前言:我们精心挑选了数篇优质多目标优化概念文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。
【关键词】 群体决策; 多目标优化 ; 联合有效解;最优性条件
【中图分类号】O221 【文献标识码】A
引 言
设有决策群体G={DM1,DM2,…,DMl},其中DMr是第rr=1,…,l,l≥2个决策者.考虑群体多目标优化问题(GMP):
G-V-minx∈Xf1(x),…,V-minx∈Xfl(x),(GMP)
其中XRn是供选方案集,fr:XRmrmr≥2是DMr(r=1,…,l)的向量目标函数.
记群体目标函数为fG=f1,…,fl,第r个多目标优化问题V-minx∈Xfr(x)的有效解集和弱有效解集分别为E(fr,X)和Ew(fr,X),(r=1,…,l).
由文献[1]群体多目标优化(GMP)关于x∈X的有效数和弱有效数的定义可知,每个决策者对同一个方案所起的作用是相同的,即对同一个方案,每个决策者的偏爱是相同的.但是在现实世界中,每个决策者的偏爱是不可能一致的.对于同一个方案,每个决策者根据他们自己的经验、所接受教育的程度、对方案的了解深度、个人所研究的方向等不同,对同一个方案所起决定作用或重要性是不同的.因此,本文假设各个决策者对同一个方案的作用或重要性已排好序(第一个决策者的作用最大,第二个次之,依次下去),即按照作用的大小已经排序.从而相当于对于不同的决策者,都有相应的权序.记这个权序为H.
在这个假设条件下,我们来定义群体多目标优化问题权序α度联合(弱)有效解.
一、基本概念
设共有l个决策者,且这l个决策者已经排好序.并把他们分成两组,把决策作用大的l/3个人分到第一组,其余的l-l/3个人分到第二组.
根据上述的分组方案给出以下定义:
是群体多目标问题(GMP)关于x的权序弱满意度.
定义1.3 设α∈[0,1],x~∈X,μHx~和μHwx~分别是群体多目标问题(GMP)关于x~的权序满意度和权序弱满意度.
(1)若μHx~≥α,则称x~是群体多目标优化问题(GMP)的权序α度联合有效解,其解集记作EHα(fG,X).
(2)若μHwx~≥α,则称x~是群体多目标优化问题(GMP)的权序α度联合弱有效解,其解集记作EHαw(fG,X).
由定义1.3易知,如果X是凸集,fr:XRmr(r=1,…,l)是严格凸向量函数,则有EHα(fG,X)=EHαw(fG,X).
定义1.4 设X≠φ,x∈X,
(1)若μH(x~)=1,则称x~是群体多目标优化问题(GMP)的群体一致联合有效解.
(2)若μHw(x~)=1,则称x~是群体多目标优化问题(GMP)的群体一致联合弱有效解.
定义1.5 设X≠φ,x∈X,α~=0.5,
(1)若μHx~≥0.5,则称x~是群体多目标优化问题(GMP)的可接受联合有效解,其解集记作EHα~(fG,X).
(2)若μHwx~≥0.5,则称x~是群体多目标优化问题(GMP)的可接受联合弱有效解,其解集记作EHα~w(fG,X).
二、结 论
本文定义了群体多目标优化问题的权序α度联合有效解和权序α度联合弱有效解这一新的概念.今后还将给出解的最优性条件和解的算法等.
0 引言
生活中,许多问题都是由相互冲突和影响的多个目标组成。人们会经常遇到使多个目标在给定区域同时尽可能最佳的优化问题,也就是多目标优化问题。优化问题存在的目标超过一个并需要同时处理,就成为多目标优化问题。
多目标优化问题在工程应用等现实生活中非常普遍并且处于非常重要的地位,这些实际问题通常非常复杂、困难,是主要研究领域之一。自20世纪60年代早期以来,多目标优化问题吸收了越来越多不同背景研究人员的注意力,因此,解决多目标优化问题具有非常重要的科研价值和实际意义
1 普通多目标优化问题
普通多目标优化问题也称为向量数学规划。对设计者或决策者而言,普通多目标优化问题几个设计目标可能存在重要性的差别,但是不存在优先权的差别。
比如,欲把直径为d的圆木加工成矩形截面的梁,如何设计其截面尺寸,使其强度大且重量轻?
分析研究:设截面的宽和高分别为 。由于其强度取决于截面的惯性矩 ,其重量取决于截面面积 ,因此该问题可看作是两个设计目标的优化问题:
该数学模型就可归结为一个普通多目标优化问题:
在这个问题中,梁的强度大可能与重量轻同等重要,也可能比重量轻更重要。但是在把它作为普通多目标优化问题求解的时候,并不因强度大比重量轻更重要,而先考虑强度指标后考虑重量指标。 的极小化将同时进行。
2 目标规划问题
目标规划问题与普通多目标优化问题的不同之处在于:它虽然有多个设计目标,但是每个设计目标并不是使目标函数极小化,而是使每个目标函数同时逼近各自的预定目标值。
比如,某工厂生产n种产品,第i种产品的生产能力为ai吨/小时,其利润为ci元/吨,预测第i种产品下月的最大销售量为bi吨。该工厂下月的工时能力为t小时。在避免开工不足的条件下,如何安排下月计划才能使:1)工厂所获利润最大;2)员工加班时间尽量少;3)尽可能多地满足市场对第1种产品的需求?
分析研究:设下月计划用xi小时生产第i种产品,并用 三个函数分别表示工厂所获利润、员工的加班时间以及第1种产品的产量,该问题就可看作是三个设计目标的优化问题:
假设此例的问题对工厂利润、加班时间以及第一种产品的产量分别有预定的目标值 ,该问题就归结为下列目标规划问题:
目标规划问题与普通多目标优化问题也有相同之处,它们都有多个设计目标,各个设计目标可能存在重要性的差别,但是不存在优先的差别。
3 分层多目标优化问题
分层多目标优化问题与上述两种多目标优化问题的不同之处在于:它的几个设计目标不仅可能存在重要性的差别,而且存在优先权的差别。也就是说,设计者优先考虑某些设计目标,在这些设计目标已经达到的前提下,才考虑其它设计目标。这类问题的设计目标被分成不同的优先层次,在对它求解的时候,先对优先层次较高的设计目标求解,后对优先层次较低的设计目标求解。
假设m个设计目标被分成L个优先层次,各层次的目标函数个数依次为 。如果以各层次的目标函数作为该层次的向量目标函数
的分量,即
第一优先层次:
第二优先层次:
……
第L优先层次:
那么分层多目标优化问题的数学模型可表示为
式(3)可被缩写为更简洁的形式:
在第二个问题中,假设计划制定者在首先考虑工厂如何获得最大利润之后,才去考虑减少加班时间和增加第一种产品产量,该问题就是一个具有两个优先层次的分层多目标优化问题:
4 多目标优化问题的最优解
求解优化问题的目的是为了获得最优解,然而多目标优化问题有多个不同的设计目标,设计目标之间可能发生冲突,这时一个可行解对某一个设计目标是最优的,对另外的设计目标却不是最优的,这就造成多目标优化问题的最优解概念的复杂化。
1、多目标规划问题概述
多目标规划最优的思想起初由法国经济学家V.帕雷托提出,他由政治经济学的角度将不可比较的多个目标转化为多个单目标的最优问题,涉及到了多目标规划的概念。上世纪40年代末,J?冯?诺伊曼和O?莫根施特恩又基于对策论又提出了在多个决策人相互矛盾的前提下引入多目标问题。50年代初,T?C?库普曼斯从生产和分配的活动中提出多目标最优化问题,引入有效解的概念,并得到一些基本结果。同时,H?W?库恩和A?W?塔克尔从研究数学规划的角度提出向量极值问题,引入库恩-塔克尔有效解概念,并研究了它的必要和充分条件。自70年代以来,多目标规划的研究越来越受到人们的重视。至今关于多目标最优解尚无一种完全令人满意的定义,所以在理论上多目标规划仍处于发展阶段。
2、多目标规划方法优化投资组合的应用分析
某生产车间计划在10天内安排生产甲类和乙类两种商品。已知生产甲类商品需要A号配件5组,B号配件3组;生产乙类商品需要A号配件2组,B号配件4组。在十天的计划期内该生产车间仅提高A号配件180组,B号配件135组。同时,我们还知道该生产车间没生产一个甲类商品可获取利润为20元,生产一个乙类商品可获取利润15元。那么,通过以上条件甲乙两类商品分别生产多少可实现利润最大呢?下面我们将各项数据列表如下表1所示:
表1
我们假设,X1和X2分别为甲乙两类商品的生产数量,Z为总利润,以此可以线性规划描述此问题,建立数学模型应该是:
(1)
(2)
其中,X1和X2均为整数。理想状态下,可以利用图解法即可得出公式(1)的最优解为Z=775,X1=32,X2=9。但是,站在车间生产计划人员的角度上将,问题往往比较复杂。
首先,这是一种单一目标优化问题。但通常来讲,一个规划问题需要满足多个条件。例如,例如财务部门的利润目标:利润尽可能大;物资部门的节约资金:消耗尽可能小;销售部门的适销对路:产品品种多样;计划部门的安排生产:产品批量尽可能大。规划问题其本质上是多目标决策类问题,只是因为利用线性规划模型处置,致使生产计划人员不得已从诸多目标中硬性选择其中的一种作为线性规划的数学模型。这样一来,由数学模型目标函数得到的结果可能会违背部分部门的根部意愿,从而导致生产过程受阻,又或者是从生产计划开始阶段就因为某些矛盾而不能从诸多目标中选取一个最优目标。
其次,线性规划问题存在最优解的必要条件是可行解集合非空,也就是说各个约束条件之间彼此相容。但在优化投资组合等实际应用问题中有时候也未必能完全满足这样的条件。如因设备维修养护、消耗能源或其他产品自身原因导致生产计划期内不能提供足够的工时而无法满足计划生产的进度和产量,又或者因投资资本有限的束缚生产原材料的供应不能满足计划产品的需求等等。
第三,线性规划问题的可行解和最优解具有非常明确的价值,这些可行解和最优解都依数学函数模型而定。在实际的投资组合应用当中,决策人发出决策后往往还需要对其决策进行某种修正,主要原因就在于数学函数模型与实际问题之间不尽相同,具有一种近似性,也就是建立数学模型时应对实际应用问题进行简化且不考虑新情况的发生。
计划人员为决策人提供的数学可行解并不是严格意义上的最优解,仅作为决策实现最优的一种参考性计划方案。上世界六十年代初期,由查恩斯(A?Charnes)和库柏(W?w?CooPer)提出的目标规划(Goalprogramming)直接已得到了重视和推广,该法在处置实际应用问题方面承认诸项决策条件存在的合理性,即便多个决策条件是相互冲突的、相互影响的都具有合理性,在做出最终决策中不会强调绝对的最优性。由此看来,多目标规划问题可以认为是一种较之于线性规划问题更切合于实际应用的决策手段。
3、多目标规划方法优化投资组合的常见途径
(1)加权法(或效用系数法)。
加权法(或效用系数法)将投资问题中所有的目标进行统一度量(例如以钱或效用系数度量)。本方法的的基本原理是将多目标模型转化为多个单目标模型。多个目标,有主次不同和轻重缓急不同等区别,最重要的一个目标我们将之赋予为优先因子P1,次重要的目标依次赋予优先因子P2,P3,P4,…,同时约定PK>>PK+1(PK比PK+1拥有更好的优先权)。如果非要将拥有相同优先因子的目标加以区别,我们可以将其分别赋予不同的权系数wj。它的优点在于适用于计算机运算求解可行解和最优解(如线性函数模型可用单纯形法求解),而缺点则在于难以找到合理的权系数(如某高速公路建设投资,在减少建设投资和保证施工质量降低交通伤亡事故率之间难以衡量人的生命价值)。
(2)序列法(或优先级法)。
序列法(或优先级法)并不是对每一个目标进行加权,它主要是按照目标的轻重缓急不同将其分为各个不同等级后再行求解。它的优点在于可规避权系数的困扰,适用范围比较广,各种决策活动几乎都可使用。例如,某公司在决定提拔人员,很多单位主要根据该人员的工作积极性、工作能力和对单位的贡献价值等几个方面予以考虑,这几个方面也会按照先后顺序依次评定,等级不同参考评定的比重也会有所不同。它的缺点在于难以区分各个目标的轻重等级,难以排定优先顺序无法保证最终的求解结果是最令人满意的。
(3)有效解法(或非劣解法)。
有效解法(或非劣解法)与上两种方法不同,它拜托了加权法(或效用系数法)和序列法(或优先级法)具有的一定局限性,利用本法可找到所以的有效解集,也就是非劣解集,众多非劣解可供决策人从中挑选最为满意的解。它的缺点则在于实际应用问题中非劣解数量很多,为决策人提供的非劣解集范围过于宽泛。