前言:我们精心挑选了数篇优质初中物理的思维方法文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。
每次总有学生反映高一的物理怎么这样难,上课能听懂,作业却不会做,同初中的物理完全不同。
上了高一后,学生应着力培养自己思维能力,掌握研究物理的思维方法。下面我从物理的思维方法方面谈谈初高中物理的衔接问题。
一、建立合理的物理模型和理想化过程------科学抽象法
合理的物理模型和理想化过程是抽象思维的产物,是研究物理规律的一种行之有效的方法。比如,研究物体的运动,首先要确定物体的位置。物体都具有大小形状,运动的物体,各点的位置变化一般是各不相同的,所以要详细描述物体的位置及其变化,并不容易。但在一定条件下,把物体抽象为质点,忽略物体的大小形状,问题就简单了。如在平直公路上行驶的汽车,车身上各部分的运动情况相同,当我们把汽车作为一个整体来研究它的运动,就可把汽车当中质点。引入物理模型,可以使问题的处理大为简化而又不会发生太大的偏差。对于比较复杂的研究对象,可以先研究它的理想模型,然后对研究结果加以修正,即可用于实际事物。例如,忽略分子的体积和分子之间的相互作用的理想气体是不存在的,它只是实际气体在一定程度上近似,对于高温低压下不易液化的实际气体,如氢、氧、氮、氦气和空气等,在常温常压下就可看成理想气体,这样处理误差小,应用简便。“理想气体状态方程”的导出就是把空气当作理想气体,然后在一定条件通过实验观察、研究气体状态变化时,压强、体积、温度三个参量之间的关系,从而得出在不同条件下理想气体的三个实验定律,即玻-马定律、查理定律和气体的状态方程。在常温、常压下,用理想气态方程处理实际问题,带来的误差小且非常简单。但对高压、低温条件下的气体就不适用了。不过,从分子的引力和斥力两方面对理想气体状态方程加以修正、推广,得范德瓦耳斯方程即可应用于实际气体了。
高中教材中,要建立大量的物理模型,如“质点”、“单摆”、“理想气体”、“点电荷”、“核式结构”等都是理想模型,还有大量的理想化过程,如“匀速直线运动”、“简谐振动”、“等压变化”、“绝热变化”、…
…这就要求学生了解到,建立合理的物理模型和理想化过程,对于学习和研究物理问题的重要性。学生要主动思考在处理较复杂问题时采用的具体分析、合理简化、科学抽象的方法,这有利于思维能力的培养
,以免学习接触到理想模型时感到陌生,或认为是凭空想象的。
合理假设逻辑推理验证结论是研究物理学得主要方法之一,这对培养学生的抽象思维、空间想象力很有利。
理想实验也是物理学中一种特殊的科学思维方法,它是在系统的观察与实验的基础上,抓住主要矛盾,忽略次要矛盾,对实际过程作出更深入的逻辑分析和抽象的一种方法。如伽利略的斜面实验和自由落体实验。初中介绍伽利略的斜面实验,目的不是单纯地让学生了解惯性定律发现的历史,关键是使学生懂得逻辑推理和理想实验相结合的研究方法:
①从用力推小车,小车运动,停止用力,小车还能继续运动的感性认识出发,分析得出,运动着的物体,若不受外力作用仍要作直线运动,初步突出了物体不受外力作用仍能保持原来运动状态的本质联系。
②如图,用毛巾铺在斜面下端的水平木板上,让小车从斜面滑下,它在毛巾上通过的距离很小。撤去铺在木板上的毛巾,再让小车由斜面同一位置滑下来,它在平板上通过的距离就远得多。在愈光滑的平面,小车运动得愈远。从这一事实分析得到:运动物体速度的变化是受到其它物体作用的缘故。
③在以上实验事实的基础上,运用想象和推理,就可设想一个理想实验:让小车在绝对光滑的平面上运动,它不受任何阻碍作用,则它保持匀速直线运动状态。这里突出了小车这个物体不受其它物体的作用时,将保持匀速直线运动这一本质联系,而摒弃那种某一物体要受到其它物体不变的作用(即恒力作用),才保持匀速直线运动这一乍看起来合乎一般“经验”的事实。
二、对感性材料的深加工------归纳法
归纳法是从个别事实中概括出一般规律的思维方法。它对学习和研究物理学有重要作用。许多定律和公式都是运用归纳法总结出来的。例如,高中必修课《电磁感应现象》,学生可以联系初中学习的阿基米德定律时的思维方法:观察实验分析推理归纳结论。首先在生动的“电磁感应”实验中获得鲜明的感性认识,然后对各种电磁感应现象进行比较与分析,就可以初步认识到:
①闭合回路中部分导线作切割磁力线运动时,产生感应电流;
②磁铁与闭合线圈作相对运动时,线圈中产生感应电流;
通电螺线管(原)与闭合线圈(副)作相对运动时,闭合线圈(副)中产生感应电流;线圈(原)中的电流突然接通或断开时,闭合线圈(副)中会产生感应电流;通电线圈(原)中的电流强度大小发生变化时,闭合线圈(副)中也会产生感应电流。
这些结论,都是从实验事实中抽象出来的,只分别反映了“电磁感应”现象的一个侧面,而没有反映其本质。把这些结论归纳起来,得出“穿过闭合回路所围面积通量发生变化时,会产生感应电流”的结论。“磁通量的变化”并不是直观感知的对象,而是一个抽象概念,是在大量实验的基础上抽象思维的产物。我们借助磁通量的变化,便能够形成关于电磁感应现象的相对完整的认识。
应当注意的是:初中教学强调以实验和观察为基础,在此基础上抽象的概念,归纳为规律。因为初中生的思维还属于经验型,需要感性材料作支持。高中生的思维虽属于理论性,但对一些比较抽象内容的理解上,仍需借助于一些经验型思维或形象思维,向抽象思维的更高层次的转化,来理解这些抽象的内容。这种转化在高一年段表现尤为突出。
三、跟已知的理性知识相类比------类比法
类比推理是人们认识事物的思维形式之一,它能帮助从已知事物的有关理论建立假说去说明新事物;用某些已知的属性来说明未知的属性,以增强说服力,使人们容易理解。例如,惠更斯把光现象与声现象进行类比,提出光的波动说,德布罗意从光的波粒二象性类比得出微观粒子的二象性原理。因此,类比也是物理教学中一种常用的方法。例如,初中“电压”与“水压”类比来说明电压的作用,即抽水机(保持)水压水流,类比得出电源(保持)电压电流。利用类比教学时要注意,类比推理得出的结论是否正确需要经过实验的验证,才能确定。如“水管中有水流动的必要条件是水管两端有水压”,与此相似“导体中有电流的必要条件是导体两端有电压”,此结论理由不充分,只能说“可能有电压”,至于是否有电压,有待于实验的验证。如果不注意推理的严密性,容易使学生在将来的学习中滥用类比,导出不正确的结论。
高中学习时则应根据已经熟悉的类比法,来处理教材中的重点、难点问题。例如,把电厂类比于重力场、电势差类比于高度差、电势能类比于重力势能,就比较容易突破“电势差”与“电势能”两个难点教学。同样,电容器的电容是一个比较抽象的概念,若把电容器跟盛水的直筒容器比较,水量相当于电量,水深相当于电势差。不同的直筒容器使它们的水面升高1厘米所需的水量不同,这与使不同的电容器电势差增加1伏所需的电量不同相类似。这个比喻可以帮助学生形象的理解电容的含义。
恩格斯说:“思维是宇宙中运动的基本形式之一,是地球上最美的花朵。”在物理学研究中,思维可分为逻辑思维、形象思维、直觉和灵感思维三种类型,而中学物理教材中应用最多的是逻辑思维。
一、通过物理概念的教学,使学生掌握物理概念形成过程的思维方法
物理概念的形成,一般是在观察和实验的基础上,运用比较、分析、综合、归纳等方法抽象出物理的共同属性,从而形成物理概念。在初中学物理教材中,描述物质属性、运动状态的物理量,如机械运动、密度、速度、电阻、比热容等概念瓣得出,选通过比较研究对象某种属性的差异,然后通过比较揭示其研究对象具有同一性的东西属性,最后归纳出相应的物理概念。另外,如合力、平均速度、总电阻等概念,是通过效果的比较,建立在等效基础上的概念。有些物理概念因非常相似而容易混淆。滴水穿石生往往被它们相同之处迷惑。而不注意它们的不同之处,或对不同之处认识不足,结果产生了混淆。在这时如果让学生运用比较的方法,则容易搞清容易混淆的知识。例如,将一对平衡力和一对相互作用力的相同之处,不同之处进行比较后,很容易发现它们是不同性质的两个力。通过比较还可以加深对物理概念和物理概念和物理现象的认识,也有利于学生巩固知识。
有的物理概念是在比较的基础上通过分类得出的。如导体、绝缘体,电流的热效应、磁效应、化学效应等。教师在讲解这些概念时,应指出分类是相对的,物理各类别之间虽然有明显的区别,但是并没有固定不变的界限,总是有这样那样的联系,从而使学生对一些事物的认识不墨守成规,培养学生敢于怀疑,敢于探求的精神。
分析与综合,是一对相反相成的思维方法,它们之间有着密切的辩证关系。教材中物理概念的建立,一般先是从生活、生产实人列中或通过某一演示实验等提出问题,然后对问题进行分析,找出问题的各有关因素和因素之间相互联系,最后综合形成物理概念或对物理量下定心,形成物理概念的过程,分析是关键,分析的过程也是一砦 思维方法运用的过程。如在讲解压强概念和公式的确建立过程中,告诉学生,通过运用比较的方法(人和坦克在泥中凹陷的情况)实验的方法(砖的压力对海绵的作用情况),在控制变量法等分析后,经综合得出了压强的概念和公式。
二、在探索物理规律的教学中,教给学生思维方法能有效提高学生从实验归纳出规律的能力
物理规律反映了物理现象、物理过程的发生和变化的规律,它是物质运动变化的各个因素之间的本质联系。在建立实验定律的过程中,比较方法被广泛应用。例如,欧姆定律,是在实验基础上,对有关量进行定量比较得出的。
(1)在电阻一定时,比较电流随电压变化的情况,得出电流与电压成正比。
(2)在电压一定时,比较电流随电阻变化的情况,得出电流与电阻成反比。
教材中阿基米德原理、功的原理、杠杆原理等大部分物理规律是通过实验经分析、综合后得出的。
三、在解答物理习题中,重视传授思维方法
一、“二力平衡”分析法
我们知道,不管是在河里还是在海里航行,轮船不会被淹没,都处于漂浮状态。在竖直方向上,轮船处于静止状态,仅受到浮力和重力的作用。根据二力平衡条件可知,轮船受到的浮力大小等于轮船自身重力的大小,而轮船的重力不变,所以轮船在河里和在海里行驶时受到的浮力大小是相同的。
那么,为什么轮船从河里驶入海里受到的浮力不变,它却会上浮一些呢?根据阿基米德原理F浮=ρ液gV排可知,因为海水的密度比河水的密度大,因而轮船在海中行驶时排开的海水体积比在河里排开的河水体积小,由于轮船排开的水体积变小,轮船由河里驶入海里,就会上浮一些。
二、“牛顿第三定律”推理法
由于轮船受到重力的作用,所以它在水上航行时,要对水产生一个向下的压力,压力大小等于轮船重力大小;同时,水也要对轮船产生一个向上的作用力,这个作用力是浮力。水对轮船产生的浮力和轮船对水的压力就是相互作用力,相互作用力的大小是相等的。
如果按照“轮船从河里驶入海里,因为轮船受到的浮力变大了,所以轮船才会上浮起来一些”的肤浅认识来推理,轮船在海里受到的浮力变大了,也就意味着轮船对水的压力变大了,也就是说,轮船的重力变大了。可是同样的一艘轮船,从河里驶入海里,它受到的重力是不变的,它对水的压力大小不变,水对它的作用力(浮力)也是不变的。
通过这样的推理,证明了这种肤浅的认识是站不住脚的,问题也就迎刃而解了。
三、“阿基米德原理”实验法
根据阿基米德原理可知,浸在液体中的物体所受的浮力大小等于它排开的液体受到的重力,因此只要能测出轮船在河里和海里排开的水受到的重力就能比较它所受到的浮力大小了。
可是要实地测出轮船在河里和海里排开的水受到的重力,难度很大。我们可以利用代替等效法来证明,由于河水和海水的密度不同,我们可用煤油和水这两种密度不同的液体来代替(密度差别较大,排开的液体体积观察较明显),轮船用塑料杯(在杯中放入小石块,目的是可改变物重)来代替。
实验方法:
如图1所示,在两个溢水杯中分别盛满水和煤油,把内装有石块的塑料杯分别轻放入水和煤油中,用两个空的小桶(质量相同,可用矿泉水塑料瓶自制)接溢出的液体,直到液体不溢出为止,然后用弹簧测力计分别测出两个小桶所盛液体受到的重力大小。
在这个实验中,两个测力计的示数大小都为0.8N,说明杯子排开的液体所受的重力相等,有力地证明了轮船在河里和海里受到的浮力大小相等。
通过实验,学生还可以直观地观察到杯子在水中排开的水体积少一些,在水中多上浮一些。这样,轮船所受浮力大小得到有效验证,排开的液体体积大小以及上浮或下沉一些也得到了更有力地证实。
四、“原理产生”实验法
教材给出浮力的概念是:浸在液体中的物体受到液体向上托的力,这个力叫做浮力。如果能够测出或演示“液体向上托的力”的大小,就能比较轮船在河里和海里所受到的浮力大小情况。