前言:我们精心挑选了数篇优质初中物理模型法文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。
物理学所分析的、研究的实际问题往往很复杂,为了便于着手分析与研究,物理学中常常采用“简化”的方法,对实际问题进行科学抽象的处理,用一种能反映原物本质特性的理想物质(过程)或暇想结构,去描述实际的事物(过程)。这种理想物质(过程)或假想结构称之为“物理模型”。
每一个物理过程的处理,物理模型的建立,都离不开对物理问题的分析。教学中,通过对物理模型的设计思想及分析思路的教学,能培养学生对较复杂的物理问题进行具体分析,区分主要因素和次要因素,抓住问题的本质特征,正确运用科学抽象思维的方法去处理物理问题的能力,有助于学生思维品质的提高,有助于培养学生的创新思维。这是培养创新能力的主渠道。
建模过程中,要充分利用抽象思维和比较思维,区分主要因素、次要因素和无关因素,抓住本质的东西加以概括,建立物理模型,在教学中要注意建模过程的教学。如在连通器的教学中,可以让学生观察茶壶、锅炉水位计、乳牛自动喂水器等,设计表格:
引导学生分析、比较这些物体间的差异和共同点,找出它们的共性:上端开口、下部相连通,进一步抽象建立起连通器的物理模型。在研究简单机械时,可以举出多种生活中的工具或器械,如撬杠,核桃钳,镊子,启瓶器等,让学生使用这些工具体会分析比较它们在使用过程中的共同特点,就不难发现它们都具有共同的特征:1.坚硬,使用不变形,是一根硬棒;2.在力的作用下能绕着固定点转动;3.在长短、粗细、弯直等形状上没有一定要求。这样就抽象出“杠杆”这一物理模型。
使用物理模型解决问题时可以起到很多作用:
1.可使物理教学简单化
很多实际问题是复杂的很难研究的,如能将其转化成物理模型可使物理教学简单化,如做力的示意图时就找到力的作用点,沿力的方向画一条带箭头的线段来表示这个力,力的示意图就是典型的模型。分析物体受力时,可根据问题的需要忽略物体的形状和大小,把物体看做一个有质量的点,把这个点作为物体所受的所有力的作用点,从中较为方便地得出物体受力情况。
2.可以使教学形象直观
有些物理问题现象过程非常抽象,运用物理模型法可将问题变得直观形象。在研究磁场时为了描述磁体周围的磁场强弱和磁场特点我们就用磁感线这一模型来描述磁场,通过磁感线的疏密程度表示磁场的强弱。
3.使具体问题普遍化
关键词:模型构建教学法;含义;种类;运用
中图分类号:G427 文献标识码:A 文章编号:1992-7711(2012)13-026-1
教授物理的方法很多,如实验法、模型法、推理法、分析法、假设法、图象法、数学法等。在此,本文着重进行模型法在初中物理教学中的运用的探讨,并举出几个有代表性的例子。
一、模型构建的含义及模型构建教学法
1.模型构建的含义
模型构建也称建模,即为了对某一事物作出理解而对该事物做出的一种抽象的、无歧义的书面描述。模型构建包含了两个方面的内容,一方是模型本身,另一方面是构建模型的过程[1]。
模型主要分为逻辑模型和物理模型两大类。模型可以是实物,即按原物的一定比例做出来的与原物特征一致的样品。如车模、船模等;模型也可以是抽象的,即当某一事物无法用实物加以说明时,就用语言表达的方式描述出事物的特征,以便在脑海里对其有个印象,从而达到认识事物的目的。比如为了表示磁场和电场而引入的磁力线、电感线等。无论是物理模型还是逻辑模型都必须经过一个从无到有的建立过程。
2.模型构建教学法
模型构建教学法就是运用建立模型的方式,让学生的思维和意识上建立起对要理解的知识点的模型,从而使得某一概念或事物能被学生所接受的教学方法。在给学生讲解有关概念之前,让其的思想意识当中先建立起相关的印象对教学是有推动作用的。此法是物理教学中的常用方法,它对形成物理概念以及对物理规律的形成有着重要的作用[2]。
二、模型的种类及说明
模型分为物理对象模型、物理过程模型、理想化实验模型、模拟式模型、数学模型。
物理对象模型:有些实际存在的事物在特定的条件下不容易被人们所接受,那么往往可以把它抽象地认识为理想的研究对象,这个研究对象就是物理对象模型。质点就是物理对象模型之一,它是研究直线运动物体运动轨迹的。物理对象模型还有:薄透镜、光线、弹簧振子、理想电流表、理想电压表、理想电源和分子模型等。
物理过程模型:将一些复杂的物理过程经过分解、简化,忽视次要因素,考虑主要因素,忽略个性、考虑共性,抽象为简单的、使之成为易于理解的过程,即物理过程模型。常见的物理过程模型有匀速直线运动、变速直线运动、自由落体运动等。
理想化实验模型:在进行物理实验的时候,依据逻辑推理抓主要因素,忽略次要因素,对实验过程进一步分析、推理、找出其规律的模型称为理想化实验模型。理想化实验模型便于看清事物的本质,从而能将事物本身揭示得更为透彻。伽利略著名的自由落体运动实验就是理想化的实验模型。
模拟式模型:有些物理概念在形式和规律上是抽象的,在内容上则是具体的。这部分概念可以用与之相似的事物模拟出来,即模拟式模型。模拟式模型通常是一种假设的模型,模拟式模型能使一些看见不见、摸不着的事物变得形象、具体化。比如为了研究磁场和电场而引入的磁力线和电感线。
数学模型:物理虽然研究的是事物变化的客观规律,但也能通过数学的形式表达出来。物理学通常是采用客观、抽象与概括的方法去研究客观事物的,数学模型则将所研究对象的属性及规律公式化,而使得其成为定量,达到便于理解的目的。如压强、功率等的公式就是用数学的方法建立的模型。
三、模型构建教学法在初中物理教学中的运用
模型构建教学法的引入为在学生的意识中预先建立起对所涉及概念的雏形提供了帮助,为教学的顺利进行提供了支撑。构建的模型亦同样可以分为物理和逻辑两大类。物理模型常见的如各种实验,逻辑模型则不能用实验来表达,而需要用建模的方式在学生的脑海中建立起印象,再逐步加以说明。以下笔者就来举例阐述模型构建教学法在物理教学中的运用。
例如可以用物理过程模型来向学生说明什么是参照物。参照物是为了研究物体的运动或静止而引入的比对物体。比如火车启动后,窗外的树不断地向后退,并且在火车到站的这段时间内窗外的树都是如此,那么这时一个物理过程模型就建立起来了。随着这个过程的进行,我们可以通过窗外的树向后退从而判断出火车是在运动的,因此树也就成了参照物。同样,当树停止后退时,我们便能判断出火车也停了。
又如要研究光的特性,而引入了光线,光线本身是不存在的,它只是为了方便对光的各种现象加以阐释而虚拟出来的,是逻辑意义上的。光线属于物理对象模型,当要向学生讲解光的传播方向时,先要将光以光线的形式表达出来,并告诉学生把光线看作是光本身,而不要看作是一条实际意义上的线,然后通过言语表述与课堂视频或是挂图或是板书相结合的形式来标示出光线的方向,从而让学生理解光是沿直线传播的。最后还要特别强调一句只有在均匀的介质中光才是沿直线传播的,而在非均匀介质中,光的传播方向就不是直线了,是可变的,如反射和折射现象就是光在非均匀介质中传播而造成的现象。
四、模型构建教学法注意事项
模型构建教学法主要是用来为学生事先没有建立起来的印象或是一时还难以形成的意识而做的说明,但它也不是在任何情况下都适用的,有的物理概念除了抽象以外,还要配合其他的方式才能让学生理解,比如实验法,推理、分析法等。模型构建教学法拓展了学生的思维,也给老师教学的顺利进行提供了帮助。
[参考文献]
关键词:初中物理;模型;直观;规律
中图分类号:G632 文献标识码:B 文章编号:1002-7661(2013)13-047-01
初中物理学科已经显示出它的抽象性,学生接受起来未免有些吃力,教师可以化抽象为直观,发动学生,制作模型,利用模型的形象直观的特点,破解物理难题,开启智慧之门。一方面有利于培养并提高学生的动手动脑能力,一方面锻炼学生的思维能力。
模型在我们日常生活、工程技术和科学研究中也是很常见的,对我们的生产生活有很大帮助。物理学研究具有复杂性。怎样发现复杂多变的客观现象背后的基本规律呢?又如何简单的表达它们呢?人们有幸在漫长地实践活动中找到一些有效的方法,其中一个就是:在具体情况下忽略研究对象或过程的次要因素,抓住其本质特征,把复杂的研究对象或现象简化为较为理想化的模型,从而发现和表达物理规律。
既然物理模型是物理学研究的重要方法和手段,物理教育和教学中对物理模型的讲述和讲授就必不可少。建立物理模型就要忽略次要因素以简化客观对象,合理简化客观对象的过程就是建立物理模型的过程。根据简化过程和角度的不同,将物理模型分为以下五类:物理对象模型、物理条件模型、物理过程模型、理想化实验和数学模型。下面我们逐个加以说明。
(1)物理对象模型――直接将具体研究对象的某些次要因素忽略掉而建立的物理模型。这种模型应用最为广泛,在初中物理教材中有许多很好的例子。例如:质点、薄透镜、光线、弹簧振子、理想电流表、理想电压表、理想电源和分子模型。作为例子,我们详细分析质点。质点,就是忽略运动物体的大小和形状而把它看成的一个有质量的几何点。其条件是在所研究的问题中,实际物体的大小和形状对本问题的研究的影响小到可以忽略。这样以来,很多类型的运动的描述就得到化简。比如所有做直线运动的物体都可以看成质点。因为作直线运动的物体的每一个部分每时每刻都做同样的运动,所以就可以忽略其大小和形状,而只找这个物体上的一个点作为概括,当然这个点的质量等于物体本身的质量。这样,直线运动物体的运动轨迹就是一条直线,很容易想象、理解和刻画。很多具体例子都可以这么做,例如以最大速度行驶在笔直铁轨上的火车,沿着航空路线飞行的客机,从比萨斜塔上下落的铁球,等等。
(2)物理条件模型――忽略研究对象所处条件的某些次要因素而形成的物理模型。在初中物理中有:光滑面、轻质杆、轻质滑轮、轻绳、轻质球、绝热容器、匀强电场和匀强磁场等。我们以轻质杆为例加以分析。比如简单机械里的杠杆,在初中阶段问题往往归结到力矩的平衡上来。即:动力×动力臂=阻力×阻力臂。动力和阻力都包括杆以外的物体对杠杆的作用力,还包括杆本身的重力。而杆重力的力臂在杆上的每一点都不同,这样除了杆的形状是几何规则的少数例子以外的绝大部分杠杆问题在初中阶段就没法解决。而轻质杆的引入正好解决了这一问题。轻质杆是忽略了自身重力的弹性杆。当外界物体对杠杆的力矩远远大于杆自身重力的力矩或者杆自身重力的力矩相互抵消时,就可以把杆当成轻质杆,杠杆受到的力矩只有外力矩,这样所有杠杆平衡问题都可以迎刃而解。
(3)物理过程模型――忽略物理过程中的某些次要因素建立的物理模型。在初中物理中有:匀速直线运动、稳恒电流等。这些物理模型都是把物理过程中的某个物理量的微小变化忽略掉,把这个物理量看成是恒定的。因为这些量的变化量与物理量本身相比太小了,以至于可以略去不计。这样不用考虑过程中物理量的复杂变化情况而只考虑恒定过程,分析问题就容易多了。
(4)理想化实验――在大量实验研究的基础上,经过逻辑推理,忽略次要因素,抓住主要特征,得到在理想条件下的物理现象和规律的科学研究方法就是理想实验。理想化方法是物理科学研究和物理学习中最基本、应用最广泛的方法。初中物理中就有一个非常着名的理想化实验:伽利略斜面实验。伽利略的斜面实验有许多,现在举其中的一个例子,同样的小球从同种材料同样高度的斜面上滑下来,在摩擦力依次减小的水平面上沿直线运动的路程依次增大。伽利略由此推知:小球在没有摩擦的水平面上永远做匀速直线运动(在理想条件下的物理现象)。牛顿又在此基础上建立了牛顿第一定律。无需多论,也足以见得理想实验的强大力量。
【关键词】物理模型;初中物理教育;初中物理教学;简单性原理
模型在我们日常生活、工程技术和科学研究中经常见到,对我们的生产生活有很大帮助。物理学研究具有复杂性。怎样发现复杂多变的客观现象背后的基本规律呢?又如何简单的表达它们呢?人们有幸在漫长地实践活动中找到一些有效的方法,其中一个就是:在具体情况下忽略研究对象或过程的次要因素,抓住其本质特征,把复杂的研究对象或现象简化为较为理想化的模型,从而发现和表达物理规律。
既然物理模型是物理学研究的重要方法和手段,物理教育和教学中对物理模型的讲述和讲授就必不可少。建立物理模型就要忽略次要因素以简化客观对象,合理简化客观对象的过程就是建立物理模型的过程。根据简化过程和角度的不同,将物理模型分为以下五类:物理对象模型、物理条件模型、物理过程模型、理想化实验和数学模型。下面我们逐个加以说明。
1. 物理对象模型――直接将具体研究对象的某些次要因素忽略掉而建立的物理模型 这种模型应用最为广泛,在初中物理教材中有许多很好的例子。例如:质点、薄透镜、光线、弹簧振子、理想电流表、理想电压表、理想电源和分子模型。作为例子,我们详细分析质点。质点,就是忽略运动物体的大小和形状而把它看成的一个有质量的几何点。其条件是在所研究的问题中,实际物体的大小和形状对本问题的研究的影响小到可以忽略。这样以来,很多类型的运动的描述就得到化简。比如所有做直线运动的物体都可以看成质点。因为作直线运动的物体的每一个部分每时每刻都做同样的运动,所以就可以忽略其大小和形状,而只找这个物体上的一个点作为概括,当然这个点的质量等于物体本身的质量。这样,直线运动物体的运动轨迹就是一条直线,很容易想象、理解和刻画。很多具体例子都可以这么做,例如以最大速度行驶在笔直铁轨上的火车,沿着航空路线飞行的客机,从比萨斜塔上下落的铁球,等等。
2. 物理条件模型――忽略研究对象所处条件的某些次要因素而形成的物理模型 在初中物理中有:光滑面、轻质杆、轻质滑轮、轻绳、轻质球、绝热容器、匀强电场和匀强磁场等。我们以轻质杆为例加以分析。比如简单机械里的杠杆,在初中阶段问题往往归结到力矩的平衡上来。即:动力×动力臂=阻力×阻力臂。动力和阻力都包括杆以外的物体对杠杆的作用力,还包括杆本身的重力。而杆重力的力臂在杆上的每一点都不同,这样除了杆的形状是几何规则的少数例子以外的绝大部分杠杆问题在初中阶段就没法解决。而轻质杆的引入正好解决了这一问题。轻质杆是忽略了自身重力的弹性杆。当外界物体对杠杆的力矩远远大于杆自身重力的力矩或者杆自身重力的力矩相互抵消时,就可以把杆当成轻质杆,杠杆受到的力矩只有外力矩,这样所有杠杆平衡问题都可以迎刃而解。
3. 物理过程模型――忽略物理过程中的某些次要因素建立的物理模型 在初中物理中有:匀速直线运动、稳恒电流等。这些物理模型都是把物理过程中的某个物理量的微小变化忽略掉,把这个物理量看成是恒定的。因为这些量的变化量与物理量本身相比太小了,以至于可以略去不计。这样不用考虑过程中物理量的复杂变化情况而只考虑恒定过程,分析问题就容易多了。
4. 理想化实验――在大量实验研究的基础上,经过逻辑推理,忽略次要因素,抓住主要特征,得到在理想条件下的物理现象和规律的科学研究方法就是理想实验 理想化方法是物理科学研究和物理学习中最基本、应用最广泛的方法。初中物理中就有一个非常著名的理想化实验:伽利略斜面实验。伽利略的斜面实验有许多,现在举其中的一个例子,同样的小球从同种材料同样高度的斜面上滑下来,在摩擦力依次减小的水平面上沿直线运动的路程依次增大。伽利略由此推知:小球在没有摩擦的水平面上永远做匀速直线运动(在理想条件下的物理现象)。牛顿又在此基础上建立了牛顿第一定律。无需多论,也足以见得理想实验的强大力量。
5. 数学模型――由数字、字母或其它数学符号组成的、描述现实对象数量规律的数学公式、图形或算法 初中物理中的数学模型主要有磁感线和电场线。磁感线(电场线)是形象的描述磁感应强度(电场强度)空间分布的几何线,是一种数学符号。而磁场和电场本身的性质对这些几何线做了一些规定,例如空间各点的电场强度是唯一的规定了电场线不相交。这样就使它们成为形象、简练而准确的描述磁场和电场的数学符号。
既然物理模型是物理学研究的重要方法和手段,物理教育和教学中对物理模型的讲述和讲授就必不可少。建立物理模型就要忽略次要因素以简化客观对象,合理简化客观对象的过程就是建立物理模型的过程。根据简化过程和角度的不同,将物理模型分为以下五类:物理对象模型、物理条件模型、物理过程模型、理想化实验和数学模型。下面我们逐个加以说明。
(一)物理对象模型——直接将具体研究对象的某些次要因素忽略掉而建立的物理模型。这种模型应用最为广泛,在初中物理教材中有许多很好的例子。例如:质点、薄透镜、光线、弹簧振子、理想电流表、理想电压表、理想电源和分子模型。作为例子,我们详细分析质点。质点,就是忽略运动物体的大小和形状而把它看成的一个有质量的几何点。其条件是在所研究的问题中,实际物体的大小和形状对本问题的研究的影响小到可以忽略。这样以来,很多类型的运动的描述就得到化简。比如所有做直线运动的物体都可以看成质点。因为作直线运动的物体的每一个部分每时每刻都做同样的运动,所以就可以忽略其大小和形状,而只找这个物体上的一个点作为概括,当然这个点的质量等于物体本身的质量。这样,直线运动物体的运动轨迹就是一条直线,很容易想象、理解和刻画。很多具体例子都可以这么做,例如以最大速度行驶在笔直铁轨上的火车,沿着航空路线飞行的客机,从比萨斜塔上下落的铁球,等等。
(二)物理条件模型——忽略研究对象所处条件的某些次要因素而形成的物理模型。在初中物理中有:光滑面、轻质杆、轻质滑轮、轻绳、轻质球、绝热容器、匀强电场和匀强磁场等。我们以轻质杆为例加以分析。比如简单机械里的杠杆,在初中阶段问题往往归结到力矩的平衡上来。即:动力×动力臂=阻力×阻力臂。动力和阻力都包括杆以外的物体对杠杆的作用力,还包括杆本身的重力。而杆重力的力臂在杆上的每一点都不同,这样除了杆的形状是几何规则的少数例子以外的绝大部分杠杆问题在初中阶段就没法解决。而轻质杆的引入正好解决了这一问题。轻质杆是忽略了自身重力的弹性杆。当外界物体对杠杆的力矩远远大于杆自身重力的力矩或者杆自身重力的力矩相互抵消时,就可以把杆当成轻质杆,杠杆受到的力矩只有外力矩,这样所有杠杆平衡问题都可以迎刃而解。
(三)物理过程模型——忽略物理过程中的某些次要因素建立的物理模型。在初中物理中有:匀速直线运动、稳恒电流等。这些物理模型都是把物理过程中的某个物理量的微小变化忽略掉,把这个物理量看成是恒定的。因为这些量的变化量与物理量本身相比太小了,以至于可以略去不计。这样不用考虑过程中物理量的复杂变化情况而只考虑恒定过程,分析问题就容易多了。
(四)理想化实验——在大量实验研究的基础上,经过逻辑推理,忽略次要因素,抓住主要特征,得到在理想条件下的物理现象和规律的科学研究方法就是理想实验。理想化方法是物理科学研究和物理学习中最基本、应用最广泛的方法。初中物理中就有一个非常著名的理想化实验:伽利略斜面实验。伽利略的斜面实验有许多,现在举其中的一个例子,同样的小球从同种材料同样高度的斜面上滑下来,在摩擦力依次减小的水平面上沿直线运动的路程依次增大。伽利略由此推知:小球在没有摩擦的水平面上永远做匀速直线运动(在理想条件下的物理现象)。牛顿又在此基础上建立了牛顿第一定律。无需多论,也足以见得理想实验的强大力量。
既然物理模型是物理学研究的重要方法和手段,物理教育和教学中对物理模型的讲述和讲授就必不可少。建立物理模型就要忽略次要因素以简化客观对象,合理简化客观对象的过程就是建立物理模型的过程。根据简化过程和角度的不同,将物理模型分为以下五类:物理对象模型、物理条件模型、物理过程模型、理想化实验和数学模型。下面逐一加以说明
(1)物理对象模型 直接将具体研究对象的某些次要因素忽略掉而建立的物理模型
这种模型应用最广泛,在初中物理教材中有许多很好的例子。例如,质点、薄透镜、光线、弹簧振子、理想电流表、理想电压表、理想电源和分子模型。作为例子,我们详细分析质点。质点,就是忽略运动物体的大小和形状而把它看成一个有质量的几何点。其条件是在所研究的问题中,实际物体的大小和形状对本问题研究的影响小到可以忽略。这样以来,很多类型的运动描述就得到化简。比如,所有做直线运动的物体都可以看成质点。因为做直线运动的物体的每一部分每时每刻都在做同样的运动,所以就可以忽略其大小和形状,而只找这个物体上的一个点作为概括,当然,这个点的质量就等于物体本身的质量。这样,直线运动物体的运动轨迹就是一条直线,很容易想象和理解。很多具体例子都可以这么做,如以最大速度行驶在笔直铁轨上的火车,沿着航空路线飞行的客机,从比萨斜塔上下落的铁球等。
(2)物理条件模型 忽略研究对象所处条件的某些次要因素而形成的物理模型
在初中物理中,有光滑面、轻质杆、轻质滑轮、轻绳、轻质球、绝热容器、匀强电场和匀强磁场等。我们以轻质杆为例加以分析,如简单机械里的杠杆,在初中阶段把问题往往归结到力矩的平衡上来,即动力×动力臂=阻力×阻力臂。
动力和阻力不仅包括杆以外的物体对杠杆的作用力,还包括杆本身的重力;而杆重力的力臂在杆上的每一点都不同,这样,除了杆的形状是几何规则的少数例子以外,绝大部分杠杆问题在初中阶段就没法解决,而轻质杆的引入正好解决了这一问题。轻质杆是忽略了自身重力的弹性杆。当外界物体对杠杆的力矩远远大于杆自身重力的力矩或者与杆自身重力的力矩相互抵消时,就可以把杆当成轻质杆,杠杆受到的力矩只有外力矩,这样所有杠杆平衡问题都可以迎刃而解。
(3)物理过程模型 忽略物理过程中的某些次要因素建立的物理模型
在初中物理中,有匀速直线运动、稳恒电流等,这些物理模型都是把物理过程中的某个物理量的微小变化忽略掉,把这个物理量看成是恒定的。因为这些量的变化量与物理量本身相比太小了,以至于可以略去不计。这样不用考虑过程中物理量的复杂变化情况而只考虑恒定过程,分析问题就容易多了。
(4)理想化实验 在大量实验研究的基础上,经过逻辑推理,忽略次要因素,抓住主要特征,得到在理想条件下的物理现象和规律的科学研究方法就是理想实验
理想化方法是物理科学研究和学习中最基本、应用最广泛的方法。初中物理中就有一个非常著名的理想化实验:伽利略斜面实验。伽利略斜面实验有许多,现在举其中的一个例子,同样的小球从同种材料同样高度的斜面上滑下来,在摩擦力依次减小的水平面上沿直线运动的路程依次增大。伽利略由此推知:小球在没有摩擦的水平面上永远做匀速直线运动(在理想条件下的物理现象)。牛顿又在此基础上建立了牛顿第一定律。无需多论,也足以见得理想实验的强大力量。
(5)数学模型 由数字、字母或其他数学符号组成的、描述现实对象数量规律的数学公式、图形或算法
论文关键词:初中物理
科学方法是连接知识和能力的纽带。“掌握一种科学方法胜过解答十个问题。”对研究方法的学习和考查体现着一种新的教学理念,同学们只有真正掌握了研究方法,才能有效解决实际问题,真正提高自己的创新意识和能力。
《新课程标准》要求,在突出科学探究内容的同时,重视研究方法的指导,使学生在进行科学探究、学习物理知识的过程中,逐渐拓宽视野,初步领悟到科学研究方法的真谛。因此初中物理论文初中物理论文,考查研究物理问题的方法,成为当前和今后中考的热点。
初中物理常用的研究方法有:控制变量法、等效替代法、转换法、推理法、模型法、类比法等。
一、控制变量法
所谓控制变量法,就是在研究和解决问题的过程中,对影响事物变化规律的因素和条件加以人为控制,只改变某个变量的大小,而保证其它的变量不变,最终解决所研究的问题。控制变量法是中学物理中最常用的方法,也是中考出题最多的方法。
在初中物理课本中,应用这种方法的实验有:
理想斜面实验、探究力与运动的关系、探究影响滑动摩擦力大小的因素、探究影响压力的作用效果的因素、探究影响液体压强大小的因素、探究影响浮力大小的因素、蒸发的快慢与哪些因素有关、探究影响滑轮组的机械效率的因素、探究影响动能大小的因素、探究影响重力势能大小的因素、探究影响导体电阻大小的因素、验证欧姆定律、探究影响电流做功多少的因素、探究影响电流的热效应的因素、探究影响电磁铁磁性强弱的因素、比热容概念的引入等
二、等效替代法
在物理实验中有许多物理特征、过程和物理量要想直接观察和测量很困难,这时往往把所需观测的变量换成其它间接的可观察和测量的变量进行研究,这种研究方法就是等效法。
等效替代法是常用的科学思维方法。等效是指不同的物理现象、模型、过程等在物理意义、作用效果或物理规律方面是相同的。它们之间可以相互替代,而保证结论不变。等效的方法是指面对一个较为复杂的问题,提出一个简单的方案或设想,而使它们的效果完全相同,从而将问题化难为易,求得解决。
初中物理课本中应用这种方法的有:
1、探究平面镜成像特点时用另一支蜡烛在玻璃板后面去等效像2、等效电路 3、串并联总电阻 4、多个分力与合力等效 5、物体的重心等论文参考文献格式。
三、转换法
对于不易研究或不好直接研究的物理问题,而是通过研究其表现出来的现象、效应、作用效果间接研究问题的方法叫转换法。
初中物理中应用了这种方法的有:
1.研究物体内能与温度的关系(我们无法直接感知内能的变化,只能转换成测出温度的改变来说明内能的变化);
2.在研究电热与电流、电阻的关系时,将电热的多少转换成温度计液柱上升的高度;
3.我们在研究电功与什么因素有关的时候,将电功转换成砝码上升的高度;
4.在我们回答动能与什么因素有关时,我们将动能转化为小木块在平面上被推动的距离,距离越远则动能越大。
5.证明声音是由振动产生的,敲击音叉后放入水中,水花四溅。
注意:等效法与转换法很相似,它们的区别是“等效替代法” 中相互替代的两个量种类相同,大小相等 ,而“转换法”中的两个物理量有因果关系,并且性质往往发生了改变如
转换法: 电流大小用灯泡亮度体现; 磁场的强弱用小磁针偏转的幅度体现
等效替代法: 分力相叠加是合力 ;小石块体积用排开水的体积代替
四、理想模型法
实际现象和过程一般都十分复杂,涉及到众多因素,采用模型方法可起到简化和纯化的作用.忽略次要因素,从复杂事物中抽象出理想模型,合理近似的反应所研究事物的本质特征,这种研究问题的方法叫理想模型法.
在初中物理课本中,应用这种方法的有
1.光线(光线是看不见的,我们使用一条看得见的实线来表示,就将问题简化利用了理想化模型)
2.磁感线
3.电路图是实物电路的模型
4.力的示意图或力的图示是实际物体和作用力的模型。
5.实验室常用手摇交流发电机及挂图来研究交流发电机的原理和工作过程
6.研究连通器原理时用到液片模型。
7.研究肉眼观察不到的原子结构时建立原子核式结构模研究肉眼观察不到的原子结构时建立原子核式结构模型。
五、科学推理法
推理法是根据已知物理现象和规律,通过想象和推理对未知的现象做出科学的推理和预见.推理法是在观察实验的基础上,忽略次要因素初中物理论文初中物理论文,进行合理的推理,得出结论,达到认识事物本质的目的。理想实验是研究物理规律的一种重要的思想方法,它以大量的可靠的事实为基础,以真实的实验为原形,通过合理的推理得出物理规律.
在初中物理课本中,应用这种方法的有
1、声音不能在真空中传播用推理法得出
2、研究物体运动状态与力的关系时,推理得出惯性定律。
六.类比法
类比法是指将两个相似的事物做对比,从已知对象具有的某种性质推出未知对象具有相应性质的方法.类比法在物理中有广泛的应用。所谓类比,实际上是一种从特殊到特殊或从一般到一般的推理。它是根据两个(或两类)对象之间在某些方面的相同或相似而推出它们在其他方面也可能相同或相似的一种逻辑思维。在物理教学中,类比方法可以帮助理解较复杂的实验和较难的物理知识。
在初中物理课本中,应用这种方法的有
1、用水流类比电流 2、用水压类比电压 3、用水波类比声波 4、用太阳系的结构类比原子的结构。
总之,大家要养成良好思维习惯,在解决问题时要尝试运用各种物理研究方法,不断提高科学素质,这既是中考热点也是以实现课程改革的目标。
一、初中学生的物理解题障碍及原因分析
初中学生的物理学习当中,容易出现的物理解题障碍主要有以下几种:第一,被动式解题障碍.被动式解题障碍主要指初中学生进行物理解题中,由于缺乏学习的主动性,不愿意主动进行解题思考,从而导致解题时,容易受到物理题目当中的干扰信息和“陷阱”等信息的影响,产生解题障碍,无法进行物理题目的正确解题,进而影响到初中学生的物理解题训练效果.第二,思维定势障碍.思维定势障碍主要指,初中学生在自身进行的物理解题训练过程中,长期使用同一种解题方法解题思路进行初中物理题目的解答,在自身的脑海当中形成解题思维的惯性,从而导致其遇到不同类别、不同知识的物理试题时,只会使用单一的解题方法,不能有效地进行变通,从而产生解题障碍,影响到其物理解题的效率和水平.第三,受经验主义的影响产生逻辑思维解题障碍.逻辑思维解题障碍主要指,初中学生在进行物理试题的解题训练时,解题的逻辑推理方面,缺乏有机的调理和清晰的思维导向,从而导致其解题逻辑推理时逻辑思维混乱,无法有效地找出正确的解题思维路线和方法,从而产生了物理解题障碍.产生该思维障碍的原因主要是初中学生学习物理缺少必要的逻辑思维训练,解题训练量较少,以及对物理逻辑推理思维的重视程度下降等原因导致的.
二、解决初中学生物理解题障碍的有效策略
1.强化初中学生的解题能力培养
强化初中学生的物理解题能力培养,是解决初中学生物理解题障碍,强化初中学生物理解题思维能力,提高其物理解题效率和解题水平的最为有效的方法,因此,初中物理教师应当积极采取有效地措施加强对于初中学生的物理解题能力的培养.解题教学实例:
例1一个重为2 N的皮球,其在10 m高处下落3 m的过程中,重力对它所做的功为
A.20 JB.6 JC.14 JD.26 J
该题是一道典型的关于重力做功的试题,主要考查初中学生对于重力知识掌握的水平,因此,在该题的解题当中,为了避免初中学生由于被动式解题障碍和思维定势障碍等问题的影响,初中物理教师应当巧妙的引导初中学生学会主动思考,学会解题模型和图像的建立与绘制,从而直观的发现解题规律和方法,快速地解题,得出答案B,从而有效地实现自身物理解题能力的强化.
2.加强初中学生思维程序的训练
初中物理教师要想有效地提高初中学生的解题能力,帮助初中学生克服自身的解题障碍,应当加强对于初中学生解题思维程序的训练,强化初中学生的理性思维,从而有效地实现初中学生物理解题水平的提高.现代初中物理解题,其解题的思维程序主要有以下五步:第一步,审题,审题主要承担着帮助初中学生了解题目主要大干信息、问题以及各项联系等信息.第二步,抽象出物理对象和情景.物理对象和情景的建立是帮助初中学生理清题目对象和条件的重要一步,对初中学生后面的解题规律和模型的建立有着至关重要的影响.第三步,确定物理试题解题的规律.第四步,建立物理模型.建立物理模型是其解题过程中最为关键的一步,物理解题模型的建立可以帮助初中学生建立起整体解题的框架,找到必要的解题方法.第五步,求解.实际中的应用如下:
例2对日常生活中常见的声音,下面对其叙述正确的是
A.一切正在发声的物体都在振动
B.高速公路两侧安装透明板墙是在声源处减弱噪声
C.只要物体有振动行为,就能听见声音
D.人们可以根据音调来辨别不同乐器发出的声音
一 创设入门台阶,排除学习障碍
初中物理教学是以观察、实验为基础,使学生了解力学、热学、声学、光学、电学和原子物理学的初步知识以及实际应用;高中物理教学则是采用观察实验、抽象思维和数学方法相结合,对物理现象进行模型抽象和数学化描述,要求通过抽象概括、想象假说、逻辑推理来揭示物理现象的本质和变化规律。初中物理教学以直观教学为主,在学生的思维活动中呈现的是一个个具体的物理形象和现象,所以初中学生物理知识的获得是建立在形象思维的基础之上;而高中较多地是在抽象的基础上进行概括,在学生的思维活动中呈现的是经过抽象概括的物理模型。
由于初中物理内容少,问题简单,讲解例题和练习多,课后学生只要背背概念、公式,考试就很容易了。而高中物理内容多而且难度大,各部分知识相互联系,有的学生仍采用初中的那一套方法对待高中的物理学习,结果是学了一大堆公式,虽然背得很熟,但一用起来就不知从何下手,学生感到物理深奥难懂,从而心理上造成对物理的恐惧。高中物理对学生运用数学分析解决物理问题的能力提出了较高要求,在教学内容上更多地涉及到数学知识,物理规律的数学表达式明显加多加深,例如:匀变速直线运动公式常用的就有10个之多,每个公式涉及到四个物理量,其中三个为矢量,并且各公式有不同的适用范围,学生在解题常常感到无所适从;开始用图象表达物理规律,描述物理过程;矢量进入物理规律的表达式。
二 搞好初、高中物理教学的衔接
1.研究重视教材与教法
高中物理教师不单是研究高中的物理教材,还要研究初中物理教材,了解初中物理教学方法和教材结构,知道初中学生学过哪些知识,掌握到什么水平以及获取这些知识的途径,在此基础上根据高中物理教材和学生状况分析、研究高中教学难点,设置合理的教学层次、实施适当的教学方法,降低"阶差",保护学生物理学习的积极性,使学生树立起学好物理的信心。
2.循序渐进
高中物理教学大纲所指出,教学中应注意循序渐进,知识要逐步扩展和加深,能力要逐步提高。高中教学应以初中知识为教学的出发点逐步扩展和加深;教材的呈现要难易适当,要根据学生知识的逐渐积累和能力的不断提高,让教学内容在不同阶段重复出现,逐渐扩大范围和增加难度。
3.透析物理概念和规律
使学生掌握完整的基础知识,培养学生物理思维能力,能力是在获得和运用知识的过程中逐步培养起来的。首先要加强基本概念和基本规律的教学,要重视概念和规律的建立过程,让学生知道它们的由来;其次弄清每一个概念的内涵和外延及来龙去脉,要使学生掌握物理规律的表达形式的同时,明确公式中各物理量的意义和单位,规律的适用条件及注意事项。
4.物理模型的建立
高中物理教学中常用的研究方法是确定研究对象,对研究对象进行简化建立物理模型,在一定范围内研究物理模型,分析总结得出规律,讨论规律的适用范围及条件。建立物理模型是培养抽象思维能力、建立形象思维的重要途径,要通过对物理概念和规律建立过程的讲解,使学生领会这种研究物理问题的方法;通过规律的应用培养学生建立和应用物理模型的能力,以实现知识的迁移。
物理模型建立的重要途径是物理习题讲解,习题讲解要注意解题思路和解题方法的指导,有计划地逐步提高学生分析解决物理问题的能力。讲解习题时,要把重点放在物理过程的分析,并把物理过程图景化,让学生建立正确的物理模型,形成清晰的物理过程。物理习题做示意图是将抽象变形象、抽象变具体,建立物理模型的重要手段,要求学生审题时一边读题一边画图,养成良好的习惯。解题过程中,要培养学生应用数学知识解答物理问题的能力,学生解题时的难点是把物理过程转化为抽象的数学问题,再回到物理问题中来,教学中要帮助学生闯过这一难关。
5.学生自主学习习惯培养。
培养学生良好的学习习惯是教育的一个重要目的,也是培养学生能力、实现教学目标的重要保证。如何培养良好的学习习惯,首先是要培养学生独立思考的习惯,独立思考是学好知识的前提,学生经过独立思考,就能很好地消化所学知识,才能真正想清其中的道理,从而更好地掌握它。其次培养学生自学能力,使其具有终身学习的能力,阅读是提高自学能力的重要途径,阅读是对学生进行智育的重要手段,阅读物理教材不能一扫而过,而应潜心研读,边读边思考,挖掘提炼、对重要内容反复推敲,对重要概念和规律要在理解的基础上熟练记忆,养成遇到问题能够独立思考以及通过阅读教材、查阅有关书籍和资料的习惯。
1 掌握初高中物理学习能力要求上的不同
就教学内容而言,初中物理主要从物理现象入手,分析这些现象的一些基本原理和规律,知识内容较形象直观;而高中物理则要求能在观察实验的基础上抽象出理想化的模型,在构建好基本物理模型的基础上,要求学生能分析出具体的物理过程,并利用恰当的方法和运用相关的规律解决具体的问题。教学内容比初中更深、更广、更抽象,经过一段时间的学习后,许多重知识轻能力的弊端也充分地暴露出来。其次,从要求上来看,初中物理相对简单,教学难度基本控制在大纲范围内,对物理问题的解决往往停留在模仿、套用上,再作一些适当的拓展即可。而高中必须适应高考的要求,很大程度上要求学生有一定的自学能力、分析能力及知识迁移能力等。
2 有的放矢,增强信心,提高学习物理兴趣
刚进入高中,学生怀揣着美好的憧憬,开始的一阶段对物理学习还是比较感兴趣的,但是随着高中物理概念的抽象化和学生原有思维的定势,对位移、加速度、运动的合成与分解等概念难以理解和接受,几经检测,成绩有较大幅度的滑坡,于是乎有部分学生的意志就开始出现了动摇,尤其是牛顿运动定律的学习使部分学生丧失了物理学习的兴趣。有些学习成绩稍好点的学生也感到了很大的压力。其实,仔细分析学生对物理学习态度的改变以及意志的部分丧失,我认为原因有三:一是思想准备不足,想当然的认为高中物理和初中物理要求差不多;二是教学模式的不同,初中阶段的教学模式多般是“保姆式”、“手把手”,进入高中后一旦脱离老师的贴身式的指导和帮助,这种自主学习能力上的缺陷便逐步暴露出来。三是初高中物理知识点的衔接与有机迁移能力不强。而这三个方面中主动学习和信心不强则是重点原因。因此,如何提高学生的学习信心及培养学生主动学习应该是衔接教学过程中的一个不可或缺的内容。比如可以组织学生回顾在初中物理学习的过程中,总结初中物理学习的成功经验,使他们在回顾中看到自己的进步与成长。并由浅入深,逐步建立信心来探究未知的规律。比如牛顿第一运动定律在初中物理中已学过,而牛顿第二运动定律是刚刚学习的内容,要特别提醒学生这两个规律有着内在的联系,但又有不同的前提, “牛顿第一运动规律”是物体不受力或所受合力为零的前提下始终保持静止或匀速直线运动状态,而“牛顿第二运动定律”是在物体所受外力及外力的合力不为零的前提下,物体的运动状态就要发生改变,从而合理的引入了匀变速运动的概念及运用,通过对这个例子的分析,要使学生知道,原来我们学习的高中物理物理知识,与初中物理有着一定的关联性,这样才能做到真正意义上的承前启后。从而达到增强学习物理的信心。另外还可以在平时的教学过程中引导学生先处理一些较为简单的问题,而后再逐步深入拓展,不要让学生觉得物理很难,在高中物理的起跑线上切记不要过多的设置障碍,还有就是要在教学中多举一些学生熟悉、感兴趣的事例来分析和讲解物理。使学生能从具体事例中认识到学习物理的重要,感受到物理就在我们身边,体会成功的喜悦,产生学好物理的浓厚兴趣。
3 注意学生初中阶段物理知识的残漏,结合实际进行针对性教学
相当数量的高中物理教师,大学毕业分配后便直接进入高中物理教学的行列,对于学生已有的初中物理知识的背景、体系及要求知之甚少,这就造成教师对学生过去的了解处于空白状态。近年来,为了减轻初中生的学业负担,初中教学大纲也在作部分调整,在能力培养、知识面的拓展上有所加强,淘汰了一些过于繁琐、陈旧的内容,降低了部分章节的运算难度。作为高一物理老师,应准确了解这一情况,进行必要的补缺补漏,如对物体的受力分析,初中处理的大都是物体在静止或匀速直线运动状态下的力学问题。而物体的受力分析是力学的基础知识,是高一乃至整个高中物理教学的重点知识。所以对物体的受力分析在高一学习阶段就需要花大力气给学生补上漏缺的内容,让学生掌握受力分析的方法,扫除障碍,并运用平行四边形法、正交分解法,将物体的受力有机的分解到水平、竖直,然后再拓展到其它方向,最终确定合力的大小和方向,为解决具体问题扫除障碍,为学生进一步学习打好基础。同时教师还应了解每个学生在初中阶段的学习情况,了解其物理基础,这同时还要注意新旧知识的联系,在教学中才能做到因材施教,有的放矢,取得较好的教学效果。高一学习的大部分内容都是在初中基础上发展而来的,故在引入新知识、新概念时,注意对旧知识的复习,用学过的熟悉的知识进行铺垫和引入。鉴于学生的年龄特征、认知水平,有些问题在初中并没有讲深讲透,例如在学习摩擦力时,部分学生在思维上形成定势,总认为“摩擦力是阻力,方向总跟物体的运动方向相反”。为此,我们还需在原有的基础上对教学内容进行适当的拓展和加强,帮助学生消除错误的认识,确立摩擦力并不是在任何情况下都是“阻力”的印象。另外,我还觉得高中物理教师必须熟悉初中物理教材及教学大纲,如果有条件的还要走进初中物理教学的课堂,这样才能做到真正意义上的“承上启下”。
4 由浅入深,循序渐进,实现由基础现象到构建模型的顺利转变
一、高中与初中物理教学的梯度
初中物理教学是以观察、实验为基础,使学生了解力学、热学、声学、光学、电学和原子物理学的初步知识以及实际应用;高中物理教学则是采用观察实验、抽象思维和数学方法相结合,对物理现象进行模型抽象和数学化描述,要求通过抽象概括、想象假说、逻辑推理来揭示物理现象的本质和变化规律。初中物理教学以直观教学为主,而高中较多地是在抽象的基础上进行概括,在学生的思维活动中呈现的是经过抽象概括的物理模型。
由于初中物理内容少,问题简单,讲解例题和练习多,课后学生只要背背概念、公式,考试就很容易了。而高中物理内容多而且难度大,各部分知识相互联系,有的学生仍采用初中的那一套方法对待高中的物理学习,结果是学了一大堆公式,虽然背得很熟,但一用起来就不知从何下手,学生感到物理深奥难懂,从而心理上造成对物理的恐惧。高中物理对学生运用数学分析解决物理问题的能力提出了较高要求,在教学内容上更多地涉及到数学知识,物理规律的数学表达式明显加多加深,例如:匀变速直线运动公式常用的就有10个之多,每个公式涉及到四个物理量,其中三个为矢量,并且各公式有不同的适用范围,学生在解题常常感到无所适从;开始用图像表达物理规律,描述物理过程;矢量进入物理规律的表达式。
二、如何搞好初、高中物理学习的衔接
1.学习方法的转变
初中学生只要背背概念、公式,多做几个题,考试就能考好;而高中物理的学习,关键是理解。要重视课本,理解物理的基本概念和基本规律,只有这样,才能领会知识,才能灵活的运用知识,达到举一反三,触类旁通效果。
2.坚持循序渐进原则
高中物理教学大纲所指出,学生学习应注意循序渐进,知识要逐步扩展和加深,能力要逐步提高。高中学习应以基础知识为出发点,逐步扩展和加深;学生要逐渐积累知识和不断重复知识,要使学生觉得物理学习并不难,使他们有成就感,这样才能使学生对物理学习产生兴趣,才能产生学习的积极性,使学生树立起学好物理的信心。
3.透析物理概念和规律
学生要掌握完整的基础知识,培养物理思维能力,能力是在获得和运用知识的过程中逐步培养起来的。首先要加强基本概念和基本规律的学习,要重视概念和规律的建立过程,要知道它们的由来;其次弄清每一个概念的内涵和外延及来龙去脉,要掌握物理规律的表达形式的同时,明确公式中各物理量的意义和单位,规律的适用条件及注意事项。
4.物理模型的建立
高中物理学习中常用的研究方法是确定研究对象,对研究对象进行简化建立物理模型,在一定范围内研究物理模型,分析总结得出规律,讨论规律的适用范围及条件。建立物理模型是培养抽象思维能力、建立形象思维的重要途径,学生要领会这种研究物理问题的方法;通过规律的应用培养学生建立和应用物理模型的能力,以实现知识的迁移。
物理模型建立的重要途径是物理习题研究,要注意解题思路和解题的方法。做物理习题时,要把重点放在物理过程的分析,并把物理过程图景化,建立起正确的物理模型,形成清晰的物理过程。物理习题做示意图是将抽象变形象、抽象变具体,建立物理模型的重要手段,学生在审题时一边读题一边画图,养成良好的习惯。解题过程中,要培养应用数学知识解答物理问题的能力。
5.学习习惯的培养
1.原始物理问题比物理习题能够更好地甄别出初中学生的物理思维水平。
初中学生在解决原始物理问题上还存在很大的不足,表现在他们在解决物理问题的思维上存在着缺陷,而这些不足和缺陷,是在解决传统的物理习题中无法暴露出来的。对于使用阿基米德原理解决物理习题,学生们都很熟悉也很熟练,找到相关的已知量代入公式就可以求解了,但如果遇到一个实际问题时,学生就会感到十分茫然,不知道该从哪入手,就无法正确解决了。而原始物理问题在学生的思维训练过程中的思维诊断功能是物理习题所无法比拟的。
2.在初中物理教学中适时适量地引入原始物理问题是完全可行的。
相当多的初中学生对解决原始物理问题还是有一定潜力的,思维方向还是非常准确的,但这部分学生由于对原始物理问题接触极少,心理上的接受能力较差,比较紧张,导致最后阶段出现了一定的思维障碍,造成结果出现了错误。笔者认为这类学生如果能够经常接触原始物理问题,那么能够成功解决原始物理问题的几率是很大的,所以在初中物理教学中适时适量地引入原始物理问题是完全可行的。
3.传统的物理习题教学使一部分学生丧失了解决实际问题的能力。
部分初中学生在解决原始物理问题时,缺乏创造性思维,思维片面,依然停留在传统物理习题的思维水平上,第一感觉就是怎么什么条件都没有?该套哪个公式?总想着如何向物理习题靠近,能够找到一两个关键点,但是由于对原始物理问题比较生疏,无法正确地抽象物理模型的全部,也无法全面的对相关物理量进行赋值。在传统物理教学模式下,学生能够解决习题,能够得到很高的分数,但他们并没有真正的学会物理。因为在解答传统的习题过程中,是不需要学生自己去考虑的,题目都事先抽象出清晰的物理模型,并对相关的物理量给予明确的数值,学生需要做的只是根据物理模型和相关的已知条件,在头脑里找到一个合适的公式或者定理,按部就班就能完成。学生虽然做对了一道习题,但他可能并不理解这个物理问题的本质,不清楚具体的物理情形。传统的物理习题训练,学生只要通过演算、推导便能够得到最后的结论。而由原始物理问题到物理习题的抽象和设置物理量,都由命题者完成了,这样就使原始物理问题和物理习题之间存在了一个鸿沟,使学生运用物理知识解决实际问题的思维出现了断层,所以学生在面对问题时,就无从下手,不知道怎么去解决,失去了解决实际问题的能力。
4.教学建议。
①初中物理常规教学中应有计划、有意识地渗透一些原始物理问题。
初中物理教师可以通过不同的方式在教学中渗透原始物理问题,比如在学习一个新的物理概念之前,可以用一道原始物理问题引入,这样既显得物理学贴近生活,激发了学生的学习兴趣,也给物理课堂增加了无限生机;教师还可以将书本上的习题还原成原始物理问题,让学生解答,让学生明确书本上的习题正是来源于生活。这样就可以逐步提高学生的创新意识。
②在物理教学过程中引入原始物理问题,应注重“因材施教”的原则。
“让每位学生的个性都得到张扬,使每位学生都能全面发展”是我们每一位教师的殷切希望。但是在这一过程中,教师不能搞一刀切,要充分地了解学情,一切从学生的实际出发,注重“因材施教,分层指导”的原则。在教学实践中我们了解到,学生在解决原始物理问题时的思维差异很大,所以,无论是编制原始物理问题还是讲解原始物理问题,一定要关注不同学生的认知水平,尽可能使课堂上出现的原始物理问题能够满足不同层次学生的需要,使每一位学生都能有所收获。
③在教学过程中,应该多创设情境,让处于“最近发展区”的学生能够有所发展。
部分初中学生对物理模型的抽象能力较弱,因为对于传统物理习题,学生并不清楚其中的物理模型是怎么简化得来的,他们也不需要知道就能正确解题。因此,教师在平时的教学中,应该向学生多创设情境,介绍物理模型的简化,引导学生知道这些简化模型的由来,清楚为什么可以简化,为什么可以这样简化,使学生对物理本质能够有更深的了解。或者有意识地让学生对一些生活中的物理现象进行模型抽象。另外,物理课堂教学在注重实验演示的同时,应该更多地为学生提供实际感受物理情景的机会,使学生通过感官切身体验物理情景。这样,学生对于现实生活中的物理现象才能理解得更加深刻,才能更好地利用物理规律去解决实际物理问题。
④对少数物理学习困难的学生不要轻易放弃,应采取循序渐进的原则,进行有针对性的指导。
教师在引入原始物理问题的过程中要注意低起点,小步距,并相应的给学生提供一些解决原始物理问题的方法。这样学生就可以从物理习题的海洋中走出来,去接触原始物理问题,去感受实际生活中发生的各种物理现象,逐渐地提高解决原始物理问题的能力。
关键词:初中;高中;物理;衔接
高中物理与初中物理相比,在教学内容、研究方法、能力培养等方面都上了一个台阶。初中物理重在定性研究,所研究的现象比较直观,而且多数是单一的、静态的,教学要求以识记为主。而高中物理所研究的现象比较复杂、抽象,多数要用定量的方法分析、讨论和解决实际问题。高一学生学习高中物理知识,在思维方式、学习习惯和学习能力等方面都面临着如何与初中物理衔接的问题。
一、认真研究物理教材,把握好新旧知识的顺应
我们要认真分析初高中物理教材,把高中教材中研究的问题与初中教材中研究的问题在教学内容、思维特点、教学目标等方面作一个比较,弄清新旧知识之间的联系。选择合适的教学方法,引导学生用旧知识去同化新知识,使学生掌握新知识,获得学习能力的迁移。心理学研究表明:个体在接纳新知的过程中总是具有一定排他性,学生能够比较自觉地同化新知识,但往往不能自觉采用顺应的认知方式,而总想用以前的知识来认识新问题。在需要更新或重建认知结构的物理新知识学习中,应指导学生顺应新知识来更新自己的认知结构。例如:初中物理中描述物体运动状态的物理量有速度、路程等;而高中物理中描述物体运动状态的物理量有速度、位移、加速度等,其中速度、位移和加速度是既有大小又有方向是矢量。教学中我们应该及时指导学生顺应新知识的特点,正确地辨析出速度和速率、位移和路程等概念的区别,指导学生用新的知识和新的方法来调整原有的认知结构,避免加大高中物理学习的畏惧感。
二、培养学生的创造性思维,初步学会构建物理模型
初中物理教学内容是观察现象、问题提出、现象产生的原因、设计探究的方法、找出解决问题的途径、简单的应用;而高中物理中,除了要沿用这样的顺序外,还要强调建立物理模型,教学中发现,学生在学习中遇到新模型时感到非常棘手,其思维障碍在于不善于把貌离神合的新模型与典型进行比较,去认识和把握新、旧模型物理本质上的共性,从而无从下手。对此,教师应当通过组织有效的习题教学,帮助学生在形态各异的模型分析和对比中,抽象出共性,洞察共同的物理本质,从而跨越思维障碍,促进其创造性思维能力的发展。例如:匀减速直线运动就有许多种形式:汽车的刹车、追击问题、避碰等多种形式,需要教师有足够的耐心对待,逐步帮助学生理解。学生在运用模型的知识时有一定的难度,教师在讲解时就需要一定的反复。在学生的思维方式转型的阶段教师要付出更多的耐心和鼓励,要依据已有模型或材料,设计出新的模型,以显示其物理本质。其目的在于帮助学生扩大视野、加深理解、巩固知识、增强思维的变通性,进而促进创新思维能力的形成。
三、利用知识的衔接点,形成知识的可持续发展
高中物理内容编排是根据学生的认知能力,把难度逐渐加大。而初中物理中许多物理概念是浅显的。例如:初中物理对速度的概念定义为“物体在单位时间内通过的路程”。我们应该告诉学生,这样的定义是相对于物体做匀速直线运动来说的,因为物体在各个时段运动的快慢与方向是相同的,所以任意时段的速度都等于整段时间内的平均速度。而物体做变速运动时,各个时段运动的快慢和方向是不同的,那么这个速度只能是平均速度。这样就为高中物理学习瞬时速度、平均速度作了铺垫。同时,在初中物理学习过程中,学生在认识上还有一定的误区。例如:有的学生认为摩擦力就是阻力,它与物体运动方向相反。那么我们就应该告诉学生,摩擦力的方向是阻碍物体间的相对运动或运动趋势,并不一定与物体运动方向相反。如汽车在行驶时,就是依靠车轮与地面间的静摩擦力才使汽车得以前进的,这时,静摩擦力的方向与汽车的运动方向正好相同。
四、采用直观教学方法,提高学生的学习兴趣
进入高中阶段后,学生感到高中物理知识比较抽象,学起来很难。因此,教师应该根据学生的实际情况尽量采用直观的教学方法,多做一些物理演示实验,对学生多启发、多诱导,多让学生通过观察物理现象、多思考物理问题、多动手做实验,多举一些生活中常见的实例,让学生能够通过具体的物理现象来理解并掌握物理概念。例如:在教学“弹力”时,就用体育项目中的撑竿跳高来说明什么是弹力,并说明弹力的产生条件是物体直接接触且发生弹性形变。弹簧和弯曲竹竿的弹力现象容易演示,学生有兴趣去学习。但物体对一些物体表面的压力也是弹力中学生就难相信的现象,因为学生看不见不易形变的物体的形变,做好微小形变的演示就显得很重要。我们不妨通过演示实验来完成,如把光学实验的激光演示仪放在水平桌面上,激光仪产生的光照就在白色墙上形成一个小亮点。让一个学生压这个水平桌面,就发现光亮位置的改变,以此让学生确信微小形变的存在。教师用简易的小实验激活了课堂教学的氛围,从而提高了学生的学习兴趣。
参考文献:
[1]蔡丽珍.初高中物理教学的衔接问题[J].中学物理教学参考,2008(9).
一、应了解初、高中物理教材的显著差别
1.从直观到抽象:物体――质点
2.从单一到复杂:二力平衡――多力平衡;直线运动――曲线运动等
3.从标量到矢量:算术运算――几何运算
4.从浅显到严谨,从定性到定量
二、应知道高中与初中物理教学方式与内容不同
1.初中物理教学是以观察、实验为基础,使学生了解物理学的初步知识以及实际应用;高中物理教学则是采用观察实验、抽象思维和数学方法相结合,对物理现象进行模型抽象和数学化描述,要求通过抽象概括、想象假说、逻辑推理来揭示物理现象的本质和变化规律。
2.初中物理教学以直观教学为主,在学生的思维活动中呈现的是一个个具体的物理形象和现象,所以初中学生物理知识的获得是建立在形象思维的基础之上;而高中较多地是在抽象的基础上进行概括,在学生的思维活动中呈现的是经过抽象概括的物理模型。
3.初中物理内容少,问题简单,讲解例题和练习多,课后学生只要背背概念、公式,考试就很容易了。而高中物理内容多而且难度大,各部分知识又相互联系。
4.高中物理对学生运用数学分析解决物理问题的能力提出了较高要求,在教学内容上更多地涉及到数学知识,物理规律的数学表达式明显加多加深。
三、搞好初、高中物理教学衔接的途径
1.重视教材与教法研究
高中物理教师不但要研究高中的物理教材,还要研究初中物理教材,了解初中物理教学方法和教材结构,知道初中学生学过哪些知识,掌握到什么水平以及获取这些知识的途径,在此基础上根据高中物理教材和学生状况,分析、研究高中教学难点,设置合理的教学层次、实施适当的教学方法,保护学生物理学习的积极性,使学生树立起学好物理的信心。
2.坚持循序渐进原则
高中物理教学大纲指出,教学中应注意循序渐进,知识要逐步扩展和加深,能力要逐步提高。高中教学应以初中知识为教学的出发点逐步扩展和加深;教材的呈现要难易适当,要根据学生知识的逐渐积累和能力的不断提高,教学内容在不同阶段重复出现,逐渐扩大范围和增加难度。
3.透析物理概念和规律
使学生掌握完整的基础知识,培养学生物理思维能力,能力是在获得和运用知识的过程中逐步培养起来的。首先要加强基本概念和基本规律的教学,要重视概念和规律的建立过程,让学生知道它们的由来;其次弄清每一个概念的内涵和外延及来龙去脉,要使学生掌握物理规律的表达形式的同时,明确公式中各物理量的意义和单位,规律的适用条件及注意事项。
4.物理模型的建立
高中物理教学中常用的研究方法是确定研究对象,对研究对象进行简化建立物理模型,在一定范围内研究物理模型,分析总结得出规律,讨论规律的适用范围及条件。建立物理模型是培养抽象思维能力、建立形象思维的重要途径,也就是物理习题讲解,习题讲解要注意解题思路和解题方法的指导,有计划地逐步提高学生分析解决物理问题的能力。讲解习题时,要把重点放在物理过程的分析,并把物理过程图景化,让学生建立正确的物理模型,形成清晰的物理过程。做示意图是将抽象变具体、建立物理模型的重要手段,解题过程中,要培养学生应用数学知识解答物理问题的能力,学生解题时的难点是把物理过程转化为抽象的数学问题,再回到物理问题中来,教学中要帮助学生闯过这一难关。
5.学习习惯培养
[中图分类号]:G633.7 [文献标识码]:A
[文章编号]:1002-2139(2013)-2--01
许多学生从初中升入高中时都会有这样的体会那就是上物理课时都能听得懂但是在做题时却会遇到很大的困难,甚至与我们在书本上所学的东西有一些脱节,这令很多刚接触高中物理的新生非常困惑与此同时物理的学习成绩会较初中也会有大幅度的下降。这样会出现对高中物理的畏难情绪与倦怠情绪这对高中物理的学习十分不利。其实要解决这些问题是有办法的,我们只要了解了高中物理与初中物理的区别并及时调整学习方法和策略就可以做好初中物理与高中物理学习的衔接。俗话说万事开头难我们只要做好了高中和初中物理的衔接这也就意味着我们高中物理学习的平台已经搭建起来了,随之我们才能谈及对高中物理学习的兴趣。
一、高中物理与初中物理的特点
刚从初中升入高中的新同学来说,高中物理的学习是一大难点,这是因为高中物理相对初中物理来说有一些不同的特点,其一,初中物理主要以现象研究为主,研究的问题比较直观常止步于定性的研究,即使有定量的研究也只要求运用所学的知识来分析解决实际问题,对思维层面没有更高的要求。高中物理较初中物理来说难度更大、内容更多、灵活性更强、深度更深、对思维的层面要求很高并且要求精确的定量的计算;其二,初中物理以形象思维为主、通常从熟悉、具体、直观的自然现象和演示入手建立物理概念和规律。高中物理则以理想模型代替直观现象入手通过逻辑判断和抽象思维建立概念和规律,高中物理的思维方式较多地强调应用科学概念和原理进行深刻的逻辑思维和抽象思维,这一点在初中物理很少涉及到;其三,高中物理的过程和现象都比初中物理较复杂,且高中物理与数学的联系的要求也比初中物理更高。
二、给高一新生学习物理的一些建议:
1、记好笔记,理清条理。
有一部分同学认为物理这样理科性的学科不需要记笔记,这种认识是极端错误的,因为对物理的概念和定理老师往往会适当的进行加深和支解,这样会出现很多在书本上无法直接获得的知识,不记笔记很易忘记,再者在物理学习的过程中老师会针对概念附以例题以便有针对性的理解,在教学过程中老师还经常会利用经典例题来让学生建立物理模型,如果这些东西我们都能够做好笔记,并且随时温习之可以帮助我们更加准确理解物理概念和定理,使物理的学习更加有条理性,可达到“立主脑、去枝蔓”的效果,记好笔记物理学习的第一步我们就已经迈开了。
那么物理笔记应该如何记呢?记什么呢?这也是困扰同学们的一个重要问题。我认为首先我们要明确记笔记的目的是实用性和条理性,以便于我们我们能更好的理解概念和课后复习。有的同学一味追求笔记的完整性,过多地考虑笔记的形式,甚至想记录下老师所讲的每一句话每一个题,这样为做笔记而做笔记的后果常常会忽略听课的效果;有的学生课后不整理,不翻阅笔记,这就失去了记笔记的目的。记课堂笔记不是目的,目的是帮助理解学习内容,有利于复习和记忆知识。课堂笔记要用自己的话,把老师讲的重点记下来,书本上有的少记或不记,书上没有的多记,尤其要重视记下分析解决问题的典型思路和方法技巧等,让笔记成为自己的探索新知识的激发点。课后要及时整理笔记。整理笔记的过程,既是加深理解的过程,也是复习巩固的过程。如果还没有掌握记笔记的方法,听课和笔记发生矛盾时要把听好课放在首位,下课后再参照同学的笔记补起来。
2、熟记公式和定理,理解公式和定理的内涵
公式和定理是高中物理应用的理论源泉,若没有公式和定理,我们的解题就没有了理论依据,所以必须熟记。我们不能在应用的过程中现场推导,这样会增加题目的难度,降低解题效率。对于推导的过程我们只需要了解就可以了,对公式和定理的记忆我们一方面要求大家全面熟记,另一方面又要求大家在熟记以后从死板教条的记忆中解脱出来。也就是所我们不能为记忆而记忆,我们必须在熟记基础上深刻理解和挖掘公式和定理的内涵,也就是说记忆是手段而理解和挖掘内涵才是目的,比如在学习利用平行四边形定则和正交分解法解决平衡问题时我们首先要弄清楚平行四边形和正交分解法的定义,但最终我们还要充分理解其内涵:首先不管是平行四边形法还是正交分解法实际上都可以归结为平行四变形法,只不过正交分解法中的平行四边形是矩形而已,这是因为在矩形中可以更方便利用三角函数解题。同时我们还要理解不管我们使用平行四边形法还是正交分解法其实都是将多力平衡问题转化为二力平衡问题即达到化“繁”为“简”的目的。
3、以经典题目为线条建立物理模型。
在学习高中物理的过程中,若我们只是将每个题目孤立起来看待,那么我们很容易深陷题海,苦不堪言。但我们对每一章的题目仔细分析,我们就不难发现其中有很多题目是出自于同一种模型和同一种思想,所以我们可以将经典的、可以建立模型的题目罗列在一起,做熟做透,再辅之以针对性的训练,就可以将这些模型深深的刻在我们的脑海里。我们学会分析问题和解决问题的方法增强解题能力比单纯的接受知识更加重要,这就是我们常说的“受之以鱼,不如受之以渔”的道理。比如我们在学习万有引力与航天这一节时我们就必须研究透彻两种经典物理模型:1、把天体运动看作是匀速圆周运动的模型即中心天体体系(一个天体以某一天体为中心做匀速圆周运动)2、一物体在某天体表面上受到的重力与万有引力的关系的模型即非中心天体体系。这两种题型形成解决万有引力与航天这一节的基本题型,这一节的大部分题目都可以由这两种物理模型来解决或者从中受到启发。只要我们将每一章像这样的物理模型能建立起来就可以起到举一反触类旁通的效果。
4、适量的定时练习。
物理模型建立以后必须要有定时定量的练习以验证模型的正确性和适用性,同时通过训练加深对模型的理解。在模型中可能还有一些不适用或者有变化的地方,也可以通过不断的练习加以判别。题目必须是精选的,题型较活,有浅有深,并且要求有一定的题量。这就是我们常说的从“量变”到“质变”的过程。