前言:我们精心挑选了数篇优质产品结构设计注意事项文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。
1 前言 5
2 摘要 7
3 系统详细需求分析 8
3.1 详细功能需求分析 8
3.1.1 MIS分系统的功能需求 8
3.1.2 EDM分系统的功能需求 8
3.1.3 CAD/CAPP分系统的功能需求 9
3.1.4 MFS分系统的功能需求 9
3.1.5 SES分系统的功能需求 10
3.2 信息需求分析 10
3.3 性能需求分析 10
3.4 接口需求分析 11
4 系统总体方案设计 13
4.1 系统组成及逻辑结构 13
4.2 应用系统结构 14
4.3 支撑系统结构 18
4.4 系统集成 20
4.5 系统工作流程 22
5 MIS分系统详细设计 24
5.1 前言 24
5.2 MIS分系详细需求分析 24
5.2.1 功能需求 25
5.2.2 信息需求 27
5.3 MIS分系统总体设计 28
5.3.1 MIS分系统结构设计及子系统划分 28
5.3.2 MIS分系统技术方案 33
5.4 MIS分系统中各子系统详细功能设计 36
5.4.1 经营管理子系统详细功能描述 36
5.4.2 物资管理子系统详细功能描述 36
5.4.3 生产管理子系统详细功能描述 37
5.4.4 质量管理子系统详细功能描述 45
5.4.5 财务管理子系统详细功能描述 46
5.4.6 办公自动化(OA)与人力资源子系统详细功能描述 48
5.4.7 设施管理子系统详细功能描述 49
5.5 MIS分系统界面设计 50
5.5.1 MIS分系统外部的信息界面划分 50
5.5.2 MIS分系统内部的信息界面划分 51
5.5.3 MIS分系统用户界面设计 53
6 CAD/CAPP及EDM分系统详细设计 56
6.1 分系统详细需求分析 56
6.2 分系统结构设计及子系统划分 57
6.2.1 分系统的逻辑体系结构 57
6.2.2 分系统的子系统划分 58
6.3 分系统功能详细设计 58
6.3.1 工程和产品设计子系统 58
6.3.2 零部件设计子系统 59
6.3.3 工艺设计子系统 59
6.3.4 产品技术图档管理子系统 59
6.3.5 项目和任务管理子系统 61
6.3.6 产品结构及零部件装配子系统 63
6.4 分系统界面设计 64
6.4.1 外部界面设计 64
6.4.2 内部界面设计 65
6.4.3 用户界面设计 65
7 MFS分系统详细设计 67
7.1 分系统详细需求分析 67
7.2 分系统结构设计及子系统划分 67
7.3 分系统功能详细设计 68
7.4 分系统界面设计 70
8 信息编码设计 72
8.1 编码原则 72
8.2 信息分类 72
8.3 编码规则 73
8.3.1 单据与文件编码规则 73
8.3.2 人员机构编码规则 73
8.3.3 自制件编码规则 75
8.3.4 原材料编码规则 76
8.3.5 标准件编码规则 76
8.3.6 设备器材编码规则 76
9 数据库系统设计 78
9.1 需求分析 78
9.2 信息模型 78
9.3 数据库设计 79
9.3.1 数据库选型 79
9.3.2 逻辑结构与共享方式设计 79
9.3.3 安全和保密性设计 80
10 网络通信系统设计 81
10.1 FIBOW-CIMS网络设计要求 81
10.2 网络结构设计 81
10.2.1 网络结构选型 81
10.2.2 网络互连设计 82
10.2.3 网络信息载体及硬件配置 83
10.3 网络布局设计 84
10.3.1 网络的物理布局设计 84
10.3.2 光缆敷设 84
10.3.3 验收技术指标 85
10.3.4 其他注意事项 85
10.4 网络操作系统 85
11 关键技术及解决方案 87
11.1 SFCAD等CAD软件与EDM的数据接口 87
11.2 基础数据的采集和信息的分类编码 88
11.3 “面向企业决策者”的综合查询与辅助决策支持功能开发 88
11.4 企业INTRANET的建立及B/S应用模式的开发 89
11.5 EDM工程数据库中BOM到MIS数据库的转换 90
12 系统配置 91
13 工程实施与测试计划 93
14 投资预算 95
15 附录 98
:39000多字
400元
备注:此文版权归本站所有;。
关键词:树脂材料;结构设计;加强筋;拔模斜度
中图分类号:TQ325文献标识码:A 文章编号:1009-2374(2012)12-0020-02
随着社会的发展,不断发展新材料、新技术以适应各种产品结构设计方面的要求,特别是树脂材料的应用以强度好、重量轻、成型性良好而得到大范围的应用,从汽车内饰部件到生活上的细小必需品都离不开树脂材料,特别是在汽车上得到了广泛的应用,目前世界上不少轿车的塑料用量已经超过120千克/辆,个别车型还要高,德国高级轿车的塑料使用量已经达到300千克/辆,国内一些轿车的塑料用量也已经达到200千克/辆,可以预见,随着汽车轻量化进程的加速,塑料在汽车中的应用将更加广泛。作为从事树脂产品设计的人员来讲掌握设计技巧及设计方法相当重要,尤其是结构设计方面,直接影响了产品的成本、品质等。
一、产品避厚的合理性
从产品强度来看,树脂产品壁厚越厚产品强度越好,从产品轻量化来看产品壁厚越薄产品越轻,从成型质量的角度来看,树脂件的壁厚过厚,在成型的过程中会出现冷却不均,容易产生缩水,锁孔等缺陷,壁厚太薄,又会造成素质流动状态不好,进胶困难,从而使型腔不易充满而造成充填不足,综合以上几点来看树脂件的壁厚应尽可能均匀、合理,在需要强度的部位采取增置加强筋,在壁厚过厚处采取局部挖空的结构,不均匀处可采取缓和过渡的形式,使壁厚变得均匀,避免成型过程中产生翘曲变形等缺陷。壁厚的合理性除了影响成型和成品的强度,同时也更有利于制品能够顺利地从模具中脱离出来。
当然在实际设计的过程中,树脂件的种类何其之多,在确定制品的厚度上也要根据不同的材质的各自属性和特点,和此制品的大小规格,适用条件等各方面,再根据以上原则来决定。由于树脂制品已深入生活,在设计壁厚上也有章可循,已经形成了一定的规则,设计过程中可参照这些规则。
二、应力集中问题解决办法
树脂件的结构设计要特别注意避免尖锐棱角的产生,树脂材料始终比较敏感的材料,因此在应力集中的地方会产生微小的裂纹,逐步扩大以致发生断裂,导致制品的损坏。
树脂材料的强度通常较低,避免应力集中最好的方法是改善尖锐棱角部位的结构形式。例如。在尖角部位增加倒角,倒圆角或以平缓的方式过渡。当因结构件功能的需要而不可直接增加倒角,倒圆角时,可通过在尖角处增加局部结构强度,向内掏出圆角的办法降低应力集中,树脂螺纹的牙形应优先采用圆形和梯形,避免三角形、矩形,这样可以减低缺口效应,提高螺纹的承载能力。
三、加强筋结构的设计原则
为了减小产品的平均肉厚,降低产品的重量,以及减少成型过程中的缺陷,通常在需要加强强度的位置设置加强筋的方法来提高产品的强度和刚性,同时也降低成本。在树脂件上设置加强筋,可提高树脂的强度,防止树脂件的翘曲变形,选择恰当的加强筋位置可改善树脂溶液的流动性。
树脂制品上的加强筋形式多种,但设计加强筋一般遵循以下原则:(1)筋的壁厚根据材料不同而不同一般为主体厚度t的0.4倍,最大不超过0.6倍,避免厚筋底冷却时出现凹陷,影响制品的美观;(2)筋之间的间距大于4t,筋的高度低于3t;(3)螺钉柱的加强筋至少低于柱子表面1.0mm;(4)筋的根部要以圆角过度,避免应力集中造成破坏,但谨防圆角过大出现凹陷;(5)加强筋应低于零件表面或分型面至少1.0mm。多条加强筋相交,要注意树脂带来的局部材料堆积问题。其改进方法是:(1)将加强筋错位;(2)加强筋交叉部位设计成空心结构等。
细长的加长筋,如受力,应尽量使其承受拉力,避免承受过大的压力。因为树脂材料的弹性模量很低,容易出现失稳问题。这与我们在进行金属铸件设计时所遵循的优先受压原则相反,需要特别注意。
四、拔模斜度设计
拔模斜度也叫脱模斜度,主要是为了避免树脂件在脱模时由于冷却收缩而对模具产生粘附,摩擦,从而导致其损伤变形,而在树脂件的脱模方向设置的有利脱模角度。
拔模斜度的确定一般遵循以下几个个原则:(1)制品的精度要求越高,拔模斜度越小,这样做相当于减小公差;(2)拔模角度一般取整数;(3)树脂件的外观拔模角取值大于内壁的角度,这有利于成形时脱模;(4)树脂中硬度大的,刚性大的,脱模斜度也应该相应加大;(5)在不影响外观的前提下取较大的拔模角度;(6)制品壁厚也决定了拔模角度的设定,两者成正比。某些材料,如PP、PE等能强行脱模,强行脱模量一般不超过型芯最大面积的5%。
五、依据模具结构考虑树脂件的结构设计
模具在注射生产的工艺装备中是不可代替的,模具内腔的形态是树脂件形状的反映。树脂件结构的难易程度直接影响着模具结构上的复杂变化,为了能使设计的制品批量生产化,结构设计也是至关重要的,当然这也直接影响着模具的设计,从而在做树脂件结构设计的同时,在保证外观和功能的前提下,尽可能地考虑模具的结构,使之简化,利于后期的加工,批量生产,从而节约时间和成本并可以提高产品质量。所以在从事结构设计的工作,还应了解模具设计的基本原理与基本原则
模具设计不合理就能造成产品成型不良,注塑工艺生产产品可能出现的缺陷主要有一下几种:缩痕、熔接痕、气孔、变形、拉毛、顶伤、飞边、成型不足、烧糊等。注塑件设计一般遵循以下原则:(1)充分考虑塑料件的成型工艺性,如流动性;(2)塑料件的形状在保证使用要求的前提下,应有利于充模、排气、补缩;(3)塑料产品设计应充分考虑成型模具的总体结构,特别是抽芯与脱出制品的复杂程度,同时应充分考虑到模具零件的形状及制造工艺,模具零件的强度等,以便使制品有较好的经济性;(4)塑料制品设计主要内容是零件的形状、尺寸、壁厚、孔、圆角、加强筋、螺纹、嵌件、表面粗糙度的设计。
六、从装配的角度考虑树脂件的结构
连接结构问题是产品设计中一个重要的问题。构成产品的各个功能部件需要以各种方式连接固定在一起形成整体,以完成产品的设计功能。满足外观造型设计的产品外壳,通常也是由底盖,主体框架等部件组成,需要连接固定形成一个整体。因此有必要对产品设计中连接结构问题进行探讨。
由于树脂材料的弹性模量小,即材质较软,并且成型工艺与金属不同,树脂件的公差精度比金属件一般来说要低很多。因此,在进行结构设计时应注意这一特性,应避免大尺寸小公差的情况出现。尺寸越大,累积的变形越大,对公差精度的影响也越大。粘接是树脂件常用的装配方式之一。树脂件粘接时应避免粘接界面切忌承受撕扯拉力,因为其抗撕扯能力差,正确的做法是使粘接界面承受剪切力。处于受正拉力状态的粘接强度不及处于受剪力状态的粘接强度,因为处于受正拉力状态的粘接界面在其根部承受撕扯拉力作用;而处于受剪力状态的粘接界面的面积一般大于受正拉力状态的粘接界面的面积所以抗撕扯能力较强。
螺栓连接也是树脂件常用的装配方式之一。由于树脂的强度很低,通常不足以咬紧螺丝,因此在受力较大的情况下,不可将自攻螺丝直接嵌入树脂材质中。另外,平头螺栓连接或铆接式连接应带面积较大的衫板,以增加受力面积。
关键词:变频系统、电力电缆、产品设计
一、概述
变频技术是近年来机电领域的发展方向,变频调速系统的应用越来越普及,与此相对应,对连接调速系统的变频电机及变频控制器的电力电缆、控制电缆也提出了很高的要求,以避免运行中产生高次谐波电流对其他供电、控制回路产生干扰,或受外界电磁信号的干扰。一些行业的设计院已经明确提出了这种要求,并将其作为整个设计结构、生产制造方面做了一些初步的工作,产品也已在许多工程中应用。本文主要介绍了本公司在变频调速专用电力电缆研制和生产的一些情况进行介绍。
二、变频调速专用电力电缆设计制造的技术方案分析
在制定试制方案时,不仅要充分考虑电缆的各种电气性能和物理机械性能,更重要的是重点考虑如何减少高次谐波电流的产生,以及如何控制对其他电路的干扰。
1、脉冲电压的干扰
(1)现象:变频电源的频率调节范围比较宽,但其波形是一个主频率的频宽轮廓,包含了许多高次谐波,幅值也较大。这种谐波必然会波及到电缆,有可能会产生电缆的击穿,而且电缆长度越长,高频谐波电压也越高。但是,如果电缆绝缘耐压水平较高的话,则不会发生电缆的击穿。(2)、对策:如果电缆的结构采用普通的3+1芯,即三根主线和一根地线,这将会使主线和地线产生的干扰和谐波电压不均衡,要使电缆能正常工作,势必需要增加电缆的绝缘水平。若主线芯与地线的位置采用相对称的结构,那么由于导线互换效应及其对称平衡,可将干扰减小到最低水平,采用一半的绝缘水平即可,所以电缆的设计应采用对称的型式。
2、电磁波的干扰
(1)现象:连接变频电机和变频电源的电缆在运行时,若产生电磁波,则将会对周围临近的设备及电缆产生严重的干扰;反之,外界的电磁波也可能对其进行干扰。因此,既要使电缆不产生干扰信号,以减少对外界运行系统的干扰,同时也要提高电缆自身的抗干扰能力,能阻止外界的干扰,这是文帝的两个方面,都是至关重要的。(2)对策:解决上述问的办法是采用对称型结构和增加电缆屏蔽结构。屏蔽结构可采用铜带绕包、铜丝编织或铝塑复合带绕包等型式。屏蔽层的良好接地系统又是抑制电磁波的必要条件,采用铜丝编织结构是较容易事先,而采用其他结构往往需要用专门引出的夹具才能与地线相连。
三、产品设计
1、产品使用环境
(1)额定电压:0.6/1kV。(2)电缆长期允许工作温度为90℃,短路时最高温度为250℃(最长时间持续5秒)。(3)电缆允许最小弯曲半径不小于10倍的电缆成品外径。(4)产品可移动使用。
2、产品特性
(1)阻燃特性:成品电缆应能通过GB/T18380中要求的成束燃烧试验。(2)无卤低烟性能:成品电缆应能通过GB/T17651规定的烟密度测定及IEC754—2中要求的燃烧气体腐蚀性试验。
3、产品的结构设计
分析和研究了国内同行制造变频调速专用电力电缆的经验,制定了产品试制方案。试制方案的重点放在如何减少高次谐波电流分量对其他控制电路的干扰,提高电缆产品的阻燃性能、弯曲性能、耐气候及抗震动性能等。试制了电压等级为0.6/1kV型号为BPESP2R-C变频软电力电缆,规格为3×120+3×70/3 mm2;及3×10+3×6/3mm2两种规格电缆。
平衡各方面利弊后,决定电缆采用三根中性线芯均匀分布在三根动力线芯之间的空隙中,并绞合成缆;然后绕包铜带屏蔽,在铜带屏蔽外编织镀锡铜丝屏蔽,再挤外护套,见图1。
图1
(1)导体
a、材料选择:为了提高电缆导电性能及弯曲性能,选择符合GB/T3953中规定的TR型软圆铜线,其铜线具有非常好的导电率及断裂伸长率。
b、导体结构:该产品是为了满足移动中使用而开发的特种产品,导体结构应选择相对较软的绞合型式,本产品采用了符合GB/T3956中规定的5类软导体结构,该类产品结构广泛应用于矿用移动电缆、通用橡套电缆、船舶用电缆及电气装备用电线电缆领域中,在频繁移动的过程中,可保持很高的结构稳定性,不容易造成电缆绝缘的损伤。例如:120mm2导体采用608根单丝直径为0.5mm的铜丝,经过多次绞合而成,成品导体外径稳定,弯曲后不变形。
(2)绝缘
a、材料选择:普遍用于低压变频电力电缆绝缘材料有交联聚乙烯绝缘材料(XLPE)、乙丙橡皮绝缘材料(EPR)、聚氯乙烯绝缘材料等(PVC),PVC材料具有比较优良的阻燃性能,但由于在高频作用下PVC会产生一定的热量,导致电缆温度升高,而PVC正常工作温度为70℃,无法满足90℃工作温度的要求;XLPE材料具有非常好的电性能,但由于其材料较硬,弯曲性能差,切材料阻燃性能及差,无法满足产品最阻燃特性的要求;EPR是以三元乙丙橡皮为基料,混入一定比例的增塑剂、阻燃剂及硫化剂,产品具有良好的电性能、柔软性能及无卤低烟阻燃性能。故此,确定该产品采用乙丙橡皮绝缘材料。
b、绝缘结构:普通0.6/1kV电力电缆绝缘设计主要根据其所承受的机械性能而确定电缆绝缘层厚度,由于该产品用于变频电力系统,而在高频作用,电缆会产生一定的震动,会加速绝缘老化速度,降低产品的使用寿命,故此选用电压等级为3.6/6kV的绝缘结构设计,此种设计既提高了绝缘的安全性能,又提高了电缆结构的稳定性。
4、产品制造的注意事项
在产品制造过程中要严格控制工艺,绞线尽可能保证导体圆整,线芯绞制时尽量保证按正规排列绞合。严格控制绝缘偏心,火花试验及浸水耐压试验作为例行试验,确保绝缘线芯无缺陷;成缆务必保证线芯圆整,成缆时必须随时调节张力,确保各线芯张力均衡,并选择适当的填充,使产品外观密实圆整。铜带绕包重叠率要达到25%以上,铜带绕包层要保证平整、圆滑铜带不能起褶,严格控制铜带电阻率及铜带厚度,确保屏蔽层电阻。铜丝编织密度不应低于85%,采用卧式32锭编织机,编织密度均匀,不能有缺股断线等现象。
四、产品优势
1、使用寿命。本产品采用3+3芯对称结构设计,更有效平衡了电场,减少了高次谐波的产生,大大的延长了使用寿命。
2、柔软性。本产品采用多股软铜丝绞合,采用乙丙橡皮绝缘,大大的提高了产品的柔软性。
3、屏蔽性能。本产品采用双层屏蔽,并且铜带屏蔽与铜丝编织屏蔽相隔离,充分利用了双层屏蔽效果,从而提高了产品的抗干扰性能,降低了电缆在工作过程中对其他电器元件的干扰。
五、结束语