师资团队,鼓励教师考取数据分析师资格证,并到实际企业中进行历练。再者,我们要组建专门师资团队到国外开展学习工作,取其精髓,去其槽粕,不断优化我国数据分析师的培养体系。
第二、培养专业化的人才就要有效整合各门课程的教学资源,构建系统性教学结构。鉴于市场对数据分析师的需求的火热程度,高校完全可以开设专门课程,将与数据相关的课程进行有机的整合并开设数据分析导论、基础等课程,制定数据分析系统性课程体系,专门为市场培养数据分析的专业人才。
第三、在具备优秀的师资力量和良好的教学体系的基础上,高校也高度应注重学生兴趣的培养。数据分析师是新时代的复合型人才,一名优秀的数据分析师需掌握包括数学、统计学、运筹学、社会学、管理学以及大量软件应用在内的大量相关知识,学习过程会十分繁琐、复杂,学习周期长,学习难度大,所以建议各大高校在制定教学体系时应合理安排课程,在教学过程中应注重课程的趣味性,寓教于乐,采用案例导入、项目教学等教学方法,逐渐培养学生对数据分析浓厚的兴趣。
第四、随时更新教学数据,培养适应时展的人才。基于大数据的4V特征即大量化(Volume)、多样化(Variety)、快速化(Velocity)、价值化(Value),在培养数据分析人才的期间,高校一方面要注重数据的全面性,另一方面要注重数据的更新,及时更改教学方法和教学案例,与时俱进。高校要充分利用互联网的优势,引入MOOC(Massive Open Online Course,大规模网络开放课程)教学方式,充分发挥大数据在教育领域的作用,克服传统教学方法资源少、反馈慢、综合分析困难等缺点,将数据分析的研究成果应用于数据分析人才的培养,实现数据分析行业的良性循环。
第五、注重理论与实践相结合,努力为学生搭建实践的平台。高校可考虑校企合作的教学理念,边教学边实践,让学生将所学到的理论知识转化为实际应用,一方面在实践中巩固并检验自己的理论知识,另一方面数据来源真正的企业运营中,让学生切实体验数据的作用和风险,有助于塑造真正对企业有用的人才。
5结语
综上所述,互联网带来了全球范围的数据信息大爆炸,这对企业来说是机遇同时也是挑战,能将大数据为自己所用,是企业取胜的关键,因此数据分析师逐渐被各行各业认可。文章从数据分析师的定义出发,结合目前的时代背景,对数据分析师的每一工作步骤所需的能力进行研究,旨在初步探索优秀数据分析师的成才之道,为即将成为数据分析师的学者提供一定的理论参考。最后,针对如何构建数据分析人才培养体系,对我国高校提出了几点建议。高校的培养只是为数据分析师提供成才的途径,如何成为资深的数据分析师还有赖于每个学者的不断探索和研究。
参考文献:
[1]张明元.数据分析师的职业是否高不可及[J].出国与就业,2007(08):56.
[2]郑葵,马涛.经管类专业大学生数据分析能力提升策略探讨[J].商业经济,2013(19):52-53.
[3]冯海超.大数据时代正式到来[J].互联网周刊,2012(24):36-38.
[4]谭立云,李强丽,李慧.大数据时代数据分析人才培养的思考及对策[J].科技论坛,2015.
[5]尹颖尧,李鸿琳.赶紧培养数据分析师[J].大学生,2013(18):78-79.
[6]程征.提升数字阅读质感的数据分析师[J].中国记者,2013(6):46-47.
[7]张文霖.数据分析师那些事[J].统计论坛,2013(7):44-45.
应用统计专业学位的设立是为了适应现代统计事业发展对应用统计专门人才的需要而设置的,它的培养目标主要是让学生掌握扎实的理论基础和系统的专业知识和技能,具备数据采集、整理、分析和开发的能力,能够从事统计调查咨询、数据分析等“应用型”统计专门人才[5]110-111。然而,在大数据环境下实现的数据分析已不再局限于某一类特殊的行业统计分析需要,各行各业的运作发展都越来越依赖于大数据环境的存储、计算、统计分析与决策。对于多样化的大数据集,其所涉及的内容和知识结构必然是不同学科的交叉应用。大数据时代的数据分析专业人才的培养目标并不仅仅是传统的数据收集、整理与分析,而是需要掌握能适应大数据特点的新的研究方法和独立分析的能力,能很好地融会贯通其他专业的知识内涵,成为真正意义的专业大数据分析人才。然而传统的统计学人才培养目标和教学模式并不符合社会对大数据分析专业能力的要求。参考和借鉴文献[6-7]8-9,226提出来的一些建议,笔者探索从以下几个方面对人才培养目标和教学培养模式进行改革:(一)走出校园,深入社会,挖掘并归纳出社会用人单位对数据分析专业职位技能和能力素质要求,进而制定符合社会需求的人才培养目标,以市场需求为导向更好地指导教学实践活动。为了更好地为用人单位输送符合大数据时代需求的专业数据分析人才,尝试对高年级学生的培养方案设计中考虑以岗位需求为标准灵活调整和制定相应的培养目标和内容。(二)参考国外本科生专业人才培养的先进理念,引入“协作式”培养模式,大力支持大型企业与高校合作或高校与高校合作培养复合型和开发型人才。各个高校、企业可以发挥各自专业特长来实现合作,高校的不同专业之间也应该加强沟通和协作,例如在制定应用统计专业数据分析人才培养方案及实施过程中,可以以统计学科所在的学院为主导,让计算机学科、经济、金融及管理学科等相关学院协作参与完成[8-9]60-64。(三)总结教学过程存在的不足,探索新的知识学习和能力培养的创新模式。目前的教学活动主要以老师独立授课,学生被动接受知识为主的方式,培养过程计划性强,缺乏弹性,培养的评价也过于单一。在本科生培养中可以引入课程学习、导师指导和科学研究三个阶段,考虑采用导师指导与集体培养相结合的方式,一门专业课程的讲授不再局限于单个老师完成,在培养方案中考虑主题分组方式,鼓励授课教师根据自己的专业特点和知识背景共同参与一门课程的教学活动。多名教师协同工作的模式可以取长补短,在大数据分析的实际案例设计及课程内容上都更加贴近实际需求,产生更好的教学效果[6]8-9。
二、基于大数据分析的特点科学构建课程体系
大数据背景下,人们可以通过互联网、数据库以及各种通信工具获得海量数据,人们日常生活、学习和工作的各类事物都可以实现信息化,世界几乎是由各种信息和数据所构成的。大数据的特点可以归结为四个V,数量大(Volume)、类型繁多(Variety)、价值密度低(Value)、速度快时效高(Velocity)[6]8-9。大数据的真正意义不在于能提供庞大的数据量,而是对海量的数据进行专业的处理和分析,并从中获取用户关注的信息。结合当前互联网应用中大数据本身的特点,从大数据中挖掘出重要知识并对之深度学习和分析的工具和方法也应与时俱进地发生改变,传统的统计方法和统计分析工具已无法满足大数据分析的需要。然而,在大多数高等院校中,统计学专业人才培养的课程体系并没有考虑社会的实际应用需求,仍然停留在以传统的统计模型框架为主导的课程体系设置,本科生教育的主要专业课程包括:数学分析、高等概率论与数理统计、应用随机过程、回归分析和多元统计分析等[10]248-249,这些课程内容和知识结构还不足以满足大数据时代对数据分析专业人才知识结构的要求,课程体系设置中缺少能有效整合的数据分析能力培养模块[11]66-68。因此,有必要针对各类院校师生各自的专业特点和学科基础,分层次、分阶段地展开课程体系改革。(一)参考国内外先进高校大数据分析专业的课程设置,结合本校的师资和专业结构特点采取灵活的策略制定课程计划,在实施学分制改革的高校中各类学生可以在学业导师指导下实施符合学生自身特点的课程学习方案。(二)以大数据分析人才需求驱动的课程体系改革要考虑市场的行业需求变化、大数据应用中跨学科的特点。素质好的数据分析人员不仅仅要具备专业的数据分析能力,还应该对具体数据中涉及的学科知识有较好的储备,能将不同行业的专业知识与数据分析紧密关联起来,实现大数据分析的效用最大化。此外,在充分借鉴国内外大学成功经验的基础上,课程设置应该与学生的学术倾向和基础能力紧密结合,注重基础课程教育的同时强调文理渗透,同时要兼顾学生的兴趣与学习的联系,在课程体系的设置中需要增设一些多领域、跨学科的选修课程,如经济学、金融学、保险学、管理学和会计学等。因此,校内跨学科或高校与高校之间联合培养是实现跨学科课程建设的有效方法之一。(三)科学构建课程体系的主要思路还包括根据大数据时代需求,对专业必修和专业选修课程在课程时间、顺序及内容等方面进行改革。专业必修课程重点内容为统计学和计算机科学的交叉部分,在讲授统计基础理论(如多元统计、决策树、时间序列等)课程基础上设置大数据案例分析课程,在案例分析过程中让学生实际操作企业当前应用的大数据计算平台[6]8-9,从而增强学生大规模分布式计算技能。为提高学生的实际动手和二次开发能力,专业选修课程需更多地开设与数据挖掘及面向数据的编程语言相关的课程,如数据挖掘算法、C++、Java和Python等课程,强化学生的数据挖掘和分析能力。
三、基于协同创新的理念开展实践教学改革
近几年,随着应用型、创新型人才培养目标的提出,学校越来越重视和加强对各类专业人才实践教学能力的培养,以“数据分析”为方向的专业人才需要运用统计分析软件对数据进行分析和决策,其实践教学的重要性更是不言而喻。然而,在大数据被广泛应用的时代背景下,高等院校中的实践教学仍然是培养高层次“大数据分析”人才的薄弱环节,实践教学教材及内容不规范、教学方法单一、软硬件的更新以及师资储备等方面都存在着一些问题[12]96-97。例如以模型驱动为主的实践教学模式已不适应大数据时代的要求,大数据时代数据是海量且复杂的,用简单的SPSS、Eviews为主的软件教学已无法处理大数据[5]110-111。因此,学习其他知名高校构建的协同创新的理念,结合财经类院校的统计学科及人才培养的特点,开展实践教学改革[13]248-249。对“数据分析”专业人才实践教学改革,笔者的建议如下:(一)根据协同创新理念,解决实践教学环节存在的实验教材(教学内容)缺乏实用性的问题,一方面可以参考企业对数据分析师、调查分析师资格认证相关培训教材,开发实用性强的《数据分析》实践教材,另一方面学校可以和企业或其他高校定期举办交流座谈会,面向企业需求甄选实践教学内容。(二)高素质的师资队伍对人才的培养无疑起着至关重要的作用,在提高指导教师理论和实践能力方面,借鉴协同创新联合培养的模式可以有效充分地利用企业、学校的各方面师资资源。例如北京大学、中国科学院、中国人民大学、中央财经大学、首都经济贸易大学5所高校已经与政府部门和产业界签署了联合培养大数据分析应用人才的合作协议[14]。广东财经大学也可以参照类似联合培养的做法,和广东其他高校、政府和企业合作。一方面企业或政府可以利用自身的资源为高校提供人才培养实习基地,并且引荐相关的技术人员聘为校外实习导师,指导学生在实习实践中建立以问题为导向,以项目为牵引的运作机制,让学生能够理论联系实际,切身体会数据分析的商业操作体系。另一方面,由于高校的专业教师缺乏社会实践的机会和经验,高校应该制定政策鼓励并推荐相关专业教师走出学校、走进企业,密切与企业合作交流,从而更进一步地提高教师对复合型专业学位人才培养的能力[15]29-32。(三)为了激发学生的学习热情,减少对实践操作的畏难情绪,实验课程的教学方法也需要探索创新性实践教育模式。教学过程可以考虑灵活的制定团队教学计划、案例实战分析、模拟实训等多样化的方式,减少单一的课堂内容讲授,在理论和实践教学环节中积极调动学生的主观能动性,提供更真实的企业大数据应用环境,并以学生为主完成实际案例分析。此外,基于不同的授课对象的特点,老师在教学过程中也要适当考虑学生的兴趣和需求,随时调整实验教学策略[9]。
统计学发展到如今已有300多年的历史.它是分支众多、实用性强、应用面广、体系比较完整的方法论科学,是探索自然、认识社会、推断未知的重要思维方式与工具.它融合于自然科学、实验科学、经济科学、管理科学等学科.
我校统计学专业是一个新专业,2010年开始招生.综合性大学背景下省属院校的统计学专业人才培养模式,值得我们思考,确定了我院统计学专业的人才培养目标,即培养适应我国社会主义现代化建设的需要,德、智、体全面发展,具有良好的数学、经济学素养,掌握统计学的基本理论和方法,能够为实际问题的解决和决策提供量化的依据,熟练地运用常用的统计软件处理和分析数据,能在企业、事业单位和经济、管理部门从事统计调查、统计信息管理、数量分析等开发、应用和管理工作,或在科研、教育部本文由收集整理门从事研究和教学工作的专门人才.本文在综合性大学背景下,利用多学科交叉的优势,对统计学专业的人才培养模式进行研究.
一、优化课程体系,培养应用型和创新型人才
在课程体系设置上,体现“以人为本”的精神,以培养应用型和创新型人才为目的,调整重组专业,优化整合课程结构,拓展强化实践技能,注重实施创新教育,将整个课程体系构建为“四个平台,八个模块”,即通识教育平台、公共基础平台、学科基础平台、专业方向平台;进一步细化为通识教育必修课程模块、通识教育选修课程模块、学科基础必修课程模块、学科基础选修课程模块、专业方向必修课程模块、专业方向选修课程模块、实践性教育模块、素质教育模块.
主要课程为数学分析、高等代数、空间解析几何、概率论、数理统计、常微分方程、应用随机过程、应用回归分析、时间序列分析、多元统计分析、金融数学、风险理论、抽样调查、统计计算等.
根据专业发展将课程分为数理模块、应用模块;根据能力和兴趣将学生分为提高型和应用型两类人才分别培养,强化学生的应用统计软件能力和各种资格证的职业技能,按照多元化人才培养目标,构建层次、课程模块,不同层次的学生选择不同的模块,满足学生个性化发展需要,为因材施教创造条件.
二、优化教学内容,重视与其他学科的交叉融合
根据学生能力和兴趣将按照提高型和应用型两类人才分别培养,满足学生个性化发展需要.由此整合教学内容,统筹兼顾.具体如下:
优化整体课程结构.按照提高型和应用型的多元化人才培养目标,逐步修订教学计划,从课程设置、学时安排、教学内容、实践性环节上,全面构筑新的课程体系,根据专业发展构建层次、课程模块,不同层次的学生选择不同的模块;从教学内容上揭示各课程之间相互关系,从必修课、选修课、限选课等设置上科学安排模块课程,实现多种课程形态有机结合,为因材施教创造条件.在教学内容上,根据培养方案,认真研究各学期的课程安排,本着“拓宽知识,保证基础,提高素质,重在应用”的原则,由浅入深,循序渐进,制定课程教学大纲,统筹考虑各门课程的教学内容应该讲哪些内容,讲到什么程度,从而避免教学内容的重复性.
强化基础,突出应用.在大学二年级,为学生开设spss统计软件课,这样在后面的课程教学中,要求学生结合所学统计理论和方法,用spss、sas等统计软件进行数据分析及处理,进一步提高学生的计算机和统计软件应用能力,与保险公司、证券公司、调查公司、统计局等企事业单位合作,作为稳定的教学实践基地,增强专业实践能力.
利用综合性大学多学科的优势,重视统计学与其他一些学科的融合.统计的理论与方法来源于各种学科领域数据分析的需要,统计学作用的发挥及地位的提高也取决于统计方法对这些学科领域的应用.从这个意义上看,可以说,没有与专门学科的相结合,统计学
就失去生命力.因此开设一些边缘学科课程,如统计模型、运筹与优化、实验设计、计量经济学、保险统计、会计学、证券与期货投资分析、金融管理原理、应用统计专题等,同时让学生用统计方法及统计软件解决生物、医学、林学、教育、心理、体育等其他学科的问题.
三、改革实践教学体系,培养学生的综合素质
适当增加实践教学课程,调整实践教学课时比例和学时分配.结合理论知识增加综合性、设计性、开放性实验内容,充分利用实验室资源训练学生的计算机操作能力和数据处理能力.根据专业技能需求适当增加实践性强的课程.在掌握一定统计学专业基础知识的基础上,增设实验设计、生物统计学、统计预测与决策、数据挖掘技术与应用、市场调查与分析等一系列与实际应用紧密结合的实践性课程.
关键词:大数据 市场调查与预测 教学改革 专业特色
中图分类号:F274
文献标识码:A
文章编号:1004-4914(2017)02-237-02
一、引言
信息技术和社会化媒体的飞速发展引发了数据的大爆炸,而庞大的数据集为企业进行市场调查与预测提出了新的挑战。为了适应新的企业需求,高校《市场调查与预测》课程的人才培养方案和培养模式必须做出相应的调整,引入新的教学方法和人才培养理念,使用更加先进的调查预测工具,为企业培养出具备数据分析能力的优秀人才。
二、课程改革的必要性
(一)大数据时代的要求
随着大数据时代的到来,企业越来越重视基于大数据的更多样本,更多实时数据的分析。对于市场专业本科阶段的学生来讲,虽然不能达到数据分析的专家,但是必须顺应时代及企业人才需求的变化,提升数据分析的能力,《市场调查与预测》课程的教学改革迫在眉睫。
(二)传统教学方法与教学模式存在很多弊端
《市场调查与预测》课程最显著的特点就是实践性强,但是传统的教学方法与教学模式很难达到锻炼学生实践能力的目的。主要体现在以下三个方面:第一,传统的注入式教学方法主要强调的是理论知识的传授,学生缺乏参与感,很难调动学生的自主性和积极性,培养学生的创新性;第二,传统课程安排实践课时偏少,通过查阅各类院校本课程的教学计划,多数高校实践课时占总课程课时的比例不足30%,教师很难对整个实践过程进行监管和指导。第三,传统的教学模式忽略了对实践能力的考核,基于实践课时偏少,实践成绩所占总成绩的比重很低且缺乏完整科学的成绩评定体系,容易造成学生“搭便车”的现象;第四,《市场调研与预测》课程与《统计学》存在较强的相关关系,在授课过程中如果缺乏课程衔接与配合意识,很容易造成内容的重叠。同时,如果学生的统计学知识不扎实,对数据的分析仅仅停留在问卷调查数据的初步统计,很难提高学生的数据分析能力。
三、课程改革的基本思路
《市场调查与预测》课程的教学改革应顺应大数据时展的要求,通过以学生为主体,教师为主导的教学方法,着重培养学生的实践能力、创新能力和数据分析能力。教学内容上增加数据分析的内容,主要引入SPSS统计软件的实验课程,提升学生的数据分析能力;教学形式上采用课题式教学,通过课题式教学与分组合作学习的互动式教学模式提高学生的实践能力;课程考核上,通过制定公平合理的考核制度提高学生参与实践锻炼的积极性,并在提高自身综合素质的基础上提高对教师教学的满意度。
(一)教学内容的调整
依据市场调查与预测统计分析的需要,学生要先修《统计学》课程,通过和《统计学》教师的沟通与配合,《市场调查与预测》课程教学内容减少与《统计学》重复的理论部分,增加数据分析内容,尤其是SPSS操作模块。与此同时,增加实践课时。该课程的总课时为48学时,其中课堂理论授课占用24学时,SPSS操作占用12学时,实践课时12学时。课程理论讲授模块的内容包括:市场调研方案设计、数据搜集方法、市场调研误差、数据整理与分析、市场调研报告的撰写、市场预测的基本方法。SPSS操作模块包括:问卷设计与数据收集、问卷数据的录入与清理、单变量的一维频率分析、双变量的交叉表分析、多选变量的一维频率分析和交叉表分析、描述统计分析、简单统计推断、单因素方差分析、线性相关分析与线性回归分析。@两个模块不是孤立的,而是通过课题式教学完成,学生通过选定的课题展开,围绕选题在实践课时完成完整的市场调研过程,应用SPSS完成数据的分析过程,最后以课题小组的形式进行汇报。
(二)教学的组织形式
教学组织形式上主要采用课题式教学与分组合作学习的形式,鼓励学生按照兴趣以4~6人为一组进行组队,通过发现生活中与市场调查相关的实际问题,参与教师的课题项目,参与大学生市场分析大赛或者结合大学生创新项目等形式确定调研主题,明确调查目的、调查对象和调查范围,设计调查方案。无论对于教师还是学生,新的科研项目的立项都会面对很多的新问题。在教学过程中,全体师生围绕共同感兴趣的科研课题展开教学与科研活动,形成一个学习型的教与学的团队。提高学生自主学习与实践的意识。师生在教学与科研活动中会有新的发现,达到教学相长的目的。
(三)课程成绩评定方案的优化
由于《市场调查与预测》的课程加强了实践环节,所以在最终课程的成绩评定中,学生实践环节的占比要相应的提高。我校传统课程考核中,综合成绩=平时成绩+期末成绩。平时成绩和期末成绩分别占30%和70%。现计划调整为:综合成绩=实践成绩+期末成绩。其中实践成绩和期末成绩各占50%。由于实践环节都是分小组进行,调研报告和最终的汇报只能区分不同小组的最终表现,很难区分小组成员的实践表现。为了防止小组成员在团队作业中出现搭便车的现象,所以学生个人实践成绩=小组实践成绩70%+个人平时成绩30%。小组实践成绩的评定在汇报过程中采取小组互评和老师评定相结合的方式,其中小组互评占30%,由其他小组评定的平均分计算得来,老师评定占70%,按照课题选题的难易程度及完成的工作量大小来确定。个人平时成绩=组长评分30%+老师评分70%,组长评分根据组员的参与度及完成情况决定,老师评分根据小组分工的完成情况决定。这种成绩评定结构尽可能的做到客观公正,让学生切身体会到自觉参与实践锻炼的重要性,促进学生积极投入到实践锻炼中,并在提高自身综合素质的基础上提高学生对教师教学的满意度。
四、课程改革与专业特色
由于课程采用课题式教学与分组合作学习的形式,不仅锻炼了学生的实践能力和创新能力,而且对学生团队沟通与合作能力也是一种提升。通过这种教学模式的实践也可以为市场营销专业特色的建立指明方向。
(一)以就业为导向
市场营销专业的学生将来很可能从事市场调研工作,因此如果能在学习的基础上考取相关证书可以很大程度提高就业率,比如可以鼓励学生考取中级调查分析师证书。中级调查分析师证书考核的内容主要包括五个模块:消费者行为学、调查概论、市场调查实务、抽样技术和调查数据分析。学生可以侧重以“消费者行为”为课题开展市场调查,不仅使学生掌握了市场调查的基本理论知识,而且也掌握了市场调查的实务,提高了数据分析的能力,实现了大数据时代企业对新的人才需求的无缝衔接。
(二)以专业竞赛为导向
该课程的实践环节也可以以专业大赛为依托,比如学生的选题可以先以校级大学生创新项目为基础组织教学实践,既完成了教学任务,又可以为参加更高层次的专业大赛奠定一定的基础。在现有课题的基础上选拔比较好的项目衔接省级大学生创新项目、全国及海峡两岸大学生市场调查分析大赛等。这种模式既可以加强与全国高校的交流,也可以紧追市场调研实践教学模式的前沿,拓宽任课教师的思路,促进教学质量的提升,提高教学满意度。
总之,《市场调查与预测》课程的改革不仅顺应了大数据时代的发展,同时也能体现出以市场调研为依托的专业特色。但是我校《市场调查与预测》课程的改革并非一蹴而就,也是一个循序渐进的过程。课程的改革不仅和现有师资水平有关,而且与学校的各种软硬件配置以及实验室建设也存在很大的关系。目前我校在《市场调查与预测》教学方面的软硬件还存在很大的欠缺。如何提高实验室的利用效率,加强实验室软硬件建设,实现SPSS操作课程与理论课程的无缝衔接也是需要我们通过调研来逐步改善的。同时,课程的建O需要长期的投入和努力,我们在提高学生的市场调研实践能力,增强学生将来融入社会的适应能力的过程中还要不断摸索和提升,紧跟时展的步伐。
参考文献:
[1] 段晓梅.基于SPSS软件的《市场调查与预测》实验课程教学研究[J].教育教学论坛,2014(9)58~60
[2] 李红梅.市场调研课程实践性教学模式研究[J].教育教学论坛,2015(12)107~109
[3] 陈成栋,刘晓云.“市场调查与预测“课程教学改革实证研究[J].中国市场,2012(35)26~28
[4] 赵磊,朱娜.“大数据”时代农业高职院校财经类专业市场调查与预测人才培养方法探讨与研究[J].经济研究导刊,2014(27)187~188
【关键词】大数据 统计学 挑战 机遇 教学
【基金项目】贵州省科技厅、贵州民族大学联合基金(黔科合J字LKM[2011]09号)
【中图分类号】G642 【文献标识码】A 【文章编号】2095-3089(2014)08-0235-01
1.引言
“大数据”时代的来临和“大数据”处理技术的发展深深的影响着统计学的发展。能否利用传统的统计理论和统计方法对海量的数据做出快速、准确的处理并获取相关信息?如何对传统的统计理论与方法进行改进或探索新的统计理论和方法来对大数据进行挖掘与处理以获取信息?如何在“大数据”时代背景下培养符合市场需求的统计分析师或数据分析师?如何将“大数据”处理技术融入相关统计学课程教学以促进数据处理与分析技术的发展?这些都是我们在统计学相关课程教学过程中必须思考的一个问题。
2.大数据与统计学
“大数据”随着社交网络、物联网、云计算等的兴起而产生。一般认为大数据具有规模性、多样性、实时性及价值性四个基本特征,包含分析、带宽和内容三个要素。“大数据”在数据来源、数据结构和处理方法方面对传统的统计分析方法产生了冲击。第一,在大数据背景下,数据来源不再是原来的简单抽样,而是“样本即总体”,直接将总体作为研究对象。第二,在大数据时代,研究对象也不是原来单一的结构化数据,由于数据的多样化与规模化,我们更多的是研究非结构数据,采用人工智能来进行数据挖掘和信息获取。第三,数据处理方法也不是简单的采用传统的假设检验方法进行研究,特别是对于统计学中的异常点,不再采取以往的丢弃或者平滑处理方式。
“大数据”处理技术对统计学的发展提出了巨大挑战,但我们必须认识到学科之间的发展是相互交融的,“大数据处理技术”其本质上是数据处理与分析技术,其发展对统计学学科的发展也有积极的一面,同时统计学作为一门独立的学科,有其自身独特的学科优势。首先,海量的数据有利于提高各类统计分析的精度,如减小抽样误差等。其次,较之于传统的统计学方法,现有的“大数据”分析方法难度较大、成本较高、耗时较长。而在实际的应用中,我们关心的不是数据量的多少,而是数据量所蕴含的信息。传统的统计学分析方法是以较少的数据进行精确度相对较高的统计分析,这是“大数据”分析所无法替代的。另一方面,统计学在数据收集方法、模型选择、模型假设以及模型诊断方面有很大优势。而且并不是所有的问题都具有海量的数据,并不是每一个“大数据”问题都适合用现有的“大数据处理技术”来处理。
3.对策与建议
3.1 夯实基础教学
针对以上的分析我们可以看出,大数据对统计学的发展既是机遇,又是挑战。因此我们在教学过程中要夯实统计学基础知识的教学,讲清楚统计学的基本原理与基本方法,特别是数据分析与数据处理的基本原理与方法。对于许多传统领域,如生物、医药以及质量与可靠性工程等,我们面对的多是“小数据”而不是大数据,因此基于样本的统计分析方法仍然是进行此类问题研究的最有效的科学手段。
另一方面,我们要结合大数据技术的特点,对统计学的基本知识进行拓展教育,引导学生思考怎样将已有的统计学基本原理与方法运用到大数据处理的技术研究中。如在大数据环境下怎样进行数据的收集、筛选与甄别、存储与分析等,如何分析并厘清可能的数据来源与范围,如何建立相关指标体系并对数据进行分类,如何制定或调整相应的统计参考标准,以及如何对依靠非传统数据源加工生产的统计数据进行规范的统计推断等。
随着大数据时代的来临,各行各业对具有统计背景知识人才的需求必定越来越多。因此,在统计学教学过程中,一定要结合各专业的特点,特别是“大数据”的特点,切实加强统计学的基础知识教学与拓展教学。
3.2 加强统计学专业软件教学
“大数据”环境下,对统计人才需求也发生了变化。面对海量的数据与多样化的数据,一名合格的统计人才或数据分析人才不单需要良好的统计素养与扎实的统计基础知识,更需要具有数据的存储与整理能力、计算能力以及数据分析与处理能力等。这就要求在教学过程中,加强统计软件或数学软件的教学。
针对传统的“数学证明+手工计算”或“重理论轻专业统计软件”的统计学课程教学模式,可将统计软件或数学软件融入课堂教学并安排一定的课时上机学习统计软件,以此提高学生数据处理能力,加深对统计学基本原理的理解与掌握。
在加强统计软件或数学软件,如SPSS、R、SAS以及Matlab的教学过程中,要摈弃“会软件的操作即会统计技术”的思维,要让学生真正掌握相关操作与相关算法,深入思考算法的实现与相关理论的应用。同时引导学生思考对“大数据处理”的技术要求,包括数据搜集、发掘、存储以及计算分析过程中的算法与设备要求等,引导学生针对大数据进行软件升级与开发。
3.3 突出案例教学与实践教学
大数据的产生和发展源于规模经济问题或超规模经济问题的研究。每一个大数据问题的研究都是与实际经济或社会问题紧密相联的,因此,在实际教学过程中,要突出案例教学与实践教学,由易到难,通过案例教学逐步引入大数据的概念以及大数据处理的基本技术,提高学生的分析全局观以及进行实际数据分析与处理的能力。
教学改革的目的是培养在“大数据”时代背景下,符合市场需求的专业统计人才,而合格的专业统计人才必须具备良好的统计实践能力。案例教学与统计实践活动是培养学生统计实践能力的有效途径。因此,在教学过程中,一方面,教师可融合各种与实际问题相关的案例进行分析和讲解,加深学生对相关统计理论知识的理解,激发学生的学习兴趣,培养学生解决实际问题的能力。另一方面,教师可以组织多种形式的课堂或课堂外的统计实践活动以培养学生统计实践。如,指导学生针对他们感兴趣的与经济、社会发展相关的统计实际问题展开统计研究,设计调查问卷,收集数据、整理和分析数据,撰写研究报告,实现对实际问题的分析和解决等。
4.结束语
总之,在“大数据”环境下我们既要积极面对挑战,又要紧紧抓住机遇,切实结合“大数据”的特点和“大数据处理技术”发展的需求,既加强对传统的统计学方法、统计理论的教学,又积极开展 “大数据“环境下的拓展教学,推动统计学的发展,在数据收集、数据分析以及统计制度等方面进行改革和创新。
参考文献:
[1]李国杰. 大数据研究的科学价值[J]. 中国计算机学会通讯,2012,8(9) .
[2]姜奇平. 2013 全球大数据-大数据的时代变革力量[J]. 互联网周刊,2013,1.
[3]游士兵,张佩,姚雪梅.大数据对统计学的挑战和机遇 [J]. 珞珈管理评论标,2013,2(13).
世界工厂分析认为,现在不是缺数据,而是数据太多。据统计,在今天的互联网上,每秒会产生上万个微博信息、几百万次的搜索、Facebook上的几十万次内容。稍大的电子商务公司,都会采集一些行为数据(比如IP流量、浏览量),但是这些行为数据与商业数据(比如交易量)有什么关系?今天绝大多数公司,甚至包括凡客诚品这样著名的电子商务公司,曾经都不知道如何利用成千上万的零散数据。
一、数据分析的重要性
首先,我们要来了解一下数据分析对于一个网站的重要性。笔者并不从理论方面来论证数据分析的重要性,而是从各方对这一方面的动向来了解。
1、阿里巴巴
2011年5月25日,阿里巴巴宣布推出数据门户,并正式启用新域名,新推出的数据门户根据4500万中小企业用户的搜索、询单、交易等电子商务行为进行数据分析和挖掘,为中小企业以及电子商务从业人士等第三方提供综合数据服务。马云曾表示“数据”将是阿里巴巴未来十年发展的战略核心。
目前正式开放的部分为面向全体用户的宏观行业研究模块,由行业搜索动态趋势图、专业化行业分析报告、细分行业和地区的内贸分析和针对行业各级产品的热点分析,以及实时行业热点资讯等部分构成,并且为免费提供。到2011年底阿里巴巴还将适时陆续推出数据门户其他部分应用。
2、各行业巨头
事实上,近年来全球各大行业巨头都表示进驻“开放数据”蓝海。以沃尔玛为例,该公司已经拥有两千多万亿字节数据,相当于200多个美国国会图书馆的藏书总量。这其中,很大一部分事客户信息和消费记录。通过数据分析,企业可以掌握客户的消费习惯、优化现金和库存,并扩大销量,数据已经成为了各行各业商业决策的重要基础。
电商平台也很注重这方面的数据分析,例如世界工厂网,就设有排名榜的数据分析,通过分析用户在世界工厂网的搜索习惯及搜索记录,免费提供了产品排行榜、求购排行榜和企业排行榜。无独有偶,作为行业门户网站的装备制造网也即将在未来的发展中提供数据分析的功能,从网站的介绍中可以看到:每月企业网站专业SEO检测报告、季度专业行业研究报告等等。所有这些行业的动向,都昭示这一个特点:企业数据、行业分析。也只有行业网站、电商平台等拥有企业数据优势,而且集合整行业信息,并有分析整合数据的能力,才能真正为企业提供真实、有效的数据分析。
从各方对待一个事物的态度与投资动向,我们能很轻易的了解到这一事物的重要程度,从以上的事例可以看出,数据分析对于各行各业都非常的重要,尤其是对于电子商务平台。
二、电子商务数据分析的七个重要因素
1、电子商务数据分析需要商业敏感
今天电子商务公司的数据分析师,有些像老板的军师,必须有从枯燥的数据中解开市场密码的本事。比如,具有商业意识的数据分析师发现,网站上的婴儿车的销售增加了,那么,他基本可以预测奶粉的销量也会跟上去。再比如,网站上的产品发挥的作用并不一样,有的产品是为了赚钱,有的产品是为了促销,有的产品是为了吸引流量,不同的产品在网站上摆放的位置是不一样的。
一个商业敏感的数据分析师,是懂得用什么样的数据实现公司的目标。比如,乐酷天与淘宝竞争,它们重点看的不是交易量,而是流量:每天有多少新的卖家进来,卖了多少东西。因为此阶段竞争最核心的就是人气,而非实质交易量。如果新来的卖家进来卖不出东西,只有老卖家的交易量在增长,即使最后每天的交易量都增长,也还是有问题。
再比如,一家刚踏入市场的B2B公司和已经占领大部分市场的B2B公司,它们的目标不一样。前者是看流量赚人气,后者对流量不怎么看重,而是看重交易转化率及回头率。
当下的数据分析师多是学统计学出身的,一堆数据放在那里,大家都擅长怎么算回归、怎么画函数。但是这批学数学的人才缺乏商业意识,不知道这些数据对业务意味着什么,看不见一堆数据中彼此的关系,也就不知道该用什么样的逻辑分析,也就无法充当老板的眼睛了。
2、电子商务的网站转化率是关键,ROI是最终的目标
电子商务B2B网站平台的宗旨就是为企业服务,让买家与卖家的市场销售成本降低,降低交易成本,提高订单利润。因此,电子商务的网站转化率是关键,这其中就提到一个指标的重要性——ROI。ROI是ReturnOnInvestment的简写,是指通过投资而应返回的价值,它涵盖了企业的获利目标。利润和投入的经营所必备的财产相关,因为管理人员必须通过投资和现有财产获得利润。又称会计收益率、投资利润率。
其计算公式为:投资回报率(ROI)=年利润或年均利润/投资总额×100%
投资回报率(ROI)的优点是计算简单;缺点是没有考虑资金时间价值因素,不能正确反映建设期长短及投资方式不同和回收额的有无等条件对项目的影响,分子、分母计算口径的可比性较差,无法直接利用净现金流量信息。只有投资利润率指标大于或等于无风险投资利润率的投资项目才具有财务可行性。
投资回报率(ROI)往往具有时效性--回报通常是基于某些特定年份。
3、电子商务数据分析衡量指标的设定
指标是让我们更好的从数据量化的层面来了解运营的状况,现在的PV、UV、转化率基本是运营监督的指标;网站分析采用的指标可能有各种各样的,根据网站的目标和网站的客户的不同,可以有许多不同的指标来衡量。常用的网站分析指标有内容指标和商业指标,内容指标指的是衡量访问者的活动的指标,商业指标是指衡量访问者活动转化为商业利润的指标。
电子商务的数据可分为两类:前端行为数据和后端商业数据。前端行为数据指访问量、浏览量、点击流及站内搜索等反应用户行为的数据;而后端数据更侧重商业数据,比如交易量、投资回报率,以及全生命周期管理等。
目前有些人关心前端行为数据,也有些人关心后端商业数据,但是没有几家网站把前端行为数据和后端商业数据连起来看。大家只单纯看某一端数据。但是看数据看得“走火入魔”的人会明白,每个数据,就像散布在黑夜里的星星,它们之间布满了关系网,只要轻轻按一下其中一个数据,就会驱动另外一个数据的变化。
4、某些指标异常变化的原因分析
网站的某些指标的异常变化是外界市场一些变化的客观反应,网站的数据分析人员一定要积极注意。例如PV减少(异常),那我们就要分析用户是搜索来源减少还是直接访问减少?反连接过来的减少?搜索减少就要观察用户的关键字、搜索引擎等。
例如2011年的上半年,曾出现阿里巴巴与慧聪发生争论,而在那几天,另一个B2B网站--世界工厂网的会员注册量批量上升,每天超过千个以上的注册量。当然这只是一部分的猜测,在两个B2B巨头不稳定之时,企业会选择第三方的平台,这是符合常理推断的。不过就此以后,世界工厂的注册量一直是稳中有升的,难道这是会员发现一个免费“新大陆”的口碑宣传吗?事后发现,是因为世界工厂网的一个新项目--全球企业库的上线吸引了大量企业会员的青睐,注册量猛然提升的。对于一些数据的异常增加或减少,一定要分析其产生的原因与市场时机,这对平台以后的发展及政策导向非常有借鉴意义。
有一天,linkin(一个社区网站)忽然发现来自雷曼兄弟的来访者多了起来,但是并没有深究原因。第二天,雷曼兄弟就宣布倒闭了。原因何在?雷曼兄弟的人到linkin找工作来了。谷歌宣布退出中国的前一个月,笔者在linkin上发现了一些平时很少见的谷歌产品经理在线,这也是相同的道理。试想,如果linkin针对某家上市公司分析某些数据,是不是很有商业价值?
5、利用数据分析用户的行为习惯
再次说,得到数据来分析是在揣测用户的心理和一些习惯,最真实的是让用户告诉你,需要什么,这些可以利用投票调查及问题提交等来实现,当然利用数据整合分析也是必然的,然后做出来AT来权衡利弊来对用户体验惊醒改善,和一些基本的产品定位及活动。
装备制造负责人认为,网站数据分析应该两个层次:第一,网站数据分析,是针对产品来说。就围绕产品如何运转,做封闭路径的分析。得出产品的点击是否顺畅、功能展现是否完美。第二、研究客户的访问焦点,挖掘客户潜在需求。如果是以交易为导向的电子商务网站,就是要研究如何高效的促成交易,是否能出现联单!
6、客户的购买行为分析
当用户在电子商务网站上有了购买行为之后,就从潜在客户变成了网站的价值客户,电子商务网站一般都会将用户的交易信息,包括购买时间、购买商品、购买数量、支付金额等信息保存在自己的数据库里面,所以对于这些用户,我们可以基于网站的运营数据对他们的交易行文进行分析,以估计每位用户的价值,及针对每位用户的扩展营销的可能性。
客户的购买行为分析,如传统的RFM模型,会员聚类,会员的生命周期分析,活跃度分析,这些都精准的运营都是非常重要的。
关键词:财务分析;大数据;教学改革
作者简介:王晖(1973-),女,黑龙江鸡西人,北京信息科技大学经济管理学院,讲师;段文军(1969-),女,山东蓬莱人,北京信息科技大学经济管理学院,副教授。(北京 100192)
基金项目:本文系北京信息科技大学教学提高-专业建设项目(项目编号:5028023501)的研究成果。
中图分类号:G642.0 文献标识码:A 文章编号:1007-0079(2013)25-0111-02
当今时代不断涌现各种新型信息方式,例如博客、社交网络等;不断兴起各种新技术,例如云计算、物联网等。数据的产生不受任何的限制,数据以前所未有的速度不断增长和累积,大数据时代已经来到。[1]《华尔街日报》认为大数据时代是引领未来繁荣的三大技术变革之一。麦肯锡公司在一份报告中提出数据是一种生产资料。企业每天面对海量的财务数据,如超市的销售记录、银行的交易记录、淘宝网站数千万笔交易记录(产生量超过50TB,存储量40PB①)。企业如能利用这些巨大的数据集挖掘出有价值的信息,那么企业就能掌控下一个创新、竞争和生产力提高的关键。大数据时代,尤其是财务大数据时代,呼唤创新型人才。[2]呼唤具备综合财务分析能力的人才,利用财务大数据为企业创造财富。
如何培养财务分析人才?在财经类高校本科,一般都开设“财务分析”课程,该课程教学目的是培养学生对真实企业进行综合财务分析,并能独立撰写财务分析报告的能力。[3]本文以北京信息科技大学(以下简称“我校”)为例,探讨大数据时代下财务分析人才的需求特点,对高校“财务分析”课程设置的影响,并提出改进“财务分析”课程教学的建议。
一、大数据时代下财务分析人才需求特点
相较于其他类型数据,财务数据更大、更复杂,蕴藏着更多宝贵信息。麦肯锡公司2011年报告推测,利用大数据分析,零售商可增加运营利润60%,制造业设备装配成本会减少50%。[2]在财务大数据环境下,如何整理与统计这些杂乱无章的数据?如何让财务数据开口说话为企业管理者经营决策提供科学依据?朱东华(2013)认为,大数据时代下,传统的数据分析方法已经不再适应当前的数据环境,同时,各种企业对数据的依赖与日俱增,甚至定量分析方法将逐步取代定性分析方法。[4]财务大数据和大量的财务数据分析需求助长了企业对统计和数学背景的人才需求。
可见,大数据时代下财务分析人才应该具备扎实的统计学和数学功底,能够熟练运用定量分析方法分析数据以获取信息,撰写分析报告为企业相关利益人决策提供依据。
二、“财务分析”课程教学现状
张先治(2007)认为,财务分析是财务分析主体为实现财务分析目标,以财务信息及其他相关信息为基础,运用财务分析技术,对分析对象的财务活动的可靠性和有效性进行分析,为经营决策、管理控制及监督管理提供依据的一门具有独立性、边缘性、综合性的经济应用学科。[5]财务分析课程是为我校经济管理学院财务管理专业本科三年级开设的一门专业必修课。学生前期已经学过数学、经济学、会计学、财务管理、统计学等课程。财务分析课程正是在学生掌握前期所学各门课程的基础上,培养学生综合运用所学专业知识,分析判断企业的财务状况,并根据数据分析结果找出企业存在的问题,提出解决方案。[6]为了更好地实现“财务分析”课程教学目的,课程组的老师们经过讨论,决定修改2008级财务管理专业教学计划,将原来课堂教学的方式改为1/2的学时用于课堂教授基本理论,1/2学时用于实践教学。笔者自2011年开始,按照新的教学计划给三届学生讲授了“财务分析”课程。
1.理论教学部分
教材选用东北财经大学出版社出版,张先治和陈友邦主编的《财务分析》(第五版)。该教材体系完整,内容丰富,全书以一家虚拟的ZTE公司为例,演示财务报告分析、财务效率分析和财务综合分析。每章设有案例和复习思考题,该书还有配套的习题集。在课堂教学中,以教材为主线,突出介绍各种财务分析方法的使用,以及根据分析结果得出结论,提出解决方案。
2.实践教学部分
一人一企,边学边分析。每位学生选择一家上市公司作为分析对象,利用学校购买的金融数据库以及相应网络资源,结合所学财务分析理论知识进行上机实验,在Excel内完成数据分析,并将分析结果形成财务分析报告。学生分析判断和决策能力在实战中得以锻炼,教学效果得到改善。
但是,随着大数据时代的来临,外部环境对数据分析能力要求的提升,仅仅学会利用Excel进行水平分析、垂直分析、趋势分析、比率分析和因素分析,已经远远不能满足市场对财务分析人才的需求,学生就业的竞争力无从谈起。结合前面大数据时代下财务分析人才需求特点,我校学生财务分析能力的培养存在着以下问题:
1.学生数据收集、整理和分析能力弱
定量分析方法应用的基础是数据,财务分析人员必须学会从海量的网络资源中搜集并筛选与自己的分析对象和分析目的相关性较强的资料信息,[7]这些资料信息可能是结构化数据,例如金融数据库等;也可能是非结构化数据,例如网页等。从实践教学环节反映出学生数据收集和整理能力弱,分析其原因主要是:
(1)学生不熟悉对财务分析有帮助的网络资源。搜集有价值的数据需要一定的技巧,其中最为重要的是熟悉一些重要的网站,知道相应的数据应该在哪里找到的概率比较大,做到有的放矢。
(2)学生无法将非结构数据快速地转换成所需的数据形式。类似金融数据库这样的结构数据,学生基本能够筛选出所需信息。但是,对于类似网页这样的非结构数据,他们就只能运用最原始的复制粘贴的方法提炼数据信息,耗时且耗力。2013年2月1日,人保财险执行副总裁王和在中国第七届“保险业管理信息化高峰论坛”上指出,在过去的两三年里,结构和非结构数据发生了本质性的逆转。过去就整个社会来讲,绝大多数的数据是结构数据,而现在非结构数据正呈快速增长的趋势,现在以及未来,非结构数据将占到95%,甚至更多。
“财务分析”课程讲授的基本方法主要是比率分析和因素分析法等。目前,无论是学术界还是业界,研究人员大量使用统计模型进行财务数据分析,例如聚类分析、多元回归、因子分析、时间序列预测法等。因而,我校学生数据分析能力急需加强,尤其是统计学和数学的基础要扎实。
2.学生财务分析报告撰写水平有待提高
财务分析的结果是以财务分析报告的形式展示给企业利益相关人,为其进行财务预测、财务决策、财务控制和财务评价等提供可靠信息。财务分析报告是对企业经营状况、资金运作的综合概括和高度反映。李宝智(2012)认为,报告应具备八要素:准确、完整、可比、用户导向、相关、问题的解决方案、及时和易用。[8]从我校学生提交的财务分析报告看,与上述要求还有很大差距。
三、“财务分析”课程教学改革建议
1.培训网络资源使用
重点介绍几个数据库的使用:
(1)金融数据库。我校购买了两款金融数据库,北京聚源锐思数据科技有限公司金融数据库(http://)和深圳市国泰安信息技术有限公司CSMAR财经系列研究数据库(http://)。登陆金融数据库后,输入查询条件即可下载上市公司财务数据,速度快且数据量大,数据格式可以任意选择。
(2)中国资讯行(国际)有限公司高校财经数据库(http://),INFOBANK于1995年在香港成立,是一家专门收集、处理及传播中国商业、经济信息的香港高科技企业,信息范围涵盖19个领域、197个行业。
(3)国务院发展研究中心信息网(国研网)(http://.cn)。国研网已建成了内容丰富、检索便捷、功能齐全的大型经济信息数据库集群,包括:六十几个文献类数据库、四十多个统计类数据库等。
网站资源:中国证券监督管理委员会(http://)、上海证券交易所(http://.cn)、深圳证券交易所网站(http://)、巨潮资讯网(http://.cn)和相关协会网站等。
2.培养数据预处理和建模能力
收集到数据之后,需要对数据进行预处理,利用统计学的理论和方法将数据转换成一个分析模型。[9]学生在统计学、计量经济学课程中,已经完成基本模型理论、SPSS或者Eviews三分析软件的学习。但是,若想实现对大数据的整理和分析,应该掌握R或者Matlab统计分析软件,同时,还要掌握一种编程语言,例如C++、JAVA、C#等。利用编程语言调用统计分析软件,从而实现大数据的分析。另外,建议学生了解Perl语言编程,该语言擅长处理非结构数据。
3.培养文献阅读及财务分析报告撰写能力
数据分析之后,需要撰写财务分析报告,为各方利益相关者的决策提供依据。不同财务分析的目的,形成的财务分析报告具体要求会有所差异,但是撰写财务分析报告的基本步骤相同。首先查阅文献,阅读相关学术文章、财务分析师分析报告、评级机构报告等;其次,模仿写作,组织财务分析结果,形成报告。此中没有捷径,需多看、多写。
注释:
①1TB 等于1000GB,1PB 等于1000TB。
参考文献:
[1]孟小峰,慈祥.大数据管理:概念、技术与挑战[J].计算机研究与发展,2013,(1).
[2]邬贺铨.大数据时代的机遇与挑战[J].求是,2013,(4).
[3]张肖飞.财经类高校《财务分析》课程案例教学改革研究[J].商业会计,2013,(1).
[4]朱东华,张嶷,汪雪锋,等.大数据环境下技术创新管理方法研究[J].科学学与科学技术管理,2013,(4).
[5]张先治.财务分析理论发展与定位研究[J].财经问题研究,
2007,(4).
[6]陈卫军,徐文学,陈平.基于上市公司网上资源的《财务分析》实训教学探讨[J].财会通讯,2012,(2).
[7]王桢.网络环境下财务分析案例教学方法的改进[J].中国教育信息化,2012,(1).
庆幸的是,今年搞电子商务的人对数据分析开始重视起来,就连开夫妻店起家的淘宝卖家也开始招数据分析师,更别说一些再大一点的电子商务公司了。
现在不是缺数据,而是数据太多。据统计,在今天的互联网上,每60秒会产生10万个微博信息、400万次搜索、Facebook上的50万次内容。稍大的电子商务公司,都会采集一些行为数据(比如点击量),但是这些行为数据与商业数据(比如交易量)有什么关系?今天绝大多数公司,甚至包括凡客诚品这样著名的电子商务公司,都不知道如何利用成千上万的零散数据。
需要商业敏感
先讲一个有趣的故事。有一天,linkin(一个社区网站)忽然发现来自雷曼兄弟的来访者多了起来,但是并没有深究原因。第二天,雷曼兄弟就宣布倒闭了。原因何在?雷曼兄弟的人到linkin找工作来了。谷歌宣布退出中国的前一个月,笔者在linkin上发现了一些平时很少见的谷歌产品经理在线,这也是相同的道理。
试想,如果linkin针对某家上市公司分析某些数据,是不是很有商业价值?现在51job绝对不知道如何采集这些数据,只盯着注册用户数量这样的简单数据。国内许多互联网公司,拿着“鱼翅当萝卜”。
说这个故事,只是为了告诉大家,互联网中的数据,需要用商业的眼光分析,才有价值。
今天电子商务公司的数据分析师,有些像老板的军师,必须有从枯燥的数据中解开市场密码的本事。比如,具有商业意识的数据分析师发现,网站上的婴儿车的销售增加了,那么,他基本可以预测奶粉的销量也会跟上去。
再比如,网站上的产品发挥的作用并不一样,有的产品是为了赚钱,有的产品是为了促销,有的产品是为了吸引流量,不同的产品在网站上摆放的位置是不一样的。
一个商业敏感的数据分析师,是懂得用什么样的数据实现公司的目标。
比如,乐酷天与淘宝竞争,它们重点看的不是交易量,而是流量:每天有多少新的卖家进来,卖了多少东西。因为此阶段竞争最核心的就是人气,而非实质交易量。如果新来的卖家进来卖不出东西,只有老卖家的交易量在增长,即使最后每天的交易量都增长,也还是有问题。
再比如,一家刚踏入市场的B2C公司和已经占领大部分市场的B2C公司,它们的目标不一样。前者是看流量赚人气,后者对流量不怎么看重,而是看重交易转化率及回头率。
当下的数据分析师多是学统计学出身的,一堆数据放在那里,大家都擅长怎么算回归、怎么画函数。但是这批学数学的人才缺乏商业意识,不知道这些数据对业务意味着什么,看不见一堆数据中彼此的关系,也就不知道该用什么样的逻辑分析,也就无法充当老板的眼睛了。
前几天遇到一个老板,他说数据分析师每天给他看几十个零散数据。笔者问,是不是数据越多越麻烦。他说笔者一下子就点出他的痛处了,因为请来的数据分析专家只把数据交到他面前,却没有把行为数据和商业数据的关系告诉他。
一个公司CEO,每天看到几十个数据,什么点击率、用户价值等等,他们有精力来解读吗?对于他们来说,需要知道网站的问题是什么,需要做什么。
融合前后端数据
开车时,水温过高的话,汽车的仪表盘会亮灯提示。同样,在电子商务的交易中,也可以用一些数据组成“仪表盘”。所以说,数据分析师不是单纯做数学题。一个好的仪表盘,出现好的和坏的情况时,都会有提示。而数据构成的“仪表盘”,正是行为数据和商业数据之间的逻辑关系。
电子商务的数据可分为两类:前端行为数据和后端商业数据。前端行为数据指访问量、浏览量、点击流及站内搜索等反应用户行为的数据;而后端数据更侧重商业数据,比如交易量、投资回报率,以及全生命周期管理等。
目前有些人关心前端行为数据,也有些人关心后端商业数据,但是没有几家网站把前端行为数据和后端商业数据连起来看。大家只单纯看某一端数据。但是看数据看得“走火入魔”的人会明白,每个数据,就像散布在黑夜里的星星,它们之间布满了关系网,只要轻轻按一下其中一个数据,就会驱动另外一个数据的变化。
大家都比较关心网站用户群,就以此举例:
某网站发现前端的注册量增加了不少,访问量也上去了,交易量却没有上去。原因是什么?这是许多网站的通病,每天花费不少精力想这个问题。现在这个阶段,处在互联网前端的人只知道点击量等数据,很少问后端的商业数据,如谁一直在重复购买?谁影响了5%~15%核心用户群进来买东西?谁在给网站做正/负面传播?
而操作网站后端交易环节的人只知道卖东西,又很少问到前端数据。如一个客户进入网站平均停留时间是15分钟还是30分钟,这对重复购买用户有关系?一个客户进入网站社区和没进入社区,和交易量有关系吗?
网站找不到核心用户群的原因,很大程度上是没有把行为数据与商业数据进行对接分析。
这种后果就是,作为网站的决策者,不知道网站核心用户群的行为特征,也不知道如何增加核心用户,更不知道从一个用户进入到网站之后到离开;哪些环节是需要疏通的。
观点
不能蒙着眼睛做电子商务
对于一个电子商务的平台运营商而言,反映用户行为的前端数据与后端的商业数据千千万万,卖家和买家也是千千万万,其中前端哪些数据对后端的交易量产生最大影响,只要针对这个前端数据猛下药,必然会刺激后端数据的增加;反过来,后端哪些交易数据比较重要,摸清楚数据是从哪个渠道来的,主要贡献用户是谁,网站的产品设计就该倾斜于这些数据。如此才能提升前端到后端数据的“交易转化率”。
遗憾的是,今天许多电子商务公司,每天都在做“碰巧”游戏:今天推荐A家产品,明天撤下A家的产品;今天做低价促销,明天又做线下活动。这些决策的改变,没有数据“仪表盘”的指示或良好的监控,都是蒙着眼睛在做电子商务。
新闻
西门子助力发动机企业
上海大众动力总成公司为满足快速增长的业务需求,降低运营成本,从而在激烈的市场竞争中取得优势,建设一个高效、绿色的数据中心成为当务之急。经过对投标单位的严格考核与缜密评定,该公司最终选择了西门子IT解决方案和服务集团作为其发动机零部件生产厂新建数据中心的合作伙伴,为上海大众动力总成公司实施精益化生产提供革新型数据中心解决方案。
0 引言
新世纪以来,随着互联网及信息技术的飞速发展和应用,使我国的信息化得到前所未有的爆炸式增长,各个行业相继完成信息化改造,极大地提升了人们的生活水平与生产效率。同时,也使各行业进入到信息化发展的轨道上,进一步提升了企业生产效益。正是由于经济的飞速发展,各行业发展都已积累了海量的数据信息。但是传统的数据分析方法和工具仅仅能实现简单的录入、查询、更改、统计、输出等非常低等的功能,无法及时快速地发现数据跟数据之间存在的关系与规则,无法根据已有的海量数据有效预测未来的发展趋势,不能及时为企业决策提供有力的数据支持。
数据挖掘技术的出现技术填补了大量企业的这一需求,数据挖掘技术可以高效地挖掘数据背后隐藏的关系跟规则,非常方便地把这些海量信息予以统计、分析及利用成为当前各行业需要解决的首个问题。为企业决策提供及时准确的统计学数据支持,为企业发展壮大提供很好的数据分析工具。而海量数据挖掘技术的出现,保证了海量数据信息的合理利用,同时加快了我国信息化技术的发展。
1 数据挖掘技术定义
数据挖掘技术起源于情报分析,其过程是一个从大量的、不完整的、有噪声的、模糊的随机数据被从隐含在大量数据中提取的过程,数据挖掘的情报资料是人们事先不知道的,但可能是有用的信息和知识。在大多数情况下,人们利用计算机等信息工具的时候只知道,存储数据,数据被存储的越来越多,但不知道这些海量数据中隐藏着很多重要的规律、规则等信息,数据挖掘技术就是一种可以从大量的数据中挖掘出有用重要信息的一种数据分析工具。如图1所示。
2 数据挖掘常用的方法
数据统计分析中的数据挖掘技术主要有以下方法:分类法、回归分析法、聚类法、关联规则法、特征法、变化和偏差分析法、Web页挖掘等相关方法,这些方法从不同的角度对数据进行挖掘分析,得出需要的信息数据。
3 统计分析和数据挖掘的主要区别
从实践应用的角度来看,这个问题并没有很大的意义,正如“不管白猫还是黑猫,抓住老鼠才是好猫”一样,在实际的应用中,数据分析师分析问题时,首先要考虑的是思路,其次才会对与思路匹配的分析挖掘技术惊醒筛选,而不是优先考虑到底是用统计分析方法还是利用数据挖掘技术来解决这个问题。
统计分析和数据挖掘的主要的区别在以下几个方面:
统计分析在预测中应用常表现为一个或一组函数关系式,而数据挖掘在预测应用中的重点在于预测结果,很多时候并不会从结果中产生明确的函数关系式,有时候甚至不知道到底哪些变量在起作用,又是如何起作用的。最经典的例子就是“神经网络”挖掘技术,它里面的隐藏层就是一个黑箱,没有人能在所有的情况下读懂里面的非线性函数是如何对自变量进行组合的,在实践应用中,这种情况常会让习惯统计分析公式的分析师感到困惑,这也确实影响了模型在实践应用中的课理解性和可接受度。
统计分析的基础之一就是概率论,在对数据进行统计时,分析人员常常需要对数据分布和变量之间的关系进行假设,确定用什么概率函数来描述变量之间的关系,以及如何检验参数的统计显著性;但是数据挖掘的应用中,分析人员不需要对数据分布做任何假设,数据挖掘中的算法会自动寻找变量间的关系,因此,相对于海量、杂乱的数据,数据挖掘技术有明显的应用优势。
在实践应用中,统计分析常常需要分析人员先做假设或判断,然后利用数据分析技术来验证该假设的正误。但是,在数据挖掘中,分析人员并不需要对数据的内在关系做任何假设,而是会让挖掘工具中的算法自动去寻找数据中隐藏的关系或规律。
两者的思维方式并不相同,这给数据挖掘带来了更灵活、更宽广的思路和舞台。
4 数据挖掘的一般流程
海量数据挖掘技术指的是把海量数据信息有针对性地进行提炼、分类和整理,从而将隐含在最深层次的信息挖掘出,为各行业发展提供可靠的数据信息支持。换言之,海量数据挖掘技术利用当前最先进的数据分析工具从海量数据信息内部挖掘数据信息以及模型间的关系的一种技术统称,更加深入的认识与了解数据模型,并对各自模型件关系的对应关系予以深入分析,从而更好地指导各行业的生产与发展,同时为其提供更多决策性的技术支持。
事实上,数据挖掘过程不能够自动生成,必须通过人工建模来实现,因此,人需要完成大部分的工作。其中,主要包含数据采集、数据预处理、数据选择、建立挖掘模型及评估模型等。
首先,通常海量数据挖掘技术应用在各行业的生产和发展决策方面,也就是说数据挖掘工作将面临着巨大的数据信息,并且此类数据信息多数为模糊的、无规律的;其次,建立高效、易理解的数据模型有助于实现海量数据挖掘;再次,数据挖掘模型的构建主要目的是帮助用户解决实际存在的问题,在经过对海量数据信息进行挖掘之后,从中找出利用价值高的信息,再对此类信息予以统计、整理和分析,最终用于指导各行业的生产与发展;最后,开展数据挖掘工作主要是为从海量数据信息里找出有价值的数据信息,这并不是单纯的数学性研究,其根本目的是从各行业的海量数据信息中找出有价值的数据信息,它具有相应的约束条件,且面向的是针对性较强的数据挖掘模型。
数据挖掘的一般流程如图2所示。
5 数据挖掘技术实现
现如今,尽管海量数据挖掘属于一种新技术,但由于该技术发展速度较快,因此,已被广泛应用到计算机发展领域当中。近年来,由于数据挖掘理论的逐步趋于完善化,并且在实践中取得了较好成效。其中,最常用的海量数据挖掘技术主要包含以下几种:决策树、神经网络以及统计学模糊。
①决策树算法通常应用到分析分类问题当中,同时它也是分类与预测的一主要技术。其中,类别属于因变量,而决策树可从众多预测变量当中,再相关理论的指导下,预测变量的发展趋势及变化关系,同时可对其进行双向分析,即包含正向分析和反推分析,根据最终的结果去寻找问题的原因。
②神经网络的建立。事实上,人工神经网络法指的是模拟人脑神经元结构的一种算法。其中,改善神经网络算法的关键在于知识的表达与获取。神经网络可实现并行处理,这是因为神经网络应用的是自适应函数估计器,因此,它的学习能力是极强的,在短时间内能学会新知识,同时它的纠错能力与适应性也是非常可观的。
③统计学模糊学习。该方法属于一种预测法,常被应用到谈及机器学习规律当中,而且只可应用到小样本情形中。另外,该方法是对观测数据进行深入的研究,通过对原理的分析,找出其中不予通用的规律。再结合已找出的规律进行更深层次的分析与探究,再结合实践中存在的现象予以预测,这样可提前预测出数据的发展趋势。
6 数据挖掘的应用
目前数据挖掘的应用领域主要包括以下这些方面:
金融、医疗保健、市场业、零售业、制造业、司法、工程和科学、保险业、网络舆情监控系统、企业竞争情报系统、全文检索、企业搜索、数据分析、数据库,可以用在各个需要数据分析的行业。
6.1 生物科技
在生物科技领域,如人的大脑与机器这一层面上,利用数据挖掘技术可加速发展生化义肢这一产品,很多这方面的专家学者普遍认为利用数据挖掘技术快速发展生化义肢这方面是大有潜力可供挖掘的。
6.2 信息科技
数位权利管理愈来愈受重视,以便保护知识财产,由全录公司Palo Alto研究中心创出的Content Guard公司,利用加密技术保护知识财产。
6.3 商务智能
数据挖掘技术可以用来支持广泛的商务智能应用,如顾客分析、定向营销、工作流管理、商店分布和欺诈检测等。数据挖掘还能帮助零售商回答一些重要的商务问题,如“谁是最有价值的顾客?”“什么产品可以交叉销售或提升销售?”“公司明年的收入前景如何?”这些问题催生了一种新的数据分析技术——关联分析。如图3所示。
6.4 资料发掘与生物测定学
数据挖掘是利用数学演算法,在庞大的资料库中寻找方式,例如目前应用在掌纹、脸孔等图像辨识,或者是语言辨识处理等方面。
6.5 塑料芯片
塑料芯片是最新的前沿科学,塑料以其价格便宜、容易制造等特点被很多科研机构以及大学所青睐。很多大学科学家及机构在利用数据挖掘技术致力于研究塑料代替硅半导体,如IBM公司、朗讯科技、麻省理工大学、剑桥大学、Penn State大学都在大量研究与开发塑料或有机物质芯片。
6.6 微光学技术
专家利用可反射光线的水晶、玻璃等物质,让光纤传输资料的速度,不会因为通过路由器、交换器时而降低速度。
6.7 司法
在司法领域,数据挖掘技术分析的对象一般分为两大类:一类是基于监控对象的系统,它能够帮助分析专家跟踪某个犯罪嫌疑人;另一类是基于行为模式的系统,它可以在多种活动方式中搜寻可疑的可能涉及犯罪的行为,或者可能是犯罪分子才会产生的行为。基于监控对象的数据挖掘技术又称作关联分析法,是司法机构重点开发的技术。这种方法能利用相关数据,在表面上没有关系的人或事件之间建立关联。比如,如果某人是犯罪嫌疑人,那么就可以使用关联软件发现嫌疑人可能正在影响的其他人,从相关人那里获取破案线索。
6.8 微应用流体学
科学家正试图利用物理原则做实验,只利用极微量的水,加快原本需要费时费金钱的实验。加州理工学院的应用物理学家Stephen Quake,以微应用流体学发展了一套DNA分析装置,比传统的分析装置快。Technology Review的编辑指出,微应用流体学将为生物科技提供巨大的帮助,就像当初电晶体提高了电子产品。
7 案例分析
基于统计分析的数据挖掘在工程造价管理中的实例应用分析,在工程造价管理系统中,可通过选择工程单方造价指标、造价核减率、竣工结算价、工程结构形式、招标方式、竣工结算审核单位、竣工结算日期等因素等进行数据筛选,通过后台数据库统计分析后选出符合目标值的数据类型。
比如,选取出2010年1-7月某市市区竣工结算审定价超过100万元的工程计三十二项。其中,六层以下砖混结构住宅楼七项,六层以下框架混凝土结构住宅楼六项,十八层框剪住宅楼两项,框架综合楼五项,框架厂房三项,内装饰工程五项,外装饰工程两项,普通沥青路两项。
经过对建设成本的测算可以清楚,六层及以下的砖混结构住宅楼平均单方造价为801.65元/m2,六层以下框架住宅楼平均单方造价为941.39元/m2,十八层框剪住宅楼平均单方造价为1080.37元/m2,框架综合楼平均单方造价为1326.36元/m2,框架厂房平均单方造价为852.70元/m2,内装平均单方造价为24.58元/m2,外装平均单方造价为824.94元/m2,普通沥青路平均单方造价为354.55元/m2。
此市市区2010年1-7月竣工工程单方造价指标如上所示的典型工程造价指标信息,是此市定期的,具有代表性、以审定的工程结算为主的住宅(含经济适用房或廉租房)、公共建筑、市政道路等工程造价实例信息,它为社会和造价管理机构提供可参考的、较详细的实际工程造价经济指标和消耗量指标信息。
总的来说,数据分析处理,可以简单快捷地从繁重冗杂的工程造价数据中找出共性或者异性的数据。有效加强了工程造价的全过程动态管理,强化了工程造价的约束机制,为维护有关各方的经济利益,规范价格行为,促进微观效益和宏观效益的统一提供广阔的平台。
8 结束语
数据挖掘技术的广泛应用彻底解决了海量数据快速处理问题,然而人们对数据挖掘技术的需求水平也越来越高。它可以预测未来的发展趋势,所以今后研究焦点可能会集中到处理非数字数据;寻求数据挖掘过程中的可视化方法,便于在知识发现过程中的人机交互,使计算机真正实现智能化。这可能需要一段时间,需要计算机工作者的不断的研究探索,不久的将来我们将看到数据挖掘据技术很大的进展。
电信运营商拥有多年的数据积累,拥有诸如财务收入、业务发展量等结构化数据,也会涉及到图片、文本、音频、视频等非结构化数据。从数据来源看,电信运营商的数据来自于涉及移动语音、固定电话、固网接入和无线上网等所有业务,也会涉及公众客户、政企客户和家庭客户,同时也会收集到实体渠道、电子渠道、直销渠道等所有类型渠道的接触信息。整体来看,电信运营商大数据发展仍处在探索阶段。
大数据在电信行业应用的总体情况
目前国内运营商运用大数据主要有五方面:(1)网络管理和优化,包括基础设施建设优化和网络运营管理和优化;(2)市场与精准营销,包括客户画像、关系链研究、精准营销、实时营销和个性化推荐;(3)客户关系管理,包括客服中心优化和客户生命周期管理;(4)企业运营管理,包括业务运营监控和经营分析;(5)数据商业化指数据对外商业化,单独盈利。
第一方面:网络管理和优化。此方向包括对基础设施建设的优化和网络运营管理及优化。
(1)基础设施建设的优化。如利用大数据实现基站和热点的选址以及资源的分配。运营商可以通过分析话单和信令中用户的流量在时间周期和位置特征方面的分布,对2G、3G的高流量区域设计4G基站和WLAN热点;同时,运营商还可以对建立评估模型对已有基站的效率和成本进行评估,发现基站建设的资源浪费问题,如某些地区为了完成基站建设指标将基站建设在人际罕至的地方等。
(2)网络运营管理及优化。在网络运营层面,运营商可以通过大数据分析网络的流量、流向变化趋势,及时调整资源配置,同时还可以分析网络日志,进行全网络优化,不断提升网络质量和网络利用率。
利用大数据技术实时采集处理网络信令数据,监控网络状况,识别价值小区和业务热点小区,更精准的指导网络优化,实现网络、应用和用户的智能指配。由于用户群的不同,不同小区对运营商的贡献也不同。运营商可以将小区的数据进行多维度数据综合分析,通过对小区VIP用户分布,收入分布,及相关的分布模型得到不同小区的价值,再和网络质量分析结合起来,两者叠加一起,就有可能发现某个小区价值高,但是网络覆盖需要进一步提升,进而先设定网络优化的优先级,提高投资效率。
德国电信建立预测城市里面的各区域无线资源占用模型,根据预测结果,灵活的提前配置无线资源,如在白天给CBD地区多分配无线资源,在晚上,则给酒吧地区多分配无线资源,使得无线网络的运行效率和利用率更高。
法国电信通过分析发现某段网络上的掉话率持续过高,借助大数据手段诊断出通话中断产生的原因是网络负荷过重造成,并根据分析结果优化网络布局,为客户提供了更好的体验,获得了更多的客户以及业务增长;
第二方面,市场与精准营销。此方向包括客户画像、关系链研究、精准营销、实时营销和个性化推荐。
(1)客户画像。运营商可以基于客户终端信息、位置信息、通话行为、手机上网行为轨迹等丰富的数据,为每个客户打上人口统计学特征、消费行为、上网行为和兴趣爱好标签,并借助数据挖掘技术(如分类、聚类、RFM等)进行客户分群,完善客户的360度画像,帮助运营商深入了解客户行为偏好和需求特征。
(2)关系链研究。运营商可以通过分析客户通讯录、通话行为、网络社交行以及客户资料等数据,开展交往圈分析。尤其是利用各种联系记录形成社交网络来丰富对用户的洞察,并进一步利用图挖掘的方法来发现各种圈子,发现圈子中的关键人员,以及识别家庭和政企客户;或者分析社交圈子寻找营销机会。如在一个行为同质化圈子里面,如果这个圈子大多数为高流量用户,并在这个圈子中发现异网的用户,我们可以推测该用户也是高流量的情况,便可以通过营销的活动把异网高流量的用户引导到自己的网络上,对其推广4G套餐,提升营销转化率。总之,我们可以利用社交圈子提高营销效率,改进服务,低成本扩大产品的影响力。
(3)精准营销和实时营销。运营商在客户画像的基础上对客户特征的深入理解,建立客户与业务、资费套餐、终端类型、在用网络的精准匹配,并在在推送渠道、推送时机、推送方式上满足客户的需求,实现精准营销。如我们可以利用大数据分析用户的终端偏好和消费能力,预测用户的换机时间尤其是合约机到期时间,并捕捉用户最近的特征事件,从而预测用户购买终端的真正需求,通过短信、呼叫中心、营业厅等多种渠道推送相关的营销信息到用户手中。
(4)个性化推荐。利用客户画像信息、客户终端信息、客户行为习惯偏好等,运营商可以为客户提供定制化的服务,优化产品、流量套餐和定价机制,实现个性化营销和服务,提升客户体验与感知;或者在应用商城实现个性化推荐,在电商平台实现个性化推荐,在社交网络推荐感兴趣的好友。
第三方面,客户关系管理。此方面包括客服中心优化和客户生命周期管理。
(1)客服中心优化。客服中心是运营商和客户接触较为频繁的通道,因此客服中心拥有大量的客户呼叫行为和需求数据。我们可以利用大数据技术可以深入分析客服热线呼入客户的行为特征、选择路径、等候时长,并关联客户历史接触信息、客户套餐消费情况、客户人口统计学特征、客户机型等数据,建立客服热线智能路径模型,预测下次客户呼入的需求、投诉风险以及相应的路径和节点,这样便可缩短客服呼入处理时间,识别投诉风险,有助于提升客服满意度;另外,也可以通过语义分析,对客服热线的问题进行分类,识别热点问题和客户情绪,对于发生量较大且严重的问题,要及时预警相关部门进行优化。
(2)客户关怀与客户生命周期管理。客户生命周期管理包括新客户获取、客户成长、客户成熟、客户衰退和客户离开等五个阶段的管理。在客户获取阶段,我们可以通过算法挖掘和发现高潜客户;在客户成长阶段,通过关联规则等算法进行交叉销售,提升客户人均消费额;在客户成熟期,可以通过大数据方法进行客户分群(RFM、聚类等)并进行精准推荐,同时对不同客户实时忠诚计划;在客户衰退期,需要进行流失预警,提前发现高流失风险客户,并作相应的客户关怀;在客户离开阶段,我们可以通过大数据挖掘高潜回流客户。国内外运营商在客户生命周期管理方面应用的案例都比较多。如SK电讯新成立一家公司SK Planet,专门处理与大数据相关的业务,通过分析用户的使用行为,在用户做出离开决定之前,推出符合用户兴趣的业务,防止用户流失;而T-Mobile通过集成数据综合分析客户流失的原因,在一个季度内将流失率减半。
第四方面,企业运营管理。可以分为业务运营监控和经营分析。
(1)业务运营监控分可以基于大数据分析从网络、业务、用户和业务量、业务质量、终端等多个维度为运营商监控管道和客户运营情况。构建灵活可定制的指标模块,构建QoE/KQI/KPI等指标体系,以及异动智能监控体系,从宏观到微观全方位快速准确地掌控运营及异动原因。
(2)经营分析和市场监测。我们可以通过数据分析对业务和市场经营状况进行总结和分析,主要分为经营日报、周报、月报、季报以及专题分析等。过去,这些报告都是分析师来撰写。在大数据时代,这些经营报告和专题分析报告均可以自动化生成网页或者APP形式,通过机器来完成。数据来源则是企业内部的业务和用户数据,以及通过大数据手段采集的外部社交网络数据、技术和市场数据。分析师转变为报告产品经理,制定报告框架、分析和统计维度,剩下的工作交给机器来完成。
第五方面,数据商业化。数据商业化指通过企业自身拥有的大数据资产进行对外商业化,获取收益。国内外运营商的数据商业化都处于探索阶段,但相对来说,国外运营商在这方面发展的更快一些。
(1)对外提供营销洞察和精准广告投放。
营销洞察:美国电信运营商Verizon成立了精准营销部门Precision Marketing Division。该部门提供精准营销洞察(Precision Market Insights),提供商业数据分析服务。如在美国,棒球和篮球比赛是商家最为看中的营销场合,此前在超级碗和NBA的比赛中,Verizon针对观众的来源地进行了精确数据分析,球队得以了解观众对赞助商的喜好等;美国电信运营商Sprint则利用大数据为行业客户提供消费者和市场洞察,包括人口特征、行为特征以及季节性分析等方面。
精准广告投放:Verizon的精准营销部门基于营销洞察还提供精准广告投放服务;AT&T提供Alert业务,当用户距离商家很近时,就有可能收到该商家提供的折扣很大的电子优惠券。
(2)基于大数据监测和决策支撑服务。
客流和选址:西班牙电信于2012年10月成立了动态洞察部门DynamicInsights开展大数据业务,为客户提供数据分析打包服务。该部门与市场研究机构GFK进行合作,在英国、巴西推出了首款产品名为智慧足迹(Smart Steps)。智慧足迹基于完全匿名和聚合的移动网络数据,帮助零售商分析顾客来源和各商铺、展位的人流情况以及消费者特征和消费能力,并将洞察结果面向政企客户提供客流分析和零售店选址服务。
2012年学校财务信息管理专业成功申报后,前后已经迎来了2013、2014两届学生,作为一门融合财务会计与信息技术相交叉的新专业,专业建设不仅要秉承传统的财经学相关理论,而且还要适应信息化时代的市场需求,培养企业需要的人才。时值今日,具备“智能化行为”特征的“智能化企业”成为大多数传统企业的需求。在经过专业内全体教师多次反复调研、考察、研讨、学习后,2014级财务信息管理专业人才培养目标初步确定为:数据分析引领财务决策信息化。在此基础上,专业定位设计提出三个层次要求:基于财务会计、强化数据分析、服务管理决策。
二、商务智能课程定位
课程定位需要与课程体系相辅相成,要思考并把握本门课程在课程体系中的地位与作用。财务信息管理专业课程体系建设基本遵循“三步走”思路,即第一学期注重财务会计基础理论知识的教授、第二学期突出数据分析核心知识的教授、第三学期侧重决策智能前沿知识的教授,形成的梯队知识体系助力本专业人才培养方案实施。
(一)从跨学科特性来看
商务智能课程是一门集管理科学、信息技术、数据统计和人工智能等多个前沿领域的交叉性学科课程,顺利完成该门课程的授课需要前导课程的支持,因此,商务智能课程在以上三层梯队知识体系中位于最后一层。
(二)从其最早的概念阐述来看
美国加特纳集团分析师HowardDresner认为商务智能描述了一系列的概念和方法,通过应用基于事实的支持系统来辅助商务决策的制定。可见,商务智能是商务分析中辅助决策的有效利器。
(三)从大数据时代背景来看
各国政府都在强调“基于数据驱动的决策方法”,商务智能与生俱来采用的数据仓库、联机分析处理和数据挖掘等核心技术体系有效地支持了数据驱动全过程,合理利用并可以成功将数据转化为价值。综上,结合专业定位,商务智能的课程性质是专业核心课,其课程定位设计为“基于数据驱动的决策方法,变数据为价值。”
三、先修/后续课程衔接设计
目前,在全国,商务智能课程主要在计算机类、经管类(信管、电商、物流)等本科层次以上专业开设;在财经类专业且面向高职层次开设商务智能课程,还属罕见;这是本校适应“后信息经济时代”市场需求、实施专业创新与课程改革方面的具体表现。作为一门面向财经类高职生开设的新兴发展课程,如何区别于计算机、软件等专业已开设的类似课程,如何贴近财经类高职类学生的注重动手能力、掌握关键核心技术等特点来开设这门课程将面临着众多挑战。但是,在大数据时代,如果将大数据看成是一种资源,商务智能则是一种驱动力,二者已成功且广泛地应用于金融服务业、交通运输业、通讯业、零售业、能源与公共事业等各行各业中;而且,财务分析已然成为商务智能在众多行业中一个重要的应用领域。因此,在财经类专业开设注重数据驱动财务决策过程的商务智能课程已势在必行。只是,在开设这门课程时,要从实际情况出发,既要考虑当下财经类专业全局课程体系安排,又要兼顾商务智能课程本身的特点,充分思考商务智能课程与先修课程和后续课程之间的逻辑关系和衔接要求。
(一)先修课程
商务智能的先修课程安排可以从以下五个层次分析。第一,商务智能作为计算机、数学、统计等基础学科相交叉的前沿学科,需要学生能够综合运用这些基础理论知识,因此,从学生知识能力的层次要求来看,计算机应用基础、经济数学、应用统计学属于第一层次;第二,商务智能要整合企业的业务系统数据,作为数据加工厂需要学生充分领会“数据收集———数据处理———数据分析———数据展现———报告撰写”的完整数据加工过程,本专业课程体系内设计的“财务数据分析”课程属于第二层次;第三,商务智能作为多种技术综合应用的解决方案,需要学生至少掌握一种主流软件厂商提供的解决方案,并且要求学生能够领会完整项目交付的全过程理念,数据库原理及应用和项目管理两门课程属于第三层次;第四,商务智能作为决策工具,要求学生主要从财务层面学会运用企业经营领域内的决策支持理论,财务管理、财务分析与决策、管理会计等专业课程属于第四层次的先修课程;第五,商务智能作为决策工具,学生仅从财务层面掌握决策分析的理论还是不充分的,还需要学生能够了解企业经营全貌,增强学生对企业业务的理解能力,因此,作为第五层次的课程———企业经营沙盘课程恰好可以实现此衔接要求。
(二)后续课程
在大数据时代,几乎每个人都生活在数据中,几乎所有人都在制造和分享数据。“大数据如何让商业更智能?”对这个问题的思考与回答成为引发商务智能后续课程开发的源动力。大数据要让商业更智能,需要从流程优化、客户洞察、营销规划、产品创新、物流管理、人力资源管理、风险控制七个方面提升大数据对企业竞争的影响力。而作为商务智能后续课程的专业拓展课程其课程性质界定了其后续课程设计不能从这七个方面全面铺开来讲授商务智能的应用。因为,对专业拓展课程的范围设计,需要对专业(群)进行相应分析,根据拓展课程对应岗位群的具体要求,确定与其相关性较强,交叉较多的领域进行。因此,我们选择了从流程优化的角度去拓展商务智能的应用,选择以“流程优化”为主题的“流程智能”课程作为商务智能的后续课程,通过这门课程拓展培养学生深入理解运用商务智能核心技术实现流程优化方面的能力。
四、今后努力方向
一、引言
从大环境来看,如今,全球数据量均呈现激增趋势,大数据时代全面到来,这不仅意味着社会需要更多信息分析人才,也说明相关院校要加强信息管理专业人才培养。从本国国情出发,我国从工业社会向以信息资源开发、应用和管理为主要特征的信息化社会转变,计算机技术在各行各业普及应用,对经济管理活动中产生的海量数据进行分析,挖掘出有潜在价值的信息,为管理决策提供依据,是信息管理学科研究的新方向。以目前毕业生就业市场需求情况来看,懂经济、懂计算机同时又能掌握数据分析知识的学生在就业时有相当的优势,这恰好与我们哈尔滨金融学院信息管理专业的人才培养目标一致,如何发挥财经类本科院校的办学优势,建成专业特色,是此次本科教学改革的目标。
二、人才培养目标
对于我们这样有明显“金融特色”的院校,充分发挥在金融领域的办学优势,塑造出自己的金融特色,即:坚持服务于金融行业,跟踪IT发展的前沿,把握财经行业在信息化方面的最新需求,培养学生创新意识和能力,打造金融特色专业:金融信息管理-数据分析方向。培养具有管理学和计算机科学的专业知识,精通金融学、经济学以及数据分析理论与技术,了解数据的商业价值,通晓以清晰直观的形式提供数据分析结果的方法,强调学生掌握现代管理科学思想,掌握现代信息系统的规划、分析、设计、实施和运行维护等方面的方法与技术,同时,更要具有较强的信息系统开发利用以及数据分析处理能力。
三、金融特色信息人才培养模式构建
(一)面向社会需求
2013年3月,IDC数字宇宙报告《大数据,更大的数字身影,最大增长在远东》写到:预计到2020年数字宇宙规模将达到40ZB。在这样的大数据环境下,我国也必然需要更多高素质的信息管理类人才,例如,互联网企业、金融机构、保险、医疗卫生、电子商务、零售企业及政府数据中心等行业对大数据专业人才的需求量都很大。
所以,在此情况下,我院有必要在加大人才培养力度的同时,面向社会需求,对信息管理专业数据分析方向人才的培养标准与目标进行重新定位,以确保符合大数据时代提出的新要求,顺应大数据浪潮的发展趋势。例如,未来对具有大数据管理和分析能力的人才需求将快速增长,数据分析师、数据架构师、数据可视化人员、数据监管人员等和大数据相关的职位也将应运而生,因此,我院应当注重培养需要具备深度分析数据能力的专业人才,使其成为能够满足市场需求的高层次复合型人才,为社会发展付出应有之力。
(二)教学特色
课程教学内容归纳为两个模块:“信息系统开发课程”、“数据分析课程”,其中,“信息系统开发课程”又分为“开发技术类课程”和“面向应用的课程”两个子模块,将程序设计类课程与管理信息系统理论课程相结合,以理论指导实践,通过该课程的学习,使学生了解信息系统开发的基本理论和方法、信息系统的实施、运行与管理方法,熟练掌握信息系统的开发工具,最终通过案例实践,深入理解信息系统的分析与设计过程。
“数据分析课程”又分为“数据分析方法课程”和“面向应用的数据分析课程”两个子模块,从而形成较为系统的立体化课程体系,数据挖掘是数据分析的核心课程,运筹学是辅助课程,教学目的是使学生掌握数据分析的基本方法和典型工具,了解数据仓库和数据挖掘的基本原理,初步具备利用数据分析和解决实际问题的能力。
(三)制定科学合理的人才培养方案
在制定培养方案的过程中,要以市场需求为导向,设计灵活的人才培养方案,既要高度重视理论知识的学习,又要加强实践能力的培养,为学生搭建实践平台,拓宽实践渠道。
极力扩大与企业和科研院所的合作,为学生创造更多的研究、实践机会,在课堂教学环节中,设立一些针对某个合作企业的某些具体问题的研究项目,组织学生在该企业的资助下开展研究。这样既丰富了学生的实践经验又提高了他们的综合分析能力和动手能力,同时还能促进合作企业的创新发展。
四、课程设置
计算机程序设计在数据架构当中起着重要作用,因此,在通识课基础上,从第二学期开始,开设专业基础课:C语言程序设计,专业必修课:面向对象程序设计、数据库、数据结构、Java程序设计、JSP程序设计、Web实战项目(Java方向)等计算机程序设计类课程,以及SPSS、数据挖掘与分析类课程。同时,开设信息管理专业既有体系中的基础课程:信息管理概述、会计学、管理学、统计学、运筹学、信息资源管理、数据库原理及应用、UML与可视化建模、计算机网络技术、银行计算机系统、管理信息系统(含课程设计)、信息系统分析与设计、专业英语等。以及专业选修课:信息检索技术、多媒体技术与应用二选一,电子商务概论、静态网页设计、图形图像处理三选一,IT项目管理、系统工程、ERP原理与应用三选一,企业资源规划、经济法、经济学三选一。
五、强化实践性教学
财经类学校在专业教学方面应该关注实践性课程的设置,它是培养学生理论联系实际能力的关键,实践教学能够帮助学生更加了解学科特点,实践的过程中学生原本零散的知识点得以组合联通,长久以来,高校办学都在坚持以行业需求为导向,以培养学生能力为目标,实现学术与职业特点的融合,要将“隐性”的课外实践逐渐转变为“显性”的实践课程。在落实学生实践学习的过程中,学校要积极引入从业资格课程、职业群集课程等等,强化专业实践,与当地的金融企业建立合作伙伴关系,引入“3+1”的实践教学模式,全面促进学生能力、素质以及知识等综合能力的提升,使其能够更加满足当今市场对人才的各项要求。同时,学校还可以构建校企联盟模式,协同培养人才,充分发挥校企合作的优势,为学校学生提供良好的实践平台以及展现自我的机会,帮助他们客观的认识自身职业的特点,进而有目的的投入实践学习,提升自身能力。实践教学要侧重学生职业能力的培养,要帮助他们更加适合当今市场的需求,树立“厚基础、精专业、强能力”的人才培养目标。最后,要注重实践评价,建立完善的评价体系,通过这样的方式了解学生的实践情况,便于查缺补漏。开展实践教学,要综合多元化的实践渠道,融合先进的教学方式,最大限度将课程体系内容与工作领域的相关知识紧密联系在一起,必须要使学生的专业能力、职能能力得到提升。从多年的实践经验来看,实践教学人才培养模式有效提升了学生的综合素质以及专业水平,有利于学生未来发展与就业,在目前金融类学科教学中应该加以推广。
六、结论
信息管理与信息系统专业是一个多学科交叉、应用以计算机为主的技术解决经济管理问题的专业,应用范围广泛,技术性强。随着信息技术的发展以及信息化建设的推进,信息系统在运行中积累的数据量已经超越管理控制能力,社会对具有数据管理和数据分析能力的人才需求也在迅猛增长,信管专业的建设必须从社会需求的角度出发,重新设计课程体系和教学内容,培养符合经济社会发展需要的人才。
作者:霍云艳 来源:中国集体经济
为适应社会经济发展需要,本专业坚持以培养素质优良的复合型、创新型、应用型人才为中心,培养面向我国特别是河北省经济社会发展需要,德、智、体全面发展,具备扎实的经济学理论、西方经济学理论以及现代管理学理论,具有良好的数学素养,掌握统计学的基本理论和方法,能熟练地运用计算机进行数据管理与分析,能在企事业单位和经济管理部门从事统计调查、统计信息管理与分析等工作的应用型合格毕业生。其培养的学生具有人文素养,熟知和掌握统计学基础知识、基本理论、基本方法和技能,受到应用基础和技术开发方面的科学思维和科学实验训练,具有较强的开拓创新能力、沟通协调能力和预测决策能力;具有系统、扎实的科学文化知识和全面的身心健康素养,能够在工作中科学地采集各类信息数据,并能够运用现代技术手段建立统计模型,综合分析解决相关领域实际问题。
二、统计学专业学生素质拓展结构分析
为了实现学生实践能力培养的目标,使统计学专业毕业生掌握多种专业核心技能,按照、教育部、全国学联出台的《关于实施“大学生素质拓展计划”的意见》,在思想政治与道德素养、社会实践与志愿服务、科学技术与创新创业、文体艺术与身心发展、社团活动与社会工作、技能培训等六个方面引导和帮助广大学生完善智能结构。在课程设置上,把第一课堂的教育与第二课堂的活动有效结合,按照“平台+模块”的模式,构建以第一课堂教育课程为基础的“大学生素质拓展课程化建设体系”,实现大学生素质拓展模块化、项目化、课程化、体系化。
以第一课堂为基础,改善以提高学生综合素质与应用能力为目标的课程体系,划分多个模块,分项实施,全方面提升学生素质与能力。第一课堂的模块主要包括基本技能模块、专业技能模块、专业技能拓展与创新能力培养模块。将大学生第二课堂的各项活动分为思想道德素养、身心健康素养、科学文化素养、社会实践与志愿服务、社团活动与社会工作、技能培训与创新创业等六个功能模块,加强第二课堂教育中的实践环节,整合提升第二课堂中有助于提高大学生综合素质的各项活动和工作项目,有针对性的进行工作设置,全面发展学生的综合素质与应用能力的培养。
1、基本技能模块
基本技能模块主要包括思想道德教育、身心健康教育等内容,主要是通过思想政治课、大学生职业规划课、法律、体育和语言、计算机及数据库等课程展开,从人的基本素养方面着手培养学生的基本技能。语言模块具体包括外语、大学语文及应用文写作等内容。计算机及数据库操作模块具体包括计算机基本知识、基本操作与应用管理、数据库的建立与管理等内容。
2、专业技能模块
(1)专业基础技能模块
专业基础技能模块主要包括经济理论、管理理论、会计与财务理论以及统计基本理论等内容。经济理论部分主要包括政治经济学、微观经济学、宏观经济学以及相关的经济学分支等内容,其目标是让学生掌握基本经济理论及其分析方法,能够运用经济理论于实际问题的分析,并做出初步判断。管理理论部分主要包括管理学、现代企业管理、人力资源管理及市场营销学等内容,其目标是让学生熟知各种管理理论,掌握控制、组织、计划等管理环节的基本知识;掌握经典的管理研究方法、熟悉市场营销的基本理论以及人力资源、组织设计等相关知识。会计与财务理论部分主要包括会计基本理论、财务理论、税收筹划等内容,其目的是让学生熟悉会计和财务基本知识,了解纳税申报和税收筹划等相关知识。统计基本理论主要包括数理统计理论、描述统计、推断统计等内容,其目的是让学生理解数理统计的基本知识、掌握统计学基本原理,为专业核心技能的学习与掌握打下坚实基础。
(2)专业核心技能模块
专业核心技能模块主要包括统计分析方法、经济模型构建、经济分析与决策、统计学软件应用等内容。统计分析方法主要包括多元统计分析、时间序列分析、抽样技术、非参数统计等课程,其目的是让学生掌握基本的数据分析方法,为实际工作及进一步的深造创造有利的条件。经济模型主要包括数理经济学和计量经济分析等内容,其目的是让学生掌握计量经济分析的基本原理与实际应用,以及把经济模型与实际问题结合进行理论构建及各种检验的方法。经济分析与决策主要包括经济社会统计、国民经济统计、统计预测与决策等课程,其目的是培养学生对经济社会现象进行数据收集和统计分析的基本技能,并以此为基础对经济社会的运行进行必要的预测与决策,为经济管理提供必要的智力支持。统计学软件应用,这是一个对实践能力要求较高的层次,主要是通过对常用统计软件的掌握,为专业基础技能、统计分析方法、经济模型分析以及统计预测与决策等技能的实现创造便捷的条件,这一部分主要通过统计实验进行,是一个理论联系实践的关键环节,为使这一环节通畅、顺达,以有利于综合素质和应用能力的全面提升,故必须在各种课程设置中加强实验的比重,强化实验的掌握。
(3)综合技能模块
综合技能模块主要包括各种应用调查方法、统计数据收集与整理、数据分析方法的综合应用,这一模块主要是通过引导学生参加各种社会实践、参与教师的科研调查以及各类型比赛实现。其目的是培养学生综合运用统计学知识,进行统计设计、统计调查、统计整理、统计分析的意识和能力,并能够熟练运用统计分析方法进行统计报告的撰写与演示等工作。
3、专业技能拓展与创新能力培养模块
专业技能拓展与创新能力培养模块主要包括经济形势分析与预测、团队组织和管理技能、项目评估和专业资格认证体系等内容。其目的是加强统计学基本知识与相关专业的结合,以满足学生不同发展需要。经济形势分析与预测模块主要由经济问题报告及相关学术沙龙组成,使学生能够熟练运用经济学理论对宏观、区域、行业经济形势进行分析和预测,提出相应政策性建议的方法。经济管理研究方法模块主要由学生参与的相关科研与教学培训构成,其目的是加强科研训练,熟悉科学研究的一般程序、方法和基本流程,熟练运用各种研究方法,为实际工作和进一步深造奠定良好基础。项目评估模块主要是针对各类实际项目进行经济、社会与财务评价,通过项目评估、财务规划和税收筹划等理论知识的运用,让学生熟悉和掌握各种评估方法及可行性论证分析过程,扩大统计学专业的就业领域。与统计学专业联系紧密的资格认证有调查分析师、统计软件认证以及数据库分析等,专业资格认证体系模块主要是为学生的资格认证提供培训或相关辅导,通过学生的资格认证强化学生能力,增强就业竞争力。
三、以社会调查为平台的实践教学方案设计
关键词:统计学;统计教育;课程设置;应用型人才
作者简介:刘宏建(1980-),男,安徽濉溪人,安徽工程大学数理学院,讲师;费为银(1963-),男,安徽芜湖人,安徽工程大学数理学院,教授。(安徽 芜湖 241000)
项目基金:本文系安徽省教育厅重点教学研究项目(2008JYXM070)、安徽工程大学教研项目(2012XJY22)的研究成果。
中图分类号:G642?????文献标识码:A?????文章编号:1007-0079(2012)31-0016-01
美国次贷危机爆发后,全球金融市场遭遇了1929 年以来最大的系统性金融海啸,全球经济放缓,我国经济也遭遇了巨大的压力。如何用科学的方法防范金融风险、制订符合经济规律的金融政策已引起政府部门和保险、银行、证券等金融单位的高度重视。然而目前国内金融人才,特别是既懂金融又懂统计的复合型人才相当稀缺,高校首先应当担当起培养此类人才的重任。[1-3]与此相关的人才培养模式的建立和实践需要科学化和系统化的研究,安徽工程大学数理学院统计学专业(风险管理与精算方向)通过六年的努力,为该专业的人才培养取得了一些有益的经验。
一、明确培养目标,优化培养方案
我校数理学院于2005年开始统计学专业(风险管理与精算方向)本科招生,专业设置围绕学校深度融合地方经济建设,主动为地方经济建设与社会发展服务的办学宗旨,在一定程度上推动了我校乃至安徽省风险管理与精算学科的相关教学与研究工作的深入开展,使金融风险的量化、控制等方面的研究更具科学化、系统化。
在专业建设之初,学校就将工作的核心确定为:明确培养目标,优化培养方案。因为培养目标是塑造人才的方向和模式,是衡量人才质量的主要依据。顺应时展的要求,适应高等教育发展由“人才供给主导型”到“社会需求主导型”的转变,准确定位培养目标,事关专业建设的成败。专业培养方案是高等学校人才培养的总体设计蓝图,是实现培养目标的关键。为此,结合实际将我校该专业的培养目标定位为“培养具有良好的数学、经济学与金融学素养,掌握概率统计、金融工程、保险学的基本理论和方法及计算机应用技术,能进行统计调查与数据分析、风险评估和风险管理,有较高外语水平的德、智、体全面发展的创新性应用型人才,为有志成为高级统计师、金融分析师、精算师的学生打下坚实基础”,同时进一步完善了培养规格要求,使之能更好地体现专业特色和新形势下对人才培养的要求。
二、不断优化课程体系,适时更新教学内容
2003年11月,高等学校统计学教学指导分委员会颁布了《统计学本科专业教学规范》,条例中明确了统计学专业课程设置的布局与课程结构,对我国高校统计学专业的课程设置提供了总的指导思想。[4]为确保培养目标的顺利实现,按照“以理论为基础,强化实践应用,突出金融特色”的原则对课程体系进行优化。
1.构建“平台+模块”的课程体系
培养计划中包括必修和选修两类课程。学生毕业要求控制在190~200 学分之间,由必修理论课学分、选修理论课学分、公共选修课学分、实践教学环节学分、综合素质学分五部分组成。课程平台结构由四个结构组成。
(1)基础教育课程平台。本课程平台由政治理论、人文社科、军事法律、自然科学(学科基础)、外语、体育、计算机应用基础等类课程构成。其中必修课程65学分,选修课程5学分。
(2)专业教育课程平台。本课程平台由概率论、常微分方程、运筹学、数理统计、时间序列分析、多元统计分析、定性数据统计分析、抽样调查、经济统计、统计预测与决策、随机过程、试验设计、西方经济学、国际金融、国际贸易理论与实务、计量经济学、货币银行学、会计学、利息理论、金融工程、数理金融、寿险精算、非寿险精算、保险学、再保险、风险管理与保险、证券投资分析与案例、公司理财等课程构成。其中必修课程110学分,选修课程12学分。
(3)实践教学课程平台。本课程平台由军事训练、认识实习、生产实习、课程设计、综合实验、社会实践、毕业设计等内容构成,主要培养学生的实践能力、动手能力和创新能力。主要课程包括抽样调查综合实验、统计预测与决策课程设计、会计电算化综合实验和“模拟股市”实验等,本平台需修满30学分。
(4)综合教育课程平台。由公共选修课和综合素质实践教育构成,其中公共选修课共设文史、社科、艺术、经管、自然科学、其他共六大类课程,要求学生至少选修5学分的课程;综合素质教育学分要求学生必须完成2学分,旨在鼓励学生参加各种创新实践活动,培养学生的创新能力和创业技能,提升学生的综合竞争力。
该专业的课程又可分为三个模块:统计学与数学模块、金融模块、计算机基础及应用模块。统计学与数学模块课程包括数学分析、高等代数、概率论、数理统计等,是基础,在前4学期内完成;金融模块课程包括西方经济学、会计学、国际金融、国际贸易、货币银行学、金融工程、数理金融、寿险精算、非寿险精算、保险学、再保险、风险管理与保险、证券投资分析与案例等,是特色,贯穿2~7学期;计算机基础及应用模块课程包括C语言程序设计、数据库程序设计、统计软件应用与开发等,是必要支撑,在2~7学期完成。
2.适时更新、充实教学内容
新世纪科技发展呈现交叉渗透和数量化的特点,出现了许多交叉、边缘学科。为使适应新世纪科技发展的形势,为扩大学生知识面,提高学生的综合素质,培养具有统计背景的金融人才就必须适时地将新知识、新方法和新理念引入课堂教学。