美章网 精品范文 化学成分分析论文范文

化学成分分析论文范文

前言:我们精心挑选了数篇优质化学成分分析论文文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。

化学成分分析论文

第1篇

BrukerAV-300,AV-500型核磁共振光谱仪;X4型数字显示显微熔点测定仪(温度未校正);Agilent1100LC/MSDSL;LABCONCO冷冻干燥仪;JASCOP-1020旋光测定仪半制备型高效液相色谱仪Waters600型;检测器Waters2487紫外双波长检测器;Agilent-1100高效液相色谱仪;柱色谱材料为硅胶(200-300目)、RP-C18(YMC;12nm)及SephadexLH-20(AmershamBiosciences);柱色谱试剂均为分析纯,高效液相色谱试剂均为色谱纯。

白芷根于200403采自江苏省盐城市洋马镇,经江苏省中国科学院植物研究所袁昌齐研究员鉴定,凭证标本现存放于江苏省中国科学院植物研究所标本馆内。

2提取与分离

白芷根(38kg)用95%的乙醇提取3次,合并提取液,减压浓缩至无醇味。提取液依次用石油醚、醋酸乙酯萃取,剩余部分为水部分。将水部分上样于D101大孔树脂柱,水-乙醇梯度洗脱,分为6个部分。其中50%洗脱部分分别进行硅胶柱层析,氯仿-甲醇(10∶1~7∶3)梯度洗脱,各流分采用薄层或高效液相检识,合并相类似组分,反复反相柱层析分离,凝胶纯化,得到6个化合物。

3结构鉴定

3.1化合物1

白色无定形粉末(冻干),mp170~172℃,[α]21.7D=-52.40(c=0.065甲醇:水=40:60),紫外灯365,254nm下均显示蓝绿色荧光。ESI-MSm/z:509[M+Na]+,示其分子量为486,结合1H-NMR,13C-NMR谱数据推断分子式为C21H26O13。化合物的1H-NMR,13C-NMR,HMQC及HMBC谱数据详见表1。综合各谱数据及与文献[1]对照鉴定化合物为7-O-β-D-Apiofuranosyl-(16)-β-D-Glucopyranosyl-Scopoletin(xeroboside)。表1化合物1的1H-NMR,13C-NMR,HMQC及HMBC谱数据(略)

3.2化合物2

白色无定形粉末(冻干),[α]21.7D=-55.20(c=0.065甲醇∶水=40∶60),紫外灯365nm及254nm下均显示蓝绿色荧光,ESI-MSm/z:495[M+Na]+,示其分子量为472,结合1H-NMR,13C-NMR谱数据推断分子式为C20H24O13。化合物的1H-NMR,13C-NMR,HMQC及HMBC谱数据见表2。综合以上各谱数据及与已知文献[2]对照鉴定化合物为aesculetin-6-O-β-D-apiofuranosyl-(16)-O-β-D-glucopyranoside。

3.3化合物3白色无定形粉末(氯仿-甲醇),mp207℃,[α]21.7D=+47.75(c=0.07甲醇∶水=40∶60),紫外灯365,254nm下均显示蓝色荧光。ESI-MSm/z∶407[M+Na]+示其分子量为384,结合1H-NMR,13C-NMR谱数据推断分子式为C17H20O10。化合物的1H-NMR,13C-NMR,COSY,HMQC及HMBC谱数据详见表3。综合各谱数据[3]鉴定化合物为tomenin。表2化合物2的1H-NMR,13C-NMR,COSY,HMQC及HMBC谱数据(略)表3化合物3的1H-NMR,13C-NMR,COSY,HMQC及HMBC谱数据(略)

3.4化合物4

白色无定形粉末(冻干),mp140~141℃,[α]19.4d=-52.30(c=0.06甲醇∶水=40∶60),紫外灯365及254nm下均显示蓝色荧光,结合1H-NMR,13C-NMR谱数据推断分子式为C16H18O9。1H-NMR(Pyridine-d5500MHz)δ:6.27(1H,d,J=9.5Hz,3-H),7.56(1H,d,J=9.5Hz,4-H),7.62(1H,s,5-H),6.90(1H,s,8-H),3.70(3H,s,OCH3),5.65(1H,d,J=7.1Hz,1-H-Glc)。综合以上数据及与已知文献[4]对照鉴定化合物为isoscopolin。

3.5化合物5

白色无定形粉末(冻干),[α]21.7D=-55.20(c=0.065甲醇∶水=40∶60),ESI-MSm/z:455[M+Na]+,示其分子量为432,结合1H-NMR,13C-NMR谱数据推断分子式为C19H28O11。1H-NMR(Pyridine-d5500MHz)δ:7.07(2H,d,J=8.5Hz,3-H和5-H),7.19(2H,d,J=8.6Hz,2-H和6-H),2.96(2H,t,J=7.4Hz,β-H),4.34(1H,dd,J=7.5,11.2Hz,3''''a-α),3.88(1H,dd,J=7.4,11.2Hz,3''''a-α),4.82(1H,d,J=7.1Hz,1-H-Glc),5.75(1H,d,J=2.6Hz,1-H-Api)。13C-NMR(Pyridine-d5125MHz)δ:129.53(C-1),130.50(C-2),116.13(C-3),157.23(C-4),116.13(C-5),130.50(C-6),71.12(C-α),35.88(C-β),104.58(C-1-Glc),74.95(C-2-Glc),78.45(C-3-Glc),71.12(C-4-Glc),77.08(C-5-Glc),68.87(C-6-Glc),111.07(C-1-Api),77.74(C-2-Api),80.37(C-3-Api),75.00(C-4-Api),65.48(C-5-Api)。综合以上数据及与文献[5]对照鉴定化合物为OsmanthusideH。

4结果与讨论

前人从茜草科植物山石榴Xeromphisspinosa[1]以及Xeromphisobovata[6]中分到过此化合物1,故此次为首次从伞形科中分离得到。但化合物的熔点有文献[1]报道为238~234℃,有文献[2]报道为192~197℃,而本次实验测得的熔点为170~172℃,具体原因有待进一步确定。

前人从忍冬科植物Loniceragracilipes[3]中分得化合物2,但是只报道了1H-NMR,13C-NMR谱数据,且C-6和C-7的归属颠倒了。本文通过对其进行HSQC,HMBC等二维谱的研究,纠正了前人的错误,丰富了该化合物的波谱数据。

日本学者Hasegawa[3]最早从蔷薇科植物Prunustomentosa中分离得到化合物3,但没有报道核磁数据,以后未见此化合物的报道。本文完善了该化合物的核磁数据,并且用二维谱进行了全归属,丰富了该化合物的波谱数据,并首次报道了此化合物的旋光值。

化合物6在自然界植物中分布广泛,但在伞形科植物中此类化合物较少见。

【参考文献】

[1]S.P.Sati,D.C.Chaukiyal,O.P.Sati[J].JounalofNaturalProducts,1989,52(2):376.

[2]T.Iossifova,B.Vogler,I.Kostova.Escuside,anewcoumarin-secoiridoidfromFraxinusornusbark[J].Fitoterapia,2002,(73):386.

[3]Hasegawa,Masao.FlavonoidsofvariousPrunusspecies.X.WoodconstituentsofPrunustomentosa[J].ShokubutsugakuZasshi,1969,82(978):458.

[4]Komissarenko.N.F,Derkach.A.I,Komissarenko.A.N.CoumarinsofAesculushippocastanumL[J].FitochemistryRastitel''''nyeResursy,1994,30(3):53.

[5]Warashina.Tsutomu,Nagatani.Yoshimi,Noro,Tadataka.ConstituentsfromthebarkofTabebuiaimpetiginosa[J].ChemicalPharmaceuticalBulletin,2006,54(1):14.

[6]S.Sibanda,B.Ndengu,G.Multari.ACoumaringlucosidesfromXeromphisobav-ata[J].Phytochemistry,1989,28(5):1550.

第2篇

现代医学研究表明,花锚属植物的主要化学成分为(口山)酮及(口山)酮苷类、裂环烯醚萜类、三萜类、黄酮类以及一些生物碱类化合物等。

1.1(口山)酮及(口山)酮苷孙洪发等[4]从椭圆叶花锚中得到五种(口山)酮成分,分别为1,7-二羟基-2,3,4,5-四甲氧基(口山)酮,1,5-二羟基-2,3,7-三甲氧基(口山)酮,1,2-二羟基-3,4,5-三甲氧基(口山)酮,1,5-二羟基-2,3-二甲氧基(口山)酮和1,7-二羟基-2,3-二甲氧基(口山)酮。

孙洪发等[5]又从椭圆叶花锚中得到3种(口山)酮苷成分,分别为1-o-[β-D-木吡喃糖-(1-6)-β-D-葡萄吡喃糖]-2,3,5,7-四甲氧基(口山)酮,1-o-[β-D-木吡喃糖-(1-6)-β-D-葡萄吡喃糖]-2,3,5-三甲氧基(口山)酮和1-o-[β-D-木吡喃糖-(1-6)-β-D-葡萄吡喃糖[-2,3,4,5-四甲氧基(口山)酮。其中1-o-[β-D-木吡喃糖-(1-6)-β-D-葡萄吡喃糖]-2,3,5,7-四甲氧基(口山)酮(花锚苷)和1-o-[β-D-木吡喃糖-(1-6)-β-D-葡萄吡喃糖[-2,3,5-三甲氧基(口山)酮(去甲氧基花锚苷)为该属植物抗肝炎的两种有效成分。

张德等[6]采用元素分析(EA)、核磁共振波谱(NMR)、质谱(MS)、红外光谱(IR)、紫外光谱(UV)、差示扫描量热(DSC)等分析方法首次从藏药花锚中分离得到两种针状结晶化合物,分别为1-羟基-3,7,8-三甲氧基(口山)酮(1-hydroxy-3,7,8-trimethoxyxanthone)和1,7-二羟基-3,8-二甲氧基((口山))酮(1,7-dihydroxy-3,8-dimethoxyxanthone)。

高洁等[7]从椭叶花锚乙醇提取物醋酸乙酯萃取部分分离得到8个(口山)酮化合物,分别为1,7-二羟基-2,3,5-三甲氧基(口山)酮,1-羟基-2,3,4,7-四甲氧基(口山)酮,1,7-二羟基-2,3,4,5-四甲氧基(口山)酮,1,7-二羟基-2,3-二甲氧基(口山)酮,1,5-二羟基-2,3-二甲氧基(口山)酮,1-羟基-2,3,5-三甲氧基(口山)酮,1-羟基-2,3,4,5-四甲氧基(口山)酮和1-羟基-2,3,5,7-四甲氧基(口山)酮。

1.2其它成分Rodrigaez等[8]从花锚中分离得到了一种的黄酮类葡萄糖苷;高光跃等[9]从椭圆叶花锚全草中测出含有獐牙菜苦苷和当药苷;Dhasmana等[10]从椭圆叶花锚全草中分离得到齐墩果酸和谷甾醇葡萄糖苷;Rodrigaez等[11]从花锚中分离得到了一种二糖酯裂环烯醚萜。

2药理活性

花锚为藏蒙药中治疗肝胆系统疾病的常用药物,其主要分布于我国的、青海、四川、甘肃等地藏民族地区,目前对花锚药理活性的研究报道较少,有待进一步深入研究。

2.1保肝降酶作用张经明等[12]采用花锚煎剂(含花锚苷)对CCl4造成的肝损伤模型的研究表明,花锚苷可明显增加核糖核酸;药理实验证明,花锚中的花锚苷和去甲氧基花锚苷具有明显的保肝作用,可增加核糖核酸,增加肝糖元,促进蛋白质的合成,促进肝细胞的再生,加速坏死组织的修复,是该植物抗肝炎的主要有效成分。周富强[13]通过不同剂量西宁花锚对CCl4实验性肝损伤后肝糖元的含量的研究,发现西宁花锚对CCl4损伤后小鼠肝糖元的储存的恢复有一定的药效,可显著提高肝糖元的含量。

马学惠等[14]在齐墩果酸防治CCl4引起的大鼠急性肝损伤作用的研究中,发现该药物能使血清GPT明显下降,肝内甘油三酯积累量减少;同时,能使肝细胞变性、坏死明显减轻,糖原蓄积增加,具有明显的保肝降酶作用。宫新江等[15]的齐墩果酸对环磷酰胺所致大鼠肝细胞损伤的保护作用的研究表明,齐墩果酸能抑制环磷酰胺所致的肝细胞上清液ALT,AST及LDH活力升高,肝细胞MTT值减小,说明齐墩果酸可抗环磷酰胺所致肝细胞损伤。

王晓峰等[16]采用原代培养的小鼠肝细胞,以3H-胸腺嘧啶和3H-亮氨酸掺入的方法,研究经齐墩果酸预处理后的小鼠的肝细胞DNA和蛋白质合成速率的变化,结果发现齐墩果酸能促进肝细胞DNA及蛋白质合成,且合成速率明显增高,具有保肝作用。另外王晓峰等[17]报道齐墩果酸在对小鼠肝内谷丙转氨酶及谷草转氨酶的直接作用时,小鼠血清样品与不同浓度的齐墩果酸分别作用后,谷丙转氨酶活性则显著降低,说明齐墩果酸对谷丙转氨酶活性具有明显抑制作用。

2.2降血糖作用苗德田等[18]研究了齐墩果酸对大鼠血糖的影响,结果显示,齐墩果酸对化学性高血糖模型大鼠有显著的降血糖作用。柳占彪等[19]用齐墩果酸对高血糖大鼠治疗,结果发现单一的齐墩果酸具有降低高血糖的作用,同时在血糖降低时肝糖原和血清胰岛素均有明显升高。

2.3抗炎作用戴岳等[20]采用多种实验性炎症模型证实齐墩果酸对二甲苯与乙酸引起的小鼠皮肤和腹腔毛细血管通透性增高及对角叉菜胶等多种致炎物引起的大量足垫肿胀都具有明显抑制作用。

2.4抗氧化活性肝细胞膜的脂质过氧化是造成肝损伤的重要原因之一,高洁等[7]在研究藏药花锚中(口山)酮类成分及其抗氧化活性时,从椭叶花锚乙醇提取物醋酸乙酯萃取部分分离得到8个(口山)酮化合物,且该类化合物在一定程度上能显著抑制Fe2+-Cys诱导大鼠肝微粒体丙二醛的生成,有效降低肝微粒体膜的氧化损伤。因此,具有一定的抗氧化活性。

2.5其他作用椭圆叶花锚的干浸膏可提高单核-巨噬细胞吞噬功能,具有调节体液免疫的作用,使降低的血清溶血素及脾细胞免疫溶血活性提高到正常水平[21]。另有报道椭圆叶花锚全草的氯仿可溶部分(富含口山酮葡萄糖苷)具有抗阿米巴作用[22]。

3人工栽培

高原野生重要植物资源的持续发展必须建立在生物资源可持续利用和生态环境保护的基础上,培育地道地产中藏药材是实现高原地区中藏药资源可持续利用的主要途径之一,也是保证中藏药产业持续发展的必然选择。

3.1人工栽培的重要意义花锚属与獐牙菜属植物等同属于藏茵陈类药物,被称为“藏药中的奇葩”,是治疗肝中毒、肝炎的最佳药物之一。但是这种药物资源一般生长在人迹罕至的高寒缺氧环境中,其再生周期较长甚至不能再生,藏茵陈供需矛盾也由此变得越来越突出。

尽管野生椭圆叶花锚在青藏高原地区分布广泛,资源较为丰富。但是近十多年来,随着我国民族医药特别是藏药事业的迅速发展,越来越多的企业开始投资藏医药领域,椭圆叶花锚的药用资源需求量快速增加。但是,藏药产业一度出现重成品生产轻药材来源、重开发轻保护的问题,造成过度的采挖及收购现象,特别是在植物生长阶段的花期大量采收导致资源量锐减,野生植物资源日益枯竭。因此,对作为原料植物药的椭圆叶花锚进行人工栽培的研究具有十分重要的意义。

3.2人工引种栽培为了解决藏茵陈类药材资源严重短缺的实际问题,中国科学院西北高原生物研究所经过3年的栽培与试验,成功地解决了以往藏茵陈种子萌发率低、出苗率低、人工栽培难以成活等关键技术问题。3种藏茵陈类药用植物——川西獐牙菜、抱茎獐牙菜和花锚人工种植成功,并通过鉴定。经过专家的监测和对比分析,这次人工栽培的3种植物,其主要有效成分齐墩果酸和芒果苷的含量基本接近于天然野生资源,川西獐牙菜的有效成分含量甚至显著高于野生资源,人工条件下栽培藏茵陈类药用植物的质量及其本身的药用价值完全可以得到保证。随着青海省产业结构的调整,椭圆叶花锚人工引种栽培技术的开发研究,青海省椭圆叶花锚人工种植规模逐渐扩大。椭圆叶花锚人工引种栽培试验在该省也初见成效。陈桂琛等[23]对椭圆叶花锚的引种栽培的研究表明,栽培的椭圆叶花锚植株在植株高度、分枝数量、单株生物量等生长状况指标明显高于野生植株,其有效化学成分接近野生状态的水平,说明野生椭圆叶花锚的人工栽培是可行的。吉文鹤等[24]运用RP-HPLC建立了花锚中青兰苷、去甲氧基花锚苷和花锚苷的含量分析方法,为栽培花锚替代野生花锚入药提供一定的科学依据。研究表明,栽培花锚中花锚苷和去甲氧基花锚苷的含量和在野生花锚中的含量相比无明显差别,可以初步证明栽培花锚可以替代野生花锚入药。纪兰菊等[25]在研究栽培花锚的品质能否代替野生花锚入药时,通过指纹图谱的相似度分析,得出结论:同一产地的野生与栽培花锚药材色谱分离图叠加比较,显示了良好的相似度。证明栽培花锚中的主要化学成分及数量符合花锚药材的指纹特征,可以代替野生花锚药材入药。

3.3组织培养随着对花锚属植物药用成分不断深入的研究,药用潜力的挖掘,该属植物的需求量大大增加,造成了该属植物野生资源的日益匮乏且面临枯竭。该属植物的人工引种栽培技术在一定程度上已经可行,但是,还需要通过多种途径来提高对其的培育效率。

药用植物的组织培养技术及应用已有多年的发展历史,但还有相当多的植物目前尚没有相应的离体培养技术。目前,花锚属植物的组织培养技术至今尚未见成功的报道,仍然是个空缺。因此,建立该属药用植物的离体快繁技术的需求日渐增加,它也是实现高原地区中藏药资源可持续利用的主要途径之一。

4最佳采集时期

从生物量的角度考虑,花期的生物量高于果期,更高于其他时期。杨慧玲等[26]在研究不同地区和生长物候期藏药花锚有效成分齐墩果酸的含量变化实验中,比较了野生状态下不同海拔、栽培条件下不同生长时期花锚的齐墩果酸含量,为确定该药材的采收时期、不同地区药材的质量以及栽培地点的选择提供理论依据。该研究发现花锚花期齐墩果酸含量最高,而幼苗期、蕾期和果期都低于花期的含量。因此,花期得到的药材最多质量也最好。

吉文鹤等[24]研究了花锚中去甲氧基花锚苷和花锚苷的含量随着不同生长期的变化趋势,为药材的合理栽培和采收提供科学依据。该研究表明,去甲氧基花锚苷和花锚苷含量在营养期含量最高,从6~9月逐渐降低,从抗肝炎活性成分的含量角度考虑,6月份(营养期)为花锚的最佳采收期。

5结语

花锚属植物是藏蒙药中治疗肝炎类疾病的常用药物,全草入药,具有重要的药用价值。该属植物的主要有效成分为(口山)酮及(口山)酮苷、裂环烯醚萜类、三萜类化合物及其它黄酮苷等,具有抗肝炎、抗氧化活性和降血糖等功效。在我国,该属植物药用历史较长,故具有很高的药理研究价值,特别是有关抗肝炎方面的研究显示出较大的市场潜力,值得进一步深入研究;其降血糖作用、抗氧化活性和调节体液免疫的药理活性研究报道较少,这些研究工作都亟待进一步的深入;另外对野生植物的过度采挖造成资源贫乏,采用人工的方法达到该药物资源的可持续利用也已成为目前及今后对该属植物重点研究的目标。

【参考文献】

[1]包保全,孙启时,包巴根那.花锚属植物化学成分及生物活性研究进展[J].中药材,2003,26(5):382.

[2]何廷农,刘尚武,吴庆如.中国植物志(第62卷)[M].北京:科学出版社,1988:291.

[3]黄燕,郁韶明.16种药用植物种子发芽的研究[J].山东中医杂志,2006,25(2):124.

[4]孙洪发,胡柏林,樊淑芬,等.花锚的三个新口山酮[J].植物学报,1983,25(5):460.

[5]孙洪发,胡柏林,等.花锚的三个新口山酮苷[J].植物学报,1987,29(4):422.

第3篇

积雪草Centellaasiatica(L.)Urb又称崩大碗、落得打、连钱草、半边钱等,为伞形科积雪草属植物,广泛分布于长江流域以南各地,是广东民间地区常用中草药,我国医学上用积雪草外用及内服治病已有两千多年历史。积雪草性寒、味苦、辛,具有清热利湿、活血止血、解毒消肿之功效。全草主含三萜类,多炔烯烃类,挥发油类等成分。临床多用于湿热黄疸、痈肿疮毒、跌打损伤、传染性肝炎、皮肤病、流行性脑脊髓膜炎等。总之,积雪草具有多种重要生物活性,是个值得开发利用的药用植物资源。本文对其化学成分和药理作用研究进展进行综述,为更好地研究和利用资源提供基础资料。

1化学成分

1.1三萜类积雪草全草主要含大量的三萜皂苷类成分,如:积雪草苷(asiaticoside)、羟基积雪草苷(madecassoside)、玻热模苷(brahmoside)、玻热米苷(brahminoside)、参枯尼苷(thankuniside)、异参枯尼苷(isothankunside)和斯理兰卡积雪草苷(centelloside)[1],积雪草二糖苷(asiaticodiglycoside)[2]等,均为五环三萜皂苷,最近报道发现新的三萜类成分,积雪草皂苷B(centellasaponinB),积雪草皂苷C(centellasaponinC,),积雪草皂苷D(centellasaponinD)。积雪草中还有多种游离的三萜酸:积雪草酸(asiaticacid)、羟基积雪草酸(brahmicacidormadecassicacid)、异参枯尼酸(isothankunicacid)和Ternomilicacid[1],马达积雪草酸(madasiaticacid),centicacid,Centoicacid,cenellicacid,indocenticacid[2],6-羟基积雪草酸(6-β-O-Hhydroxyasiaticacid)[3]等。

1.2多炔烯烃类积雪草中还含有多炔烯烃类成分,如:C16H21O2,C19H27O4,C19H27O3,C15H20O2[2],C19H28O2,C17H24O3和11-oxoheneicosanyl-cyclohexane和dotriacont-8-en-1-oicacid,3-isoocladecanyl-4-hydroxy-a-pyrone[4],3-o-[a-L-arabinopyranosyl]-2a,3a,6a,23a-tetrhydroxyurs-12-ene-28-oicacid[2]等。

1.3挥发油类秦路平等[5]应用GC-MS分析,从积雪草中鉴定了45个长链的挥发油类成分。其中含量较高的有石竹烯(caryophyllene),法尼烯(farnesol),榄香烯(elemene),长叶烯(longifolene)等。

1.4其他成分除上述化学成分外积雪草中还含有其他成分,SrivastavaR[6]在积雪草提取物中分离得到Stigmasterol,Stigmasterone和Stigmasteroi-B-glucopyranoside。。Holeman等[7]从积雪草中分离得到了倍半萜类成分。何明芳等[8]在积雪草中分离得到了胡萝卜苷(daucosterol)、香草酸(vanfllicacid)。另外在积雪草中还发现含有内消旋肌醇、积雪草糖、胡萝卜烃类、叶绿素、山萘酚、β-谷甾醇、谷氨酸、天冬氨酸、维生素B1、生物碱以及鞣质等成分。

2药理作用

2.1抗抑郁的作用陈瑶等[9]

给长期未预知应激刺激致大鼠抑郁模型灌胃给药,结果与正常大鼠比较,抑郁症模型组动物血浆促肾上腺皮质激素(ACTH)、血清促甲状腺激素(TSH)、甲状腺素(T4)、和3,3’,5-三碘甲状腺原氨酸(rT3)浓度显著降低,血清三碘甲状腺原氨酸(T3)浓度显著升高;积雪草总苷各剂量组血浆ACTH水平、血清TSH、T4和rT3水平不同程度增加,血清T3水平减少。结果表明积雪草总苷在对下丘脑-垂体-甲状腺轴(HPTA),有促进垂体血清促TSH的合成与分泌,改善甲状腺功能的异常的作用;在对下丘脑-垂体-肾上腺皮质轴(HPAA),不同程度提高ACTH的水平,并对下丘脑促肾上腺素皮质激素释放激素(CRH)和糖皮质激素有影响。积雪草总苷可能是通过提高机体对各种非特异性刺激的抵抗力,避免过度应激刺激所致机体HPAA和HPTA等调节功能紊乱而发挥抗抑郁作用的。

早期的研究资料[10]表明,积雪草的挥发油和乙醇初提液具有抗抗抑郁作用。近期研究报道表明积雪草的抗抑郁作用是通过降低单胺氧化酶的活性,调节脑内氨基酸的含量[11];抑制血清皮质酮水平的升高,增强脑内单胺类神经递质的传递[12]等而发挥作用的。

2.2抗胃溃疡作用乐锦茂等[13]

发现复方积雪草浸膏治疗胃溃疡两周以后,大鼠血流加快,血流呈流线型或线粒型,血细胞聚集减少,胃溃疡愈合面积达99.5%。发现复方积雪草浸膏对组胺所致的胃液分泌,胃液游离酸和总酸、胃蛋白酶均有一定的抑制作用。

随着积雪草对胃溃疡的临床和药理作用的研究不段深入,近几年有许多研究证实积雪草对胃溃疡有治疗作用。如:发现积雪草提取物对乙醇胃黏膜具预防作用;对乙酸胃溃疡具有治疗作用;可以降低过氧化物(MPO)、丙二醛(MDA)、IL8的产生;可以增加胃黏膜細胞的存活率[14]。通过加强黏膜的自身阻碍以及减少自由基的损害来扺抗小鼠乙醇所致的胃黏膜损害[15];通过增加粘蛋白和糖蛋白的分泌,增强胃黏膜的屏障作用而发挥抗溃疡作用[16]。

2.3对纤维细胞合成的影响谢举临等[17]

研究了积雪草苷对纤维细胞核DNA合成和胶原蛋白合成的影响,发现积雪草苷可以影响成纤维细胞的超微结构,表现为核分裂相较少,核仁变细小或缺失,使成纤维细胞的增殖变得不活跃,合成和分泌蛋白的活性能力减弱。积雪草苷还可以抑制成纤维细胞的增殖和胶原蛋白的合成。

王瑞国等[18]发现积雪草苷在一定剂量范围内能促进小鼠成纤维细胞DNA合成和胶原蛋白合成,并呈剂量依赖关系。汤丽霞等[19]也有积雪草酸抑制肝星状细胞HSC-T6细胞Ⅰ型胶原蛋白表达的报道。潘姝等[20]积雪草苷可抑制瘢痕的成纤维细胞从S期进入M期,减少成纤维细胞中的磷酸化Smad2的含量,增加细胞中Smad7的含量。此外,章庆国等[21],黄茂芳等[22]研究积雪草提取物对人成纤维细胞增殖及胶原合成的影响,也得到了同样的结论。

2.4对皮肤系统的作用张涛等[23]

报道了积雪草苷在烧伤创面愈合过程中能有效促进细胞周期蛋白B1和增殖细胞核抗原的表达,使细胞周期的S+G2期明显提前,从而加快细胞增殖,促进创面愈合。毛维翰等[24]对积雪草苷作了治疗皮肤病的临床多中心开放性研究,结果发现,积雪草苷对皮肤溃疡治疗有效率为91.7%,对瘢痕疙瘩的有效率为67.9%,对局限性硬皮病的有效率为89%,对皮肤淀粉样变形的有效率为76%,对萎缩性硬化性苔藓等其他一些皮肤病也有较好的治疗作用。

此外还有用积雪草配成的烧伤膏用于治疗浅Ⅱ度及深Ⅱ度烧伤,发现患者疼痛缓解快、创面渗出少、愈合周期短、瘢痕形成率低[25]。还有积雪草苷可直接作用于黑素细胞,抑制黑素合成,是一种无细胞毒性的皮肤脱色剂[26]。

2.5对肾的作用

复方积雪草在长期的临床实践中显示能改善慢性肾功能衰竭CRF患者症状,降低血肌酐、尿素氮及24h尿蛋白量[27]。实验研究提示能抑制系膜细胞增殖,减少细胞外基质沉积,下调肾组织中Ⅳ型胶原、纤连蛋白(FN)、层黏蛋白(LN)以及转化生长因子β1(TGF-β1)和基质金属蛋白酶抑制剂-1的表达,降低血清和肾组织匀浆丙二醛含量,增加超氧化物歧化酶活性,抑制脂质过氧化[28,29];能够下调α-SMA、VimentinmRNA表达水平[30];阻止系膜细胞由G1期进入S期;下调佛波酯刺激的系膜细胞清道夫受体表达[31];抑制炎性细胞因子TNF-α上调所致的肾局部补体C3过度产生[32]。王军等[33]用基因表达谱芯片检测表明:复方积雪草可抑制PDGF-α、PDGF-β、PDGF受体、VEGFmRNA的表达;能抑制IL-9、IL-7R2、MIP等因子的mRNA的表达;经复方积雪草刺激后,肾组织中癌基因c-Myc,Jun表达被抑制;覃志成等[34]研究发现复方积雪草可以明显减低高IgA血清刺激足细胞表达的VEGFmRNA;张边江等[35]报道了积雪草提取物对血管紧张素Ⅱ(AngⅡ)刺激下的大鼠肾小球系膜细胞(MC)增殖和Ca2+水平有抑制和降低作用。

2.6抗肿瘤作用

BahuT.D等[36]报道积雪草纯化物体外对肿瘤细胞增殖有抑制的作用,并显示一定的剂量依赖关系。同时他们还发现,口服积雪草提取物或经层析法获得的积雪草纯化物,能抑制小鼠腹水瘤的生长并延长这些耐受小鼠的寿命,而且还发现它对人体正常的淋巴细胞没有毒副作用。

1996年有人报道了积雪草具有抗癌作用,之后陆续出现了很多积雪草提取物抗肿瘤作用的研究报道,如:积雪草的醇提取物有抗艾滋病毒逆转录酶的活性[8];积雪草苷对体外培养的L929细胞和CNE细胞的增殖有抑制作用,对移植S180细胞的增殖也有抑制作用,同时能提高荷S180小鼠的存活时间[37];积雪草苷对B16细胞的生长有丝分裂过程有明显抑制作用,能够诱导细胞凋亡或死亡,提示积雪甙有抗黑素瘤细胞生长作用[38];积雪草苷可诱导肿瘤细胞凋亡并与长舂新碱显示协同作用,有可能作为生化调节剂应用于肿瘤化疗[39]。积雪草苷对宫颈癌Hela细胞的生长有显著抑制作用并且呈浓度和时间依赖性;可能通过抑制Survivin表达,促进Capase-3表达而在诱导宫颈癌细胞凋亡过程中发挥重要作用[40]。

2.7对心血管系统作用

有人报道[41]将积雪草总苷用于制备防治冠心病、心肌梗塞、脑血栓形成、脑梗塞等心血管疾病药物中的新用途。周建燮等[42]也有积雪草苷促进内皮细胞生长、内膜修复的作用,初步提示其具有治疗PCI术后再狭窄的作用的报道。

Cesarone,M.R[43]研究发现,积雪草的三萜类成分可以增加患者的毛细血管通透性,改善微循环,改善结缔组织血管壁功能,减轻踝部水肿,可以治疗静脉高血压。IncandelaL[44]研究发现,积雪草的三萜类成分具有调节静脉管壁成纤维细胞的作用,能增加胶原蛋白和组织蛋白的合成,刺激静脉壁周围胶原的重塑,可以用于治疗静脉功能障碍。李桂桂等[45]对兔心肌缺血再灌注损伤(MIRI)模型研究,发现羟基积雪草苷(MC)可明显减小左心及全心心肌梗塞面积;对心电图有一定的改善作用;并能明显改善心功能,降低LDH及CK的升高程度。并且,MC可明显降低CRP升高程度;升高SOD酶活性,减少MDA含量;可明显抑制MIRI引起的心肌细胞凋亡,使Bcl-2表达上调。MC对心肌缺血再灌注损伤具有明显的预防和保护作用,作用机制可能与抗脂质过氧化物产生、提高SOD活力、抗炎以及抗心肌细胞凋亡有关。

2.8抗病原微生物作用

积雪草水提物有抗菌和抗病毒作用,对金黄色葡萄球菌和变形杆菌有抑菌作用,对绿脓杆菌、大肠杆菌、副大肠杆菌、宋氏痢疾杆菌、福氏痢疾杆菌和炭疽杆菌均无抑菌作用[46]。张胜华等[47]报道了积雪草苷对37株标准及临床分离菌株显示较强抗菌活性,尤其对各种耐药细菌,包括耐甲氧西林的金葡球菌(MRSA)、表葡菌(MRSE),耐5种氨基糖苷类抗生素、产钝化酶的粪肠球菌、产β-内酰胺酶的大肠埃希菌。肺炎克雷伯杆菌和醋酸钙不动杆菌,以及耐哌拉西林的铜绿假单胞菌的最低抑菌浓度值与三金片相近。积雪草苷对小鼠膀胱上行性肾感染大肠埃希菌26的清除细菌作用较强,可知积雪草苷具有良好的体内外抗菌活性,尤其对于泌尿系统感染。

2.9增强记忆的作用

孙峰等[48]通过对慢性铝中毒痴呆小鼠模型的研究,羟基积雪草甙可明显减轻铝过负荷所致的海马神经元损伤,明显缩短小鼠寻找平台潜伏期,降低小鼠脑组织中MAO-B活性,对慢性铝中毒小鼠的海马神经元具有保护作用,从而改善学习记忆能力,产生对拟痴呆模型的治疗作用。陈明亮等[49]用复方积雪草连续灌胃30d阿尔茨海默病(AD)模型大鼠,做跳台实验和Y迷宫实验发现治疗组学习记忆能力显著升高。

2.10对肝的作用

明志君等[50]用二甲基亚硝氨(DMN)制备的大鼠肝纤维化模型研究积雪草总苷抗实验性大鼠肝纤维化的作用,发现积雪草总苷能改善肝功能,并且肝组织病理学检查显示具有抗肝纤维化作用,可知积雪草总苷对DMN诱导的大鼠慢性肝纤维化具有良好的治疗作用。抑制肝纤维化可以通过抑制肝星状细胞(HSC)的增殖,促进HSC细胞的凋亡。汤丽霞等[19]的研究表明积雪草酸能抑制活化的HSC-T6细胞的Ⅰ型胶原蛋白表达水平。马葵芬等[51]也报道了积雪草酸对化学损伤原代培养大鼠肝细胞有保护作用。

2.11其他作用

除以上综述的药理活性之外还有许多作用如:调节免疫和降低血糖的作用[52],抗炎作用[53],抗乳腺增生的作用[54],降温作用[55]等。

3小结

积雪草为我国常用中药,近20年来对积雪草的研究主要集中在它的化学成分及药理作用两方面。因此,必须提高实验技能和更新实验方法,加快对其有效成分的研究;同时还要注重进行药理活性的检验和临床实验,以便更好地利用积雪草的生物活性,促进积雪草在多领域的应用,以便更合理地综合利用积雪草资源。

【参考文献】

[1]赵宇新,李曼玲,冯伟红,等.积雪草的研究进展[J].中国中医药信息杂志,2002,9(8):,81.

[2]张雷磊,王海生,姚庆强,等.积雪草化学成分研究[J].中草药,2005,36(12):1761.

[3]ShuklaYN,SrivastavaRitu,TripathiAK,etal.CharicterizationofanUrsanetriterpenoidfromCentellaasiaticawithgrowthinhibitoryactivityagainstSpilarictiaobliquePharmBiol[J].(LisseNeth),2000,38(4):262.

[4]SrivastavaRitu,ShuklaYN.AdisubstitutedpyronefromCentellaAsiatica[J].IndianChen,SectB:OrgChemInclMedChem,1997.36B(10):963.

[5]秦路平,丁如贤,张卫路,等.积雪草挥发油类成分分析及其抗抑郁作用研究[J].第二军医大学学报,1998,19(2):186.

[6]SrivastavaRitu,ShukalYN,TripathiAK.AntifeedantcompoundsfromCentellaasiatica[J].Fitoterapia,1997,68(1):93.

[7]HolemanM,TheronE,PinelR.Centellaasiatica:AnalysisbyGC-MSandIRMS[J].CosmetAromes,1994,120:52.

[8]何明芳,孟正木.沃联群积雪草化学成分的研究[J].中国药科大学学报,2000,31(2):91.

[9]陈瑶,韩婷,芮耀诚,等.积雪草总苷对实验性抑郁症大鼠血清皮质酮和单胺类神经递质的影响[J].中药材,2005,6(6):492.

[10]秦路平,丁如贤,张卫东,等.积雪草挥发油成分分析及其抗抑郁作用研究[J].第二军医大学学报,1998,19(2):186.

[11]陈瑶,韩婷,秦路平,等.积雪草总苷对小鼠抑郁行为和脑内氨基酸含量的影响[J].中药材,2003,26(12):870.

[12]陈瑶,韩婷,芮耀诚,等.积雪草总苷对实验性抑郁症大鼠血清皮质酮和单胺类神经递质的影响[J].中药材,2005,6(6):492.

[13]乐锦茂,浦培英,雷颖.复方积雪草浸膏对大鼠慢性实验性胃溃疡及微循环的影响[J].江苏中医,1992,13(3):42.