美章网 精品范文 可视化技术研究范文

可视化技术研究范文

前言:我们精心挑选了数篇优质可视化技术研究文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。

第1篇

关键词:油田;注水系统;可视化技术

中图分类号:TB

文献标识码:A

文章编号:16723198(2013)01019401

以科学计算可视化作为基础发展起来的可视化技术,其最初主要应用在科学计算与工程测量中。伴随着可视化技术的不断发展,其所应用的领域也成扩大化的发展趋势。本文从油田注水系统的层面出发对可视化技术进行深入的研究与分析。

1可视化技术的应用

可视化技术指的是通过三维表现技术来实现对三维世界物体的再现,进而呈现出三维形体所具有的复杂信息。可视化技术是伴随着计算机图形学的发展而快速发展的新型技术,有着较广泛的应用途径。从现有石油行业的情况来看,可视化技术就被广泛的应用在石油勘探、油田开发以及油气集输等等诸多环节。油田注水系统中通过可视化技术的应用,能够极大的降低运营难度与成本,提高系统的安全性,进而有必要对油田注水系统的可视化技术进行深入的研究。从可视化技术的发展趋势来看,其与互联网、人工智能等等的结合会不断的促进自身技术优势的增加,进而在油田注水系统的优化中发挥更大的作用。

2油田注水系统的提升措施分析

油田注水的目的是为了维持油田能量,确保油层压力,进而促使供液能力的提高,并实现原油递减率的降低。简而言之,油田注水是油田维持地层压力的重要措施。从我国现有油田的实际情况来看,多数油田都处在高含水期,这就使得注水量大的问题导致油田生产投入成本的增加,进而有必要从油田的实际情况出发来确定油田注水系统的提升措施。

油田注水系统效率指的是油田注水到注水井中的总能量在注水泵电动机消耗总能量中所占的百分比。通常情况下,油田注水系统的效率分为电动机效率、注水泵平均运行效率以及管网效率三个部分。其中电动机效率指的是对注水泵电动机消耗能量的描述;而注水泵平均运行效率则是用来对注水泵消耗能量的描述;管网效率则是对管网的摩阻损失进行描述。正因为油田注水效率由这三大部分组成,决定了确定油田注水系统提升措施上也应从提高注水设备效率与调节注水系统参数入手来实现油田注水系统效率的提高。从提高注水设备效率的层面来看,需要加强对电机、泵以及管网等各个环节的优化。电机应用的优化主要指的是应结合油田的实际情况,确定合理节能高效的电机。泵的优化则指的是通过注水泵的优化来提高泵效率。管网的优化主要是指通过合理的布局来降低管网摩擦所导致的损失,合理确定注水管的管径,降低对能源的消耗。从调节注水系统参数的层面来看,主要是进行调节注水速度与节流来促进油田注水系统效率的提高。

3油田注水系统可视化技术的应用策略

在油田注水系统中,可视化技术的应用策略应包括以下内容:

3.1油田注水系统可视化程序的应用

可视化技术的应用需要油田注水系统可视化程序的支持。该程序是以注水系统能量平衡的数学模型、注水系统效率、注水系统能耗及注水系统的水力参数数值进行计算基础上,运用计算机编程技术编写油田注水系统可视化程序。该程序的基本功能是将油田注水站站内数据信息输入到系统中,进而实现油田注水站站内数据以及注水系统整体运行的可视化,同时还通过将连接数据信息、坐标数据信息以及站外数据信息的输入,实现了油田注水系统中注水网系统的可视化。油田注水系统可视化程序的基本操作主要包括数据信息输入、泵机组能耗分析、整个系统能耗分析、管线压力损失计算以及显示超过经济流速管线等等。

3.2油田注水系统可视化技术的应用流程

油田注水系统可视化的应用流程主要为以下几个步骤:

流程一:通过物质守恒原理与流体力学理论的应用,建立了油田注水系统效率与能耗的数学模型。

流程二:在确定出油田注水管网系统数学模型以及计算方法的基础上,以模块为基础构建了油田注水系统流程图,进而建立注水系统数据库。

流程三:对油田注水效率、能好以及注水系统水力参数进行计算的基础上,应用相应的计算机应用技术,编写油田注水系统可视化程序。

流程四:通过油田注释系统可视化程序的运用来进行油田注水系统注入动态以及可视化术分析,进而确定具体的油田注水系统管理的节能措施。

总之,伴随着可视化技术的发展,可视化技术在包括油田注水系统等在内的石油行业中的应用已经成了发展的必然趋势。因而,有必要结合油田的实际情况,不断的优化可视化技术在油田注水系统中的应用,进而促进整个石油行业的快速发展。

参考文献

[1]张卓,宣蕾,郝树勇.可视化技术研究与比较[J].现代电子技术,2010,(17):133138.

[2]周定照,柳进,罗强,黄朝斌,刘忠军,文涛.可视化技术在石油行业的应用[J].石油工业计算机应用,2012,(11):25.

第2篇

关键词:可视化技术;图像理解

中图分类号:TP391.4

可视化技术是计算机图形学的一个重要研究方向,是图形科学的新领域。它是指是运用图形学原理和方法,将大规模的科学数据-数值和图像,转换为可视的图形和图。它能够给予人们深刻与意想不到的洞察力,在很多领域使科学家的研究方式发生了根本变化。它涉及的研究领域很广,成为计算机科学研究领域中不可缺少的组成部分,例如计算机图形学、图像处理、计算机视觉等,它也是理解复杂现象和大规模数据的重要工具。

自从1986年可视化概念提出以来,发达国家纷纷开始研究可视化理论、方法,开发可视化工具与环境,它们的研究成果已广泛应用于石油勘探、气象预报、航天航空、核武器研制、医学图像处理等科学与工程领域以及自然科学领域中。

90年代初,我国开始了科学计算可视化技术的研究工作,一般需要使用巨型计算机和高档图形工作站处理庞大的数据量以及相关复杂的图像生成算法。所以,在高水平的大学、大公司和国家级的研究中心才有实力对可视化技术进行研究和应用。近几年来,随着处理器功能的不断提高,可视化技术的飞速发展,它的应用已经扩展到科学研究、工程、军事、医学、经济等各个领域,但是,与国外先进水平还有差距,因此还需要在在医学、地质、海洋、气象、航空等行业加大应用力度。

1 可视化的基本概念

可视化是一种计算技术,它将符号转换成几何,使研究者能观察到他们的研究工作。可视化技术能够将看不见的事物通过计算机变为能够看见的事物,提供了科学发现和展现事物的新途径,改变了科学家原有的研究方式,能够给人们意想不到的启示。

根据可视化技术的交互性、多维性、和可视性的特点,以及考虑结合程度,可视化技术可以分为后置处理,实时跟踪处理和实时绘制及交互控制三个层次。后置处理指的是将计算结果解释或显示为可视化的图形,目前大部分应用软件属于这一层次;实时跟踪处理强调它的实时性,因此要求计算与显示必行同步进行,这样能够随时发现执行中的错误以便日后改正;实时绘制及交互控制一方面强调它的实时性,另外能够根据显示结果随时改变执行过程中的参数以便得到满意的结果,因此具有交互界面。近二十多年来,在美国、德国、日本等发达国家的著名大学都在致力于可视化技术的研究,而且已经重点向实时处理和交互控制方面发展。

2 国内外比较著名的研究成果

2.1 流体可视化软件

这是美国国家超级计算机应用中心(NCSA,National center of supercomputer Application)的研究成果。该软件通过多个相联系的模型,在交互及分布环境下研究暴风雨的形成规律。其中安装在NCSA的超级计算机CRAY-YMP进行模型计算,VGX工作站则用来实现二、三维图形显示,提供用户接口,二者之间使用网络连接。

2.2 医学可视化技术

医学数据的可视化,已成为数据可视化领域中最为活跃的研究领域之一。由于近代非侵入诊断技术如CT、MRI和正电子放射断层扫描(PET)的发展,医生已经可以非常容易获得病人有关部位的一组二维断层图像。因为核磁共振、CT扫描等设备能够产生人体病变区域的多个方面多个剖面的图像,或者重建为具有不同细节程度的三维真实图像,使医生对病灶部位的大小、位置,不仅有定性的认识,而且有定量的认识,从而及时高效地诊断疾病。CT图像打破传统的胶片感光成像模式,借助于计算机重构人体器官或组织的图像,使医学图像从二维走向三维,使人们从人体外部可以看到内部。利用可视化技术软件,能够重构有关器官和组织的三维图像,例如美国加洲的ADAC实验室,约翰.霍普金斯大学等开发出的软件已在许多医院得到应用。利用可视化技术可以以获得心脏的三维图像,并用于监控心脏的形状、大小和运动,为综合诊断提供依据,例如中国协和医科大学等进行的主动脉病变的临床诊断和冠状动脉搭桥术(CABG)后的血管显示等。正是应用了可视化技术,变不可见为可见,从而大大提高了手术的成功率。

耿国华教授实现了医学图象数据库系统MidBASE。在数据库设计、基于内容的图象检索、嵌入三维可视化构件、WEB方式远程查询等方面特色明显。已在多个医院使用,效果良好[1]。

2.3 地学可视化技术

科学可视化应用到地学中,产生了地学可视化。1990年的勘探地球物理学家协会的举办“科学可视化”专题讨论会,促进了地球物理勘探中的可视化研究。进而在1995年举办的“可视化技术用于发现和开发更多的油气资源”会议,使得科学可视化技术在油气工业中的应用成果大放光彩。目前,美国的SGI公司在可视化技术方面是处于世界领先地位,它在地学中主要应用于油田开发、油藏数值模拟、石油地质、地震勘探、钻井、测井、遥感测绘等方面。

2.4 人类胚胎的可视化

这是美国依利诺大学芝加哥分校研制的成果。首先依据美国卫生和医学国家博物馆所得到的胚胎数据重构人类胚胎模型,其次将该模型进行三维显示。这一成果预示着人类可以远程访问人类性态数据,可以进行分布式计算。

2.5 数字博物馆的可视化技术

数字博物馆最突出的特点是:虚拟现实技术。虚拟技术通过计算机图形构成三度空间或把现实环境编制到计算机中去,产生逼真的虚拟环境,从而使得用户在视觉上产生一种沉浸于虚拟环境中的感觉。数字博物馆借助这样的技术,对珍贵藏品进行三维可视化的建模。在追求视觉真实感受的同时,最大限度地保存了物体真实数据。研究者可以直接测量模型得到标本的形态结构信息,为远程标本研究提供可靠翔实的基础,真正地做到了辅助科学研究及数据保存的作用。例如中国地质大学地学数字博物馆、中山大学生物数字博物馆、清华大学美术数字博物馆、西北大学考古数字博物馆、北京航空航天大学航空航天数字博物馆等,这些数字博物馆不仅为学者提供了一个高水平高质量的学习平台,有利于院校之间的学术信息和研究资源的共享,而且满足用户的交互性、参与性和沉浸性。

2.6 大场景及文物的虚拟修复可视化技术

大场景与文物虚拟修复还原和展示的研究涉及多个研究领域,需要综合应用数字图象处理、计算机图形学、模式识别、可视化技术等研究领域。目前,在我国很多研究机构已在与大场景和文物的虚拟修复技术相关的领域内进行了一些研究工作,也取得了一些研究成果。但是,还没有研制出完全自动的虚拟修复和还原系统,并且这些研究成果相对独立,没有一个综合文物复原和大场景虚拟还原展示的系统。

3 结束语

NCSA(美国国家超级计算应用中心)是国际上从事可视化研究的权威单位,一直从事可视化算法如软件的开发研究。而在国内,清华、北大、国防科大、中科院软件所等单位相继开展了可视化算法的研究及可视化工具的开发,都已取得了一大批可喜的成果。随着计算机硬件条件的改善和诸如人工智能、机器学习等可视化算法的成熟,可视化技术一定会产生一个大的飞跃。

参考文献:

[1]荣国栋,孟祥旭.Inspeck3D-DF三维扫描仪在数字博物馆中的应用[J].计算机工程与应用,2002,38(16):237-239.

第3篇

关键词:智能变电站;安全措施;可视化技术;继电保护;抗干扰能力 文献标识码:A

中图分类号:TM63 文章编号:1009-2374(2016)25-0141-02 DOI:10.13535/ki.11-4406/n.2016.25.068

随着科学技术的不断提高,对变电站的要求越来越趋向于智能化。电网规模的不断扩大使得作为电力系统核心关键作用的变电站要接受更大的信息量,对变电站的要求也在不断提高。智能变电站作为新时展的产物,具有可靠性高、集成度高和先进的技术优势,代替传统变电站,提供网络交互和资源共享。通过分析智能变电站的安全措施和相关可视化技术的研究,确保智能变电站运行的稳定性。

1 智能变电站相关概念

智能变电站属于目前较为先进的智能设备,具有可靠与环保等多种功能。智能变电站的基本要求为全站信息数字化、通信平台网络化以及信息共享标准化,从而能够自动地完成信息的采集、测量、控制、保护、计量以及检测等多种基本功能。

智能变电站主要包括两部分:一部分为智能高压设备;另一部分为变电站统一信息平台,智能高压设备主要包括智能变压器以及电子式互感器等。智能变压器与控制系统在运行的过程中主要依靠通信光纤相连,因而可以及时地掌握变压器状态参数以及运行相关数据。当运行方式出现改变时,设备根据系统的电压及功率情况,可以对是否调节分接头起到决定作用;当设备出现问题时,将会发出预警并提供相关的状态参数等,如此便能在一定程度上降低设备的运行管理成本,最大限度地提高变压器运行的可靠性。智能高压开关设备是具有较高性能的开关设备和控制设备,同时配有电子设备、传感器以及执行器,因此在运行的过程中具有监测以及诊断功能。电子式互感器能够有效地克服传统电磁式互感器在运行过程中的问题及缺点。变电站统一信息平台功能有两个:一是系统横向信息共享功能,主要表现为管理系统中能够统一获得各种上层应用的相关信息;二是系统纵向信息的标准化功能,主要表现为各层能够实现透明地对其上层应用支撑作用。

2 智能变电站安全措施

智能变电站技术的安全措施防范模式分为不同的智能安全形式,目前主要的保护系统跳闸方式主要采用:非常规互感器+就地合并单元(MU)+GOOSE跳闸;常规互感器+就地合并单元(MU)+GOOSE跳闸和常规互感器+常规采样+GOOSE跳闸。而以上三种智能模式涉及的设备均不相同,在继电保护过程中涉及到的设备主要包括GPS时钟、保护装置、智能终端和交换机。智能变电站的原理是使用以太技术代替传统的二次接线传递数字信息和模拟信号,解决原有接线处短路问题,将原有的接线装置高度吻合,使得网络数据流畅通无阻地传递下去。智能变电站运用大量的光缆,传输速度比传统的传输速度更快且安全性能更高,运用面向对象的变电站事件(GOOSE),类似于一种快速报文传输机制,是智能变电站的核心技术。通过这种核心技术,将高速网络通信作为基础,提供各个节点以快速可靠的通信方式,解决传统跳闸问题,实现回路之间的智能化检测,为变电站提供可靠的运行模式和智能的管理。

继电保护系统检修模式。目前国内外的电力公司对继电保护系统通常采用事故检修、定期检修、可靠性检修和状态检修四大检修模式进行维护。通过对设备的可靠性评估、定期进行检修和实时在线监测的方式进行检修。本文将其归纳为继电保护停电检修和不停电检修模式,以带电完善设备和停电消除故障两种模式下,总结适用于220kV及以下电压等级的智能变电站的线路保护、主变保护、母线保护和母联保护的典型安全措施。

2.1 线路保护安全措施

在一次设备检修过程中,一般采取的保护措施安全步骤类型分为:(1)采用电子式互感器;(2)采用传统互感器;(3)合并单元缺陷;(4)线路保护装置缺陷。对母线进行保护采取退出GOOSE的操作,保护运行中的线路和智能终端,故合并单元并将回路打开,后期退出软压板的操作,输入光纤取下线路保护背板SV。

2.2 主变保护安全措施

在一次设备检修过程中,主变保护检修校验的典型安全措施如下:(1)采用电子式互感器;(2)采用传统互感器;(3)主变保护检修校验;(4)某侧合并单元缺陷;(5)主变保护缺陷,需做保护功能试验。

2.3 母线保护安全措施

在一次设备不停电情况下,母线保护检修校验的典型安全措施如下:(1)母线保护检修校验;(2)220kV母线保护处理缺陷(只考虑母线保护缺陷,需做保护功能试验的情况)。对于已经投运的变电站,一般不会将全站母线停电进行检修,若出现全站某一电压母线停电的情况,可参考不停电检修的典型安全措施。

2.4 母联保护安全措施

当母联开关处在检修的位置,设备处于停电情况时,母联保护检修教研,典型安全措施如下:(1)采用子式互感器;(2)采用传统互感器。通过对母联进行保护和对智能终端投入检修压板,退出GOOSE启动失灵接收软压板,在母联保护下输入光纤取下,在合并单元段将CT和PT回路打开。而当母联开关处在检修位置,设备并不断电的情况下,采取典型安全措施如下:(1)合并单元缺陷;(2)母联保护装置缺陷,需做保护功能试验;(3)智能终端缺陷。

3 可视化技术研究

可视化技术作为解释大量数据最有效的手段而率先被科学与工程计算领域采用,并发展为当前热门的研究领域――科学可视化。可视化把数据转换成图形,给予人们深刻与意想不到的洞察力,在很多领域使科学家的研究方式发生了根本变化。可视化技术的应用大至高速飞行模拟,小至分子结构的演示,无处不在。在智能变电站的技术投入中也有很多模块是用于可视化技术的研究。通过将技术手段转换成合适的图形显示输出,生成具有真实感觉的图形,对工程师的立体感官具有更好的理解,方便工程师在处理解决实际问题中更加有效地实施方法手段。

4 相关完善建议

随着技术不断发展,智能变电站的开发速度越来越快,对电力企业的运检维修工作更是提出了更高的要求。本文针对发展得日新月异的智能变电站简要地介绍了国内的概况,对安全措施方面进行了总结。随着对智能变电站技术的深入研究和探讨,智能变电站将成为一种全新的先进可靠智能体系,为人们的信息传送提供方便。在研究过程中,仍然有很多不足的地方,本文对以下方面的内容有待于进一步完善:(1)220kV继电保护虚端子的标准化设计研究;(2)不更改220kV母线保护配置的改扩建研究;(3)智能变电站继电保护状态实时监测与可视化系统的开发与集成;(4)智能变电站安全措施可靠性研究与分析。

5 结语

本文通过介绍智能变电站的概况,表明智能变电站已经成为当今电力系统的核心关键和未来发展趋势,新一代的继电保护设备将成为先进的处理器和通信技术的载体。另外,通过分析当前智能变电器的维修工作体系,总结了智能变电器所运用的安全措施,并提出相关安全隐患的解决措施,采用可视化技术手段,形象化给出路径的实现方案和解决手段,得出实施成果。随着对智能变电站研究的逐步深入,我国的智能变电站运营和维修模式将进一步完善,最终实现智能变电站的稳定

运行。

参考文献

[1] 孙志鹏.智能变电站安全措施及其可视化技术研究

[D].华北电力大学,2014.

[2] 赵志新.智能变电站SCD配置管控方案研究[D].华北

电力大学,2015.

[3] 郑众.智能化变电站在220kV文津变的应用研究[D].