前言:我们精心挑选了数篇优质节能基础知识文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。
关键词:直接接触式;传热传质;设计模型;余热回收
中图分类号:TK172 文献标识码:A
Investigation of the Design Model in Directcontact Economizer for Gas Boiler
JIANG Xiaomin,SUN Peilei,LING Zhiguang,CHEN Minye
(College of MechanicalEngineering Shanghai Univ of Engineering Science,Shanghai 201620,China)
Abstract:A new directcontact dehumidifying economizer was developed, in which the packed mass was set for the recovery of waste heat in the flue gas exhausted from gasfired boiler. An investigation of the heat and mass transfer process in the packed mass section and the design model was carried out to build and improve the economizer designing method. A set of differential equations were developed in which the flue gas temperature tg was used as an independent variable and the Lewis Number Le, the wet specific heat CH of mainstream flue gas and CHi of the flue gas on the phase interface between the flue gas and water were included. The differential equation set can be used to calculate the parameter distribution in the heat and mass transfer process in the packed mass section and the packed mass section height. The calculation results agree well with the experimental measurement. This has proved that the calculation method developed can be applied in the design and analysis of the new directcontact dehumidifying economizer.
Key words:directcontact;heat and mass transfer;design model;waste heat recovery
天然气主要成分是甲烷,燃烧过程中生成大量的过热态水蒸气,此外,助燃空气中也含有少量的水蒸气,这两部分水蒸气加起来约占排烟烟气的18%(体积百分比).因此,与燃煤(燃油)锅炉相比,天然气锅炉的排烟烟气中的水蒸气份额要高出很多,这些水蒸气携带了大量的显热和潜热,其露点温度约为57℃,若能采取合理有效的措施将锅炉排烟烟气温度降至水蒸气露点以下,使其放出显热和潜热并加以回收利用,将能有效地提高燃气锅炉等设备的能源利用率[1-4].
本文开发研制成功一种新型的应用于燃气锅炉等的直接接触式烟气降温减湿节能装置(以下简称新型节能装置),可以将锅炉排烟烟气温度降至水蒸气露点以下,回收利用排烟余热中所含有的显热和潜热来产生工业和生活用热水,可提高燃气锅炉的热效率及天然气的能源利用率,改善烟气排放对环境的污染,达到节能环保的目的.
1 节能装置的基本结构及工作原理
节能装置基本结构及工作原理如图1所示.节能装置本体为一竖立的塔形容器,主要由除雾器、冷水分布器、填料段、烟气引入段和热水回收段组成.填料段内放置了不锈钢填料,是节能装置的核心工作段,高温烟气降温减湿的传热传质过程在填料段内完成.在节能装置中,烟气和水逆向流动,高温烟气从节能装置中下部进入节能装置后向上流动,到达填料段后,将顺着填料空隙结构继续向上流动;冷水从分布器中流出,均匀喷洒在填料上面后顺填料空隙结构往下流动并在填料结构表面均匀分散形成连续膜状流动,从而增加了烟气和水的接触面积.烟气和水在填料段充分接触进行较为剧烈的传热传质过程,其结果是烟气将绝大部分热量传递给水,烟气中含有的水蒸汽也冷凝成液态水放出潜热并传热给水.由此,冷水通过其与烟气直接接触所发生的传热
湖南大学学报(自然科学版)2012年
第4期姜小敏等:燃气锅炉直接接触式节能装置设计模型研究
图1 节能装置基本结构示意图
Fig.1 Sketch of economizer main structure
传质过程吸收热量成为热水.
2 节能装置填料段内的传热传质过程和建模分析
2.1 传热传质过程分析
为使分析计算简便,假定烟气与水的强化传热传质主要发生在填料段内,另外,还假定烟气与水的流动及传热传质都是一维的,烟气自下而上流动,水自上而下与烟气逆向流动.
从节能装置下方进入填料段的高温烟气多为未饱和烟气,而从上方进入填料段的冷水的温度大多低于进入填料段的高温烟气的露点温度,烟气和水逆流接触后,烟气将被冷却而水则被加热.在整个填料段内,传热方向都是从烟气传热给水的,但是由于出填料段的水温有可能高于进填料段的烟气的露点温度,故在填料段下部,其传质方向是由水传给烟气的.于是,在整个填料段内的传质方向是不同的,在填料段某一截面处将改变传质方向.
2.2 传热传质建模分析
如图2所示,在填料段内取一微元段dz,对此微元段内烟气和水的热力参数进行分析.首先,从热力学的角度进行分析.
图2 微元填料段内烟气与水之间的传热传质
Fig.2 Diagram of heat and mass transfer between flue
gas and water in elemental packed mass section
烟气放出热量为:
dQg=GCHdtg+(r0+Cvtg)GdH. (1)
水得到热量为:
dQw=CwtwdW+CwWdtw.(2)
另外,烟气放出的热量还可以表示为:
dQg=G(I+dI)-GI=GdI.(3)
热量平衡:dQg=dQw,于是有
GdI=CwtwdW+CwWdtw,(4)
GdI=GCHdtg+(r0+Cvtg)GdH.(5)
质量平衡:
GdH=dW.(6)
再从传热传质学的角度进行分析,可以得到如下的传热传质速率方程:
从气水相界面至烟气主体之间的传热速率为:
dQg1=GCHdtg=αga(ti-tg)dz.(7)
从气水相界面至烟气主体之间的传质速率为:
dM=GdH=kHa(Hi-H)dz.(8)
从水主体至气水相界面之间的传热速率为:
dQw1=WCwdtw=αwa(tw-ti)dz.(9)
引入Lewis关系:Le=αgakHaCH.(10)
再令Lw=αwakHaCw.(11)
将式(7)、式(8)和式(10)代入式(5)得:
GdI=kHa(Ii-I)+(LeCH-CHi)(ti-tg)dz. (12)
将式(6)、式(8)、式(9)和式(11)代入式(4)得:
GdI=CwkHatw(Hi-H)+Lw(tw-ti)dz. (13)
以往的研究都认为Le值近似等于1,再假定CH≈CHi,据此在推导过程中将方程式予以简化[5].本文的计算分析表明,在高温高湿烟气与水的传热传质过程中,Le值在1.0~4.0之间,因此不能视为近似等于1,另外,CH与CHi有时也差异很大,所以,也不能视为CH≈CHi.
在分析填料段内传热传质问题时,一般认为,仅考虑温度差或仅考虑湿度差作为过程的推动力是不合理的,最好是采用包括温度和湿度这两种因素的焓差作为过程的推动力.据此,基本上无一例外地将烟气的焓I作为求解微分方程组的自变量,这对于单一的增湿过程或者单一的减湿过程是可行的.而在本文所研究的节能装置内部实际的传热传质过程中,进入节能装置的烟气是未饱和的高温烟气,在填料段下段部分,高温烟气向水传递热量,使得一部分水气化而进入烟气之中,使烟气含湿量增大,即在填料段下段部分发生着烟气降温增湿过程.在此降温增湿过程中,当水气比比较小时,烟气降温幅度也较小,烟气降温引起的焓降可能小于烟气增湿引起的焓增,总体上烟气的焓值将有可能增加.而当水气比比较大时,烟气降温幅度也较大,烟气降温引起的焓降可能大于烟气增湿引起的焓增,因而烟气的焓值将有可能减小.因此,在填料段下段部分发生的烟气降温增湿过程中,依水气比的小或大,烟气的焓有可能增加,也有可能减小.而在填料段上段部分,烟气继续向水传递热量而自身温度已大大降低至其时的露点之下,因而,烟气中的一部分水蒸气将结露冷凝成液态水进入冷水之中,烟气含湿量减小,即在填料段上段部分发生着烟气降温减湿过程,在此降温减湿过程中,烟气焓值将加剧减小.总之,在烟气从底部至上部的流动及传热传质过程中,当水气比比较小时,烟气的焓值有可能先增后减,其转折点也难于预知确定,若将烟气的焓I作为求解节能装置填料段传热传质微分方程组的自变量,必将造成数值求解困难,而烟气温度却总是单调下降的,因此,将烟气的温度tg作为求解节能装置填料段传热传质微分方程组的自变量更为合理可行.
由式(12)和式(7),可得:
dIdtg=1Le(I-Ii)+(LeCH-CHi)(tg-ti)tg-ti.(14)
由式(13)和式(7),可得:
dHdtg=1LeH-Hitg-ti. (15)
由式(9)和式(7),可得:
dtwdtg=GWLwLeti-twtg-ti .(16)
由式(12)和式(13),可得:
Ii=I+(LeCH-CHi)(tg-ti)+
Cwtw(Hi-H)+Lw(tw-ti). (17)
由式(6)积分,可得:
W=W2+G(H-H2). (18)
由式(14)~式(18),可组成求解填料段内各热力参数的微分方程组,再加上烟气性质关系式,可采用RungeKutta数值方法进行求解[6-8].
欲使节能装置能够达到预定的效果,当节能装置的内径确定后,填料段就需要有一定的有效高度.对式(7)进行积分,即可得到计算填料段高度的计算公式:
z=Gαga∫tg2tg1CHdtgti-tg.(19)
式(19)虽然是根据从气水相界面至烟气主体之间的传热速率推导而来,但式中包含了湿烟气的比热比CH和相界面温度ti,这两个参数的确定都与气水之间的传质过程有关,因此,式(19)实际上应该是包含了气水之间传热传质过程的计算填料段高度的计算公式.
3 节能装置填料段内传热传质参数分布的数值计算
根据模拟天然气锅炉排烟的节能装置试验工况的烟气参数进行了节能装置填料段内的热力学参数分布的数值求解.给定参数:烟气温度 tg1=250 ℃,烟气流量(干烟气) Gd=2 159.7 kg/m2h,烟气湿度 Hv=0.127 8kg/kgd烟气相对分子量 Md=29.79 kg/kmol,水蒸汽相对分子量 Mv=18.02kg/kmol,节能装置内径为0.394 m,节能装置排烟温度tg2=35 ℃,冷水进口温度 tw2=30 ℃,冷水流量W2= 5 780.1, 750 2.0,884 1.6, 10 108.2,11 447.8,
13 055.4 kg/(m2・h),烟气传热膜系数 αg=84.3 kJ/(m2.hK),水传热膜系数 αw=514.2 kJ/(m2.hK),烟气传质系数 kH= 21.24kg/(m2h),填料比表面积 a=250 m2/m3.
图3~图6分别表示了不同水气比工况下,烟气温度tg、烟气焓I、烟气湿度H、水温tw沿填料段自下而上的分布情况及所需要的填料段高度.从图3中可以看到,在填料段下部,烟气温度都是急剧下降,水气比较小时(如mw/mg=2.41时),填料段内的传热传质效果不是很好,在填料段中部区域,烟气温度下降非常缓慢,直到填料段上部区域,烟气温度下降速率才稍微有所加快.水气比较小时,烟气温度下降到要求的温度所需要的填料段高度也较高.随着水气比的逐渐增大,填料段内的传热传质效果也随之改善,当水气比增大到某一程度后(如mw/mg=3.08时),填料段内的传热传质效果显著提升,此后,随着水气比的进一步增大,填料段内的传热传质效果也将进一步增强,烟气温度下降到要求的温度所需要的填料段高度也显著减小.烟气焓I、烟气湿度H、水温tw沿填料段高度的分布情况也反映了上述填料段内的传热传质效果变化的特征.注意到图5 中不同水气比工况下,烟气湿度沿填料段高度的分布特性.在填料段下部,由于烟气与水的温差较大,烟气向水传热的速率较大,使得烟气温度急剧下降,并使得部分水发生气化变为水蒸汽加入到烟气之中,于是,烟气的湿度有所增加.之后,随着烟气温度进一步下降,烟气中的部分水蒸气开始冷凝转变为液态水而使得烟气湿度转而开始逐渐减小;当烟气温度下降到露点时,烟气湿度将加快下降速度.
z/m图3 不同水气比工况下,烟气温度沿填料段高度的分布
Fig.3 Flue temperature distribution along the height of
packed mass section under different waterflue ratio
z/m图4 不同水气比工况下,烟气
焓沿填料段高度的分布
Fig.4 Flue enthalpy distribution along the height of
packed mass section under different waterflue ratio
z/m图5 不同水气比工况下,烟气
湿度沿填料段高度的分布
Fig.5 Flue humidity distribution along the height of
packed mass section under different waterflue ratio
z/m图6 不同水气比工况下,水温
沿填料段高度的分布
Fig.6 Water temperature distribution along the height of
packed mass section under different waterflue ratio
4 节能装置试验
为了更深入地研究直接接触式降温减湿节能装置的传热传质性能,进行了相关的性能试验研究.试验系统如图7所示.
图7 节能装置试验系统流程示意图
Fig.7 The scheme of testing system of economizer
图8为计算值与试验值的对比结果,在中等及较大水气比条件下,计算值与试验值吻合良好;在较小水气比条件下,计算值与试验值出现一些差异.这是由于烟气进入节能装置后,先进入一个淋雨区段,烟气在流向填料段底部的过程中,与淋雨直接接触而发生了局部传热传质过程,烟气在到达填料段底部时,总体上温度会有所降低,同时烟气湿度也会稍微有所上升,而这个过程由于比较复杂,目前还没有很好地求解方法,只是做了简化假定,忽略这个淋雨区的影响.另外,试验测量方面也可能存在一些误差,导致计算结果与试验结果在填料段底部出现了较大差异.
图8 不同水气比工况下,填料段内
烟气的温度分布(计算值与试验值比较)
Fig.8 Comparison between calculation and experiment
value of flue temperature distribution along the height of
packed mass section under different waterflue ratio
5 结 论
本文对一种新型直接接触式降温减湿节能装置填料段内的传热传质过程和建模进行了分析,推导和发展了填料段内的烟气和水之间传热传质的微分方程组和数值计算方法,进行了实例的数值计算分析,计算结果与试验值在变化趋势上吻合良好,在中等及较大水气比条件下,计算结果与试验值吻合良好,表明该数值计算方法可应用于新型直接接触式降温减湿节能装置的实际工程设计计算.参考文献
[1] 康子晋,郑蕾,赵钦新. 直接接触换热热水锅炉原理及应用[J].节能技术,2003,21(5):17-20.
KANG Zijin, ZHENG Lei, ZHAO Qinxin. Direct contact heat transfer for gasfired hot water boiler[J]. Energy Conservation Technology, 2003, 21(5) :17-20.(In Chinese)
[2] 刘武标,陈鹏飞. 燃气锅炉尾部烟气余热回收冷凝型节能器的实验研究[J]. 工业锅炉,2007(4):1-3.
LIU Wubiao,CHEN Pengfei.Experimentalresearch on condensation energyconservation equipment of reclaiming the residual heat of the flue gas of gasfired boiler[J]. Industrial Boiler, 2007(4):1-3.(In Chinese)
[3] 张晓晖,刘大为.燃气锅炉排烟冷凝热回收技术[J]. 工业锅炉,2008(4):4-8.
ZHANG Xiaohui,LIU Dawei. Evaluation of reclaiming technology for gasfired boiler flue gas residual heat[J]. Industrial Boiler, 2008(4):4-8.(In Chinese)
[4] OSAKABE M. Thermal hydraulic behavior and prediction of heat exchanger for latent heat recovery of exhaust flue gas[J]. American Society of Mechanical Engineers,Heat Transfer Division,1999,364(2):43-50.
[5] 时钧,汪家鼎,余国琮,等.化学工程手册[M]. 2版.北京:化学工业出版社,1996:16-25.
SHI Jun, WANG Jiading,YU Guocong,et al. Chemical engineering handbook [M].2ed nd.Beijing: Chemical Industry Press, 1996:16-25.(In Chinese)
[6] 王亦飞,贺必云,代正华,等.在水汽逆向流动填料塔内热质同时传递过程的研究[J]. 华东理工大学学报,2004, 30(5):539-544.
WANG Yifei, HE Biyun,DAI Zhenghua,et al. Simultaneous heat and mass transfer in a countercurrent liquid watervapor packed column[J]. Journal of East China University of Science and Technology,2004, 30(5):539-544.(In Chinese)
[7] 王双成. 合成氨厂饱和热水塔的优化设计[J].化肥设计,1999,37(6):9-13.
1. 评讲时应该以那个阶段没有复习的内容作为重点来评讲
如我复习力学这部分内容时,学生做的练习中有电学知识内容时,我就着重讲电学,避免学生遗忘。
2. 按照三轮复习方法,制定好电学复习计划
第一轮复习着眼于把基础知识讲透、讲细,帮助学生牢固掌握知识点,把一些重难点知识,通过比较辨析加深理解,指导学生科学的学习方法,教育学生正确的解题方法。
第二轮复习主要是通过几个专题进行训练,培养学生静电分析能力,电路连接及分析故障的能力,解决简单的串并联电路的计算能力,设计实验、正确选择两表量程、正确读数、记录数据、画U—I图像、分析得出结论等的能力,并结合填空、选择、作图、计算、实验五个题型进行专题复习,对大板块重难点知识、考试常见误区作讲解、理顺线索,对中考题型综述解题思路、技巧,每个专题精心配备针对性强的中考试题,以达到提高学生分析、概括、综合、表述能力的目的。
第三轮复习教师要正确预测中考试题的走向,精心选择试题,通过科学的模拟测试,使学生把所学的知识转化为中考所需的能力,并帮助学生查缺补漏。
3. 夯实基础知识
从近年来的中考题来看,能力的考核与基础知识是紧密联系的,因为基础知识的强化是提高能力的前提。有了扎实的基础知识,才能以不变应万变;没有扎实的基础知识,能力的培养变成了空中楼阁。因此我们要参照“物理教学的基本要求”,把主要精力用于使学生深入理解基本物理概念和规律方面,突破重点,形成有机的知识结构,提高分析解决问题的基本能力。在复习中不让学生做偏题和怪题,而是以教材为准,必考的知识点进行全面梳理,归纳整理考点,不能让学生在知识点上存在盲点,因为近年来的中考题很注意考察教师认为不重要、容易忽略的知识点。
在复习中,教师要时常改变复习方法,避免学生出现刺激疲劳。如我在复习“摩擦起电”的原因时,做了一个游戏:让一个力气大和一个力气小的学生上讲台抢对方身上的小东西,小东西相当于电子,最后力气大的抢了力气小的小东西。通过这个游戏让学生明白是由于不同物质的原子核束缚电子的本领不同,束缚电子本领强的容易得到电子,它因有多余电子而带上负电,这样既活跃了课堂气氛又强化了学生对知识点的理解等。 转贴于
在复习中要面向全体学生,要注意指导学生的学习方法,要尽可能让学生参与,所以复习时教师要求学生动脑想、动手写、动眼看、动耳听、动嘴回答问题。每一种专题由浅入深,循序渐进,对于学生容易混淆的知识,教师应用对比法重点加以区别,并及时归纳总结。如探究欧姆定律实验,电阻一定,探究电流与电压的关系时,滑动变阻器的作用是改变定值电阻的电压,以便找出电流随电压变化的规律;而探究电流与电阻的关系时,滑动变阻器的作用则是控制电压不变等。
4. 培养独立解决问题的能力
中考物理试题中有一些是在常规题的基础上通过改变物理情景、设问角度,以及相关联问题的组合编制的。有的学生常不管问题的要求与条件,想当然照搬公式,套用做过的习题模式,造成解题思路方向错误;有的学生认为自己独立处理问题的能力较差是因为难题做得太少,于是花大力气去攻难题,可在考试中一旦遇到自己没有见过的“生题”,脑子里记住的各种题型与解法与不熟悉的物理情景对不上号,就没有了办法。因此,在复习中要指导学生不要滥做习题,一定要挤出时间去思考揣摩、归类,注意同类问题间的细微差别,同时还要善于总结分析解决物理问题的思路和方法。
5. 关注教材变化,关注学生实际生活,关注现代科技的发展
教科版本教材与沪科版本教材相比,知识更全面,系统性更强,对学生的要求也更高。在复习中我建议教师要关注一下新旧教材的差异,如旧教材没有讲到电磁波的两大功能,而新教材用了大量的篇幅讲电磁波的信息功能。物理知识与我们的生活、社会、科技发展是密不可分的,学以致用是学习物理的基本原则,也是检验学习效果的有效手段。因此在复习中要指导学生注重理论联系实际,在夯实了基础知识的前提条件下,也要多渠道、多方面地去吸收和了解有关信息,关注社会和生存的环境,了解最新科技成就,教师更要关注现代科技知识和近代物理知识,并渗透给学生,还要结合一些生活、生产和科学事件中的有关问题,选编习题,让学生综合应用所学知识去分析、去解决,从而提高学生独立解决实际问题的能力。
6. 注重实验的探究过程
从近年来的考题来看,每年电学部分考分在12分左右,考查了学生画电路图、连实物图、量程选择、正确读数、滑动变阻器的阻值范围、处理实验数据等,总之,考查了实验的过程和实验方法的理解,学生只有亲身经历科学探究的过程,才具有真正分析解决实际问题的能力。由于中考对学生实验能力的要求越来越高,而学生失分又比较严重,这就要求教师在复习中要切实注重学生观察能力、动手能力的培养,对几个重点的电学实验要进行对比性操作练习,对易混淆的地方做重点区分,并加强实验操作题的练习和指导。
打造智能生活方式
“福特智能移动计划” 旨在利用创新技术构筑未来交通生态系统。计划的第一步是推出25个试验项目――这25个项目关注人炸性增长、不断增加的中产阶层、空气质量和公众健康问题等四大全球趋势。
“该计划运用令人振奋的新技术,将在新的交通环境中重新定义消费者的出行体验,”福特汽车电子电气系统工程总监Jim Buczkowski表示,“通过GoDrive试验项目,我们能了解消费者的需求,并为驾驶者带来更行之有效的共享车辆体验。”福特将携手家电、可再生能源和电源管理行业的领先者们在上海和北京推出 “福特智・能生活”试点项目,以切实展现节能产品对世界的影响。
“福特智・能生活”模型预计将累计节省家庭能源使用成本 63%(分别在用电和燃气方面降低 40% 和 69%,每年约可节省人民币9,400 元),二氧化碳排放 减少45%,总计可达 6,828 公斤。该模型还将极大地减少污染排放,其中分别减少PM2.5 和 PM10 有害颗粒物排量 32% 和 35%,并能将氮氧化合物和硫氧化合物排放分别减少38%。
提高用车共享效率
福特重点展示了两项在美国进行的移动出行试验项目:远程遥控定位试验和停车位信息共享试验。远程遥控定位试验所用车型是由福特此次试验的合作伙伴――乔治亚理工学院开发的智能高尔夫球车,该球车能让位于远程位置的工作人员通过 LTE 系统读取实时录像信息,并操控球车。“这些高尔夫球车配备此项技术后,就可以从停车站通过远程遥控的方式开走,跟在电子游戏室里看到的极为相似,”Buczkowski 说道,“其中有一些非常令人激动的尝试,比如提高用车共享效率,以及让驾驶者即使在恶劣的天气下也不被淋湿。”
该试验利用技术手段对车辆进行重新定位,从而将车辆从前一位驾驶者停车的位置转移到下一位用户需要用车的地点,这将对优化用车共享项目提供帮助。这项技术也能够有助于优化代客泊车服务。
福特还将与乔治亚理工学院合作进行另一项移动出行试验――停车位信息共享试验。该项目凭借福特汽车已配备的声纳及雷达技术,利用采集到的数据不断标记出可用的停车位。试验车辆以不高于 16公里每小时的速度四处行驶并搜索可用停车位,然后将收集到的停车位相关信息上传到云端,以便于其他正在找停车位的驾驶者查寻。