美章网 精品范文 高中数学技巧范文

高中数学技巧范文

前言:我们精心挑选了数篇优质高中数学技巧文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。

高中数学技巧

第1篇

【关键词】高中数学;解题技巧

高中数学不同于语文、英语、历史这类文科课程,背诵记忆这种学习方法是不适用数学学科的,它更注重变通,需要灵活运用所学知识的同时还要掌握一定的解题方法和技巧。学生在掌握了数学解题技巧后,不但解题速度可以得到有效提升,还有助于数学素养的提高,能够运用数学知识、思维独立思考,解决问题。

一、运用解题技巧解高中数学题的思维过程

首先,理清问题阶段。想要正确解答问题,关键是先理解问题,弄清楚问题的点,明确问题最终目的,然后大脑才能根据你分析问题时获得的信息展开思维活动。

其次,拟定计划阶段。这个过程也被成为转换,是积极探索和尝试、寻找解题方向和解题途径的过程,也就是针对问题不断选择和调整解题的思维方式和策略,是整个解答问题过程中思维活动的核心部分。

再次,实现计划阶段。所谓实现计划,就是利用转换问题后确定的思维策略解决数学问题的实施过程,其中会运用到数学基础知识、基本技能。这个实施过程详细展现了人具体思维的过程,是解题过程中一系列思维活动的重要构成部分。

最后,回顾反思阶段。当学生通过分析和不断尝试成功解决一个问题后,还需要对整个过程进行回顾和反思,以便将自己刚刚的一系列思维过程梳理清楚,并对整个分析、解题过程中思维方式和运用方法进行归纳总结,提炼出解决此类问题的技巧,并深入领悟。通过回顾反思可以让学生的数学思维得到拓展。

引导学生形成这样一个思维过程,在遇到问题时可以自动进入这种思维模式当中,不断积累,就会自己摸索出解答某类问题的技巧。

二、高中数学解题技巧分析

(一)解选择题的技巧

1.估算法

选择题里面常常会出现计算比较复杂的题目,如果按照正常的解题顺序进行精确计算会耗费大量时间,导致没有足够时间分析和解答后面分值高,且有一定难度的大题。面对这种情况先不要忙着提笔计算,为了节省时间,我们可以利用估算法。

2.代入验证法

因为选择题通常都会给出四个备选答案,我们完全可以利用代入验证的快捷方法把选项中已给的数值直接代入题目当中进行验证,以此快速选出正确答案,既节省了时间,又避免了有些同学计算准确率低造成的失误问题。例如,在题目“若■+3x=10,则x的值是=()”中,给出了四个备选答案,分别是3/4、2、1/2、3,直接将四个数值逐一代入验证即可,通常不需要四个都试一遍才会选出正确答案,这道题里,试到第二个就可以确定答案。

3.特殊值法

将题目中某个未知量设定为特殊值,通过简单运算得出答案的办法就是特殊值法,特殊值可以是特殊的数值,也可以是特殊的点、数列或图形,此种方法既可以省却复杂的运算过程,减少运算量,又将答案范围缩小了,有助于解题效率的提升。例如,在题目“已知一二次函数y=ax2+bx+c,其中a0,则下列哪个选项一定成立。给出四个选项分别为b2-4ac>0、b2-4ac0,进而判断出图像与x轴有两个交点,得出答案为第一个选项。

(二)反证法

所谓反证法,就是在肯定题设否定结论的基础上,把结论的否定当做条件进行推理论证,如果推理出矛盾,则可证明原命题结论是成立的,从而题目得证,是一种从反方向出发的间接证明方法。这种解题技巧适用于唯一性命题或否定性命题、必然性命题、无限性命题、起始性命题以及至多、至少型命题、不等式证明等多种题型。运用反证法解题时首先要弄清命题的条件与结论,然后假设命题结论的反面成立,进而以这个假设为条件进行演绎逻辑推理,直至推理出矛盾,最后,根据推理出的矛盾就可以认定假设是不成立的,也就间接地证明了原命题结论是成立的。其中的矛盾可以是与假设矛盾,也可以是与数学标准公式矛盾、与公认事实矛盾等等。需要注意的是,若想要证明的命题结论只有一种可能情况,只需驳倒这种情况即可,这种情况下的反证法又被称作归谬法;若想要证明的命题结论有多种可能情况,则必须通过穷举法把所有情况的相反结论都驳倒才能判定原命题是成立的。

此外,在数列求和中还可以运用逐项消除法来解决递推关系;求解积分时可以先在被积函数后面加上或是减去一个量,再减去或是加上一个相同量,保证加减前后不改变原来值,然后再把原积分变形、转化成另一种我们常见的,有规律可循的简单形式这种办法来求解;以及分类讨论、构造图形、数列等等多种解题技巧。

三、结束语

综上,高中数学虽然问题类型繁多,形式多变,但万变不离其宗,我们还是可以从中找出规律,掌握解题技巧,同样可以轻松解决各种难题。除了上文介绍的几种常用解题技巧,在平时的学习当中还要注重基础知识的学习,因为各种题型都是围绕知识点设计的;不宜采用题海战术盲目地进行练习,要有针对性的选择一些典型题目,熟练掌握解题技巧之后就能够举一反三,融会贯通。此外,还要注重审题技巧的训练,正确审题是解题的前提和关键。

【参考文献】

[1]贾小勇.浅谈高中数学的解题技巧[J].科学导报,2015(6):323-323

第2篇

关键词: 高中数学 教学技巧 教学方法 教学构想

一、把课堂还给学生

“把课堂还给学生,让课堂充满生命气息”是优秀课堂的最好写照。课堂上我们要注意留给学生充足的时间思考、交流、展示,不断运用诙谐、激励的语言调动起学生的学习积极性;适时点拨,引领着学生从多个角度思考解决问题;用画龙点睛的点评渗透给学生数学思想和方法。反思自己的教学,对学生的能力缺乏信任,导致教师讲得多而学生活动少,长期的“填鸭式”教学方式扼杀了学生的自主性和创新思维。究其原因,教师备教材多,备学生少,不了解学生,所以不信任学生,不信任学生直接影响到课堂上师生间的互动,课堂如一潭死水毫无生气,更不会擦出智慧的火花。作为一线教师,我们应该认真钻研教材和教法,在学习借鉴名师好的经验和做法的同时形成个人的教学特色。

二、反三角函数和三角方程基本内容与小结

(一)反三角函数。

1.反三角函数的定义:三角函数的反函数叫反三角函数。

2.一般三角方程。任意的三角方程无一般解法,但对某些特殊的三角方程可按如下方法求解:

(1)一个未知数的同名三角方程,可以通过换元,用代数方法求解。

(2)能化为一个未知数的同名三角函数的方程,可化成代数方程来解。

(3)一边为零,另一边能和差化积或因式分解的方程,可以将原方程化成几个较简单的方程来解。

本章的主要内容是反三角函数的概念、图像、性质,以及简单三角方程的解法。

反三角函数的运算、最简三角方程的解集和某些特殊的简单三角方程的解法是本章的重点,反三角函数的概念、主值区间的意义及三角方程的增根、遗根问题是本章的难点。

(二)在学习本章时,要注意以下几点。

1.在学习反三角函数概念时,要抓住反三角函数的图像这一环节。因为从图像上容易看清反三角函数通值的多值性和主值的单值性,并能从图像上自然记忆反三角函数的定义域、主值范围、函数的基本性质。

2.反三角函数表示的是角或弧,而自变量二是表示这个角或弧的三角函数值。

3.反三角函数的运算,常常有两类问题。其一是施于反三角函数上的三角运算,运算中常用到几个基本等式。

4.解三角方程时,若无特殊规定,均有无数多个解。但由于解法不同,同一个三角方程可有不同的通解形式。形式虽不同,但它们是等效的。

5:解三角方程和解代数方程不同,在求解过程中,即使没有经过方程两边平方或乘、除同一个整式的变形,由于运用了某些三角公式的变形,使函数定义域发生了变化(扩大或缩小),也会造成增根或遗根。

三、学习方法之函数小结

在中学阶段,学习集合、对应、函数这部分内容,对深入理解常量数学中的某些概念(如圆的周长和面积等),认识数、形的结合,进一步学习近代数学,都会起到很大的作用。

本章的重点是集合的概念及基本运算、函数的概念及其基本性质,难点是对应和反函数。

在学习本章时,要注意以下几点:

1.为了顺利渗透集合、对应的思想,必须注意在学习中经常使用集合、集合的运算和对应等知识。特别是要熟练地用集合表示方程、不等式的解,用集合表示点在直线上或平面内、直线在平面内、两直线的交点、两平面的交线等。

2.函数概念在整个中学数学教学中的重要性是十分明显的,进一步加深对函数概念的理解,要克服对函数概念的理解的表面性和片面性的错误。例如,认为“函数就是一个解析式”,“函数就是方程”,“能写出表达式的才是函数,写不出解析式的就不是函数”,把分段表示的一个函数认作“几个函数”,把用不同形式的解析式表示的同一函数认为是不同的函数,等等。出现这类错误的原因在于只看见表示函数的公式法这一形式,而没有弄清对应关系这个实质。因此,抓住“对应法则”这个核心,弄清函数概念的实质,应是函数定义学习的重点。

3.f(x)与f(y)互为反函数,前者的定义域是后者的值域,前者的值域是后者的定义域,f(x)存在反函数的充要条件是函数的定义域与值域是一一映射。

4.函数的最大值(最小值)和极大值(极小值)是两个不同的概念。

四、数学教学没有一定之规

数学教学,数无定法,比如在对导学案上的一个问题组织教学时,遇到了“设问方式”与“解题规范”的争论,现摘录如下,希望同仁商榷。

对于充要条件的证明问题一直是学生解题的难点,既要证明充分性又要证明必要性,学生总觉得繁琐(更多时候是不会证明其必要性或充分性),其症结是逻辑混乱。

五、高中数学课堂探究式教学的构想

第3篇

[关键词]高中数学;解题技巧;方式

中图分类号:G633.6 文献标识码:A 文章编号:1009-914X(2016)25-0251-01

一、审题技巧

审题是正确解题的关键,是对题目进行分析、综合、寻求解题思路和方法的过程,审题过程包括明确条件与目标、分析条件与目标的联系、确定解题思路与方法三部分。(1)条件的分析,一是找出题目中明确告诉的已知条件,二是发现题目的隐含条件并加以揭示。目标的分析,主要是明确要求什么或要证明什么;把复杂的目标转化为简单的目标;把抽象目标转化为具体的目标;把不易把握的目标转化为可把握的目标。(2)分析条件与目标的联系。每个数学问题都是由若干条件与目标组成的。解题者在阅读题目的基础上,需要找一找从条件到目标缺少些什么?或从条件顺推,或从目标分析,或画出关联的草图并把条件与目标标在图上,找出它们的内在联系,以顺利实现解题的目标。(3)确定解题思路。一个题目的条件与目标之间存在着一系列必然的联系,这些联系是由条件通向目标的桥梁。用哪些联系解题,需要根据这些联系所遵循的数学原理确定。解题的实质就是分析这些联系与哪个数学原理相匹配。

二、多层次观察,锻炼全局性

数学习题当中一般都包含了复杂的公式和图形,在进行审题的时候,必须对习题的整体进行观察。从而在多层次观察、多样性探究的过程中发现习题中的重点,进而加以解答。而在解答的时候,还可以适当地根据解题思路的需要对观察角度进行转换,进而结合其公式的特征求出最终结果。比如这样一道计算题:

已知x、y分别为实数,且满足方程x2-2xy+2y2-2=0,试求x+y的取值范围。

在解答这道习题的时候,我给学生提供了两种观察方式。

第一种:将这个二次方程中的y比作为参数,然后将方程转化为:x2-(2y)x+(2y2-2)=0。这时,我们便可以得出这样的公式:=(2y)2-4(2y2-2)≥0。之后结合这个公式展开计算,便可以很容易地将答案求出来。

第二种:将这个方程式进行转化,变形成:(x-y)2+y2=2,这时,我们便可以知道y2≤2,(x-y)2≤2.然后结合这个思路还原原题进行解答,同样可以快速整理出所需的答案。

由此可以看出,在解答这道习题的时候,结合不同观察角度对其进行分析,从而制定出两种不同的合理的解答方法,这不仅是发散性思维的体现,更是解题技巧的衍生。所以,在日常习题解答的时候对一些类型习题进行多层次、多样性的观察。

三、类型题掌握,提升发散性

学习的过程也是知识的积累过程,所以,不论是哪一学科,都不能期待能一朝实现学校目标,而数学亦是如此。所以,在日常解答某些类型数学题的时候,对其题型加以掌握,这是提高学生解题能力,培养学生解题技巧的重要途径之一,并且效果良好。

但是有一点我们必须铭记,类型习题的整理和记忆是指对其解题思路的记忆,并不是对其解答过程的记忆。假如一位学生只是对这道题的解题过程加以记录,不去分析,不去思考其解答方式的亮点,那么即使他整理再多的习题,也无法取得应有的效果,只会将学习停留在表面。

就以上述例题为例,成功将这道习题的答案求出之后,我将列出的解答步骤擦掉,然后结合自己的理解在笔记本上进行大概的整理。吸收了这个解题思路的精髓,从而找出了第三种解题方案,即:

将方程式x2-2xy+2y2-2=0比作成y的二次方程,然后将其中的x比作为参数,这时,便会得出这样的公式:2y2-(2x)y+(x2-2)=0.然后按照上述第一种解题思路,便可以得出:=(2x)2-4×2(x2-2)≥0.

其实这种解题思路与第一种有着异曲同工之妙,但是不失为一种有效的解题技巧。而学生在充分利用这种解题技巧后,他们便摆脱了对类型题的单纯记录,而是在这个记录的过程中将其吸收,变成了自己的知识。这样一来,当他们在遇到类似的习题时,便可以根据相应的方式快速完成解答,进而节省大量的时间。

四、关键点找寻,激发敏捷性

不论是解答哪一类的习题,探寻关键点都是解题的一个重要步骤。而这一点与上述第一部分所讲的内容有着密切的关联。其中,在对一道习题的关键点进行找寻的时候,首先要了解全局观的重要性。只有将习题的整体给予明确,才可以进一步对其中的关键点和切入点加以找出。

比如在一次测验中,曾涉及到这样的一道习题:

已知幂函数y=x、y=x2、y=x3、y=x分别在同一坐标系中,试写出y=xn (n>0)的性质。

在测验的时候,很多学生由于忽视了第四象限可能没图像,因此没能正确的解答出结果。所以,在审试卷的时候,我结合第四象限可能没图形这一关键点进行分析,从而得出:根据题意分析可以得出这样的结论,当第一象限和第二象限均有图像时,那么我们所求证的函数则是关于y的对称轴;假如第一象限和第三象限均有图像时,那么所要求证的函数则是关于原点对称;但是,当我们确定第一象限一定有图像,而第二象限和第三象限可能有图像时,我们却可以确定第四象限不存在图像,这是为什么?

想到这里时,恍然大悟,顷刻间明白了自己解答错误的缘由。而在这个时间段内,我则以这个第四象限不存在图像作为关键点对这道题进行分析整理,因此很快弄懂了这道习题的重心。而由此我们不难发现,准确地找出一道习题的关键点,并结合关键点对相应的可能性给予辩证分析,这不仅可以提高高中生的思维敏捷性,更可以提高他们解答习题的准确性。

五、解题后的反思

在学习过程中做一定量的练习题是必要的,但并非越多越好,题海战术只能加重学生的负担,弱化解题的作用。要克服题海战术,强化解题的作用,就必须加强解题技巧的训练。

答题技巧是指答案准确、简洁、全面,既注意结果的验证、取舍,又要注意答案的完整。要做到答题技巧,就必须审清题目的目标,按目标作答。

解题后的反思是指解题后对审题过程和解题方法及解题所用知识的回顾进行思考,只有这样,才能有效的深化对知识的理解,提高思维能力。(1)在解题时有时多次受阻而后“灵感”突来。这时,思维有很强的直觉性,若在解题后及时重现一下这个思维过程,追溯“灵感”是怎样产生的,多次受阻的原因何在,总结审题过程中的思维技巧,这对发现审题过程中的错误,提高分析问题的能力都有重要作用。(2)学生在解题时总是用最先想到的方法,也是他们最熟悉的方法,因此,解题后反思一下有无其它解法,可使学生开拓思路,提高解题能力,这样也是十分必要的。

参考文献