美章网 精品范文 化学元素的概念范文

化学元素的概念范文

前言:我们精心挑选了数篇优质化学元素的概念文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。

化学元素的概念

第1篇

方法:将我院就诊的200例患有社区活动性肺炎的老年患者随机分为对照组和治疗组,平均每组100例。采用常规抗生素疗法对对照组患者实施治疗;采用PCT指导方式对治疗组患者实施治疗。

结果:治疗组患者应用抗生素药物治疗时间明显短于对照组(P0.05)。抗生素治疗总费用明显少于对照组(P0.05)。

结论:社区活动性肺炎老年患者在PCT指导下进行治疗可以使抗生素类药物的实际用量明显减少,缩短抗生素药物的用药时间,降低费用和副作用,使胸部影像学指标有显著改善。

关键词:社区获得性肺炎 老年患者 胸部影像学 降钙素原

【中图分类号】R4 【文献标识码】A 【文章编号】1671-8801(2014)04-0018-02

导致社区获得性肺炎患者发病的病原体主要包括细菌、病毒、非典型病原体等。本次研究对老年社区活动性肺炎患者实施血清降钙素原监测的效果进行研究。现汇报如下。

1 资料和方法

1.1 一般资料。选择2010年1月-2013年12月我院就诊的200患有社区活动性肺炎的老年患者,随机分为对照组和治疗组,平均每组100例。对照组中男性56例,女性44例;患者年龄66-80岁,平均年龄(71.9±1.3)岁;肺炎发病时间1-8天,平均发病时间(2.6±0.8)天;治疗组中男性60例,女性40例;患者年龄65-78岁,平均年龄(72.1±1.2)岁;肺炎发病时间1-7天,平均发病时间(2.7±0.6)天。上述三项自然指标两组患者组间无显著差异(P>0.05),可以进行比较分析。

1.2 病例入选标准。

①患者年龄在65岁以上;②没有除呼吸系统疾病意外的其他感染疾病;③彻底排除患有肺部肿瘤、肺结核、肺水肿、非感染性肺间质病、肺部栓塞等疾病的可能;④肺炎程度评分在1-3级,入院治疗前2个星期没有应用过任何抗生素类药物;⑤病程在10天以内;⑥患者自愿参与本次研究[1]。

1.3 方法。

1.3.1 对照组治疗方法。在常规退热、止咳、化痰治疗基础上,按照CAP治疗指南的相关要求,选择合适的抗生素类药物进行治疗,具体用法用量还应充分结合患者的实际病情而定。

1.3.2 治疗组治疗方法。在常规治疗基础上,PCT检测结果在0.5μg/L以上的患者可以应用抗生素类药物进行治疗,而PCT检测结果在0.5μg/L以下的患者则不应用任何抗生素类药物进行治疗。

1.3.3 PCT监测方法。抗生素类药物应用前留取患者痰液标本,进行细菌定量培养,共计培养三份,按照德国Brahms试剂盒相关说明的要求对PCT水平进行检测。

1.4 观察指标。选择两组患者应用抗生素药物治疗时间、总体治疗时间、抗生素治疗总费用、疾病临床治疗总有效率、胸部影像学动态表现等指标进行对比。

1.5 治疗效果评价方法。临床治愈:咳嗽、发热等症状表现彻底消失,实验室相关指标和影像学表现均已恢复正常;有效:咳嗽、发热等症状表现有明显好转,实验室相关指标和影像学表现有显著改善;无效:咳嗽、发热等症状表现没有任何好转,实验室相关指标和影像学表现没有任何改善[2]。

2.2 疾病临床治疗总有效率。对照组实施常规抗生素治疗后,例患者的肺炎病情达到临床治愈标准,例有效,例无效,疾病治疗总有效率为%;治疗组PCT指导治疗后,例患者的肺炎病情达到临床治愈标准,例有效,例无效,疾病治疗总有效率为%。该项指标数据组间比较P>0.05,无显著统计学意义。

2.3 胸部影像学表现。两组患者经过X线检查,其病变状况左肺均少于右肺,并且在两肺下野部位比较常见,其中有8例患者病变部位处于右肺下野部位,而有5例患者病变部位处于左肺下野;患者病变形态根据影像学资料,可以发现有2例为右上肺薄云状浸润阴影,并且其边缘不清晰,密度较为浅淡;患者右肺中部从肺门向外部延伸,呈扇形阴影状;此外3例患者左肺下野呈球形阴影,边缘不清晰,密度浅淡;出现肺门改变患者有7例,主要原因为肺门结构比较模糊。根据CT检查,可以发现两组患者中均出现有两肺上野呈片状阴影,且阴影非常密集,边界模糊患者有6例,合并右侧胸膜炎患者则有2例。

3 讨论

PCT是降钙素的一种前肽类物质。人体一些器官的神经内分泌细胞、单核细胞、白细胞等对细菌感染产生的相应反应可对PCT的合成和释放过程可以起到积极的促进作用。细菌内毒素是其产生的一个主要刺激因子,且PCT是炎症-败血症的一个重要的血清学标志,相关研究发现患者的PCT值与细菌感染的实际严重程度有密切的关系,是敏感性和特异性均非常理想的一种指标,可对炎症、败血症的发展过程进行及时反映。临床细菌和非细菌感染性肺炎疾病患者在临床上的症状、体征没有明显的差异,而接受病原学检查往往需要一定时间,并且病情发展的早期阶段,通常缺乏特异性细菌感染监测的理想指标,导致抗生素类药物的滥用。部分患者的病情可能并不需要应用抗生素,如何区别真正需要应用抗生素治疗患者和不需要应用抗生素治疗患者,是临床近年来比较关注的一个课题。PCT的检测结果可以在患者入院后的短时间得出,从而对临床医生对疾病的诊断和指导起到指导作用,并目前发展的指导抗生素应用的一种主要治疗方法,可以充分避免抗生素滥用现象的出现[3]。

参考文献

[1] 龙威,邓星奇.降钙素原及其临床应用[J].国外医学老年医学分册,2004,25(1):219

第2篇

关键词:锆石;u-pb年代学;f同位素;麻粒岩相变质作用;下地壳;幕式生长;前寒武纪;华北克拉通

中图分类号:p5883 文献标志码:a

文章编号:672-656(202)04-000-11

0引言

大陆地壳的形成一般归结为2个典型的板块构造位置,即活动大陆边缘和板内[]。其中,板内的大陆生长与地幔柱的岩浆板底垫托作用或岩浆底侵作用(magmatic underplating)有关,而板缘的大陆生长则主要通过俯冲增生和弧陆碰撞来实现的。而且,会聚大陆边缘通常被认为是下地壳增生(包括幔源岩浆板底垫托作用和俯冲增生)的主要场所[2]。然而,很少有实例是来自活动大陆边缘的下地壳包体[2-3]。

麻粒岩包体和麻粒岩地体(尤其是高压麻粒岩)通常被认为是透视下地壳的窗口[2]。高压麻粒岩通常被认为代表高级的变基性岩,并以单斜辉石+斜长石+石榴子石+石英等矿物组合为主要特征[4-6], 至于其他次要矿物如角闪石和蓝晶石等是否出现,取决于水活度和全岩成分[7]。高压麻粒岩不同于榴辉岩的是其矿物组合中含有斜长石和(或)贫硬玉分子的单斜辉石,而中压麻粒岩不同于高压麻粒岩的主要特征是其矿物组合中含有斜方辉石,但是高压麻粒岩在峰期之后减压过程中可能会形成以后成合晶冠状体形式存在的斜方辉石[7]。高压麻粒岩出露相当广泛,从古元古代(如华北恒山杂岩[8])到新生代(如喜马拉雅山脉)的诸多大陆碰撞造山带中均有报道。前人研究结果显示,当变质温度超过800 ℃时,变质压力可能超过4 gpa[5],这意味着加厚地壳(或俯冲地壳)的下部经历了高温作用。另外,高压麻粒岩有时也与中温榴辉岩共生,如华力西造山带[9]。在特定地带鉴定出高压麻粒岩有助于对涉及大陆碰撞及相关过程中下地壳演化的认识,而对高压麻粒岩相变质作用的岩石学观察和年代学测定对理解变质作用和下地壳演化之间的关系至关重要。但是,获得精确的高压麻粒岩相变质作用的时代往往比较困难。这种困难主要来自于后期多阶段变质作用叠加以及相关过程导致的矿物间同位素体系(尤其是sm-nd和rb-sr)的重置或不平衡,因此影响了对岩石的形成过程和构造背景的认识。

在过去的20年里,众多研究者对华北克拉通前寒武纪变质基底和下地壳包体岩石开展了大量的岩石学、构造地质学、地球化学和地质年代学研究,并在其形成和演化上获得了若干重要进展,进一步将华北克拉通变质基底划分为东部陆块、西部陆块及分割东部和西部陆块的中部造山带[0-]。目前就东、西部陆块沿中部造山带在大约85 ga完成克拉通拼合已经达成共识[0-7]。拼合完成之后,在6~85 ga期间,克拉通内部和边缘经历了一系列的拉张和裂谷事件,形成了伴随有镁铁质岩浆群侵位的拗拉槽和边缘裂谷盆地,发育有斜长岩辉长岩纹长二长岩环斑花岗岩套和a型花岗岩,以及超钾火山岩的喷发[7-22]。值得注意的是,目前已报道的古元古代高压麻粒岩相变质作用主要来自于中部造山带[8,0-3,23],而东部陆块仅在胶东和信阳地区见有零星报道[24]。此外,对华北克拉通古元古代高压麻粒岩相变质作用的构造背景还存在2种不同的解释:一种观点认为这些高压

麻粒岩形成于东、西部陆块拼合的碰撞造山环境中[8,-4];另一种观点则认为它们是古元古代地幔柱活动的产物[8-20,24]。存在争议的一个重要原因是对高压麻粒岩相变质作用缺少直接的岩石学和年代学观察,尤其是在华北克拉通东南缘或东部陆块的南部。目前,在所研究的区域,仅见高压麻粒岩相变质作用的岩石学证据和模糊的(晚)古元古代年龄的分开报道。最近,xu等在徐州—宿州地区发现了榴辉岩(类)捕虏体,认为它们是华北克拉通镁铁质下地壳在大约220 ma时构造加厚形成的[25-27]。

关于华北克拉通的形成与演化,虽然受到广泛关注并日益引起国内外研究者的兴趣,但是大部分研究都集中于华北克拉通内部、北部和东、西陆块结合带或中部造山带,而东南缘下地壳的形成与演化研究则显得较薄弱。华北克拉通东南缘出露的变质基底(五河变质杂岩)和下地壳包体岩石无疑为这一研究提供了极好的天然实验室。最近的研究结果显示,五河变质杂岩中的变基性岩经历了80~90 ga的高压麻粒岩相变质作用[28-29]。徐州—宿州一带中生代侵入体中包体的岩石学、年代学和岩石地球化学研究也表明,这些包体大部分形成于24~25 ga并经过大约8 ga高压麻粒岩相变质作用[25-29]。但是,有关研究区下地壳岩石的成因、形成与演化仍是亟待解决的重要科学问题。

为了更好地了解华北克拉通东南缘前寒武纪地壳(尤其是下地壳)的形成和演化过程,笔者根据近年来对蚌埠地区出露的前寒武纪变质基底和宿州附近夹沟中生代闪长斑岩中捕虏体的研究成果和进展,结合研究区已发表的相关资料,总结了华北克拉通东南缘前寒武纪幕式地壳生长和多期变质作用与改造的岩石学和年代学证据。

地质背景

华北克拉通是世界上最古老的克拉通之一,保留有大于36 ga的古老地壳物质残留[30]。地理位置上,华北克拉通西接祁连造山带,北邻天山—内蒙—大兴安岭造山带;在南端,秦岭—大别—苏鲁造山带把华北克拉通和扬子克拉通分开(图[26])。基于年代学、岩石组合、构造演化和p-t-t轨迹的不同,将华北克拉通划分为东部陆块、西部陆块及夹于其中的中部造山带[8,0,9,3]。笔者研究的蚌埠和徐州—宿州地区位于华北克拉通东部陆块的东南缘,距苏鲁造山带西端的郯—庐断裂带以西约00 km,距大别造山带北端约300 km (图)。区内变形的新元古代和古生代盖层,以及晚太古代到古元古代的变质基底侵入有大量小的中生代侵入体(如夹沟、班井和利国岩体;图)。这些中生代侵入体主要由闪长质和二长闪长质斑岩组成。研究区的前寒武纪变质基底主要出露在蚌埠地区(常称为“五河变质杂岩”或“五河群”[32]),并且被中生代含石榴子石花岗岩所侵入[图2(a)];而中生代侵入体中含有大量下地壳或幔源包体或捕虏体[25-26,29,33-34] [图2(b)]的徐州—宿州地区则无变质基底出露。近期研究表明,变质基底出露区(荆山、怀远和凤阳等地)发育的含石榴子石花岗岩主要是由华南三叠纪俯冲陆壳岩石在59 ma左右发生部分熔融形成的[35-36]。

研究区变质基底的岩石类型主要有(含石榴)斜长角闪岩、榴闪岩、石榴麻粒岩和片麻岩等;下地壳包体的岩石类型主要有(含石榴)斜长角闪岩、榴闪岩、石榴角闪石岩、石榴麻粒岩、含石榴角闪斜长片麻岩和花岗片麻岩等。此外,包体中还有含尖晶石石榴单斜辉石岩、含金云母单斜辉石岩和含尖晶石二辉石岩等形成于古生代((393symbolqb@ 7)ma)的幔源岩石,指示北秦岭向东延伸到华北克拉通东南缘(至少到安徽宿州地区)以及在华北克拉通与扬子克拉通之间存在一个已消失的新元古代洋壳[33]。

研究区前寒武纪变质基底岩石(五河变质杂岩),主要出露于“蚌埠隆起”区(如荆山、怀远和凤阳等地),岩石类型主要有含石榴斜长角闪岩、榴闪岩、石榴麻粒岩和片麻岩等。石榴斜长角闪岩呈构造岩块或条带状产于不纯的大理岩中[29,34-36],两者之间呈构造接触关系,反映了它们原岩的不同以及可能具有不同的演化历史,它们的原岩分别为岩浆岩和沉积岩。石榴斜长角闪岩(如样品07fy0)主要由石榴子石、斜长石和角闪石以及少量单斜辉石、榍石和微量金红石等矿物组成(图3(a)、(c)[29])。石榴子石在成分上是均一的,为铁铝榴石镁铝榴石钙铝榴石固溶体,锰含量较低。斜长石有3种产出形式:以包裹

体形式产于石榴子石中;以后成合晶形式与绿角闪石共生;以基质形式产出。富钛的棕色角闪石通常以包裹体形式产于斜长石[图3(b)[29]]或基质中,tio2含量(质量分数,后文同)高达

382%;而产于基质中或与斜长石共生产于后成合晶中[图3(c)]的绿色角闪石几乎不含ti。基质中残留的单斜辉石为透辉石。榴闪岩[图3(d)、(e)]主要由石榴子石、角闪石、斜长石和石英等组成,石榴子石在成分上相对均一,类似于样品07fy0的石榴子石组成;角闪石有2期,分别为早期的棕色高钛角闪石和晚期的绿色低钛角闪石,这些特征暗示榴闪岩样品也经历了类似的高压麻粒岩相变质作用及后期变质作用叠加。石榴麻粒岩的主要矿物组合为石榴子石+单斜辉石+斜长石+角闪石[图3(f)],这种矿物组合指示其经历了高压麻粒岩相变质作用[4-6]。

研究区下地壳包体的岩石类型很丰富,如(含石榴)斜长角闪岩、榴闪岩、石榴角闪石岩、石榴麻粒岩、含石榴角闪斜长片麻岩和花岗片麻岩等(图4[29,33])。其中,石榴斜长角闪岩(如样品07jg2)主要组成矿物为石榴子石、斜长石、角闪石、金红石、石英以及少量单斜辉石[图4(b)、(d)、(e)]。石榴子石晶体在尺度上为毫米级别,成分相对均一,为铁铝榴石镁铝榴石钙铝榴石固溶体。斜长石有3种产出形式:以包裹体形式产于石榴子石中;以后成合晶形式与单斜辉石和(或)角闪石共生;以基质形式产出。大部分金红石已退变为钛铁矿,单斜辉石被以角闪石+斜长石组成的后成合晶结构所替代[图4(d)、(e)]。有时可见裂隙中钾长石等矿物的分布[图4(b)],可能指示晚期的溶体交代作用结果。

石榴麻粒岩(如样品07jg4、08jg5)主要组成矿物为石榴子石、斜长石、角闪石、单斜辉石、石英、金红石、榍石和少量绿泥石[图4(a)、(f)~(h)]。单斜辉石为透辉石,有2种产出形式:与金红石和石英共生,以包裹体的形式产出于石榴子石和榍石中;以残晶形式与斜长石和角闪石共生产于后成合晶中。透辉石局部被绿泥石所交代[图4(f)]。含有金红石和角闪石针状出溶体的单斜辉石有时含有角闪石退变边[图4(g)]。石榴子石的典型特征是含有定向的针状金红石出溶体[图4(g)],成分上类似于样品07jg2的石榴子石。长石主要以基质或后成合晶形式存在[图4(f)]。基质中的金红石部分被钛铁矿所替代。

含石榴角闪斜长片麻岩(如样品07jg32)[图4(c)]主要矿物组合为石榴子石+斜长石+角闪石+金红石,金红石部分退变为钛铁矿,石榴子石被斜长石+角闪石后成合晶所环绕。此外,石榴角闪石岩的主要组成矿物为石榴子石、角闪石、金红石[图4(i)]:石榴子石有2期,包括具有针状金红石出溶体的早期石榴子石和晚期深色石榴子石;角闪石也有2期,分别为早期的褐色富铁、高钛角闪石和晚期的绿色低钛角闪石。

不同样品中的角闪石是按照leake等的分类方案[37]来命名的。棕褐色、富tio2角闪石为韭闪石和铁质韭闪石,而绿色、低tio2的角闪石为镁质绿钠闪石和浅闪石[图3(b)、(e),图4(i)]。表明这2类角闪石分别形成于不同的变质条件下,如麻粒岩相和角闪岩相条件下,因为前人研究已证明角闪石中ti含量随变质程度的增加而升高[6,38]。这种差别也得到了岩相学证据的支持:绿角闪石产出于后成合晶中,而棕褐色角闪石以包裹体形式产出。有些样品中含有较多的富钛角闪石,可能反映了它们不同的原岩成分。根据电子探针成分分析,不同类型的角闪石可能形成于不同的变质条件下(图5[39]),`这进一步证明本区下地壳岩石经历了多期变质叠加与改造过程。

综上所述,无论是变质基底还是下地壳包体岩石,它们大多数(除下地壳上部的岩石以外)都含有石榴子石、单斜辉石、金红石、斜长石和石英等峰期矿物组合,指示形成于高压(大约 gpa)麻粒岩相条件下[40]。另外,这些样品缺少诸如蓝晶石和硅线石之类的富铝矿物相,表明其原岩为岩浆岩而非沉积岩成因[4]。基于上述显微结构观察和矿物之间的关系,至少可以区分出峰期高压麻粒岩相(石榴子石+斜长石+单斜辉石+石英+金红石±富钛角闪石)变质矿物组合,以及后期角闪岩相(斜长石+绿角闪石+钛铁矿+榍石)和绿片岩相(绿泥石+方解石+磁铁矿)等退变质矿物组合。因此,研究区前寒武纪变质基底岩石以及大多数下地壳包体岩石所

历的最高变质条件为高压麻粒岩相。矿物组合与初步的温压计算结果表明,高压麻粒岩相变质阶段温度和压力分别为800 ℃~860 ℃和0~2 gpa[29]。但是,由于缓慢冷却,尤其是可能经历了缓慢折返作用的岩石(如样品07fy0),而导致矿物的fe-mg交换或重置[42],所计算的温度有可能代表高压麻粒岩相变质阶段的最小估计值[43]。

3幕式地壳生长与多期改造的年代学和f同位素证据

由于受到后期多阶段变质作用叠加的影响,sm-nd和rb-sr同位素体系发生了重置和(或)矿物之间的同位素不平衡,往往难以准确测定不同变质阶段的时代,而锆石无疑是理想的定年矿物。锆石是一种难熔矿物,具有很低的pb扩散速率[44],因而高级变质岩中锆石常常能保留多期次的岩浆作用和变质作用记录[45-49]。因此,锆石的原位u-pb定年是获得经历过复杂演化过程和多期变质作用岩石可靠时代的有效方法。但是,由于物理化学条件变化和每期变质时间长短的不同,导致早期的锆石结构发生改变和(或)新的锆石生长,从而造成高级变质岩中的锆石结构显示较大的变化性和复杂性[50]。锆石中的变质矿物包裹体能把年代学结果和变质作用直接联系起来,而对于那些反映岩石复杂的岩浆和变质作用历史的环带锆石所表现出的诸如不规则边界、不同的核幔边区域之类的复杂结构可以通过阴极发光(cl)图像揭示出来[5-52]。此外,锆石的lu-f同位素体系优于其u-pb体系,通常能抵抗后期蚀变和改造作用的影响[44,53-54],能保存近于初始的f同位素比值,并可以用来示踪岩石成因和源区研究[55-56]。

因此,单颗粒锆石u-pb和lu-f 同位素的联合分析数据已被证明能提供有关岩浆和变质事件以及岩石成因和壳幔演化的可靠详细信息[53-55,57-65]。正如前文所述,华北克拉通是一个古老的克拉通并经历了复杂的演化过程,为此,笔者根据最新研究成果以及已发表的有关华北克拉通东南缘变质基底和下地壳包体的锆石u-pb年代学和lu-f 同位素数据,探讨了研究区前寒武纪下地壳的形成和演化过程。

根据锆石阴极发光图像(图6[29,33-34])可以看出,研究区前寒武纪下地壳包体岩石经历了复杂的岩浆热事件和多期变质作用,大多数锆石显示核幔边结构,包括典型的岩浆锆石核和具有石榴子石+单斜辉石+金红石+斜长石等高压麻粒岩相矿物组合的8~9 ga变质锆石[29,33]以及具有高的ti温度(大于800 ℃)的248~249 ga麻粒岩相变质锆石[34]。锆石u-pb年龄结果统计(图7)显示,研究区经历了25~26、2 ga的岩浆热事件以及25~26、2、8~9 ga以及390、76 ma的变质事件。其中,形成于25~26 ga的下地壳岩石包括2类:一类是经历了2 ga和(或)8~9 ga高压麻粒岩相变质作用以及390、76 ma的变质改造,而且可能是因为这类岩石位于下地壳下部,在2 ga时靠近俯冲带,因而遭受大洋俯冲与变质作用的强烈影响而造成pb同位素均一化,形成了具有与约2 ga岛弧岩石一致的高放射成因pb同位素组成;另一类岩石则形成于255~264 ga,可能因处于下地壳上部而仅遭受了248~249 ga麻粒岩相变质作用,但没有2 ga和(或)8~9 ga变质叠加的岩石学和年代学记录,表现为典型的前寒武纪下地壳岩石特点的低放射成因pb同位素组成[34]。此外,强烈的约8 ga高压麻粒岩相变质作用可能是由于幔源岩浆底侵于下地壳底部而导致大规模地壳加热和增厚引起的,这也与该时期华北克拉通存在广泛的拉张、裂谷作用以及相关的镁铁质岩浆侵位等相吻合[8,20-2,29]。

锆石的f同位素分析(图8[33])指示,研究区前寒武纪下地壳经历了25 ga和2 ga的岩浆热事件。鉴于这2期锆石的ε-f(t)中有一部分样品为明显的正值(如5~2),反映它们的原岩来自于新生地壳,结合其原岩性质和地球化学特点,指示它们的岩石成因与2期俯冲增生事件有关[33]。此外,27~28 ga的继承锆石u-pb年龄(图7)和锆石f模式年龄[33-34]暗示研究区可能还存在更老的地壳物质或更早的地壳生长时期,这尚需进一步的研究。

4结语

()华北克拉通东南缘前寒武纪下地壳的岩石组成复杂,反映一个不同形成时代和不同成因并经过多期不同程度变质作用与改造的形成、演化过程。

(2)华北克拉通东南缘在前寒武纪发生过幕式地壳生长,至少包括25~26 ga和2 ga这2期俯冲增生和约8 ga的垂向增生过程。由f模式年龄和继承

锆石限定的27~28 ga可能代表另一期地壳生长时间。

(3)华北克拉通东南缘前寒武纪下地壳岩石至少经历过25~26、2、8~9 ga以及390、76 ma等多期构造热事件和不同程度的变质交代与改造,造成岩石中某些元素和同位素特征发生变异。

第3篇

关键词:锆石;U-Pb年代学;f同位素;麻粒岩相变质作用;下地壳;幕式生长;前寒武纪;华北克拉通

中图分类号:P5883 文献标志码:A

文章编号:672-656(202)04-000-11

0引言

大陆地壳的形成一般归结为2个典型的板块构造位置,即活动大陆边缘和板内[]。其中,板内的大陆生长与地幔柱的岩浆板底垫托作用或岩浆底侵作用(magmatic underplating)有关,而板缘的大陆生长则主要通过俯冲增生和弧陆碰撞来实现的。而且,会聚大陆边缘通常被认为是下地壳增生(包括幔源岩浆板底垫托作用和俯冲增生)的主要场所[2]。然而,很少有实例是来自活动大陆边缘的下地壳包体[2-3]。

麻粒岩包体和麻粒岩地体(尤其是高压麻粒岩)通常被认为是透视下地壳的窗口[2]。高压麻粒岩通常被认为代表高级的变基性岩,并以单斜辉石+斜长石+石榴子石+石英等矿物组合为主要特征[4-6], 至于其他次要矿物如角闪石和蓝晶石等是否出现,取决于水活度和全岩成分[7]。高压麻粒岩不同于榴辉岩的是其矿物组合中含有斜长石和(或)贫硬玉分子的单斜辉石,而中压麻粒岩不同于高压麻粒岩的主要特征是其矿物组合中含有斜方辉石,但是高压麻粒岩在峰期之后减压过程中可能会形成以后成合晶冠状体形式存在的斜方辉石[7]。高压麻粒岩出露相当广泛,从古元古代(如华北恒山杂岩[8])到新生代(如喜马拉雅山脉)的诸多大陆碰撞造山带中均有报道。前人研究结果显示,当变质温度超过800 ℃时,变质压力可能超过4 GPa[5],这意味着加厚地壳(或俯冲地壳)的下部经历了高温作用。另外,高压麻粒岩有时也与中温榴辉岩共生,如华力西造山带[9]。在特定地带鉴定出高压麻粒岩有助于对涉及大陆碰撞及相关过程中下地壳演化的认识,而对高压麻粒岩相变质作用的岩石学观察和年代学测定对理解变质作用和下地壳演化之间的关系至关重要。但是,获得精确的高压麻粒岩相变质作用的时代往往比较困难。这种困难主要来自于后期多阶段变质作用叠加以及相关过程导致的矿物间同位素体系(尤其是Sm-Nd和Rb-Sr)的重置或不平衡,因此影响了对岩石的形成过程和构造背景的认识。

在过去的20年里,众多研究者对华北克拉通前寒武纪变质基底和下地壳包体岩石开展了大量的岩石学、构造地质学、地球化学和地质年代学研究,并在其形成和演化上获得了若干重要进展,进一步将华北克拉通变质基底划分为东部陆块、西部陆块及分割东部和西部陆块的中部造山带[0-]。目前就东、西部陆块沿中部造山带在大约85 Ga完成克拉通拼合已经达成共识[0-7]。拼合完成之后,在6~85 Ga期间,克拉通内部和边缘经历了一系列的拉张和裂谷事件,形成了伴随有镁铁质岩浆群侵位的拗拉槽和边缘裂谷盆地,发育有斜长岩辉长岩纹长二长岩环斑花岗岩套和A型花岗岩,以及超钾火山岩的喷发[7-22]。值得注意的是,目前已报道的古元古代高压麻粒岩相变质作用主要来自于中部造山带[8,0-3,23],而东部陆块仅在胶东和信阳地区见有零星报道[24]。此外,对华北克拉通古元古代高压麻粒岩相变质作用的构造背景还存在2种不同的解释:一种观点认为这些高压麻粒岩形成于东、西部陆块拼合的碰撞造山环境中[8,-4];另一种观点则认为它们是古元古代地幔柱活动的产物[8-20,24]。存在争议的一个重要原因是对高压麻粒岩相变质作用缺少直接的岩石学和年代学观察,尤其是在华北克拉通东南缘或东部陆块的南部。目前,在所研究的区域,仅见高压麻粒岩相变质作用的岩石学证据和模糊的(晚)古元古代年龄的分开报道。最近,Xu等在徐州—宿州地区发现了榴辉岩(类)捕虏体,认为它们是华北克拉通镁铁质下地壳在大约220 Ma时构造加厚形成的[25-27]。

关于华北克拉通的形成与演化,虽然受到广泛关注并日益引起国内外研究者的兴趣,但是大部分研究都集中于华北克拉通内部、北部和东、西陆块结合带或中部造山带,而东南缘下地壳的形成与演化研究则显得较薄弱。华北克拉通东南缘出露的变质基底(五河变质杂岩)和下地壳包体岩石无疑为这一研究提供了极好的天然实验室。最近的研究结果显示,五河变质杂岩中的变基性岩经历了80~90 Ga的高压麻粒岩相变质作用[28-29]。徐州—宿州一带中生代侵入体中包体的岩石学、年代学和岩石地球化学研究也表明,这些包体大部分形成于24~25 Ga并经过大约8 Ga高压麻粒岩相变质作用[25-29]。但是,有关研究区下地壳岩石的成因、形成与演化仍是亟待解决的重要科学问题。

为了更好地了解华北克拉通东南缘前寒武纪地壳(尤其是下地壳)的形成和演化过程,笔者根据近年来对蚌埠地区出露的前寒武纪变质基底和宿州附近夹沟中生代闪长斑岩中捕虏体的研究成果和进展,结合研究区已发表的相关资料,总结了华北克拉通东南缘前寒武纪幕式地壳生长和多期变质作用与改造的岩石学和年代学证据。

地质背景

华北克拉通是世界上最古老的克拉通之一,保留有大于36 Ga的古老地壳物质残留[30]。地理位置上,华北克拉通西接祁连造山带,北邻天山—内蒙—大兴安岭造山带;在南端,秦岭—大别—苏鲁造山带把华北克拉通和扬子克拉通分开(图[26])。基于年代学、岩石组合、构造演化和P-T-t轨迹的不同,将华北克拉通划分为东部陆块、西部陆块及夹于其中的中部造山带[8,0,9,3]。笔者研究的蚌埠和徐州—宿州地区位于华北克拉通东部陆块的东南缘,距苏鲁造山带西端的郯—庐断裂带以西约00 km,距大别造山带北端约300 km (图)。区内变形的新元古代和古生代盖层,以及晚太古代到古元古代的变质基底侵入有大量小的中生代侵入体(如夹沟、班井和利国岩体;图)。这些中生代侵入体主要由闪长质和二长闪长质斑岩组成。研究区的前寒武纪变质基底主要出露在蚌埠地区(常称为“五河变质杂岩”或“五河群”[32]),并且被中生代含石榴子石花岗岩所侵入[图2(a)];而中生代侵入体中含有大量下地壳或幔源包体或捕虏体[25-26,29,33-34] [图2(b)]的徐州—宿州地区则无变质基底出露。近期研究表明,变质基底出露区(荆山、怀远和凤阳等地)发育的含石榴子石花岗岩主要是由华南三叠纪俯冲陆壳岩石在59 Ma左右发生部分熔融形成的[35-36]。

研究区变质基底的岩石类型主要有(含石榴)斜长角闪岩、榴闪岩、石榴麻粒岩和片麻岩等;下地壳包体的岩石类型主要有(含石榴)斜长角闪岩、榴闪岩、石榴角闪石岩、石榴麻粒岩、含石榴角闪斜长片麻岩和花岗片麻岩等。此外,包体中还有含尖晶石石榴单斜辉石岩、含金云母单斜辉石岩和含尖晶石二辉石岩等形成于古生代((393SymbolqB@ 7)Ma)的幔源岩石,指示北秦岭向东延伸到华北克拉通东南缘(至少到安徽宿州地区)以及在华北克拉通与扬子克拉通之间存在一个已消失的新元古代洋壳[33]。

研究区前寒武纪变质基底岩石(五河变质杂岩),主要出露于“蚌埠隆起”区(如荆山、怀远和凤阳等地),岩石类型主要有含石榴斜长角闪岩、榴闪岩、石榴麻粒岩和片麻岩等。石榴斜长角闪岩呈构造岩块或条带状产于不纯的大理岩中[29,34-36],两者之间呈构造接触关系,反映了它们原岩的不同以及可能具有不同的演化历史,它们的原岩分别为岩浆岩和沉积岩。石榴斜长角闪岩(如样品07FY0)主要由石榴子石、斜长石和角闪石以及少量单斜辉石、榍石和微量金红石等矿物组成(图3(a)、(c)[29])。石榴子石在成分上是均一的,为铁铝榴石镁铝榴石钙铝榴石固溶体,锰含量较低。斜长石有3种产出形式:以包裹体形式产于石榴子石中;以后成合晶形式与绿角闪石共生;以基质形式产出。富钛的棕色角闪石通常以包裹体形式产于斜长石[图3(b)[29]]或基质中,TiO2含量(质量分数,后文同)高达

382%;而产于基质中或与斜长石共生产于后成合晶中[图3(c)]的绿色角闪石几乎不含Ti。基质中残留的单斜辉石为透辉石。榴闪岩[图3(d)、(e)]主要由石榴子石、角闪石、斜长石和石英等组成,石榴子石在成分上相对均一,类似于样品07FY0的石榴子石组成;角闪石有2期,分别为早期的棕色高钛角闪石和晚期的绿色低钛角闪石,这些特征暗示榴闪岩样品也经历了类似的高压麻粒岩相变质作用及后期变质作用叠加。石榴麻粒岩的主要矿物组合为石榴子石+单斜辉石+斜长石+角闪石[图3(f)],这种矿物组合指示其经历了高压麻粒岩相变质作用[4-6]。

研究区下地壳包体的岩石类型很丰富,如(含石榴)斜长角闪岩、榴闪岩、石榴角闪石岩、石榴麻粒岩、含石榴角闪斜长片麻岩和花岗片麻岩等(图4[29,33])。其中,石榴斜长角闪岩(如样品07JG2)主要组成矿物为石榴子石、斜长石、角闪石、金红石、石英以及少量单斜辉石[图4(b)、(d)、(e)]。石榴子石晶体在尺度上为毫米级别,成分相对均一,为铁铝榴石镁铝榴石钙铝榴石固溶体。斜长石有3种产出形式:以包裹体形式产于石榴子石中;以后成合晶形式与单斜辉石和(或)角闪石共生;以基质形式产出。大部分金红石已退变为钛铁矿,单斜辉石被以角闪石+斜长石组成的后成合晶结构所替代[图4(d)、(e)]。有时可见裂隙中钾长石等矿物的分布[图4(b)],可能指示晚期的溶体交代作用结果。

石榴麻粒岩(如样品07JG4、08JG5)主要组成矿物为石榴子石、斜长石、角闪石、单斜辉石、石英、金红石、榍石和少量绿泥石[图4(a)、(f)~(h)]。单斜辉石为透辉石,有2种产出形式:与金红石和石英共生,以包裹体的形式产出于石榴子石和榍石中;以残晶形式与斜长石和角闪石共生产于后成合晶中。透辉石局部被绿泥石所交代[图4(f)]。含有金红石和角闪石针状出溶体的单斜辉石有时含有角闪石退变边[图4(g)]。石榴子石的典型特征是含有定向的针状金红石出溶体[图4(g)],成分上类似于样品07JG2的石榴子石。长石主要以基质或后成合晶形式存在[图4(f)]。基质中的金红石部分被钛铁矿所替代。

含石榴角闪斜长片麻岩(如样品07JG32)[图4(c)]主要矿物组合为石榴子石+斜长石+角闪石+金红石,金红石部分退变为钛铁矿,石榴子石被斜长石+角闪石后成合晶所环绕。此外,石榴角闪石岩的主要组成矿物为石榴子石、角闪石、金红石[图4(i)]:石榴子石有2期,包括具有针状金红石出溶体的早期石榴子石和晚期深色石榴子石;角闪石也有2期,分别为早期的褐色富铁、高钛角闪石和晚期的绿色低钛角闪石。

不同样品中的角闪石是按照Leake等的分类方案[37]来命名的。棕褐色、富TiO2角闪石为韭闪石和铁质韭闪石,而绿色、低TiO2的角闪石为镁质绿钠闪石和浅闪石[图3(b)、(e),图4(i)]。表明这2类角闪石分别形成于不同的变质条件下,如麻粒岩相和角闪岩相条件下,因为前人研究已证明角闪石中Ti含量随变质程度的增加而升高[6,38]。这种差别也得到了岩相学证据的支持:绿角闪石产出于后成合晶中,而棕褐色角闪石以包裹体形式产出。有些样品中含有较多的富钛角闪石,可能反映了它们不同的原岩成分。根据电子探针成分分析,不同类型的角闪石可能形成于不同的变质条件下(图5[39]),`这进一步证明本区下地壳岩石经历了多期变质叠加与改造过程。

综上所述,无论是变质基底还是下地壳包体岩石,它们大多数(除下地壳上部的岩石以外)都含有石榴子石、单斜辉石、金红石、斜长石和石英等峰期矿物组合,指示形成于高压(大约 GPa)麻粒岩相条件下[40]。另外,这些样品缺少诸如蓝晶石和硅线石之类的富铝矿物相,表明其原岩为岩浆岩而非沉积岩成因[4]。基于上述显微结构观察和矿物之间的关系,至少可以区分出峰期高压麻粒岩相(石榴子石+斜长石+单斜辉石+石英+金红石±富钛角闪石)变质矿物组合,以及后期角闪岩相(斜长石+绿角闪石+钛铁矿+榍石)和绿片岩相(绿泥石+方解石+磁铁矿)等退变质矿物组合。因此,研究区前寒武纪变质基底岩石以及大多数下地壳包体岩石所经历的最高变质条件为高压麻粒岩相。矿物组合与初步的温压计算结果表明,高压麻粒岩相变质阶段温度和压力分别为800 ℃~860 ℃和0~2 GPa[29]。但是,由于缓慢冷却,尤其是可能经历了缓慢折返作用的岩石(如样品07FY0),而导致矿物的Fe-Mg交换或重置[42],所计算的温度有可能代表高压麻粒岩相变质阶段的最小估计值[43]。

3幕式地壳生长与多期改造的年代学和f同位素证据

由于受到后期多阶段变质作用叠加的影响,Sm-Nd和Rb-Sr同位素体系发生了重置和(或)矿物之间的同位素不平衡,往往难以准确测定不同变质阶段的时代,而锆石无疑是理想的定年矿物。锆石是一种难熔矿物,具有很低的Pb扩散速率[44],因而高级变质岩中锆石常常能保留多期次的岩浆作用和变质作用记录[45-49]。因此,锆石的原位U-Pb定年是获得经历过复杂演化过程和多期变质作用岩石可靠时代的有效方法。但是,由于物理化学条件变化和每期变质时间长短的不同,导致早期的锆石结构发生改变和(或)新的锆石生长,从而造成高级变质岩中的锆石结构显示较大的变化性和复杂性[50]。锆石中的变质矿物包裹体能把年代学结果和变质作用直接联系起来,而对于那些反映岩石复杂的岩浆和变质作用历史的环带锆石所表现出的诸如不规则边界、不同的核幔边区域之类的复杂结构可以通过阴极发光(CL)图像揭示出来[5-52]。此外,锆石的Lu-f同位素体系优于其U-Pb体系,通常能抵抗后期蚀变和改造作用的影响[44,53-54],能保存近于初始的f同位素比值,并可以用来示踪岩石成因和源区研究[55-56]。

因此,单颗粒锆石U-Pb和Lu-f 同位素的联合分析数据已被证明能提供有关岩浆和变质事件以及岩石成因和壳幔演化的可靠详细信息[53-55,57-65]。正如前文所述,华北克拉通是一个古老的克拉通并经历了复杂的演化过程,为此,笔者根据最新研究成果以及已发表的有关华北克拉通东南缘变质基底和下地壳包体的锆石U-Pb年代学和Lu-f 同位素数据,探讨了研究区前寒武纪下地壳的形成和演化过程。

根据锆石阴极发光图像(图6[29,33-34])可以看出,研究区前寒武纪下地壳包体岩石经历了复杂的岩浆热事件和多期变质作用,大多数锆石显示核幔边结构,包括典型的岩浆锆石核和具有石榴子石+单斜辉石+金红石+斜长石等高压麻粒岩相矿物组合的8~9 Ga变质锆石[29,33]以及具有高的Ti温度(大于800 ℃)的248~249 Ga麻粒岩相变质锆石[34]。锆石U-Pb年龄结果统计(图7)显示,研究区经历了25~26、2 Ga的岩浆热事件以及25~26、2、8~9 Ga以及390、76 Ma的变质事件。其中,形成于25~26 Ga的下地壳岩石包括2类:一类是经历了2 Ga和(或)8~9 Ga高压麻粒岩相变质作用以及390、76 Ma的变质改造,而且可能是因为这类岩石位于下地壳下部,在2 Ga时靠近俯冲带,因而遭受大洋俯冲与变质作用的强烈影响而造成Pb同位素均一化,形成了具有与约2 Ga岛弧岩石一致的高放射成因Pb同位素组成;另一类岩石则形成于255~264 Ga,可能因处于下地壳上部而仅遭受了248~249 Ga麻粒岩相变质作用,但没有2 Ga和(或)8~9 Ga变质叠加的岩石学和年代学记录,表现为典型的前寒武纪下地壳岩石特点的低放射成因Pb同位素组成[34]。此外,强烈的约8 Ga高压麻粒岩相变质作用可能是由于幔源岩浆底侵于下地壳底部而导致大规模地壳加热和增厚引起的,这也与该时期华北克拉通存在广泛的拉张、裂谷作用以及相关的镁铁质岩浆侵位等相吻合[8,20-2,29]。

锆石的f同位素分析(图8[33])指示,研究区前寒武纪下地壳经历了25 Ga和2 Ga的岩浆热事件。鉴于这2期锆石的ε-f(t)中有一部分样品为明显的正值(如5~2),反映它们的原岩来自于新生地壳,结合其原岩性质和地球化学特点,指示它们的岩石成因与2期俯冲增生事件有关[33]。此外,27~28 Ga的继承锆石U-Pb年龄(图7)和锆石f模式年龄[33-34]暗示研究区可能还存在更老的地壳物质或更早的地壳生长时期,这尚需进一步的研究。

4结语

()华北克拉通东南缘前寒武纪下地壳的岩石组成复杂,反映一个不同形成时代和不同成因并经过多期不同程度变质作用与改造的形成、演化过程。

(2)华北克拉通东南缘在前寒武纪发生过幕式地壳生长,至少包括25~26 Ga和2 Ga这2期俯冲增生和约8 Ga的垂向增生过程。由f模式年龄和继承锆石限定的27~28 Ga可能代表另一期地壳生长时间。

(3)华北克拉通东南缘前寒武纪下地壳岩石至少经历过25~26、2、8~9 Ga以及390、76 Ma等多期构造热事件和不同程度的变质交代与改造,造成岩石中某些元素和同位素特征发生变异。

第4篇

化学元素是构成生物体的最小单位,在生物体元素组成中最基本元素是C,其原因是C是构成一切有机化合物的中心,并不是由于在生物体内含量较多。

(1)基本元素:C、H、O、N;(2)主要元素:C、H、O、N、P、S,此六种元素在生物体内含量达95%以上;(3)大量元素:指生物体内含量超过万分之一以上的元素,有C、H、O、N、P、S、K、Ca、Mg等;(4)微量元素:指生物体内含量少,但作用重要的元素,这是判断是否是微量元素的标准,具体元素有Fe、Zn、Mo、Cu、Mn、B、Ni、Cl等。

能力提升:(1)基本元素与组成细胞的主要元素二者的区别。基本元素是指构成任何生物体都必须的元素,包括结构最简单的朊病毒也不例外,也包含C、H、O、N四种元素;主要元素则是指细胞中作用重要而相对含量又较高的元素,如C、H、O、N、P、S等,它们大约占细胞总量的97%,所以主要元素中包含了基本元素,但二者又不完全等同;细胞的化学元素中又以O含量最多。

(2)大量元素和微量元素的区别是以各种元素在生物体内的含量而定的。含量占生物体总量万分之一以上的就称为大量元素,以下的就称为微量元素。

典例1.下列哪一实例能说明微量元素是生命活动所必需的是( )。

A.Mg是叶绿素不可缺少的组成成分

B.油菜缺少B时只开花不结果

C.哺乳动物血液中Ca2+盐含量太低会抽搐

D.人体内Mn的含量过高会导致运动失调

点拨:本题考查微量元素的定义。题中提到微量元素只有“B”、“Mn”符合,而D项不能说明该微量元素是否为人体生命活动所必需。

答案:B

总结:对生物体内的元素种类及构成,不仅考虑其在生物体内的含量,而且还要考虑其在生物体内的作用。称之为微量元素的标准是在生物体内含量少,但作用重要的元素。大量元素和微量元素是按照该元素在生物体内的含量来确定的。主要元素、基本元素等是按照该元素对生物体的作用区分的。自然界组成元素与生物体组成元素的关系可以用右图表示。

考点二:细胞中的元素及其重要作用

(一)组成化合物

(二)影响生命活动

①Ca2+可调节肌肉收缩和血液凝固,血钙过高会造成肌无力,血钙过低会引起抽搐。

②K+可维持人体细胞内液的渗透压、心肌舒张和保持心肌正常的兴奋性。K在植物体内可促进光合作用中糖类的合成和运输。

③B+可促进植物花粉的萌发和花粉管的伸长,植物缺少B会造成“花而不实”。

④K+在动物细胞中多分布在细胞质里,对神经的兴奋传导和肌肉收缩有重要作用。在植物中以无机盐溶液的离子状态存在,与光合作用过程中糖类的运输有关。Mg是叶绿素的组成成分,一切绿色植物光合作用不可缺少的。

⑤Zn2+有助于人体细胞的分裂,促进生长发育、大脑发育和性成熟。

典例2.下列对化学元素硼的描述,不正确的是( )。

A.硼属于微量元素B.柱头和花柱中积累大量硼时,有利于受精作用

C.缺硼时花粉发育不良,花药和花丝萎缩D.能够促进雄蕊的萌发

点拨:化学元素硼(B)是生物生长所必需的,但需要量却很少,是维持生物正常生命活动不可缺少的微量元素。硼对生命活动的影响:能够促进花粉的萌发和花粉管的伸长,当柱头和花柱积累了大量硼时,有利于受精作用的顺利进行。在缺少硼时,花药和花丝萎缩,花粉发育不良。如油菜缺硼时,会出现“花而不实”现象。雄蕊的萌发和花粉的萌发是两个概念,不能混淆。

第5篇

关键词:52种元素;地球化学背景;地球化学基准;城市土壤;中国;

作者简介:成杭新(1964—),男,博士,研究员,主要从事勘查地球化学与生态地球化学研究。

地球化学背景(GeochemicalBackground)的概念最早源于勘查地球化学,经典的勘查地球化学教科书定义的地球化学背景是指无矿地质体中元素的正常丰度[1]或者一个地区元素含量的正常变化[2]。地球化学背景概念的引入是为了区分元素的正常含量和异常含量,超出正常丰度或正常变化范围的数据。对勘查地球化学而言,通常是指所研究的元素具有异常(正或负)含量,可能是矿床存在的一种指示或蚀变过程导致的元素迁出;对环境地球化学而言,可能是污染存在的一种指示或生态系统中该元素的严重缺乏等。因此环境地球化学中的背景通常是指在未受污染影响的情况下,环境要素中化学元素的含量。反映了环境要素在自然界存在和发展过程中,本身原有的化学组成特征。

工业化革命以来,人类活动释放的污染物已在地球表层土壤中得到大量累积,污染物的持续累积不但显著改变了地球表层土壤中化学元素的自然背景水平和分布模式,也导致一系列生态危害事件的频现,美国Adirondack山脉中的BigMoose湖,因长期接受上游工业排放的SO2,使湖泊水体和沉积物pH值陡然下降,导致鲈鱼、白鱼、鲤鱼等水生动物大量死亡[3],而欧洲200余年的工业化历史,使中欧地区土壤显著酸化和土壤中的铝大量活化,导致大片森林中毒死亡[4]。为科学认识土壤环境质量现状、并通过环境立法保护土壤环境质量不再进一步恶化及预测未来环境变化趋势,最近20年文献中对地球化学基准(GeochemicalBaseline)的概念和应用途径进行了广泛讨论[5-6]。虽然不同作者对地球化学基准科学含义的表述还不完全一致,但一般是指地球表层环境介质定时间点某个元素或化合物的实际含量。它既包括自然背景浓度,也包括人类活动成因导致的扩散浓度的贡献[7-11]。

1978年至今,中国的工业化和城镇化进程取得了未曾预料到的重大进展,城市数量已从1978年的122个增加到2011年的655个,城镇人口数量也从1978年占中国总人口的17.9%增加到51.3%[12]。由于城市人口众多、工业密集,是人类活动及化学元素污染释放的主要场所,大规模城镇化进程已使中国大气、水及土壤环境质量全面恶化[13-19]。中国曾于20世纪80年代开展过中国土壤背景值研究[20],但因受采样密度及样品布局的制约,未能颁布城市土壤化学元素的背景值数据,严重制约了对中国城市土壤环境质量现状的认识和评价。

本文利用中国地质调查局组织实施的多目标区域地球化学调查与评价项目及中国土壤现状调查及污染防治专项的数据资料,通过对中国31个省会城市土壤化学元素组成特征的统计分析及城市土壤化学元素背景值和基准值计算方法的讨论,确定中国城市土壤化学元素的背景值及基准值,其主要目的是为科学认识城市土壤化学元素的环境质量现状及政府部门制定有效监管措施提供依据。

1数据来源

1.1城市选择

研究对象包括除香港、澳门和台北以外的中国31个省会城市,也即北京、成都、福州、广州、贵阳、哈尔滨、海口、杭州、合肥、呼和浩特、济南、昆明、拉萨、兰州、南昌、南京、南宁、银川、上海、沈阳、石家庄、太原、天津、乌鲁木齐、武汉、西安、西宁、长春、长沙、郑州、重庆。

各城市的边界以建成区范围为主,同时兼顾各城市未来的城区扩展态势,一般以各城市的绕(环)城高速范围作为各城市的研究区,31个省会城市累计城区面积达15196km2。

1.2样品采集和分析测试方法

中国从1999年至今实施的多目标区域地球化学调查与评价项目是一项以土壤地球化学测量为主,兼顾湖积物与近岸海域沉积物测量的国家地球化学填图项目。该项目采用1样/km2、1个组合样/4km2的密度采集0~20cm的地表土壤样品,1样/4km2、1个组合样/16km2的密度采集150~180cm的深部土壤样品[21]。城市地区采样密度一般为1~2点/km2,样品采集一般选择在公园、寺庙、绿化带及其他较为稳定的、相对扰动较小的部位,采样时尽量避开新近堆积土。采用统一的分析测试技术要求和相同的质量监控措施分析测试每个样品中的52种元素(Ag、As、Au、B、Ba、Be、Bi、Br、C、Cd、Ce、Cl、Co、Cr、Cu、F、Ga、Ge、Hg、I、La、Li、Mn、Mo、N、Nb、Ni、P、Pb、Rb、S、Sb、Sc、Se、Sn、Sr、Th、Ti、Tl、U、V、W、Y、Zn、Zr、SiO2、Al2O3、TFe2O3、MgO、CaO、Na2O、K2O)及pH和有机碳(Corg)[22-23]。截止到2012年底,该项目调查面积达170万km2,覆盖中国31个省会城市[24]。

1.3数据来源

根据各城市的选定范围,从中国多目标区域地球化学调查与评价数据库中提取相应范围内表层和深层土壤样品中的52种元素及pH和Corg数据。分别涉及表层和深层土壤样品3799件和1011件,累计数据259740个。

2数据处理方法

2.1不同深度土壤样品的科学含义

中国多目标区域地球化学调查在每个采样点上分别采集了0~20cm和150~180cm两个深度的土壤样品,也即表层和深层土壤样品。前者不但包括了成土母质中化学元素的自然地质背景含量,同时还叠加有人类活动带来的外源化学物质;后者因受到较少的人类活动影响,其化学元素组成更接近成土母质。因此表层土壤中化学元素的含量水平代表的是土壤地球化学基准,深层土壤化学元素的含量水平则反映的是土壤地球化学背景。

2.2中国城市土壤地球化学背景和基准的计算方法

自从Ahrens(1953)在花岗岩中发现元素的分布服从对数正态分布以来[25-26],勘查地球化学家通过对地球化学数据分布形式(正态或对数正态)的检验,来计算地球化学背景值。当数据既不服从正态也不服从对数正态分布时,通常通过剔除算术平均值加减2或3倍标准离差的离群值后,再次进行分布形式的检验,以使数据服从正态或对数正态分布[27]。但剔除出的数据在找矿地球化学研究中往往是包含重要找矿信息的异常值,而在环境地球化学评价中则是包含污染信息的数据。因此采用剔除异常数据的方法不能客观刻画实际数据所隐含的真实状况。

成土母质是地球化学基准和背景浓度的重要控制因素,不同的成土母质或地质背景应具有不同的地球化学基准和背景浓度。中国地域辽阔,不同城市所处的气候条件不同,所在的地质背景也差异极大,如横卧在北京城西边和北边的太行山和燕山山脉的岩石风化产物是北京市土壤的成土母质,古都西安的土壤主要以风成黄土为主,而西江水系河流冲击物的长期堆积则是广州市土壤成土母质的主要来源。因此中国城市土壤化学元素数据集即使以正态或对数正态分布,但也不具有同一成土母质或同一自然成土过程的含义,对表层土壤样本(n=3799)和深层土壤样品(n=1010)的正态和对数正态分布检验也证实除深层样本中的SiO2服从正态分布外(图1),其他元素均不服从正态或对数正态分布。因此不能采用剔除平均值±2或3倍标准离差的方法来获取中国城市土壤的地球化学背景和地球化学基准值。

针对城市土壤地球化学数据的上述特点,文献中提出用中位值(XMe)与绝对中位值差(medianab-solutedeviation,MAD)的稳健统计方法来描述地球化学背景值和基准值的变化范围,以消除一些与均值相差较远的离群数据在求均值和方差时,尤其是求方差时对结果产生较大的影响[28-29]。其中XMe和MAD可分别用下列公式计算:

对中国城市土壤而言,城市表、深土壤数据集的中位值(XMe)分别代表中国城市土壤的地球化学基准值和背景值,以Me±2MAD表示基准值和背景值的变化范围。

2.3单个城市土壤地球化学背景和基准的计算方法

单个城市由于它的地理位置和气候条件明确,城市空间范围内的土壤基本为同一成土母质,其形成过程也是同一气候条件作用下的产物,因此在估算单个城市的化学元素背景或基准值时,先对原始数据进行正态检验,并用算术平均值()代表背景值或基准值,用(±2S)代表变化范围,其中S为标准离差。对不服从正态分布的化学元素进行对数正态检验,当数据服从对数正态分布时,将几何平均值(g)和几何标准离差(S)还原为实数后,用(÷2S)和(×2S)代表背景值或基准值的变化范围。对既不服从正态也不服从对数正态分布的元素,则采用中位值和绝对中位值差的稳健统计方法来估算该元素的背景或基准值。

2.4化学元素背景的变化率

城市土壤化学元素的背景值受成土母质控制,反映的是一种自然地质背景。随着人类活动的广度和深度的不断加强,人类活动可显著改变土壤化学元素的自然背景。为了客观评价自然背景的变化程度,这里用化学元素自然背景的变化率(ΔRCi)来度量元素自然背景的变化状况,其计算公式为

式中:ΔRCi是指元素i自然背景的变化率;GBLi是指i元素的地球化学基准值;GBGi是指i元素的地球化学背景值。当ΔRCi>0是指i元素的地球化学背景增加,ΔRCi<0是指i元素的地球化学背景下降,ΔRCi=0则指i元素的地球化学背景未发生变化。

当ΔRCi>0是指i元素的地球化学背景增加,ΔRCi<0是指i元素的地球化学背景下降,ΔRCi=0则指i元素的地球化学背景未发生变化。当|ΔRCi|≥100时,表示i元素为极显著增加或减少状态;当50≤|ΔRCi|<100时,表示i元素处于显著增加或较少状态;当0<|ΔRCi|<50时,表示i元素处于增加或减少状态。

3结果与讨论

3.1中国城市土壤地球化学基准值/背景值特征

中国城市土壤52种化学元素及pH和Corg统计显示(表1),Al2O3、Ba、CaO、Cd、Ce、Co、Cr、Cu、F、Hg、K2O、MgO、Mn、Ni、pH、Sc、Sn、Sr、Ti、V、Y和Zr等23种元素或化合物的背景值高于中国土壤背景值,而Ag、As、B、Be、Bi、Br、Fe2O3、Ge、La、Li、Mo、Na2O、Corg、Pb、Rb、Sb、Se、Th、Tl、U、W和Zn等22种元素或化合物的背景值低于中国土壤背景值。Au、Cl、Ga、N、Nb、P、S、SiO2和TC等9种元素或化合物因缺中国土壤背景值数据情况不明。

城市土壤Ag、Au、Ba、Bi、Br、CaO、Cd、Ce、Cl、Cu、Ge、Hg、Mo、N、Nb、Corg、P、Pb、S、Sb、Se、Sn、Sr、TC、U、W、Zn、Zr等28种元素的基准值明显高于背景值。其中Corg、Hg、Se、S、TC、N的基准值分别较它们的背景值增加了331%、220%、146%、142%、130%、125%,表明上述6个元素的地球化学背景发生了极显著的增加,致使地表地球化学基准值显著高于各自的地球化学背景值;而Br、Cd、P的地球化学背景的变化率ΔRCi为50%~100%,呈现显著增加的特征;Ag、Au、Bi、CaO、Cl、Cu、Mo、Pb、Sb、Sn、W和Zn的ΔRCi为10%~50%,指示这些元素的地球化学背景呈增加的变化趋势;其他31个元素的地球化学背景基本未发生变化。

元素地球化学背景变化率清晰地指示中国大规模工业化进程所带来的重大生态环境问题。文献资料显示化石燃料燃烧是黑碳颗粒、Hg、Se释放及酸雨形成的主要原因[30-34]。最近30年,中国化石燃料燃烧释放的碳已从1980年的4亿t增加到2010年的22亿t[35],Hg、Se释放量也由1980年的73.59t、639.7t,增加到2007年的305.9t和2353t[33],上述释放物在大气干湿沉降的作用下,最终沉降到地表,显著改变了地表土壤有机碳及总碳、Hg和Se的分布模式,可能是城市地表土壤Corg、Hg、Se、S、TC、N背景值发生极显著/显著变化的主要原因。而大规模的有色金属(Cu、Pb、Zn、Cd、Ag等)开采和冶炼活动及中国Sb、Sn、W等特有矿产的矿业活动使土壤中重金属元素的地球化学背景发生了显著变化。

3.2各城市土壤地球化学基准值/背景值特征

中国31个省会城市土壤化学元素的背景值示于表2~32,各个不同城市因其所处地理位置及地质背景的差异。各元素的具体含量特征在此不予描述。但Cl、CaO、Hg、Na2O和S的背景变化特征明显区别于其他元素。

不同城市土壤的Cl元素背景值差异巨大,中国城市土壤Cl元素的背景值为70mg/kg,背景变化区间介于24~116mg/kg。几个北方城市,如兰州(613mg/kg)、乌鲁木齐(469mg/kg)、西宁(432mg/kg)、天津(296mg/kg)、呼和浩特(236mg/kg)、拉萨(149mg/kg)、济南(126mg/kg)的背景值均超出中国城市土壤Cl地球化学背景变化的上限,表明在长期的自然演化过程中,上述几个城市的土壤具有较高的Cl地球化学背景。

中国城市土壤CaO的背景值为1.65%,华北和西北的城市土壤CaO背景值(3.23%~9.64%)普遍高于南方和东北近1个数量级,中国城市中CaO背景值最高的是西宁市(9.64%),最低的为海口(0.16%),显示出成土母质及不同的气候带对CaO地球化学背景的控制作用。

中国城市土壤Na2O的背景值为1.41%,背景变化区间介于0.52~2.31%。虽然各城市的Na2O背景值均在背景变化区间之间,但不同城市的Na2O背景值存在数量级之间的差异,其中乌鲁木齐Na2O背景值为2.22%,是南宁(0.10%)的22倍之多。总体规律表现为北方城市Na2O的背景值高于南方城市,也充分显现出成土母质及不同气候条件对Na2O地球化学背景的控制作用。

中国城市土壤Hg的背景值为0.042mg/kg,背景变化上限为0.088mg/kg。其中贵阳(0.202mg/kg)、广州(0.147mg/kg)、昆明(0.132mg/kg)、南宁(0.112mg/kg)、福州(0.111mg/kg)和拉萨(0.092mg/kg)城市土壤的Hg背景值高于中国背景变化的上限,属于高背景地区。沈阳、太原、北京、合肥、天津、南京、哈尔滨、西宁、乌鲁木齐、郑州、济南、长春、石家庄、呼和浩特、兰州、银川16个城市土壤Hg的背景值介于0.017~0.040mg/kg,低于中国城市土壤Hg的背景值。

中国城市土壤S的背景值为146mg/kg,背景变化区间介于22~270mg/kg。中国有18个城市的土壤S背景值高于中国背景值,其中西宁(1886mg/kg)、乌鲁木齐(1083mg/kg)、兰州(950mg/kg)、福州(641mg/kg)、海口(428mg/kg)、广州(356mg/kg)、上海(327mg/kg)、太原(317mg/kg)和天津(273mg/kg)的背景值大于中国城市土壤S背景变化的上限值。

由此可以看出,在开展城市土壤环境质量评价时,分别采用各个城市的背景值较采用中国土壤背景值,能更客观地度量人类活动对自然背景的影响程度。

3.3地球化学背景变化特征

中国31个省会城市土壤化学元素ΔRCi的计算结果示于图2~4,图中显示Corg和N的ΔRCi值均大于0,指示土壤有机碳和氮的自然背景均被显著改变。对福州、广州而言,因土壤有机碳含量呈显著增加状态,拉萨和呼和浩特则为增加状态,其他21个城市因ΔRCSOC>100,指示土壤Corg属极显著增加状态。除呼和浩特ΔRCTC<0外,其他所有城市土壤TC均呈增加趋势。其中武汉、成都、长春、长沙、合肥、南昌、南宁、贵阳、哈尔滨、沈阳、石家庄、昆明、南京、海口、北京、济南、福州、郑州、广州和上海ΔRCTC>100,乌鲁木齐、重庆、天津、太原、杭州50<ΔRCTC≤100,银川、西安、兰州、西宁和拉萨10≤ΔRCTC<50。

除呼和浩特外,中国30个城市土壤P的ΔRCP均大于0。中国有22个城市土壤N的自然背景呈极显著增加;海口、昆明、福州、重庆、沈阳、银川和西宁7个城市表现为显著增加,拉萨和呼和浩特则为增加状态。已有的文献资料已证实农田施肥是地表土壤N、P增加的主要原因,但过量的N、P肥可通过大气循环沉降到地球表面,使城市地表土壤也出现N、P的显著累积。

除南宁、拉萨、呼和浩特外,其他城市土壤均表现为ΔRCHg>100,并按北京(819)、成都(602)、天津(597)、石家庄(440)、沈阳(413)、济南(400)、长春(340)、西安(312)、南京(293)、杭州(264)、兰州(244)、哈尔滨(237)、合肥(223)、上海(220)、乌鲁木齐(183)、广州(175)、太原(172)、长沙(165)、福州(161)、武汉(159)、银川(135)、郑州(130)、南昌(119)、西宁(104)、昆明(92)、重庆(63)、海口(53)和贵阳(29)顺序递减,指示中国城市土壤Hg的自然背景普遍发生改变,地表土壤Hg已显著累积。Ag、Au、Bi、Cd、Cu、Mo、Pb、S、Sb、Se、Sn、Zn等元素表现出与Hg类似的变化特点。

各元素ΔRCi最大值分布的城市也不尽相同,Ag(150)、Au(400)、Bi(147)、Cd(538)、Cu(77)、Hg(819)、Mo(100)、Pb(156)、S(418)、Sb(200)、Se(650)、Sn(263)和Zn(80)的ΔRCi最大值分别分布在天津、上海、沈阳、长沙、广州、北京、上海、沈阳、成都、上海、石家庄、杭州和广州。Au、Mo和Sb的最大值同时出现在上海,Bi和Pb的最大值同时出现沈阳,Cu和Zn同时出现在广州,充分显示大型综合性城市工业结构或悠久的工业发展历史与重金属累积复杂组合之间的因果关联。

城市土壤CaO自然背景含量也呈显著增加的特点,这可能与中国城市发展过程中的大规模建设活动有关。

出乎意料的是,除金属元素及N、P、TC和Corg外,城市土壤中Cl和Br的自然背景也普遍发生变化,需引起关注。

4结论

通过对中国31个省会城市表层土壤和深层土壤中52种化学元素及pH和Corg实测数据的计算获得中国城市土壤及各个省会城市土壤化学元素的背景值和基准值,为定量研究中国城市土壤的环境质量状况及演变趋势提供了参考标准。

中国及各个城市土壤中Corg、Hg、Se、S、TC、N的基准值显著高于其对应的背景值,与文献中报道的中国大规模工业进程中煤燃烧及矿业活动释放的主要污染物相互佐证,表明了本文所获得的背景值和基准值的可靠性。

第6篇

【关键词】用教材教;四元素说;元素;最基本的结构单元

根据长期的初三化学教学经验,我发现元素的学习往往是学生出现学习困难的开始,因此这部分教学的成功对后面的学习非常重要。有人说“千法万法,读懂教材是妙法”,读懂教材是教学成功的第一步。因此,我仔细地研读了2012沪教版的化学上册教材,体会教材对这部分内容的编排意图。

一、在教材中的地位

化学课程标准在认识化学元素一栏提到:形成“化学变化过程中元素不变”观念。这个观念贯穿在整个初三化学知识体系中,因此元素的学习是初三化学教学的重要内容。元素教学是学生形成“化学变化过程中元素不变”观念的基础。

二、初识元素

从整体上看,沪教版教材首次提到元素在第一章第二节15页,“木柴、石蜡、砂糖和面粉等物质中均含有碳元素,这些物质烧焦或烤焦后得到的黑色物质的主要成分都是碳。”正是物质烧焦这一常见的生活现象将学生们带到了元素面前,并且意识到“一种物质可以通过化学变化变成其他物质,但反应物及生成物中应含有同种元素。”

在这段内容之前,教材安排了“空气成分的发现”,为什么如此安排?对化学史稍作研究就可发现其中奥妙。

在古希腊:恩培多克勒提出,宇宙间只存在火、气、水、土四种元素,它组成万物。元素是物质世界的最基本结构单元。这是最早的四元素说。

四元素的说法,经过亚里士多德的发扬光大,才得以有系统的确立。他反对德莫克利特的原子论(即物质是由一不可分割的最小粒子所组成),认为一切物质都由土、水、空气和火组成。

接下来的几个世纪,四元素说占据统治地位。直到罗伯特・波义耳才否定了四元素说的错误,使得化学得以迅速发展。他在1661年发表《怀疑派的化学家》,为化学元素作出了科学而明确的定义:“它们应当是某种不由任何其他物质所构成的或是互相构成的、原始的和最简单的物质”。“应该是一些具有确定性质的、实在的、可察觉到的实物,用一般化学方法不能再分解为更简单的某些实物”。这个朴实的科学定义为人们研究自然界中各种物质的组成指明了方向,为使化学逐步成为一门真正的科学作出划时代的贡献。

由此可见“空气成分的发现”是对四元素说的沉重一击,是非常重要的科学史实。在教学中可以适当介绍,激发学生对化学史的学习兴趣。

教材在第一章的第三节介绍了元素符号,并明确提出“化学反应的本质特征是有新物质生成,但在发生化学反应的过程中,元素本身并未发生变化,只不过重新组合形成了新物质。”

在教学中,这正是激发学习兴趣,开始元素教学的好时机。同时学期刚开始,学习任务较轻,我在周末布置学生背诵1-20号元素名称。学生按五言绝句的方式将20个名称断成四句,朗朗上口,很快就读熟了。趁热打铁,我在第二、三周布置背诵1-20号元素符号,学生们经过两周的准备基本熟练地记住了初三常见的元素符号。

三、再识元素的重要实验

在第二章《身边的化学物质》中介绍了第三节《自然界中的水》。按照氧气,二氧化碳的学习方法,本节应该先学习水的物理化学性质,但是并没有,只学习了水的组成。也许是考虑到水的性质太熟悉的原因,可以安排学生自学。

水的组成的发现是对四元素说的再次重击,水的合成否定了水是元素的错误观念。1781年,普利斯特里将氢气和空气放在闭口玻璃瓶中,用电火花引爆,发现瓶的内壁有露珠出现.同年卡文迪许也用不同比例的氢气与空气的混合物反复进行这项实验,确认这种露滴是纯净的水,表明氢是水的一种成分.这时氧气已被发现,卡文迪许又用纯氧代替空气进行试验,不仅证明氢和氧化合成水,而且确认大约2份体积的氢与1份体积的氧恰好化合成水。这些实验结果本已毫无疑义地证明了水是氢和氧的化合物,而不是一种元素,但卡文迪许却和普利斯特里一样,仍坚持认为水是一种元素。1782年,拉瓦锡重复了他们的实验,并用红热的枪筒分解了水蒸汽,才明确提出正确的结论:水不是元素而是氢和氧的化合物,纠正了两千多年来把水当做元素的错误概念。

也许是考虑到发现水的组成是化学史上的重大事件,有必要让学生们重温历史,向化学家们致敬,教材安排了电解水和点燃氢气的实验,虽然实验条件不同,但是也能从当年拉瓦锡的研究角度了解水的组成。

四、“水到渠成”――形成元素概念

化学史的资料显示,到了19世纪初,元素和原子两个概念终于联系到一起了。此时,英国物理学家和化学家道尔顿于1803年提出原子学说,其要点之一:化学元素由不可分的微粒――原子构成,它在一切化学变化中是不可再分的最小单位。

元素的教学出现在第三章《物质构成的奥秘》。在介绍了第一节《构成物质的基本微粒》之后,学习第二节《组成物质的化学元素》,遵循了人们认识元素的一般规律,为理解元素的概念做足准备。我们仔细阅读教材74页和75页这部分内容,仅仅100多字,虽然内容很少,但实际上它的相关信息已经大量分散在教材之中,到这里元素的定义水到渠成,不必多说什么。

所以在进行元素教学之前,我就有意识地将人们认识元素的历史渗透进教学中,让学生可以真实地体验当时科学家们的想法,这样也降低了元素的神秘化。告诉学生,今天的我们不必做实验也可以知道许多物质的组成,只要有物质的化学式即可,因此学会根据物质的名称写出化学式很重要,这为后面的教学做了铺垫。

从“元素的教学”我深深体会到:读懂教材是实现新课程提倡的“用教材教”的第一步,然后才能摒弃以往的“教教材”。在具体的实施前教师还要根据自己的教学经验和学生的实际情况判断学生可能遇到的困难,根据拥有的教学资源预设相应的问题和铺垫,对教材的内容进行一定的取舍,实现对教材的内容的优化组合。

【参考文献】

第7篇

《普通高中化学课程标准》指出,化学是在原子、分子水平上研究物质的组成结构、性质及其应用的一门基础科学。而且,学生普遍认为高中化学元素化合物知识零碎,容易学,但容易忘,很难掌握牢固,上课时很轻松就听懂了,但课后用化学知识解决实际的问题时往往就束手无策。这些都是学生没有将高中化学的理论和概念灵活运用起来,对知识点之间没有有机的联系,没有形成整体的化学知识结构。为了改变这样的教学状况,我们重新审视了高中化学的学科特点,高中化学各个知识点交叉纵横,相互关联,点能连成线,线能连成面,面能结成网,形成一个立体空间网状整体的知识结构。那么,怎样在课堂教学过程中形成完整知识体系化?我认为,解决这个问题的很好的、有效的方法就是利用概念图组织知识网络。把概念图作为一种学习的工具与方法,能促使学生把新旧知识结合起来,在头脑中形成清晰的知识网络与知识结构,从整体上掌握我们所教授的知识。故本文拟采用将概念图教学引入高中化学元素及其化合物教学中,进而培养学生进行有意义的学习。

在化学这门学科中,许多学生在知识点之间缺乏联系,也缺乏系统性,掌握不了牢固知识点。因此,我们教师在进行化学教学的时候要采取能促使学生真正理解化学知识,促使化学知识的结构化、系统化的教学方法,这种才是有效教学法,采用这种方法才能提高学生解决问题的能力,进而激发学生主动学习,使学生在学习时感受到成功的快乐。而运用概念图可以满足上述要求,上课开始的时候,首先由教师提出一种能够将新知识和旧知识联结起来的陈述或者是教学情境,教师这样做的目的是用来帮助学生顺利接受课本上的学习材料。这样做的好处有两点:学生能够把新内容与原有的认知结构联系起来;能够帮助学生组织本节课所要学习的材料。举个例子,在讲授有机物时,学生已掌握了物质可分为单质和化合物,而化合物又可分为无机物和有机物等的分类方法,这为学生掌握有机物中组成元素的特点打下了很好的基础。

综上所述,在高中化学新课程理念内容的要求下,学生的学习方式、传统的教学模式都必须进行改变,不能再像以前那样教师是主导,只注重知识的传授与机械训练;而是要以学生为主体,教师为主导,学生自己积极参与的合作学习、探究学习,实现了由单一的学习到各种学习方式的转变。因此,利用概念图的教学,充分体现了新课程的理念。

第8篇

关键词:通识教育;自然科学;科学素养

中图分类号:G642.3 文献标志码:A 文章编号:1674-9324(2017)01-0121-02

一、引言

通识教育是教育的一种,这种教育的目标是:在现代多元化的社会中,为受教育者提供通行于不同人群之间的知识和价值观[1]。通识教育本身源于19世纪,当时有不少欧美学者有感于现代大学的学术分科太过专门、知识被严重割裂,于是创造出通识教育,目的是培养学生能独立思考、且对不同的学科有所认识,以至能将不同的知识融会贯通,最终目的是培养出完全、完整的人。20世纪以后,通识教育已广泛成为欧美大学的必修科目。通识教育实际上是素质教育最有效的实现方式,鼓励学生结合自己实际跨学科、跨专业自由选课,充分发展个性,增强学生学习主动性,全面提高素质。通识教育的性质决定了通识教育存在的合理性,我国高校长期实行的专业化教育模式迫切呼唤大学通识教育的出现。专业化教育模式是我国高等教育在特定时期、特定社会背景中的选择。过分强调专业划分,把学生的学习限制在一个狭窄知识领域,不利于学生全面发展[2]。推行大学通识教育,不仅是我国高等教育与世界先进教育理念接轨的要求,也是我国教育改革与发展的需要。通识教育作为大学教育的重要一部分,是对高等教育专门化、功利化导致的人的片面发展的一种矫正和超越,是高等教育本质和大学使命的回归。如何教好通识课程,培养高素质人才是教育工作者应当认真思考的问题。笔者在为大学文科学生讲授自然科学通识课“元素的故事”时,积累了一定的经验,下面谈谈几点教学体会。

二、教学内容的思考

文科学生大多具有初中和高中的物理、化学基础,对大学的物理和化学了解不多,在基本概念和基本术语的理解上可能存在困难。因此,在教学内容方面应考虑到他们的知识特点,选取合适的参考书籍和参考资料,力求尽可能少的专业知识,增强趣味性、易懂性,贴近现实生活和学生的感性认识。笔者选取了苏联的科普读物《元素的故事》[3]一书作为参考书籍,向学生们介绍了自18世纪中期到近年有关化学元素的重大发明和发展,如:18世纪中期瑞典化学家舍勒怎样发现了空气不是单一的物质而是氧、氮两种气体的混合物;接着法国化学家拉瓦锡怎样否定了燃素说,把氧、氮以及磷、碳、氢等列为世界上第一张元素名单;19世纪初期,英国化学家戴维利用电流怎样分解了当时普遍认作是元素的两种苛性碱和八种碱土金属,而发现了钾、钠两种碱金属和八种碱土金属;19世纪中期,在元素名单上已经有了57种,当时认为再难找到新元素的时候,德国科学家本生和基尔霍夫怎样利用光的性质,造成了分光镜,发明了化学元素的光谱分析术,使元素名单再行扩大;19世纪下半期俄国化学家门捷列夫怎样总结了数百年来化学家们研究的成果,创造了元素周期表;19世纪末期英国的科学家怎样发现了惰性气体,充实了元素周期表。最后,20世纪初期,居里夫妇怎样发现了钋和镭,了元素永恒不变,原子不可再分的旧观念,掀起了一场化学上的大革命。通过这门课程的学习,使学生对元素发现的方法和历史有了大致的了解。

三、教学方法的思考

如何提高教学效果是教师们经常讨论的问题。在课堂上,好的教学思路能够激发学生的好奇心,激起学生进行思考的欲望,能够极大地调动学生学习的积极性和主动性,从而提升教学效果。笔者在一节“光谱学与元素的发现”课堂中,首先抛出了这样一个问题:科学家们是怎样知道太阳的化学元素组成的?这一问题立刻引起了学生们的兴趣。太阳距离我们非常遥远而且温度极高,无法直接检测太阳的化学组成。科学家们用了什么方法呢?答案是光谱分析法。说起光谱,学生可能觉得陌生。其实在中学物理里面大家就已经知道了牛顿的著名的三棱镜色散实验,将一束太阳光经一块三角形的玻璃棱镜折射后,形成了红p橙p黄p绿p蓝p靛p紫等七色的彩色光带,牛顿将这种彩虹色带命名为光谱,现在我们知道不同颜色的光具有不同的波长。接下来学生会问光谱与化学元素分析有什么关系呢?那么首先回顾一下初中化学学习过的焰色反应:许多金属盐类在燃烧时会产生特殊的焰色,如钾盐的焰色是紫色的,钠盐的焰色是黄色的,铜盐的焰色是翠绿色的,钡盐的焰色是草绿色的,钙盐的焰色是橘红色的,而锶盐和锂盐一样都是鲜红色的。在衍射光栅的分光术发明以后,英国的物理学家泰尔包特于1825年制造了一种可以研究焰色光谱的仪器,然后将灯蕊浸在各种不同盐类的溶液中,晒干后点燃,观察其光谱,发现各种金属盐类的火焰分光后所得的光谱,都是不连续的几条亮线,各出现在其对应的颜色光区内,其中他注意到,锶盐和锂盐尽管焰色几乎完全相同,但呈现的光谱却迥然不同。他是意识到每种元素都有自己的一组特征光谱的第一位科学家。到1852年,瑞典的物理学家Angstrom指出每一种特征光谱就是某一种元素的特定标志,光谱正像人类的指纹一样,各种金属元素所发射的光谱线的数目p强度和位置都不一样,因此可以由光谱的分析来检验金属元素的种类,更可由各元素谱线的相对强度来判断混合物中各种元素的相对含量。至此,光谱学的应用进入了一个崭新的时代,成为化学元素分析的一项利器。知道了光谱法可以分析元素之后,我们来回答最初提出的问题:太阳上有哪些化学元素?早在1802年,英国的化学家伍拉斯顿就用分光棱镜仔细观察了太阳光谱。他注意到表面看来是连续的彩色光带中,夹杂着不少的垂直暗线,在不明原因的情况下,只好把这些暗线的出现归咎于棱镜的缺陷。1814年,德国的物理学家弗朗和斐用他的衍射光栅试验太阳光谱时,也发现了伍拉斯顿所看见的暗线。他仔细地数一数所能辨识的暗线,竟有576条,把它们一一标记下来,其中最主要的几条,根据明显程度,依次标以英文字母ApBpCp...G的代号,当做描述用的固定点或参考点。后世即把这些暗线称为“弗朗和斐线”。有一天,弗朗和斐把他的分光仪一器二用,将光线入口处分成两半,上半以阳光入射,下半以燃烧的钠焰入射,于是得到了上下两幅平行的光谱。他发现发出强烈黄光的钠焰在光谱中有两条很接近的明亮黄线,恰巧与太阳光谱中他标示为D的两条暗线在同一位置上(此即今日我们所称的著名的“钠-D双线”),这意味着什么?他知道其中一定蕴藏有重大的玄机,只是不知道答案在哪里!到了基尔霍夫和本生手里,这个秘密才被彻底揭穿。他们重做了四十年前弗朗和斐所做的钠焰实验。这次他俩让连续光谱透过钠焰的上方,那里有未燃烧的钠蒸气,结果在一片连续的彩色光带中竟然就出现了两条明显的D暗线。显然,是钠蒸气将连续光谱中属于D线波长的辐射给吸收掉了!于是他们在1859年发表了两条有名的“基尔霍夫辐射定律”。第一定律是每种化学元素都各有其特殊的光谱,第二是每种元素所吸收的电磁辐射波长与所发出的波长相等,即当某元素在高热燃烧时若能发射某种波长的光,则在较低温时其蒸气就会吸收相同波长的光。第二条辐射定律就解释了四十多年来一直不知其所以然的“弗朗和斐暗线”问题。本生与基尔霍夫认为高温的太阳表面原来会发出含有各种频率的连续光谱,然而紧贴着太阳表面的大气层,因为温度比太阳光球的温度低,其中所含的蒸气成分,会依其化学元素特性而选择吸收其特征波长的辐射,所以太阳光谱中的各条弗朗和斐暗线都是其大气成分元素吸收部分阳光波长所造成的。像暗线中的D线为什么恰与钠焰的双黄线位置p波长一样,就是因为太阳大气中含有钠成分,吸收了阳光中的这种波长之故,也就是说D暗线的存在正是太阳大气中含有钠成分的明证!他们就用这种方法比较太阳光谱中的弗朗和斐暗线与各元素的特性光谱,而后在1859年宣布,太阳大气层中含有钠p铁p钙和镍而没有锂,但其中含量最多的则是氢。他们的发现立刻轰动了整个科学界,光凭一台简单的分光镜居然能在地球上检定出一亿五千万公里外的太阳的化学元素组成,真是太神奇了!从此,太阳在人类的心目中,就失去了它的大部分神秘性。跟着,星球的神秘性也大部分消失了。通过这样一节课,笔者讲述了光谱、光谱分析法和用光谱分析法发现太阳上化学元素的故事,循序渐进地诱导学生进行思考,收到了良好的效果。

四、结论

在大学自然科学通识教育中,针对文科学生的知识特点,精心选择教学内容和设计教学方法,努力做到趣味性、易懂性、启发性和循序渐进性,提高了学生的科学素养,培养了学生的独立思考能力,取得了显著的教学成效。

参考文献:

[1]哈佛委员会.哈佛通识教育红皮书(2010年12月版中译本)[M].李曼丽,译.北京大学,2010:45.

[2]赫钦斯的高等教育思想对大学通识教育的启示[Z].中国信息大学,2016-06-25.

[3]依.尼查叶夫.元素的故事[M].滕砥平,译.上海:少年儿童出版社,1978.

Thoughts on Teaching of Natural Science of General Education in University

ZHOU Jian

(College of Materials Sciences and Engineering,Beihang University,Beijing 100191,China)

第9篇

【关键词】初中化学 兴趣培养 化学实验

中图分类号:G4 文献标识码:A DOI:10.3969/j.issn.1672-0407.2016.04.041

初中化学是学生首次接触化学这门古老课程的重要途径,初中化学包含的基本化学知识概念对于学生更好地了解化学这一门课程有着很大的启示作用,如果初中化学教师能够培养学生学习化学的兴趣,对于学生以后高中、大学的化学学习是极其有帮助的。因此,初中化学教师需要关注学生的化学学习兴趣,调动学生学习化学的积极性,通过培养学生的化学学习兴趣来提高学生的化学学习水平。

一、理论联系生活实际

化学作为初中阶段的一门重要课程,它包含的概念比较多,学生接触后容易因为不熟悉而产生抗拒心理,但是初中化学对于高中化学的学习有着重要的影响作用,为了帮助学生克服畏难情绪,促使学生更好地学习初中化学这门课程,初中化学教师需要注重对学生学习兴趣的培养。众所周知,化学与生活实际的联系非常紧密,因此,初中化学教师需要将化学理论与生活实际联系起来,以期达到培养学生化学学习兴趣的目的。 理论联系生活实际,需要初中化学教师在课堂教学中将课本中的化学基础知识概念与生活实际联系起来进行讲解,这种理论与生活实际相结合的教学方式,有利于培养学生的学习兴趣,促使学生善于观察生活,善于联系生活实际,最终帮助学生更好地学习化学。

例如,初中化学教师在讲解《化学与生活》这一部分内容时,可以采用设置问题的方式引入课题,吸引学生的兴趣,从而更好地调动学生的学习积极性。在学到化学元素与人体这部分内容时,初中化学教师可以让学生先自己思考或者小组讨论我们人类身体中究竟含有哪些化学元素?而这些化学元素在我们的身体中又起着怎么样的作用呢? 在听取了学生的回答后,教师需要循序渐进的将化学元素在人体中的作用加以分析。例如钙是人们骨头中不可缺少的部分,大量的钙是在人们的骨头和牙齿中的,如果人体中钙这种元素过多的话,人们就容易产生结石,并且容易骨骼变粗。如果含钙量较少的话,青少年容易患佝偻病,并且容易发育不良,因此初中教师要鼓励学生在这个阶段补足钙的吸收。通过这种紧密结合生活实际的教学方式进行化学讲解,学生容易对化学这门课程产生兴趣,继而更加积极的参与到课堂中去,从而专心的学习化学。

理论联系实际来培养学生化学学习的兴趣,还需要教师鼓励学生善于观察。学生容易对自己生活中的周围的事物产生兴趣,而化学是与生活紧密相连的一门学科,例如在学习有关水这部分内容时,教师可以让学生观察水的各种形态,水可能是液体,也可能是固体,还可能是气体。学生观察到水的这些形态时,会对其化学元素的构成产生兴趣,教师在这种情况下进行授课,效率就会得到提高。因此,理论联系实际,还需要初中化学教师通过鼓励学生观察的方式来培养学生的学习兴趣。

二、关注化学实验的作用

初中化学的学习兴趣培养,除了要求教师注重理论联系生活实际来促进学生学习兴趣的提高外,还需要教师关注化学实验的作用。初中化学是一门理论与实验并重的学科,实验是化学进步的重要条件,化学实验的教学有助于促进学生化学学习兴趣的提高,帮助学生更好地理解初中化学这门课程的特殊性与重要性。关注化学实验,也就是要求初中化学教师要注重实验教学。初中化学有许多的实验课题,这些实验具有相当大的趣味性,可以有效地培养学生对于化学这门课程的学习兴趣,因此,教师需要注重化学的实验教学。

例如在讲解有关燃烧的化学知识时,教师可以让学生分小组进行实验。在实验前,教师需要对学生进行安全操作的讲解,在学生了解了实验步骤后,再让学生进行小组的化学实验。燃烧本身需要可燃物、温度、氧气这三个条件,缺一不可,为了加深学生的印象,让学生更好地了解燃烧所需要的条件,初中化学教师在将学生分为小组后,可以让不同的小组进行对比实验。让一个小组用石头放在酒精灯上烧,一组用小木条,最后发现小木条燃烧,石头无法燃烧,这证明了达成燃烧这一结果需要可燃物;以此类推,初中化学教师可让两组学生分别用浸水的纸条和干燥的纸条放在酒精灯上燃烧,以此证明燃烧需要温度这一条件;最后,教师可以点燃两盏酒精灯,一盏酒精灯处于密闭的条件,一盏在空气中,以此证明了燃烧需要氧气。

通过这种让学生亲自动手参与的化学实验的教学,学生对于燃烧所必需的三个条件会印象深刻并且理解会更为透彻,化学实验本身所具有的趣味性对于初中化学教师培养学生的化学学习兴趣也是非常有益的。

三、教师自身的职业素养

初中化学教师除了通过理论联系实际,注重化学实验教学的作用来培养学生的化学学习兴趣之外,还可以通过加强自身职业素养这种方式来激发学生学习化学的兴趣。

初中化学本身包含的内容较多,学生学习起来容易产生困难,从而学习兴趣减弱,为了减少这种情况的发生,初中化学教师需要提升自己的专业素养。所谓专业素养既包括了教师本身教学所需要的化学专业知识,也包括了初中化学教师教学所需要的教师技能,如自如的谈吐、良好的教学姿态、本身所具有的优秀的人格魅力等等,对于这些职业素养,教师需要通过不断充电学习的方式来给予加强。例如,如果初中化学教师讲课把握不住重点,学生听起来就容易有一种雾里看花,水中望月的模糊感觉,因为听不懂而放弃这节课的学习,最终形成恶性循环。因此,教师需要锻炼自身讲课的技巧,善于抓住重点,授课时要条理分明,帮助学生更好地产生学习兴趣,调动学生的学习积极性。

第10篇

关键词: 化学史 中学化学 教学应用

一、问题的提出

近年来,中学化学教学中化学史的应用逐渐被重视,许多高等师范院校开设了化学史课程。对于中学化学教学中需要应用的化学史实,已有研究都以举例形式呈现,未能系统指出中学化学阶段涉及的化学史实。笔者在中学化学课程内容的基础上,将化学史实分四个部分,下面对化学课程内容涉及的化学史实进行论述。

二、化学学科的形成与奠基者

1.化学学科的形成

人类从用火开始,由野蛮进入文明,开始用化学方法认识和改造物质,人类用火烧制熟食、制作陶瓷、冶炼金属,逐渐学会酿造、染色等。早在公元前四世纪,我国有阴阳五行学说,认为万物的构成以金、木、水、火、土为基础,古希腊人提出的火、风、土、水四元素说,二者是古代朴素的元素观。公元前两世纪,炼丹术在古代中国盛行,后来传入欧洲,演化为炼金术,成为近代化学的雏形。

2.波义耳――把化学确立为科学

化学史学家把1661年作为近代化学的开端,因为这年有本对化学发展产生重大影响的著作问世,这本书是《怀疑派化学家》,它的作者是英国化学家波义耳(1627-1691),波义耳最大的贡献是给化学元素下了科学定义,他的科学成就还有对空气性质的研究、燃烧现象本质的研究、酸碱和指示剂的研究,波义耳被誉称“把化学确立为科学”。

3.拉瓦锡――近代化学之父

拉瓦锡(1743-1794),法国化学家,被称为“近代化学之父”,拉瓦锡的科学研究方法开创化学发展的新纪元,他了统治化学理论达百年之久的燃素说,建立了以氧为中心的燃烧理论,他提出规范的化学命名法,倡导并改进定量分析方法,验证了质量守恒定律,撰写了第一部真正意义的化学教科书《化学基本论述》。

三、原子分子论与元素周期律

1.道尔顿――原子学说

道尔顿(1766-1844),英国化学家,1808年道尔顿提出了原子学说,为近代化学的发展奠定了重要基础,在提出原子论的同时,确定原子量的测定工作,从而成为化学史上测定原子量的第一人,成为这一领域的拓荒者,引起当时欧洲科学界的广泛关注,测定各元素的原子量成为当时热门的课题。

2.阿伏伽德罗――分子学说

阿伏伽德罗(1776-1856),意大利物理学家、化学家,1811年阿伏伽德罗提出分子学说,在之后的50年里分子学说没有受到科学界的重视,尽管阿伏伽德罗做了再三努力,直到他1856年逝世,分子学说仍然没有为大多数化学家所承认,为了纪念阿伏伽德罗,把一摩尔某种微粒集体所含微粒数为阿伏伽德罗常数。

3.康尼查罗――原子分子论

康尼查罗(1826-1910),意大利化学家,1860年在德国卡尔斯鲁厄的国际化学家会议上,他用充分的论据证实了分子学说的正确性,康尼查罗的工作使原子分子论得以确立,当时因为不承认分子的存在,化合物的原子组成难以确定,原子量的测定和数据呈现一片混乱,原子分子论的确立使原子量测定工作走出困境。

4.贝采尼乌斯――元素符号

贝采尼乌斯(1779-1848),瑞典化学家,对化学的突出贡献是测定原子量和制定元素符号,他在近二十年的时间里孜孜不倦地从事原子量的测定工作,在化学发展史上写下光辉的一页,他首先倡导以元素符号代表各种化学元素,用化学元素的拉丁文名表示元素,这就是一直沿用至今的化学元素符号系统,他的元素符号系统公开发表在1813年由汤姆逊主编的《哲学年鉴》上。

5.戴维――发现元素最多者

戴维(1778-1829),英国化学家,19世纪初,戴维用电解法和热还原法制得钾、钠、镁、钙、锶、钡、硼和硅,证明了舍勒发现的黄绿色气体不是所谓的“氧化盐酸”,而是一种化学元素的单质。他将这种元素命名为Chlorine,中文译名为氯,使元素的种类增加了九种,是发现元素种类最多的科学家。

6.门捷列夫――元素周期律

门捷列夫(1834-1907),俄国化学家,于1869年发现元素性质随原子量的递增呈周期变化的规律――元素周期律,他根据元素周期律编制了第一个元素周期表,把当时已经发现的63种元素全部列入表里,从而初步完成使元素系统化的任务,此时还有许多元素没有被发现,他在元素周期表里留下空位,对某些未发现元素的性质作了预言,后来他的预言都得到证实。

四、化学重要原理的提出

1.化学热力学与动力学理论

盖斯(1802-1850),俄国化学家,热化学的奠基人,化学反应的反应热只与反应体系的始态和终态有关,而与反应的途径无关,即著名的盖斯定律。吉布斯(1839-1903),美国科学家,他奠定了化学热力学的基础,提出了吉布斯自由能。范特霍夫(1852-1911),荷兰化学家,在化学反应速度、化学平衡和渗透压方面取得了骄人的研究成果,1901年第一个诺贝尔化学奖授予范特霍夫。勒夏特列(1850-1936),法国化学家,1888年他提出了化学平衡移动原理(勒夏特列原理)。哈伯(1868-1934),德国化学家,发明了合成氨的方法,1918年获诺贝尔化学奖。

2.化学酸碱理论

波义耳提出了最初的酸碱理论:能使石蕊试液变红的物质是酸,能使石蕊试液变蓝的物质是碱。阿伦尼乌斯(1859-1927),瑞典科学家,电离理论的创立者,1887年提出了酸碱电离理论(阿伦尼乌斯酸碱理论):凡在水溶液中电离出的阳离子全部都是H+的物质是酸,电离出的阴离子全部都是OH-的物质是碱,他还研究温度对化学反应速度的影响,得出著名的阿伦尼乌斯公式,提出活化分子理论和盐的水解理论等,获得1903年诺贝尔化学奖。

3.有机化学理论

维勒(1800-1882),德国化学家,1828年他因人工合成了尿素,打破了有机化合物的生命力学说而闻名,使有机化学得到了迅猛发展。李比希(1803-1873),德国化学家,被称为“有机化学之父”,他发明和改进了有机分析的方法,准确地分析了大量有机化合物,提出了化合物基团的概念及多元酸的理论。凯库勒(1829-1896),德国化学家,有机结构理论的奠基人,1857年提出碳原子四价和碳原子间相互成链理论,1890年提出苯分子的结构式,推动了有机化学的发展。

五、化学微观世界的探究

1.原子结构理论

在道尔顿的原子学说基础上,展开了原子结构的研究。汤姆逊(1856-1940),英国物理学家,1903年他在发现电子的基础上提出了原子结构的葡萄干布丁模型。卢瑟福(1871-1937),英国物理学家,他根据α粒子散射实验提出了原子结构的核式模型。波尔(1885-1962),丹麦物理学家,于1913年建立起核外电子分层排布的原子结构模型。20世纪20年代建立的量子力学理论,使人们对于原子结构的认识更深刻,从而有了原子结构的量子力学模型。

2.分子间作用力与化学键理论

范德华(1837-1923),荷兰物理学家,范德华首先研究了分子间作用力,分子间作用力又称范德华力。科塞尔(1888-1956),美国化学家,1916年提出离子键理论。路易斯(1875-1946),美国化学家,提出共价键理论。鲍林(1901-1994),美国化学家,他提出共价半径、离子半径、电负性、杂化轨道等概念和理论,他撰写的《化学键的本质》被认为是化学史上最重要的著作之一,1954年因在化学键方面的工作取得诺贝尔化学奖。

六、结语

上述是中学化学课程内容涉及化学史实的系统总结,由于理论水平和篇幅限制,难免有所遗漏并且未能展开论述。化学史实应用在化学教学中具有极大价值,有利于中学化学和大学化学教学的衔接,对化学课程标准和教科书的编写有启示意义,从学生角度而言,可以激发学生的学习兴趣和探究欲望,使其了解化学学科发展的大致历程,加深学生对科学本质的理解。在实际化学教学中,要依据课程内容要求和学生的认知水平,把握好化学史实涉及知识理论的深度和难度,合理应用化学史进行化学教学。

参考文献:

[1]中华人民共和国教育部.普通高中化学课程标准(实验)[S].北京:人民教育出版社,2003.

[2]周公度.化学是什么[M].北京:北京大学出版社,2011.

[3]邱道骥.化学哲学概论[M].南京:南京师范大学出版社,2007.

第11篇

关键词:初中化学;课堂教学;游戏

引言

在新课程改革的背景下,游戏在教学中的作用越来越重要,它不仅能够激发学生学习兴趣,还能够将抽象知识具体化,复杂知识简单化。初中学生刚接触化学学科,尤其对化学抽象概念的学习容易产生困惑,单凭教师课堂枯燥地讲解,学生难于理解,很难激发学生学习化学的兴趣。因此,将游戏应用在初中化学课堂上具有重要的现实意义。采用游戏化教学能让学生在愉快的氛围中学习,在动中促思、玩中长智、乐中成才,更能培养学生“喜爱化学、学好化学”的心理。化学教师要用适合学生认知发展水平的游戏化教学模式指导教学,让初中生都能在化学的启蒙阶段拥有一段快乐的学习时光,为今后的化学学习打下坚实的基础。

一、利用趣味游戏来激发学生们的学习兴趣

初中阶段的化学是初中生系统性地掌握化学知识的启蒙阶段。这一阶段的化学集理论与实践于一体,开展的教学符合同学们的学习规律则能吸引他们的学习兴趣,这对学习化学这门学科开了一个好头,而且还能促使学生更主动地参与到化学的探究道路上来。笔者结合以往的教学实践得出,适当开展一些实验活动与互动游戏,让学生在玩中产生对化学学科的浓厚兴趣。比如,可采用分组实验合作或课堂演示生活化的现象指导学生展开探究,在教师的指引下将对化学学科的探究欲望调动出来。例如,在教学“燃烧”内容时,借助生活中最常见的酒精、汽油等展开始游戏教学,对它们燃烧的条件进行不同条件的设置,让学生仔细观察,然后师生再一起分析燃烧需要的条件,让学生都能自主探究出燃烧的知识,学生也更容易记住学到的这一知识点,而且还能使课堂教学收到较好的效果。

二、引入趣味游戏,激发学生兴趣

充满趣味的教学内容定能为学生留下深刻的印象,因此,营造良好的化学教学氛围是吸引学生注意力的基点,也是提升学生学习兴趣的关键。例如,在教学《离子》一节内容时,教师可以先提供一个密闭的盒子,让学生去猜测盒子里装的是什么物品。对学生而言,一个封闭的盒子也会让他们产生极大的探讨兴趣,大家都很好奇盒子里面装着究竟是什么。在这个游戏中,学生的猜测过程其实也是模型建构的过程。模型构建分为实物模型建构与思维模型建构。通常模型建构用在探讨物质的组成、物质的结构及特征等方面。像这样以游戏的方式进行新课的导入,将离子这一学习内容牵引出来,更利于让学生明白离子的知识是科学家通过建构模型的方式来得到的。激活学生的思维,让化学知识在学生的头脑中形成更深刻的印象。这样的教学既实现了新课的导入目的,而且还激发出了学生学习新知识的兴趣,使得课堂教学更具实效性、高效性。而且也为新课的学习做好铺垫。再如,在学习《金刚石和石墨》内容中,师生就“金刚石与石墨”的具体形态特征与性质学生开展充分交流,再借助多媒体课件教学向学生展示钻石图片,向学生介绍钻石的物质由来,深化教学效果的同时,更容易引起学生对新知识的学习兴趣。

三、设计游戏活动,加深学生记忆

这教学过程中,教师可以通过设计一些具有竞技性、趣味性以及内涵性的游戏活樱在充分调动学生参与的同时,加深他们对化学知识的印象。科学、合理地运用游戏方式开展教学能增强学生的竞技意识,使他们形成好的思想观念,进而更好地进行学习、生活,为今后的学习扎实基础。在设计游戏教学过程中,可采用问题抢答式的方式,亦或者采用辩论比赛等方式展开,主要目的是加深学生对化学知识的掌握程度,并不断挖掘学生的化学潜能服务的。例如,在学习《盐化学肥料》内容时,在学生对基础知识学习的基础上,教师再通过提问一些教学重难点知识,加深学生的记忆。例如,通过采用抢答的活动方式,对“硫代硫酸钠的化学式是什么?”“过滤的流程是什么?”等进行抢答,最快答出答案的学生加一分,答错的学生减分,最后统计分数,对优胜的同学给予一定的鼓励与嘉奖。这种通过以游戏和比赛为互动背景,把娱乐和化学学习巧妙的结合,不但巩固了学生的化学知识,也提高了他们的思考能力。

四、在游戏教学中展现化学实验的趣味性

实践证明,丰富多彩的游戏能激发学生的求知欲,因此,在开始讲授新知识时,结合教学内容,合理地组织一些游戏活动能提高化学教学质量。如在开展实验教学中,教师都喜欢将游戏融入其中,既活跃了课堂氛围,在很大程度上也能提高课堂教学效率。例如,在开展《元素周期表》这一章的教学内容时,就可以将游戏融入其中。一方面,化学元素众多,学生要想将重要的化学元素都记下来,需要花很长的时间;另一方面,化学元素的学习相对于实验而言,更会让学生产生枯燥乏味之感,在很大程度上削弱了学生对此节知识点的学习兴趣。所以,教师在开展化学元素周期表的内容教学时,为消除学生的枯燥感,可在课堂上开展游戏教学,用口诀或游戏的方式帮助学生记忆这些生僻、难以识记的化学元素。以游戏的教学方式开始化学元素的教学,可以减少学生记忆元素周期表的难度,进一步加强理论学习和实践探索,让教学更趋科学化、合理化。使教育学达到两全其美之目的。

总而言之,学习化学的过程是思维不断得到创新的过程,尤其是在开展实验教学时。在实验教学中有效运用游戏化教学模式,既能培养学生的动手能力,又能提高学生的思维能力。游戏教学对增强化学教学的趣味性与互动性,减轻学生的学习负担,提高教学质量发挥着不可估量的作用。因此,只要有效开展适合学生的游戏教学活动,定会使化学课堂教学达到寓教于乐的教学目的。

参考文献:

[1]谢敏,彭豪,钱扬义.国内外中学化学教育游戏设计研究进展[J].远程教育杂志. 2011(06).

第12篇

高中化学学科对于一些学生来说学起来是有些吃力的,化学成绩上一直处于低分水平,那么有哪些提高化学成绩的学习方法呢?下面给大家分享一些关于高三化学的复习方法,希望对大家有所帮助。

高三化学的复习方法一:善待课本,巩固双基,挖掘隐形关系

课本和教材是专家、学者们创造性的研究成果,经过长期、反复的实践和修订,现已相当成熟,书本里蕴含着众多科学思想的精华。据初步统计,中学化学所涉及的概念及理论大大小小共有220多个,它们构建了中学化学的基础,也就是说,基本概念及基本理论的复习在整个化学复习中起着奠基、支撑的重要作用,基本概念及基本理论不过关,后面的复习就会感到障碍重重。因此,必须切实注意这一环节的复习,讲究方法,注重实效,努力把每一个概念及理论真正弄清楚。例如对催化剂的认识,教材这样定义:"能改变其他物质的化学反应速率,而本身的质量和化学性质都不改变的物质"。几乎所有学生都能背诵,粗看往往不能理解其深层含义;假如我们对其细细品味一番,枯燥的概念就会变得生动有趣--我们可以思索一下"催化剂是否参与了化学反应?"对化学反应速率而言,'改变'一词指加快或是减慢?""'化学性质都不改变',那物理性质会变吗"等问题。经过一番折腾,对催化剂的认识就会达到相当高的层次。

再者,课本中的众多知识点,需要仔细比较、认真琢磨的非常多。例如原子质量、同位素相对原子质量、同位素质量数、元素相对原子质量、元素近似相对原子质量;同位素与同分异构体、同系物、同素异形体、同一物质等等。对课本中许多相似、相关、相对、相依的概念、性质、实验等内容,应采用比较复习的方法。通过多角度、多层次的比较,明确其共性,认清其差异,达到真正掌握实质之目的。

透析近几年的高考化学实验题,可以发现几乎所有试题均来自课本上的学生演示实验及课后学生实验。因此,在老师指导下,将十几个典型实验弄清原理,反复拆开重组,相信你定会大有所获。

二:经常联想,善于总结,把握知识网络

经过,高一高二阶段化学的学习,有些同学觉得个别知识点已学会。其实,高考考场得分,学会仅是一方面,还应总结归纳、经常联想,找出同类题解法的规律,才能更有把握不失分。也就是说,化学学习,重在掌握规律。有人说,化学难学,要记的东西太多了,这话不全对。实际上,关键在于怎样记。例如对无机化学来说,我们学习元素及其化合物这部分内容时,可以以"元素单质氧化物(氢化物)存在"为线索;学习具体的单质、化合物时既可以"结构性质用途制法"为思路,又可从该单质到各类化合物之间的横向联系进行复习,同时结合元素周期律,将元素化合物知识形成一个完整的知识网络。

有机化学的规律性更强,"乙烯辐射一大片,醇醛酸酯一条线",熟悉了官能团的性质就把握了各类有机物间的衍变关系及相互转化;理解了同分异构体,就会感觉到有机物的种类繁多实在是微不足道……这样,通过多种途径、循环往复的联想,不仅可以加深对所学知识的记忆,而且有助于思维发散能力的培养。实践证明,光有许多零碎的知识而没有形成整体的知识结构,就犹如没有组装成整机的一堆零部件而难以发挥其各自功能。所以在高三复习阶段的重要任务就是要在老师的指导下,把各部分相应的知识按其内在的联系进行归纳整理,将散、乱的知识串成线,结成网,纳入自己的知识结构之中,从而形成一个系统完整的知识体系。

三:讲究方法,归纳技巧,勇于号脉高考

纵观近几年化学高考试题,一个明显的特征是考题不偏、不怪、不超纲,命题风格基本保持稳定,没有出现大起大落的变化。很明显,命题者在向我们传输一个信号:要重视研究历年高考题!高考试题有关基本概念的考查内容大致分为八个方面:物质的组成和变化;相对原子质量和相对分子质量;离子共存问题;氧化还原反应;离子方程式;物质的量;阿佛加德罗常数;化学反应中的能量变化等等。

基本技能的考查为元素化合物知识的的横向联系及与生产、生活实际相结合。因此,对高考试题"陈"题新做,将做过的试题进行创造性的重组,推陈出新,不失是一个好办法。高考命题与新课程改革是相互促进、相辅相成的,复习时可将近几年的高考试题科学归类,联系教材,通过梳理相关知识点,讲究方法,归纳技巧,勇于号脉高考;因此在选做习题时,要听从老师的安排,注重做后反思,如一题多解或多题一解;善于分析和仔细把握题中的隐含信息,灵活应用简单方法,如氧化还原反应及电化学习题中的电子守恒等。再如已知有机物的分子式确定各种同分异构体的结构简式,采用顺口溜:"主链从长渐缩短,支链由整到分散,位置由中移到边,写毕命名来检验",这样就避免了遗漏或重复,十分快捷,非常实用。

四:把握重点,消除盲点,切实做好纠错

分析近几年的高考化学试题,重点其实就是可拉开距离的重要知识点,即疑点和盲点;要走出"越基础的东西越易出差错"的怪圈,除了思想上要予高度重视外,还要对作业、考试中出现的差错,及时反思,及时纠正;对"事故易发地带"有意识地加以强化训练是一条有效的途径。每一次练习或考试后,要对差错做出详尽的分析,找出错误根源,到底是概念不清原理不明造成的,还是非知识性的失误。对出现的差错要作记载,每隔一段时间都要进行一次成果总结,看看哪些毛病已"痊愈",那些"顽症"尚未根除,哪些是新犯的"毛病",从而不断消除化学复习中的疑点、盲点;然后因人而异的采取强化的纠错方式加以解决。这里就扼要介绍几种常见纠错做法,以供参考。

1、摘抄法:将纠错内容分类摘抄,在其题下或旁边加以注释;

2、剪贴法:将纠错题目从试卷上剪裁下来,按照时间、科目、类别分别贴在不同的纠错本上,并在题目下部或旁边加上注释;

3、在资料及试卷上纠错:有序整理资料及试卷,或按时间段、或按类别、或按科目地分门别类,加以注释;

4、将纠错还原到课本:将纠错点还原到课本上,在课本知识点相应处,用不同字符标记纠错点,同时在其下部或旁边或附一纸片,标出该点纠错题目位置、出处,错误原由及简易分析等内容。

高三化学一轮复习备考方法构建知识网络

高三化学复习元素及其化合物的知识,采用“知识主线——知识点——知识网”的方式,关注以下“3条线”,将元素及其化合物知识结构化,从而达到条理化、系统化、整体化。

(1)高三化学复习知识线

a)以某种具体物质为线索。金属单质(非金属单质)——重要化合物——主要性质——应用——对环境影响。其中对“性质”的复习应归纳为:物质类属的通性、氧化性、还原性、在水溶液中的行为等方面。“应用”则包括:物质制备、物质检验、物质的分类提纯、环保科研中的应用等。

b)以某种元素为线索。元素——单质——氧化物——对应水化物——盐,掌握元素单质及其化合物之间的转化关系。

c)以元素的化合价变化为线索。掌握物质的化学性质及规律,以及它们之间的转化关系。

(2)高三化学方法线

化学反应类型讲清反应规律:每一种元素的单质及其化合物,复习它们之间的转化关系时,应按反应类型注重讲清化学反应的规律,避免因死记硬背化学反应方程式而产生对化学方程式恐惧、混乱、乱用、误用等问题.常见物质间的反应规律有:氧化还原反应规律、元素周期规律。

抓好“三个结合”

高三化学元素及其化合物知识与基本理论、实验和计算密切联系,在复习高三化学元素及其化合物时要将这三块内容穿插其中,使元素及其化合物与理论、实验、计算融为一体。

(1)与基本理论结合

在复习高三化学元素及其化合物知识时,运用物质结构、元素周期律、氧化还原、化学平衡等理论加深理解某些元素化合物知识,同时又能加深对基本理论的理解并灵活运用。

(2)与实验结合

高三化学是一门以实验为基础的学科。复习元素及其化合物时,必须结合一些典型实验进行教学,不但能提高学习兴趣,而且能加深对知识的理解和运用。

(3)与计算结合

高三化学复习元素及其化合物的性质时,将定性深化为定量是必不可少的,与计算结合,既巩固加深对物质性质的理解和运用,又可提高学生的分析和计算能力。

总结规律,突出重点

(1)在复习高三化学主族元素时,从相似性、递变性、特殊性入手,帮助学生总结规律。

(2)适时总结规律,有利于突出重点,强化记忆。

高三化学答题的加分技巧一、基础概念要清晰

化学这门科目很多基本概念都是比较难懂的,会有很多专业名词和一些方程式。但这些都是最基础的知识,只有打好基础复习才会更顺利。因而,平时考生就要复习好这些基本概念,对于一些名词、术语考生可以编一些口诀来帮助自己更好的记住。对于很多相似的名称,考生要擅于去区分,分析这些化学反应或者是元素之间的不同,只有找到了不同之处,考生才能更好的记住。有不懂的地方,考生更是要找老师问清楚,不要让不懂的知识点越积越多。

二、进行题型分析

考生除了教材上面的知识点要牢记之外,也要多多做题去巩固。考生每拿到一种题的时候,都要去分析解题的思路,运用合适的方法和途径去解题。当然首先的一点就是考生要明白题目当中考察了哪些知识,然后才能用规范、科学的文字进行表述。那平时考生就要多多训练自己读题的能力了,也就是要看懂关键词,看看具体考察那点知识。

三、训练自己的答题技巧

要做好各种题型,考生就要多多训练自己的技能。例如训练自己实验操作的能力,毕竟化学这门科目,少不了做实验。平时考生就要把握实验操作的每个机会。按照老师实验的每个步骤,做好每一步,不能出错。实验做完之后,考生就要把实验操作的目的、操作步骤、原理等等这些知识点都写出来,有空的时候就要反复看。也能使考生的理解知识点,更快的掌握做题的技巧。

四、注重错题分析

第13篇

一、化学课,要让学生学得愉快,就要“有意思”,激发学生兴趣

兴趣,是学生学习的原动力,对学习感兴趣,学生自然学得愉快。如何让学生对化学感兴趣呢?我想,课要上得有意思才行,在上课时,穿插一些与化学课相关的名人轶事,就可以使我们的课堂变得趣味盎然。

比如,我在讲“元素周期表”时就给学生讲了门捷列夫的故事。门捷列夫是俄罗斯化学家,他在写作《化学原理》一书时,遇到了无机化学缺乏系统性的问题,这个问题深深困扰了他。怎么办呢?门捷列夫没有被困难吓倒,他开始搜集关于这些化学元素的资料,经过艰苦的努力,他将前人的研究成果整理到一起,进行对比、归类、分析、研究,他制定了许多小卡片,将每一种化学元素的情况标注在上边,通过反复的研究,终于发现了化学元素之间的共性和特性,按照这些特征,门捷列夫发现了化学元素周期变化的规律性,于1869年发表了元素周期律,前后花费了将近二十多年。故事讲完后,我让学生静心思考,从门捷列夫身上我们可以学到哪些优秀的品质?然后让学生进行交流,学生都积极回答。

通过讲故事,不仅可以让枯燥的课堂变得生动、有趣,还可以陶冶学生情操,对学生进行意志品质的教育,使学生正确面对化学学习中的困难和挫折,不向这些困难和挫折低头认输,而是向这些榜样人物一样,愈挫愈勇,不断前进,最终收获学习的成功和快乐。

二、化学课,要让学生学得愉快,就要“有问题”,激发学生求知欲

化学课,要让学生学得愉快,就必须引导学生认识到每个人知识的获得、经验的积累,德行的养成,都是必须由自己完成的,是任何人不能代替的,学习是自己的事情,必须养成主动学习的态度。有了这样的学习态度,学习才会有源源不断的动力。而养成主动学习的态度就要保持旺盛的求知欲。每个人都有求知欲,这是人的一种内在精神需要。有了旺盛的求知欲,就会对学习产生浓厚的兴趣。让我们燃起求知的热情,使学习成为每天的享受,成为快乐的事情。当我们解决了一个难题,学会了一种做事的技能,就会感受到成功的喜悦、收获的快乐。能够享受学习的人,兴趣会成为学习的动力,就能自觉地、积极地追求知识。

在化学教学中,为了燃起学生的求知欲,我经常用的方法是提出一些有价值的问题让学生进行自主探究。比如,在讲到“关于溶质的质量分数的计算”时,在建立溶质的质量分数的概念之后,为了让学生了解,化学计算不等于纯数学的计算,在计算时,要依据化学概念,通过计算不断巩固和发展化学概念,为此,我设置以下问题让学生思考探究:

(1)100千克水里加入20千克氯化钠,溶液中氯化钠的质量分数为20%,对不对?为什么?

(2)在20℃时溶解度为21克,则它的饱和溶液中溶质的质量分数是21%,对不对?为什么?

(3)100克10%的NaCl溶液和50克20%的NaCl溶液混合,得到150克溶液,溶质的质量分数为15%,对不对?为什么?

在学生练习后,由教师引导学生认识练习的正误,并对出现的错误加以纠正。这样学生就对一些容易混淆的问题有了更加深入的理解。

又如,还是这节课,我引导学生根据教材的例题自行归纳出关于溶质的质量分数的计算的几种常见类型,学生积极性都很高。最后经过学生的讨论和交流,我们得出主要有以下四种类型:已知溶质和溶剂的量,求溶质的质量分数;计算配制一定量的、溶质的质量分数一定的溶液,所需溶质和溶剂的量;溶解度与此温度下饱和溶液的溶质的质量分数的相互换算;溶液稀释和配制问题的计算。

第14篇

一、在高中生物教学中有效渗透化学知识

高中生物课本蕴含着丰富的化学知识,但受传统学科教学的束缚以及应试教学工作的限制,教师在讲解到生物知识时,遇到化学知识往往采用一笔带过的方法,并未深入讲解。在不少教师看来,高中生物中的化学知识仅仅是帮助学生理解生物知识的一种方法,教师可以通过其他方式帮助学生理解生物知识,无需过多地占用课时来进行这方面知识的讲解。其实,在高中生物教学中适当渗透化学知识,不仅能够帮助学生理解生物知识,还能够培养学生的综合素养,提升学生跨学科运用和整合能力。

如在讲解在生物知识点“碳是组成生物体的最基本的化学元素”这方面内容时,可以将化学学科中的“碳元素”知识点有效渗透进去。教师可以引导学生先对“碳元素”在化学学科中的概念、分类、性质、特点等进行全面梳理,在梳理的基础上,注重联系化学元素与生物体之间的内在关联。通过这种教学渗透,学生在分析与梳理化学知识的过程中,内化化学元素在生物体之间的关联性,理解生物体的发展演变。再如,在生物教学中,“光合作用”是比较关?I的内容体系,若教师单纯依靠生物知识进行讲解,学生在理解“光合作用”时很难深入地理解内在的关联。但如果将“光合作用”与“氧化还原反应”有效地联系起来,则能够深化这方面知识的关联性,使学生全面理解植物光合作用的过程、能量之间的转换和光合作用中的电子转移等。

总而言之,在高中生物教学过程中,涉及很多的化学知识以及化学内容,教师只有注重不同学科之间的融会贯通,注重不同学科之间的融合与联系,才能全面有效地提升学生的跨学科能力,才能提升学生的知识迁移的能力。

二、在高中生物教学中渗透物理知识

在高中生物教学中,物理知识也是非常关键的教学内容。虽然不少物理知识并非当学期的教学内容,甚至是一些高年级才会涉及的内容,但这并不影响高中生物教学中物理知识的渗透和融入。相反,通过教师的提前介入与分析,能够为学生下一阶段的物理知识的学习打下良好的基础。在高中生物教学中教师要渗透物理学科,引导学生运用已学的物理知识分析生物知识,提升学生的知识整合能力。

例如,在生物教学中,DNA检测是非常重要的内容,人们在利用DNA进行相关疾病的检测时,利用的是放射性同位素、荧光分子标记等。这些内容涉及近代物理学中的同位素、放射性、半衰期、探测射线的依据。在高中生物学科建构中,这部分内容属于高二阶段的内容,但所涉及的物理知识则是高三阶段的物理内容,但这并不影响知识之间的渗透。相反,通过提前的物理知识渗透,能够帮助学生形成一个预先的概念认知,使学生结合对高二阶段生物知识的理解,深化感知未来可能需要学习的物理学科。

此外,生物学科是一门实践性非常强的学科。在高中生物的教学过程中,教师还需要注重培养和优化学生的知识运用能力,将生物知识运用到社会实践中,更好地指导社会实践。学生生物知识的实际应用能力,往往能够通过对物理知识的分析与应用得到体现。比如,在生物教学中“耕作松土”的意义分析时,教师可以引导学生将这方面的内容与物理学科中的毛细现象结合起来,引导学生积极思考,构想更加科学的松土方式。

第15篇

一、学情分析

学生对元素、分子、原子的原有认知情况.

1.通过日常生活获得

学生关于元素、分子、原子的认知,在日常生活中和学习过程中都有所接触,很多学生在广告中肯定听过“元素”.这些认知对于学生学习“构成物质的奥秘”都具有一定的铺垫,但不是基础.

2.媒体网络获得

对于广告中或者说生活中的一些科学用语,学生(包括成人)都是在广告或生活的情境中理解或者加以想象,基本上没有科学性,或者说没有科学的严谨性,逻辑性等,但由于广告的视听效果、生活的多维性往往能给学生(包括成人)一些具体的形象化比方、比喻等,所以我认为生活中学生接触到的“元素”这个词语可以作为学习的铺垫,但不能作为化学概念学习的基础.

3.其他学科学习获得

八年级物理中学生学习过分子、原子,是从物理的角度呈现给学生,主要是引导学生研究物体的运动、物质的状态变化等物理知识,所以学生在物理学习中也没有得到有关分子和原子的理论概念,对于我们将要讲解的“构成物质的奥秘”只能起铺垫作用而不能作为基础来拓展.

前概念是学生在接触科学知识前,对现实生活现象所形成的经验型概念.由于中学生的知识经验有限,辩证思维还不发达,思维的独立性和批判性还不成熟,考虑问题容易产生表面性,看不到事物的本质,易形成一些错误的前概念.这些错误概念对概念的正确形成极为不利,它排斥了科学概念的建立,是教学低效率的重要原因之一.

二、教材分析

化学基本概念不仅是学习元素化合物知识以及进行化学实验和计算的重要前提,而且是培养学生科学探究能力以及分析和解决问题能力的重要基础,同时也是升华学生情感态度和价值观的重要载体.如果忽视基本概念教学,会导致学生对概念理解不深不透,势必造成学习困难.物质构成是“双基”的重要组成部分,课程标准指出,初中化学基础知识和基本技能是构成学生科学素养的基本要素,是为学生的终生学习和将来适应现代社会生活打好基础所必需的.所以,元素原子分子的教学对于学生十分重要,它既是今后学习的理论基础,又是必不可少的工具.

三、教学思路

1.引导

初中化学教材,在序言中就出现元素、分子、原子的字句.因此一开始我们就可以抓住教材的这种安排在序言的教学中渗透元素原子分子的知识,而不是有意地回避这些字句.这时可以把它们作为一个名词来处理,借此引导学生回忆生活中接触到的有关元素符号的知识,介绍化学元素符号,让学生先有一个感性认识.

2. 渗透

第一、二单元出现的化学式可以要求学生先记下来, 正式的对元素、分子、原子的教学,我是从教材第三单元开始的.第三单元课题1,水的组成涉及水是由氢元素和氧元素组成的.学生对电解水的实验印象非常深刻,往往就会说水是由氢气和氧气组成的.而这节课对于“元素”进行解释基本上是徒劳的,可以模糊地告诉学生氢气是氢元素组成的,氧气是氧元素组成的.

3.铺垫

第三单元课题2,分子、原子在这个课题中正式介绍,在这个课题中我们要着重给学生理清什么是分子,什么是原子这两个抽象概念.教学中可适当补充简单生动的演示实验,让学生更容易理解分子特点,激发学生学习化学的兴趣.另外,这一课题中教材设计图文并茂、形象生动,如果能结合多媒体课件,借助教师设计的有关动画,可以使抽象知识具体化、复杂知识明了化,这样学生便能体验到化学变化实际上是分子拆成原子、原子再重新组合成新物质分子的过程,为深刻理解化学变化、物理变化、分子、原子等重要概念做了铺垫.