美章网 精品范文 数学思维的主要类型范文

数学思维的主要类型范文

前言:我们精心挑选了数篇优质数学思维的主要类型文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。

数学思维的主要类型

第1篇

〔关键词〕小学;六年级;应用题;解题错误;数困生;数优生

〔中图分类号〕G44 〔文献标识码〕A 〔文章编号〕1671-2684(2016)06-0012-06

一、问题提出

数学学习不良(MD)是学龄儿童中较为普遍的学习不良类型。美国一项大规模研究发现:约有6%的小学生和初中生被诊断为MD,另外约有5%的儿童被诊断为有阅读困难(RD)[1]。在另一项研究中,美国的教师报告:在他们的学生里,有26%的学生由于数学学习困难而接受特殊教育[2]。虽然数学学习困难对学生来说是普遍的,但是,在学习困难研究领域,与阅读困难研究相比较,关于数学学习困难的研究是较少的[3]。

应用题学习在小学数学学习中占有非常重要的地位,它是初等数学学习中的重点和难点。许多研究表明,大多数数学学习困难学生都表现为在解应用题上有困难,而且这一问题随着年级的升高会越来越严重[4]。

近一二十年来,国外相关领域的研究兴趣逐渐转向对有数学学习困难学生的认知分析和教育干预,其中尤以研究数学学习困难学生问题解决过程为这个领域的热门话题。原因是它可以帮助数学学习困难儿童更好地完成学校教育的任务,而且有助于更深入地揭示学生学习和解决问题的过程,对认知心理学和教育心理学的发展都有促进作用。

综合关于数学应用题解题影响因素的研究成果,可以总结出如下一些结论:当应用题中包含了一些额外的信息或者出现了语句陈述不一致的条件时,学生的解题表现就会较差;数学解题图式的形成和发展直接影响学生对问题类型的识别和问题的正确表征;元认知因素则贯穿学生解应用题的全过程,影响学生的解题行为[5-8]。

但另一方面,我们也可以看到,目前国内应用题解决的研究主体主要包括心理学科研人员和教学一线的数学教师。心理学科研人员关注的领域比较有限和微观,而教师的科研报告往往比较宏观和经验化,二者存在脱节。因此,本研究拟通过现场实验,采用目前已被证明比较有效的错误类型分析方法,比较数优生与数困生的共性和差异,从而得出既有科学的理论基础又直接指向实践的结论。

在课题组的前期研究中发现,在面对不同的试题类型、题目类型和难度附加条件时,四年级和五年级的数优生和数困生既表现出了阶段性特点,又表现出连续性特点。因此,本研究拟以六年级学生为研究对象,继续探究进一步的规律。

本研究的基本设计为:2(学生类别:数优生、数困生)*2(试卷类型:常规试题、非常规试题)*3(题目类型:变化题、合并题、比较题)。非常规试题中包含四种难度类型(隐蔽条件、概化思维、具体化思维、不一致比较)。学生类型和试卷类型为被试间设计,题目类型为被试内设计,难度类型为不完全被试内设计。最后测量的因变量为所分错误的类型和数量。通过分析数优生和数困生在不同试卷类型、不同题目类型和不同难度类型之下的错误类型和数量差异,探讨小学六年级学生数学应用题错误的特点和影响因素等。

二、研究过程

(一)被试的选择

在某小学六年级随机选取由同一数学教师任教的两个自然班作为实验班。根据数学学习困难的操作定义:学生的数学学业成绩比根据其智力潜能达到的水平显著落后,而且他们可能同时在学习、品德和社会性上存在问题。这样,本研究选择数困生的标准为:(1)本学期三次重要数学考试的平均成绩居全班后20%;(2)让科任教师根据MD的操作定义和特点,对学生作出综合评价,指出班内哪些学生属于MD;(3)满足两条排除性标准:排除智力落后(IQ130);排除明显躯体或精神疾病。于是,在两个班中各挑出10名数困生(人数:男,10;女,10)。同时,相应选出了各10名数优生(人数:男,11;女,9)。共得到被试40人。

(二)研究材料和工具

1.智力量表

采用张厚粲等人修订的《瑞文标准推理测验》(Ravcn’s Standard Progressive Matrices)。该量表经国内多次使用,已被证明有较高的信度和效度。

2.数学成绩

采用被试本学期三次重要考试的数学成绩的平均分为学生类别的划分指标。

3.应用题测验

在小学阶段,学生接触到的算术应用题主要分为变化题、合并题和比较题三种类型。据此,自编小学数学应用题两套(A卷和B卷),经小学六年级的数学教师共同讨论和小规模试测,删除了过难的题目和没有学到的内容,并对题目的文字表述进行了较大修改,最后每套各保留了10道相对应的题目。其中1、2、4是变化题,3、6、8是合并题,5、7、9、10是比较题。

A卷是常规类型题,即问题表述与教材和平时练习题目相同。B卷的题目在题目内容、基本数量关系和计算难度上与A卷保持一致,但题干表述与常规类型题目不同,这无疑增加了题目的难度。具体而言,与A卷的相应题目相比,在B卷的10道题当中,1、8题包含了隐蔽条件,2、6题增加了对概化思维能力的考查,3、4题增加了对具体化思维的考查,5、7、9、10是比较类应用题中的不一致型问题。隐蔽条件是指对题目中的数量关系不以直接的形式呈现,如7天以“一周”这个词来代替。概化思维意在考查学生是否形成了整体概念,如在第二题(同学们去公园划船,三年级比四年级少去18人,少租了3条船。问平均每条船坐几人?)中,如果学生说由于不知道三年级和四年级各自有多少人,无法解答此题,则意味着学生没有把这两个班级作为一个整体来看,没有充分理解题意。具体化思维是考查学生在解决实际问题上的能力。根据文字表达和数量关系是否一致可将比较问题分为两类:一致问题和不一致问题。一致问题即问题中的关键词与正确的解决计划相一致,比如:小明有5个苹果,小强比小明多1个苹果,小强有几个?关键词是“多”,而正确的解法也是加法;不一致问题即问题中的关键词与正确的解题计划不一致,比如:小明有5个苹果,他比小强多1个苹果,小强有几个?关键词是“多”,正确的解法却是减法。这与小学生的语意理解能力有关联。一致题与学生思维习惯和平时练习相同,不一致题对小学生而言则增加了解题的难度。

在每一道应用题下面有五个小问题,分别是:(1)你认为已知条件充分吗?给出了三个备选答案:刚好充足、缺少条件、充足但有多余条件。(2)你认为解这道题的关键是什么?(3)列式计算。(4)列竖式、画图、演算等的区域(专门预留了一定的空间)。(5)如果你不会也没有关系,告诉我们原因是什么?这五个问题拟从学生的审题、找到解题关键、列式和结果的计算等方面考查小学生的解题过程。同时,要求做题过程中写出尽量详尽的步骤报告,包括所有演算、推理过程。解题前后的问题设置都是为了在大样本的测验中尽可能地外化解题的思维过程。

正式施测前的小规模预测表明两套题目都具有较好的区分度。

(三)研究程序

1.自编数学应用题测验的施测

两个班同时进行测验,随机选取一个班施测A卷,另一个班施测B卷。每个学生一份测试题,独立完成,时间为50分钟。指导语中强调不是考试,是为了消除学生的紧张感,以利于更好地解题。正式计时前先由主试以一道应用题的解答为例详细讲解做题要求和基本步骤。测验时,每班都有一名主试(心理学专业的硕士研究生)和本班的班主任在场维持秩序,以保证测验的顺利进行。

测验后根据每道题目中五个小问题的回答情况统计所犯错误的类型和各类型错误的数量。

2.以自然班为单位进行瑞文智力测验

同时,查阅学生成绩档案,选取被试本学期三次重要数学考试成绩,以平均分作为学生数学能力的标准;访谈每个班的数学科任教师,请他们根据MD的操作定义确定数困生,并了解学生的基本情况;根据同样选择标准确定数优生。

以自然班为单位全体施测是为了营造自然氛围,避免单独抽出数优生和数困生带来的实验效应。智力测验和数困生、数优生的选择最后进行,并要求该班数学教师回避测验整个过程等,避免实验者效应和教师期望效应。

(四)数据处理

用SPSS19.0统计软件包对收集的数据进行处理和分析。

三、结果与分析

(一)错误类型统计

在本研究中,小学生解决应用题所犯的错误可总结为七种类型:第一类是审题错误,指将条件充足的题目错误地判断为条件缺乏或条件多余,从而没有作答;第二类是转换错误,指由于对第一步表示关系的运算产生了错误的表征,因而运算用了相反的运算(即应该用加法时用了减法,应用减法时用了加法,应用乘法时用了除法,应用除法时用了乘法);第三类是目标监控错误,指错误理解题目要求、只算了一步或只用了一个条件;第四类是计算错误;第五类是知识错误,指学生把不相关的数字进行运算;第六类上数字抄写错误,属于粗心或马虎;第七类是什么也没有作答的,原因比较复杂,可能是难度过大,根本不会无法下手,也可能是时间分配不合理没能做完。也就是说,“没做”的错误应该反映的是认知策略搜寻和元认知策略的缺失。

这七类错误除“没做”反映整体应用题解题能力最低外,其余六类按照其对未能完成题目的严重程度从高到低的大致顺序为:审题错误、转换错误、知识错误、目标监控错误、计算错误、数字抄写错误。越排在前面的错误越反映出学生对题目的理解越差,对题目的把握越表浅。

(二)数优生和数困生的错误分析

从两类学生在常规试题(A卷)上所犯错误的总数来看,相对前期研究的四、五年级而言,六年级数困生与数优生的错误都非常少,甚至出现了在较简单的题型上数优生的错误数略微高于数困生的情况。这表明,对于六年级的学生而言,A卷已非常简单,数优生、数困生都能较好地完成,数优生甚至出现了马虎、轻视的情况。

较少的错误中,在变化题和合并题上主要犯目标监控错误,在比较题上主要为没做和犯计算错误。

从两类学生在非常规试题(B卷)上所犯错误的总数来看,数困生的错误非常显著地多于数优生,统计检验的结果分别为χ2(1)=14.7275,p=0.000,χ2(1)=6.429,p=0.011和χ2(1)=9.000,p=0.003。

在三类题型上的卡方检验结果表明,学生类别与错误类型的关联均不显著。变化题:χ2(4)=5.194,p=0.268;合并题:χ2(3)=2.910,p=0.406;比较题:χ2(5)=7.143,p=0.210。这表明,对于B卷而言,六年级不同类别学生的错误的特点没有显著性差异。

题目类型与错误类型的卡方检验结果表明,χ2(10)=44.201,p=0.000,二者有非常显著的关联,即学生在不同类型题目上所犯错误的特点有显著不同。

结合具体数据可以看出,在变化题上主要是犯审题错误和没做,在合并题上犯目标监控和知识错误较多,而在比较题上没做和知识错误占了相当的比例。

从所犯错误的总数来看,与前期研究中五年级在同样试题中的表现相比,数优生所犯错误的数量有明显下降,但数困生只是总体略有下降。

对数优生而言,附加条件类型与错误类型关联非常显著(χ2(12)=42.689,p=0.000)。主要体现为“隐蔽条件”下的“知识”错误,“具体化思维”上的“目标监控”错误,“不一致比较”题上的“没做”,不过数量较小。

对数困生而言,附加条件类型与错误类型也存在非常显著的关联(χ2(15)=51.334,p=0.000)。除在“概化思维”上犯“审题”错误较多外,其他条件下的特点与本年级数优生相同。

四、讨论

针对六年级数优生与数困生在应用题解决过程中可能存在的试题适应性、难度适应性和错误类型的共同特点和差异情况等进行了详尽分析,主要是为了通过对数优生与数困生的比较,发现六年级学生应用题解题能力的总体特点,为该年级阶段小学数学应用题教学,特别是为数困生的补救训练提供参考。

第一,从A、B两卷的错误总数看,在常规试题上,六年级数困生与数优生的错误都非常少,错误数不相上下,表现出了“高限效应”,试题没有了良好的区分度。在非常规试题上,数困生的错误显著地多于数优生。可见,到了六年级,数优生、数困生的差距主要体现在非常规试题上。也就是说,如果说常规题目可以通过思维成熟、年级升高和不断重复接触而自然提高的话,那么包含附加条件的非常规题目训练对于六年级数困生还是必须加强的。

第二,从不同题型看,在A卷中,数困生与数优生在变化题和合并题上主要犯“目标监控错误”,在比较题上主要犯“计算错误”和“没做”。一方面表明,六年级学生已全面掌握三种题型的常规解答;另一方面表明,目标监控、时间分配的元认知失误和能力欠缺依然存在。

在B卷上,六年级两类学生错误的特点一致,表现为变化题上主要是犯“审题错误”和“没做”,在合并题上犯“目标监控错误”和“知识错误”较多,而在比较题上“没做”和“知识错误”占了相当的比例。这一特点与前期研究中的五年级非常相似,但六年级“没做”的比例较高,显示了时间分配的不足和解题能力,特别是解比较题能力上的欠缺。

第三,从不同的附加条件看,与前期研究中的五年级相比,六年级数优生所犯错误的数量有明显下降,但数困生只是总体略有下降。这进一步验证了关键时期的推测,可以看出五年级没有得到很好训练的数困生在升入六年级后依然不会有太大提高。

对六年级数优生而言,主要体现为“隐蔽条件”下的“知识错误”,“具体化思维”上的“目标监控错误”,“不一致比较”题上的“没做”,不过数量较小。对数困生而言,除在“概化思维”上犯“审题错误”较多外,其他条件下的特点与同年级数优生相同。可见,在相应题型的主要错误类型上,六年级学生基本是一致的,只是数困生依然没有很好地解决概化思维的问题。

五、结论

第一,测题类型上,六年级学生在常规应用题上表现出“高限效应”,非常规试题训练对于数困生尤为重要。

第二,题目类型上,常规试题中面对三种题型的目标监控和元认知能力需要加强;而非常规试题中对于变化类应用题要防范“审题错误”和“元认知策略缺失”等,合并类应用题要加强“目标监控错误”和“知识错误”的预防,比较题主要在于重视认知策略和元认知策略的提高问题。

第三,从思维能力训练上,六年级之前是相关训练的关键时期。针对全体学生,特别是数困生需要全面加强概化思维和具体化思维训练、“不一致比较”题目训练和元认知能力培养。

参考文献

[1]Ginsberg H P. Mathematics learning disabilities:a view from develop- mental psychology[J]. Journal of Learning Disabilities,1997,30(1):20-33.

[2]McLeod T M,Armstrong S W. Learning disabilities in mathematics:skill deficits and remedial approaches at the intermediate and secondary level[J]. Quarterly,1982,17:169-185.

[3]Ginsburg H P. Mathematics learning disabilities:A view from developmental psychology[J]. Journal of Learning Disabilities,1997,30:20-33.

[4]Diane P B,Brain R B,Donald D H. Characteristic behaviors of students with LD who have teacher-identified math weakness[J]. Journal of Learning Disabilities,1999,33(2):168-177.

[5]李晓东,张向葵,沃建中. 小学三年级数学学优生与学困生解决比较问题的差异[J]. 心理学报,2002,34(4):400-406.

[6]Fuchs L S,Fuchs D. Mathematical problem-solving profiles of students with mathematics disabilities with and without comorbid reading disabilities[J]. Journal of Learning Disabilities,2002,35(6):563-573.

[7]张庆林主编. 当代认知心理学在教学中的应用[M]. 重庆:西南师范大学出版社,1995.

第2篇

关键词:思维类型;思维方法;原则

中图分类号:G640 文献标志码:A 文章编号:1674-9324(2014)03-0113-02

“思维类型”是一个通用概念,大量学者都对其进行了研究。事实上,明确区分思维的类型对教育来说具有重要的实际意义。为了更好地指导大学生的学习,增强他们的创新能力,本文从新的角度对思维类型进行分类,从四种思维类型出发给出学生的学习方法,特别对数学思维方法展开讨论,最后再给出创造性思维的彻底性原则。

一、思维类型及其对教育方法的启发

一般来说人们思维分为下述四种类型:接受快且深刻,接受快但肤浅,接受慢但深刻,接受慢且肤浅。当然最好的是接受快且深刻这种类型,这种类型的人往往自小就表现出天才模样,他们大都被称为是神童。可惜的是,他们在赞扬声中成长,很容易养成骄傲情绪,久而久之他们就不习惯于“艰苦研究”,最后变成平庸之人。王安石的《伤仲永》写的就是这种情况。所以对第一种类型的学生,我们对他们的爱护首先就是不要多表扬他们(例如各地过分吹捧高考状元是不明智的做法),其次对他们要多加督促,让他们养成艰苦学习习惯。列宁小时候聪明异常,他往往很快就完成作业,然后就嬉闹不止。他的父母很担心,怕他今后不会踏实学习,除了教育他以外,还时刻注意他。有一次列宁看到他的妹妹坐在钢琴边,不停地弹奏一首乐曲,花了许多小时,才把它弹得正确。为此列宁感悟道:做任何事情,没有坚毅品质是不行的。列宁的父母知道这件事后才放心,他们知道列宁已经懂得养成勤劳习惯的重要性。第二种类型(接受快但肤浅)的人,他们平常的表现最容易使人迷惑:许多复杂的问题他们一听就懂,可是他们自己做起来却经常出错。他们的家长和老师都误认为这是由于“粗心”造成的,除了告诫他们要细心以外,家长、老师(甚至他们自己)对这种现象都不在意。举一个例子,初中学生刚学习有理数时,写负数时往往会遗漏负号,当你向他指出时,他立刻就知道是自己错了。人们大都认为这是粗心的原因,殊不知是他在他的意识里还没有真正接受负数这个概念,也就是说他虽然接受了负数概念(也许很快就接受了)但是却很“肤浅”,他的潜意识里并没有它的“真正”位置。因为引导学生思想深化是一件困难的工作,所以对于接受快但肤浅的学生,我们也许更应该留心。除了教育他们不要骄傲(这是由于他们接受快而造成的错误)以外,还要训练他们的思维,让他们养成深思的习惯。(顺便提一下,怎样培养学生养成深思习惯,如同怎样提高学生的写作能力一样,至今都尚未找到特别行之有效的办法)第三种类型,即接受慢而深刻,在某种意义上它才是最好的一种类型。领会深本是探索一切知识的必要因素,可是他具有这种优越品质而不觉,有时他还为自己接受慢而苦恼,这样他对学业从不掉以轻心,为了克服自己接受慢的缺点,他总是“笨鸟先飞”,这样在漫长的学习生涯中,他养成一种坚忍不拔的品质,这又是一个获得成功的必要条件。第三种类型的人“天然”地具备了成功的两个最重要的因素,所以大部分在学术上有成就的人都来自于他们。据说牛顿、爱因斯坦小时候都很“笨”,倘若真是这样,这便是上面论述最好佐证。另外的例子是真人真事,20世纪伟大的数学家吉伯特(1862—1943),他接受新的思想很慢,但一经接受,在运用和进一步发展这些思想上,就没有人能和他比拟了。至于第四种类型的人,虽然他们在学业上很费力,但他们的成功机率并不比第一、二种类型的人要少,甚至还要大于第二种类型的人。这种人只要不放弃努力,那么在他艰难的学习过程中,自然会养成一种深刻钻研的禀性,此是“勤能补拙”之谓也,这正是一切在学术上获得成就的人所要必备的主要品质。明末清初的一位历史学家谈迁,小时候很愚笨,记性差、反应慢,他对自己所读的书籍很难弄懂,他很苦恼,不过他锲而不舍,经常读书到深夜,由于长期的努力,他终于大彻大悟,从此他便突飞猛进,成为那个时代最有学问的人之一。金庸小说《射雕英雄传》里的郭靖大概就是这种类型人的最好写照。总之,无论是哪种类型都有成功希望,只不过有的开始要多费点力气而已。“聪明”并不是人成功的不可缺少的条件,最重要的是人的刻苦和坚忍,而且随着人们的成长,差的类型在不断刻苦努力下,也会迅速朝着最好类型转化,李白说“天生我材必有用”,是千真万确的。

二、数学思维方法和数学学习方法

在一切学科中,数学是一门最重要而且最奇怪的学科。它研究的问题似乎虚无飘渺,并不接触现实世界,但却有莫名其妙的大功效。麦克斯韦尔认为,研究问题时首先要引入数学概念,以他的名字命名的著名方程就是以这种方法推导出来的。狄拉克也认为,应该遵循数学方向前进,因为“正电子”也满足以他的名字命名的方程,所以他预言“反物质”正电子的存在,几十年后人们果然在宇宙射线里发现了它。也许最值得一提的是,陈省身的“纤维丛”几何学理论,竟然可以平行移动到杨振林的“规范场”物理理论里,对此杨振林感叹地说:数学家研究数学问题时,根本没有考虑到物理世界,而却能深刻地阐述世界,这真令人惊叹。如今关于物质粒子最新研究的“弦理论”也和数学家丘成桐的微分几何成就有密切关联。计算机科学和数学理论的关系同样也非常密切。就连过去一向被认为是最难找到实际用途的数论也在计算机科学里发挥着重要作用,例如大整数质因数分解定理丰富了密码学方法:RSA公钥系统,根据大整数的分解,它采用“公钥”和“私钥”技术。[1]由此可见,在数学上花费时间是值得的。一般人并不喜欢数学,他们或者认为数学枯燥无味,或者认为数学深奥难懂。在人们心目中,数学里只有推理,没有猜测;只有逻辑,没有艺术;只有抽象,没有直观;只有理性,没有想象。人们感到数学的结果是一步一步推出来的,没有过人的聪慧是不行的。然而,幸亏事实并非如此,否则我们的数学就不会兴旺到如它目前所示,它早就不会吸引任何一个有智慧的人。其实数学是一门融合了人类一切认识世界方法的学科,只是在它整理自己的知识时,才采取了“定义”、“定理”和“证明”严格方式,这是为了保证它的结论准确无误所致。但是这并未妨碍人们用其他方式获得数学知识,其实最伟大的数学家在他们思考问题时,都是凭借直观(甚至是最粗糙的直观)前进的,特别是当他们在做划时代事业时,更依赖直觉,甚至有时连逻辑也不顾。这在牛顿和莱布尼兹创立微积分时特别明显。本段叙述直接来自于文献[2]。明白了上面道理,我们建议:要在感性上下功夫,要理解数学精神实质,即要有数学质感。对数学的学习要运用人类一切认知手段,即实验、猜测、直观推理、试错法、合情推理和正统的逻辑推理;对于基本知识要有透彻了解,基本技能要熟练掌握。对于较难或者很难的题目,应该努力解决它,真正解决不了,也不要气馁,可以暂时放下,“历史总是带着问题前进的”;对一门数学学科,如果你感到对它的任何一个习题,只要有时间你就可能会做出,即使不会做,但对别人做出的看一眼就会,那么这门学科你就基本过关了,没有必要搞题海战术,这是我国著名物理学家严济慈的观点。

三、彻底性原则

创造性思维最显著的特征就是彻底性。欧氏几何里有一条平行公理:“在平面内过直线外一点,能且只能引一条直线和它平行”。但在欧几里德的《几何原本》里,很迟才引入平行公设,且叙述很啰唆,并不像上述的那样简练。后人怀疑欧几里德并不想把它作为公理,只是“证不了它”,才不得不把它作为一条公设采用。后来的数学家们跃跃欲试,用各种方法试图证明它,就这样证明了一千多年。不少人采用“反证法”,得出许多奇特结果,可惜他们认为“荒谬”,就匆忙下结论说,他们发现了矛盾从而证实了平行公设。只有高斯、鲍利埃、罗巴切夫斯基和旧观念,即认为“欧氏公理体系是唯一正确的”,彻底决裂,他们发现了非欧几何。高斯惧怕旧观念势力,鲍利埃患得患失,他们都没有发表他们的工作,只有罗巴切夫斯基勇敢地发表了他的成果。[3]同样,爱因斯坦相对论和量子力学也都是彻底摒弃旧有观念的好例子。旧有观念根植于人的潜意识里,人们很难发现它,更难突破它。诚如一位物理学家说,他花了好几年工夫才真正弄懂相对论,不是由于他知识的缺陷,而是由于他头脑里的固有观念妨碍了他的理解。他的话有助于我们理解突破旧观念时,坚持彻底性原则的重要性。只要是创造性工作,哪怕是很小的创新,实质上都是在突破我们潜意识里某个旧有观念。希望有所创造的人,对此不可不察。

对思维类型做深入的反思和研究,可以及早发现学生的思维特点,进而就可以给予学生有效的指导和引导,并且我们还要鼓励学生创造性思维,努力攀登科学的顶峰。

参考文献:

[1]Michael Sipser.计算理论导引[M].张立昂,黄雄,译.北京:机械工业出版社,2000.

[2]王健吾.数学思维方法引论[M].合肥:安徽教育出版社,1996.

[3]斯科特.数学史[M].侯德润,张兰,译.桂林:广西师范大学出版社,2002.

第3篇

一、错题集的种类划分

高中阶段数学课程的检验方式主要以随堂考试为主,通过分数的高低简要判断学生对课程内容的掌握程度.错题集的操作形式就是在作业中、在考试中产生,通过将学生每一次的错题加以归纳整理,引导学生在对错题的定向研究中寻找自己的知识漏洞,帮助学生学习.依据操作方式的差异,高中数学错题集可以分为以下几类. 1.以时间线索为主导的错题集.主要是针对学生在高中数学学习不同阶段的错题收集.这种类型的操作方式,主要是将学生的错题进行全面整理,但会面临主题不突出、缺乏系统性的弊端.2.以课本章节为主导的错题集.该类型的操作方式,以课程章节为主导,相比较于时间型的方式更具系统性,在分类整理中具有承上启下的作用,帮助学生进行新旧知识之间的无缝对接.3.以错题类型为主导的错题集.这种分类方式主要以错题的原因为线索进行整理.比如说,粗心大意与知识点不理解的分类,帮助学生快捷地弥补知识漏洞.这种收集方式,主要是立足于对时间型与课本章节主导型为基础的操作分析,使用更加方便,一目了然.

二、建立高中数学错题集的意义

建立高中数学错题集,对提高学生的学习效果具有明显的现实意义.

首先,错题集是提高高中数学学习效果的指导方法.通过对错题的整理分析,帮助学生明确自己的思维特性,了解常见的错题形式,对于纠正自己不恰当的思维方式有直接的指导作用.同时,在对错题的分析中,可以提高学生认真审题、了解题目意图、分析推敲等能力.

其次,建立错题集是帮助学生对数学课程查漏补缺的重要形式.在多次的考试后,倘若学生没有对错题进行及时地归纳整理,会随着时间的延长导致学生遗忘犯错,以至于学生出现同一类型的错误多次重犯的状况.建立错题集,能够弥补这一漏洞.在错题的整理中,学生形成对数学课程学习的参考依据,在二次检查中查漏补缺,提高解题能力.

最后,错题集是帮助高中学生寻找数学学习规律的重要参考依据.建立错题集,能够帮助学生了解重点内容,并进行有针对性的课后复习,寻找数学课程的学习规律,在化繁为简的过程中简化解题思路.同时,建立错题集,节约了学生的学习成本,避免了单纯的题海战术所带来的压力.在对错题的集中复习中,提高学生的数学学习能力.

三、错题集在高中数学学习中的具体应用

友情链接