美章网 精品范文 解构主义建筑特点范文

解构主义建筑特点范文

前言:我们精心挑选了数篇优质解构主义建筑特点文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。

解构主义建筑特点

第1篇

Abstract: This paper mainly analyzed the classification and mechanical properties of special-shaped column node as well as the factors that impact the shear capacity of special-shaped column node, and proposed some suggestions on thespecial-shaped column node design.

关键词:异形柱;结构设计;节点;抗剪承载力

Key words: shaped column;structural design;node;shear capacity

中图分类号:TU2文献标识码:A文章编号:1006-4311(2011)01-0051-02

0引言

在日常的结构设计尤其是精品住宅设计过程中,甲方对户内空间要求,特别是“墙不露角”等的要求越来越高,因此,异形柱的应用就逐步趋向广泛,对框架(剪)异形柱结构体系的研究与应用就变得尤为重要。异形柱结构与普通柱不同,肢厚很小,钢筋较密受力情况较为复杂,给结构分析带来一定难度,特别是异形柱框架结构节点核心区受力特点极为复杂。为此,本文对异形柱框架结构节点核心区受力特点、节点承载力及抗剪承载力等的影响因素进行初步的探讨。

1异形柱节点分类

节点是指梁与柱的交汇区,它属于梁高范围的柱段。按节点所在位置分,有中间层中间节点和端节点以及顶层中间节点和端节点。节点的主要作用是将所属的本层和上层荷载和作用(例如地震)有效地传递到下层柱中去。因而节点核心区的作用力为与节点相连接的梁端和柱端的弯矩、轴力、剪力甚至扭矩等等,受力甚为复杂。

按满足被连接构件的受力特性要求,节点可分为两类:

类型1:结构承受重力荷载和一般风荷载,所连接的构件(梁、柱)主要按承载能力极限状态设计,要求节点满足所连接构件的承载力要求;

类型2:结构承受地震作用情况,要求节点满足所连接的构件在反复变型下进入非弹性而又必须维持一定的承载力的要求。

对于矩形截面柱框架,一般情况下,1类节点不要求对节点核心区进行受剪承载力验算,只须满足构造要求和配置一定数量的水平箍筋,2类节点,对一、二级抗震等级必须对节点核心区进行受剪承载力验算并应满足抗震构造措施要求,对三、四级抗震等级则只须满足抗震构造措施要求。

2异形柱节点受力性能

近年来,天津大学、大连理工大学、沈阳建工学院、辽宁省建筑设计研究院、河北理工学院、南昌大学和重庆大学进行了总计为近50个异形柱框架梁柱节点的试验研究,其中首次对顶层边节点、中节点进行了旨在研究翼缘宽度影响的试验。

2.1 异形柱节点受力机理异形柱节点的破坏主要集中于“小核心”区,应以“小核心”为单元研究异形柱节点的抗剪能力。异形柱节点“小核心”区与常规节点一样同时存在斜压杆、桁架和约束机构3种传力机构。它们在传递节点剪力中的作用此消彼长,但在梁端正反向加载下其受力特征具有不对称性,斜压杆、桁架和约束机构的作用大小不同于常规节点。鉴于3 种传力机构所承担的剪力不断变化,难以定量计算,将异形柱节点的抗剪能力主要按“小核心”混凝土抗剪能力和箍筋抗剪能力两部分组成,最终得到可用于工程设计的异形柱节点抗剪承载力公式。

2.2 异形柱节点抗剪承载力计算公式

2.2.1 计算公式的依据根据“节点更强”的设计原则,节点核心应保持一定的安全储备。鉴于异形柱节点核心区通裂后,节点承载力迅速进入极限阶段,外荷载的增长幅度有限,同时考虑到通裂状态时节点核心区的裂缝宽度大都已超过0.2mm,裂缝宽度过大将影响结构的耐久性。采用通裂状态建立异形柱节点受剪承载力计算公式。“小核心”是决定异形柱节点核心承载力的关键,各种机理对“小核心”这个基本单元仍然适用,本文仍采用规范中常规节点承载力的计算公式。

2.2.2 异形柱节点抗剪承载力计算公式节点核心区受剪的水平截面应符合下列条件:

①无地震作用组合:vj?燮0.24ζfζhfcbjhj

②有地震作用组合:vj?燮ζNζfζhfcbjhj

节点核心区的受剪承载力应符合下列规定:

①无地震作用组合:

vj?燮1.381+ζfζhftbjhj+(hbo-a’s)

②有地震作用组合:

vj?燮1.1ζN1+ζfζhftbjhj+(hbo-a’s

式中:N为与组合的节点剪力设计值对应的该节点上柱底部轴向力设计值,当N 为压力且N>0.3fcA 时,取N=0.3fcA;当N 为拉力时,取N=0;ζN为轴压比影响系数;ζh为截面高度影响系数;ζf为翼缘影响系数。

2.3 试验研究和计算分析证明

2.3.1 试验研究表明,异形柱框架梁柱节点核心区的受剪承载力低于截面面积相同的矩形柱框架梁柱节点的受剪承载力,是异形柱框架的薄弱环节。为确保安全,对抗震设计的二、三、四级抗震等级的梁柱节点核心区以及非抗震设计的梁柱节点核心区均应进行受剪承载力计算。

2.3.2 对于节点承载力计算公式要考虑翼缘的有利作用;研究表明,肢高与肢厚相同的等肢异形柱框架梁柱节点核心区的水平截面面积可表达为ζfbjhj=bchc+hf(bf-bc),取bj=bc和hj=hc,则有ζf=1+,ζf为翼缘全部有效利用时的翼缘影响系数。

2.3.3 试验表明,在相同条件下,节点水平截面面积相等时,等肢L形、T形和十字形截面柱的节点受剪承载力分别比矩形柱节点降低33%、18%和8%左右,这主要是由于节点核心区外伸翼缘面积(bf-bc)hf在节点破坏时未充分发挥作用所致。

2.3.4 不应采用“一”字形柱,注意保证异形柱要有足够的翼缘,包括宽度与厚度,这不但是节点受剪承载力的需要,也是抗震设计时保证节点组合体延性的需要。

2.3.5 为提高节点的受剪承载力和改善节点的抗震性能,可采取梁端增设支托、梁(水平)加腋增加节点有效截面面积、局部采用钢纤维混凝土提高节点区材料强度、或梁塑性铰外移等办法,这些办法对于改善异形柱节点受剪性能的有效程度有的尚待进一步研究。

3影响异形柱节点抗剪能力的因素

3.1 轴压比轴压力提高节点核心区抗初裂能力的原因在于其增加了柱的受压区面积,因而加大了斜压杆的宽度,使参与斜压杆机构的混凝土面积增大,同时梁筋传递给节点核心混凝土的边缘剪力中有更多的部分汇入斜压杆机构,造成节点核心混凝土开裂的边缘剪力减小。另外,轴压力提高,增大了主斜裂缝与水平方向的角度。轴压力对通裂与极限荷载影响不明显的原因是:在轴压力下进行循环反复加载,致使节点核心区的混凝土累积损伤效应较无轴力作用时大,尽管轴压力可以提高混凝土的抗剪强度,但加剧的累积损伤效应最终致使轴压力的有利作用有所降低,对节点的通裂和极限荷载提高不明显。

3.2 节点核心配箍率配箍率对初裂剪力影响不大,因为初裂时节点剪力Vj 主要取决于混凝土的抗拉强度,一旦裂缝形成,箍筋受力将大幅度增长,甚至屈服,桁架机构产生作用,箍筋开始参与抵抗节点剪力;而且由于箍筋的约束使混凝土的抗剪能力也有所提高。加载过程中箍筋沿节点核心高度方向应变分布不均匀,每层箍筋应力不等,并非全部同时屈服,根据箍筋应力的数据分析,在通裂状态下沿节点核心高度方向80%范围内箍筋屈服。在节点核心中部(对异型中节点则是在小核心中部较偏下部位)应力最大。这是因为在某一方向弯矩作用下,节点核心对角线两个端部的混凝土在另一方向弯矩作用下产生的裂缝将闭合,该区域此时要承受压力,对角线中部区域裂缝最宽,箍筋将承受原由混凝土承担的拉力,导致节点核心中部箍筋应力最大。

3.3 柱截面高度变化对异形柱中节点而言,节点核心上下柱截面、左右梁截面不同会造成节点核心更易开裂。裂缝首先出现在节点“小核心”的位置,初裂荷载降低的幅度可达30%左右,对节点核心的通裂荷载影响不大。常规节点通裂后节点核心还有较大的能力承担继续增加的节点剪力,而异形柱节点则不同。

4异形柱设计中的建议

在实际工程设计中,我们应更加重视异形柱纵筋和箍筋、节点核心区抗剪承载力、轴压比限值等问题的设计。

4.1 纵向钢筋和箍筋纵向受力钢筋宜采用HRB400、HRB335级钢筋;箍筋宜采用HRB335、HRB400、HPB235级钢筋。在同一截面内,纵向受力钢筋宜采用相同直径,其直径不应小于14mm,且不应大于25mm。异形柱内折角处应设置纵向受力钢筋。纵向钢筋间距:二、三级抗震等级不宜大于200mm;四级不宜大于250mm;非抗震设计不宜大于300mm。当纵向受力钢筋的间距不能满足上述要求时,应设置纵向构造钢筋,其直径不应小于12mm,并应设置拉筋,拉筋间距应与箍筋间距相同。

异形柱应采用复合箍筋,严禁采用有内折角的箍筋。非抗震设计时,异形柱的箍筋直径不应小于0.25d(d为纵向受力钢筋的最大直径),且不应小于6mm;箍筋间距不应大于250mm,且不应大于柱肢厚度和15d(d为纵向受力钢筋的最小直径);当柱中全部纵向受力钢筋的配筋率大于3%时,箍筋直径不应小于8mm,间距不应大于200mm,且不应大于10d(d为纵向受力钢筋的最小直径);箍筋肢距不宜大于300mm。对于异形柱加密区箍筋的设置问题,在实际设计中往往会忽略如下几个问题:①剪跨比不大于2的柱以及因设置填充墙等形成的柱净高与柱肢截面高度之比不大于4的柱箍筋没有全长加密。②三、四级抗震设计时,箍筋加密区最大间距其中一个规定是“应小于等于纵向钢筋直径的7倍”。这样,当纵向钢筋直径为12mm或者14mm时,箍筋在加密区最大间距就相应不超过84mm和98mm了。但值得注意的是,就目前的规程来说,尚未对“纵向钢筋”的定义作进一步的明确。规程中跟“纵向钢筋”相关的提法有“纵向受力钢筋”和“纵向构造钢筋”,根据解析条文对“箍筋间距与纵筋直径之比s/d”的理解,在本题述的“纵向钢筋”应为“纵向受力钢筋”。但是,这个界定在实际设计审查中,尚应和当地审查单位作进一步沟通明确,避免引起不必要的误会。

4.2 节点核心区抗剪承载力超限问题根据《混凝土异形柱结构技术规程》5.3.1 规定:异形柱框架应进行梁柱节点核心区受剪承载力计算。在实际设计中,我们通过计算软件分析后通常出现如下提示:

“** 节点域抗剪超限

N-C=3(29)Vjy=343.>FFC=0.23?鄢FC?鄢H?鄢B=279.”

这就是梁柱节点核心区受剪承载力不足所引起的。要避免梁柱节点核心区受剪承载力不足的情况,根据《混凝土异形柱结构技术规程》5.3.5框架梁柱节点核心区组合的剪力设计值的计算公式(5.3.5-1、5.3.5-2、5.3.5-3、5.3.5-4),我们需从以下几个方面着手:

①减小柱的计算高度。②增加梁柱节点处梁的截面有效高度、截面高度。③减小节点左、右两侧梁端弯矩设计值。

另外,我们在利用PKPM等设计软件对结构建模分析的时候,往往为了减小截面类型或者方便操作,通常在柱布置的时候进行了柱子的转角,这时候Vj所显示的超限方向就要根据原截面定义时的X、Y方向对应复核,而不是根据生成的图形去判断X、Y方向。

当然,我们不能单一的为了某个节点不出现超限而只针对该节点作设计,我们应该要做的首先是在结构布置、梁柱截面选取等方面去宏观控制结构整体刚度的均匀分布,避免刚度突变等情况,从根本上去避免上述问题的出现。

4.3 轴压比限值问题异形柱在单调荷载,特别在低周反复荷载作用下,粘结破坏较矩形柱严重,延性比普通矩形柱差,因此,异形柱的轴压比限值比矩形柱严格得多。《规程》6.2.2条根据结构体系、截面形式、剪跨比、箍筋间距与纵筋直径比s/d、箍筋直径d和抗震等级确定,在0.45-0.85之间波动,比矩形柱结构的柱轴压比限值低。所以,在程序试算后,应按上述条件初步确定出各柱的轴压比具体限值,并在配筋简图中仔细查看各层柱的计算轴压比是否有超限的。因为此时异形柱的实配纵筋和箍筋还是未知的,PKPM程序无法判断每个柱的轴压比具体限值,只有在轴压比超过矩形柱结构的轴压比限值时,程序才会报告轴压比超限。因此,异形柱的轴压比超限,必须逐一手工核算。

另外,在实际设计中,不可避免的出现有柱截面高度与宽度的比值不大于4但是柱截面宽度为200mm如700mm X 200mm的一字形矩形柱,由于该截面类型柱延性更弱于传统的异形柱,这时候,我们需结合短肢剪力墙和异形柱的相关规定,对其轴压比作出更严格的要求。当然,在实际设计中能避免该类型柱则尽量避免。

5结论和展望

对地震区节点受剪承载力计算公式不能简单地理解为属于承载能力极限状态的受剪际载力问题,节点的设计要关注在强震作用下,梁端或柱端出现塑性铰产生较大非弹性变型-即在吸收和耗散地震能量的过程中节点是否发生受剪破坏,从而不仅要考虑“承载力”而且必需考虑节点所连接的构件能否满足或实现结构吸收和耗散地震能量的延性要求。

异形柱的设计中面临的另一问题,就是异形柱框架在地震作用下破坏严重,因此,在实际工程抗震分析时,需要注意以下几点:①异形柱框架结构不对称时,扭转对其受力的影响;②异形柱框架结构在地震作用下的弹塑性分析;③若条件允许,尽量合理适量设置抗震墙;④异形柱框架结构在截面设计方面的软件的开发。

参考文献:

[1]JGJ 3-2002,高层建筑混凝土结构技术规程[S].北京:中国建筑工业出版社,2002.

[2]JGJ 149-2006,混凝土异形柱结构技术规程.

第2篇

【关键词】建筑结构设计;节点抗剪;特点分析;设计建议

近些年,由于甲方对住宅设计方面要求过高导致异形柱被广泛运用,因此设计者也越来越重视对框架异形柱结构体系的研究及应用。此外,异形柱结构特殊,具有肢厚小、钢筋较密受力情况复杂、形柱框架结构节点核心区受力特点难等因素,导致后期在运用时产生一定的难度。因此,文章针对上述情况做出了一系列分析及研究。

1 影响异形柱节点抗剪能力的因素

1.轴压比

轴压力之所以可以提高节点核心区抗初裂的能力是因为柱的受压区面积增大,客观上加大了斜压杆的宽度,使参与斜压杆机构的混凝土面积增大,同时梁筋传递给节点核心混凝土的边缘剪力中有更多的部分汇入斜压杆机构,造成节点核心混凝土开裂的边缘剪力减小。另外,轴压力提高,增大了主斜裂缝与水平方向的角度。轴压力对通裂与极限荷载影响不明显的原因是:在轴压力下进行循环反复加载,致使节点核心区的混凝土累积损伤效应较无轴力作用时大,尽管轴压力可以提高混凝土的抗剪强度,但加剧的累积损伤效应最终致使轴压力的有利作用有所降低,对节点的通裂和极限荷载提高不明显。

2.节点核心配箍率

配箍率对初裂剪力影响不大,因为初裂时节点剪力Vj主要取决于混凝土的抗拉强度,一旦裂缝形成,箍筋受力将大幅度增长,甚至屈服,桁架机构产生作用,箍筋开始参与抵抗节点剪力;而且由于箍筋的约束使混凝土的抗剪能力也有所提高。加载过程中箍筋沿节点核心高度方向应变分布不均匀,每层箍筋应力不等,并非全部同时屈服,根据箍筋应力的数据分析,在通裂状态下沿节点核心高度方向80%范围内箍筋屈服。在节点核心中部(对异型中节点则是在小核心中部较偏下部位)应力最大。这是因为在某一方向弯矩作用下,节点核心对角线两个端部的混凝土在另一方向弯矩作用下产生的裂缝将闭合,该区域此时要承受压力,对角线中部区域裂缝最宽,箍筋将承受原由混凝土承担的拉力,导致节点核心中部箍筋应力最大。

3.柱截面高度变化

就异形柱中节点来说,节点核心上下柱截面、左右梁截面有差异容易导致节点核心开裂。裂缝首先出现在节点“小核心”的位置,初裂荷载降低的幅度可达30%左右,对节点核心的通裂荷载影响不大。常规节点通裂后节点核心还有较大的能力承担继续增加的节点剪力,而异形柱节点则不同。

2 异形柱设计中的建议

在进行设计时,需要我们注意的是异形柱纵筋和箍筋、节点核心区抗剪承载力、轴压比限值等问题的设计。

1.纵向钢筋和箍筋

纵向受力钢筋宜采用HRB400、HRB335级钢筋;箍筋宜采用HRB335、HRB400、HPB235级钢筋。在同一截面内,纵向受力钢筋宜采用相同直径,其直径不应小于14mm,且不应大于25mm异形柱内折角处应设置纵向受力钢筋纵向钢筋间距:二、三级抗震等级不宜大于200mm;四级不宜大于250mm;非抗震设计不宜大于300mm。当纵向受力钢筋的间距不能满足上述要求时,应设置纵向构造钢筋,其直径不应小于12mm,并应设置拉筋,拉筋间距应与箍筋间距相同。

异形柱在选用箍筋时应该选用复合箍筋,并且在非抗震设计时,异形柱的箍筋直径必须大于0。25d(d为纵向受力钢筋的最大直径),且不应小于6mm;箍筋间距不应大于250mm,且不应大于柱肢厚度和15d(d为纵向受力钢筋的最小直径);柱中全部纵向受力钢筋的配筋率大于3时,箍筋直径不应小于8mm,间距不应大于200mm,且不应大于10d(d为纵向受力钢筋的最小直径);箍筋肢距不宜大于300mm对于异形柱加密区箍筋的设置问题,在实际设计中往往会忽略如下几个问题:⑴剪跨比小二的柱以及因设置填充墙等形成的柱净高与柱肢截面高度之比小于四的柱箍筋没有全长加密。⑵三、四级抗震设计时,箍筋加密区最大间距其中一个规定是应小于等于纵向钢筋直径的7倍,当纵向钢筋直径为12mm或者14mm时,箍筋在加密区最大间距就相应不超过84mm和98mm了。然而应该关注的是,对当下的规程而言,还没有把“纵向钢筋”的定义明确化。在本题述的“纵向钢筋”应为“纵向受力钢筋”。可是,由于此界定在实际设计审查中,还需要和当地审查单位核实沟通好,以免引起不必要的麻烦。

2.节点核心区抗剪承载力超限问题

根据《混凝土异形柱结构技术规程》5。3。1规定:异形柱框架应进行梁柱节点核心区受剪承载力计算。在实际设计中,我们通过计算软件分析后通常出现如下提示:

“**节点域抗剪超限

N-C=3(29)Vjy=343.>FFC=0.23*FC*H*B=279. ”

这就是梁柱节点核心区受剪承载力不足所引起的。要避免梁柱节点核心区受剪承载力不足的况,根据《混凝土异形柱结构技术规程》5。3。5框架梁柱节点核心区组合的剪力设计值的计算公式,我们需从以下几个方面着手:⑴减小柱的计算高度。⑵增加梁柱节点处梁的截面有效高度、截面高度。⑶减小节点左、右两侧梁端弯矩设计值。

另外,我们在利用PKPM等设计软件对结构建模分析的时候,往往为了减小截面类型或者方便操作,通常在柱布置的时候进行了柱子的转角,这时候Vj所显示的超限方向就要根据原截面定义时的X、Y方向对应复核,而不是根据生成的图形去判断X、Y方向。当然,我们不能单一的为了某个节点不出现超限而只针对该节点作设计,我们应该要做的首先是在结构布、梁柱截面选取等方面去宏观控制结构整体刚度的均匀分布,避免刚度突变等情况,从根本上去避免上述问题的出现。

3.轴压比限值问题

异形柱在单调荷载,特别在低周反复荷载作用下,粘结破坏较矩形柱严重,延性比普通矩形柱差,因此,异形柱的轴压比限值比矩形柱严格得多。《规程》6。2。2条根据结构体系、截面形式、剪跨比、箍筋间距与纵筋直径比s/d、箍筋直径d和抗震等级确定,在0.45-0.85之间波动,比矩形柱结构的柱轴压比限值低。所以,在程序试算后,应按上述条件初步确定出各柱的轴压比具体限值,并在配筋简图中仔细查看各层柱的计算轴压比是否有超限的。因为此时异形柱的实配纵筋和箍筋还是未知的,PKPM程序无法判断每个柱的轴压比具体限值,只有在轴压比超过矩形柱结构的轴压比限值时,程序才会报告轴压比超限。因此,异形柱的轴压比超限,必须逐一手工核算。

4.异形柱框架抗震能力差的问题

现状分析过程中,由于异形柱框架抗震能力差,要求当事人在实施时注意以下几点:⑴异形柱框架结构不对称时,扭转对其受力的影响;⑵异形柱框架结构在地震作用下的弹塑性分析;⑶若条件允许,尽量合理适量设置抗震墙;⑷异形柱框架结构在截面设计方面的软件的开发。

3 结论

通过以上分析研究得知:地震区节点受剪承载力计算公式不只是承载能力极限状态的受剪际载力问题,更应该注意的是节点设计在强震作用下吸收和耗散地震能量的过程中节点受剪破坏的发生率。由此证明,一方面需要考虑“承载力”方面的问题,另一方面则需要注意节点连接的构件能否到达结构吸收和耗散地震能量的延性标准。

参考文献

第3篇

【关键词】民用建筑;结构设计;

1民用建筑结构设计的原则

适用、安全、经济、美观、便于施工是进行民用建筑结构设计的原则。一个优秀的民用建筑结构设计往往是这五个方面的最佳结合。完美的民用建筑结构设计就是在努力追求这五个方面的最佳结合的过程中产生的,适用、安全、经济、美观、便于施工是结构设计人员最终努力的目标,是结构设计的最佳体现。

结构设计不能破坏民用建筑设计,应满足、实现各种民用建筑要求;民用建筑设计不能超出结构设计的能力范围,不能超出安全、经济、合理的结构设计原则。结构设计决定民用建筑设计能否实现,从这个意义上讲,结构设计显得更为重要,虽然一栋标志性建筑物建成后,人们只知道建筑师的名字,但一个适用、安全、经济、美观、便于施工的结构设计也是工程师们的骄傲和成就。

2结构设计的概念及内容

结构设计简而言之就是用结构语言表达建筑师及其它专业工程师所要表达的东西。结构语言就是结构师从建筑及其它专业图纸中所提炼简化出来的结构元素,包括基础、墙、柱、梁、板、楼梯、大样细部等。然后用这些结构元素来构成建筑物或构筑物的结构体系,包括竖向和水平的承重及抗力体系,把各种情况产生的荷载以最简洁的方式传递至基础。结构设计的内容由上可知为:基础的设计、上部结构设计和细部设计。

3民用建筑结构设计特点

3.1 实践性

民用建筑结构设计是一种工程实践活动,没有一个工程师是直接从大学毕业生马上变成一个成熟的工程师,而是必须经过一个较长时间的工程设计锻炼。

3.2 复杂性

民用建筑结构设计的复杂性首先表现在设计中各种因素的不确定性,民用建筑结构设计是一个具有多解而没有标准答案的问题,作为一名结构工程师,我们需要找到一个相对最优的方案。

3.3 科学性

民用建筑结构设计是以数学、力学为理论基础,借助现代计算机技术进行的一种应用性技术。一个结构工程师应该善于抽象建筑结构的理论模型,善于用数学和力学只是分析民用建筑结构的工作机理,只有这样才能具有较强的认识能力和适应能力。

3.4 应用性

民用建筑结构设计必须讲究经济效益,一个成功的民用建筑结构设计,技术上先进合理,经济上效益显著。

3.5 创新性

民用建筑结构设计作为一种技术服务行业,在设计市场竞争激烈形势下,要想获得开发商的项目,必须提供比别人更加合理经济的结构方案,这就需要工程师的创新能力。

4进行民用建筑结构设计中应注意的相关问题

4.1关于箱、筏基础底板挑板的阳角问题。(1)阳角面积在整个基础底面积中所占比例极小,可砍成直角或斜角。(2)如果底板钢筋双向双排,且在悬挑部分不变,阳角不必加辐射筋。

4.2关于箱、筏基础底板的挑板问题从结构角度来讲,如果能出挑板,能调匀边跨底板钢筋,特别是当底板钢筋通长布置时,不会因边跨钢筋而加大整个底板的通长筋,较节约;出挑板后,能降低基底附加应力,当基础形式处在天然地基和其他人工地基的坎上时,加挑板就可能采用天然地基;能降低整体沉降,当荷载偏心时,在特定部位设挑板,还可调整沉降差和整体倾斜;窗井部位可以认为是挑板上砌墙,不宜再出长挑板。虽然在计算时此处板并不应按挑板计算。当然此问题并不绝对,当有数层地下室,窗井横隔墙较密,且横隔墙能与内部墙体连通时,可灵活考虑;当地下水位很高,出基础挑板,有利于解决抗浮问题;从建筑角度讲,取消挑板,可方便柔性防水做法。

4.3关于梁、板的计算跨度一般的手册或教科书上所讲的计算跨度,如净跨的1.1倍等,这些规定和概念仅适用于常规的结构设计,在应用日广的宽扁梁中是不合适的。梁板结构,简单点讲,可认为是在梁的中心线上有一刚性支座,取消梁的概念,将梁板统一认为是一变截面板。在扁梁结构中,梁高比板厚大不了多少时,应将计算长度取至梁中心,选梁中心处的弯距和梁厚,及梁边弯距和板厚配筋取二者大值配筋。(借用台阶式独立基础变截面处的概念)柱子也可认为是超大截面梁,所以梁配筋时应取柱边弯距。削峰是正常的,不削峰才有问题。

4.4基坑开挖时,摩擦角范围内的坑边的基底土受到约束,不反弹,坑中心的地基土反弹,回弹以弹性为主,回弹部分被人工清除。当基础较小,坑底受到很大约束,回弹可以忽略,在计算沉降时,应按基底附加应力计算。当基坑很大时,相对受到较小约束,如箱基,计算沉降时应按基底压力计算,被坑边土约束的部分当做安全储备,这也是计算沉降大于实际沉降的原因之一。

4.5抗震缝应加大,经统计,按规范要求设的防震缝在地震时有40%发生了碰撞,故应增大抗震缝间距。

4.6关于回弹再压缩基坑开挖时,摩擦角范围内的坑边的基底土受到约束,不反弹,坑中心的地基土反弹,回弹以弹性为主,回弹部分被人工清除。当基础较小,坑底受到很大约束,如独立基础,回弹可以忽略,在计算沉降时,应按基底附加应力计算。当基坑很大时,相对受到较小约束,如箱基,计算沉降时应按基底压力计算,被坑边土约束的部分当做安全储备,这也是计算沉降大于实际沉降的原因之一。

4.7主梁有次梁处加附加筋:一般应优先加箍筋,附加箍筋可认为是:主梁箍筋在次梁截面范围无法加箍筋或箍筋短缺,在次梁两侧补上,象板上洞口附加筋。附加筋一般要有,但不应绝对。规范说的清楚,位于梁下部或梁截面高度范围内的集中荷载,应全部由附加横向钢筋承担。也就是说,位于梁上的集中力如梁上柱、梁上后做的梁如水箱下的垫梁不必加附加筋。位于梁下部的集中力应加附加筋。但梁截面高度范围内的集中荷载可根据具体情况而定。当主次梁截面相差不大,次梁荷载较大时,应加附加筋。当主梁高度很高,次梁截面很小、荷载很小时,如快接近板上附加暗梁,主梁可不加附加筋。还有当主次梁截面均很大,如工艺要求形成的主次深梁,而荷载相对不大主梁也可不加附加筋。总的原则,当主梁上次梁开裂后,从次梁的受压区顶至主梁底的截面高度的混凝土加箍筋能承受次梁产生的剪力时,主梁可不加附加筋。梁上集中力,产生的剪力在整个梁范围内是一样,所以抗剪满足,集中力处自然满足。主次深梁及次梁相对主梁截面、荷载较小时,也可满足。

4.8当民用建筑大多数房间较小,而仅一两处房间较大时,如按大房间确定基础板厚会造成浪费,而按小房间确定则造成配筋困难,当承载力能满足要求时,可在大房间中部垫聚苯卸载,按小房间确定基础板厚。

综上所述,结构设计是个系统、全面的工作,需要扎实的理论知识功底,灵活创新的思维和严肃认真负责的工作态度。千里之行,始于足下。设计人员要从一个个基本的构件算起,做到知其所以然,深刻理解规范和规程的含义,并密切配合其它专业来进行设计,在工作中应事无巨细,善于反思和总结工作中的经验和教训。

参考文献:

精品推荐