前言:我们精心挑选了数篇优质新型电力系统概念文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。
关键词:电力系统自动化研究方向发展趋势 新技术
变电站电力系统是把一些设备组装起来,用以切断或接通、改变或者调整电压,在电力系统中,变电站是输电和配电的集结点,变电站主要分为:升压变电站,主网变电站,二次变电站,配电站。电力系统综合自动化是基于科技发展和计算机网络技术的出现而逐步形成的一个概念,是一个综合发电厂、变电站、输配网络和用户的集成概念,其概念研究和实现的主要目的就是如何更好地掌控和监视电力从出厂到供应的全过程,使输配过程更有效和通畅。
1、电力系统自动化的研究方向
(1)智能保护与变电站综合自动化 。对电力系统电保护的新原理进行了研究,将国内外最新的人工智能、模糊理论、综合自动控制理论、自适应理论、网络通信、微机新技术等应用于新型继电保护装置中,使得新型继电保护装置具有智能控制的特点,大大提高电力系统的安全水平。(2)电力市场理论与技术。基于我国目前的经济发展状况、电力市场发展的需要和电力工业技术经济的具体情况,认真研究了电力市场的运营模式,深入探讨并明确了运营流程中各步骤的具体规则;提出了适合我国现阶段电力市场运营模式的期货交易(年、月、日发电计划)、转运服务等模块的具体数学模型和算法,紧紧围绕当前我国模拟电力市场运营中亟待解决的理论问题。(3)电力系统实时仿真系统。对电力负荷动态特性监测、电力系统实时仿真建模等方面进行了研究,引进了加拿大teqsim公司生产的电力系统数字模拟实时仿真系统,建成了全国高校第一家具备混合实时仿真环境的实验室。(4)电力系统运行人员培训仿真系统。电力系统运行人员培训仿真系统是针对我国电力企业职工岗位培训的迫切要求,将计算机、网络和多媒体技术的最新成果和传统的电力系统分析理论相结合,利用专家系统、智能cai(计算机辅助教学)理论,进行电力系统知识教学、培训的一种强有力手段。本系统设计新颖,并合理配置软件资源分布,教、学员台在软件系统结构上耦合性很少,且系统硬件扩充简单方便,因此学员台理论上可无限扩充。 (5)配电网自动化。在中低压网络数字电子载波ndlc、配网的模型及高级应用软件pas、地理信息与配网scada一体化方面取得了重大技术突破。(6)电力系统分析与控制 。对在线测量技术、实时相角测量、电力系统稳定控制理论与技术、小电流接地选线方法、电力系统振荡机理及抑制方法、发电机跟踪同期技术、非线性励磁和调速控制、潮流计算的收敛性、电网调度自动化仿真、电力负荷预测方法、基于柔性数据收集与监控的电网故障诊断和恢复控制策略、电网故障诊断理论与技术等方面进行了研究。(7)人工智能在电力系统中的应用。结合电力工业发展的需要,开展了将专家系统、人工神经网络、模糊逻辑以及进化理论应用到电力系统及其元件的运行分析、警报处理、故障诊断、规划设计等方面的实用研究。(8)现代电力电子技术在电力系统中的应用。开展了电力电子装置控制理论和控制算法、各种电力电子装置在电力系统中的行为和作用、灵活交流输电系统、直流输电的微机控制技术、动态无功补偿技术、有源电力滤波技术、大容量交流电机变频调速技术和新型储能技术等方面的研究 (9)电气设备状态监测与故障诊断技术。通过将传感器技术、光纤技术、计算机技术、数字信号处理技术以及模式识别技术等结合起来,针对电气设备绝缘监测方法和故障诊断的机理进行了详细的基础研究,开发了发电机、变压器、开关设备、电容型设备和直流系统等主要电气设备的监控系统,全面提高电气设备和电力系统的安全运行水平。
2、电力系统自动化总的发展趋势
1.1 当今电力系统的自动控制技术正趋向于:
①在控制策略上日益向最优化、适应化、智能化、协调化、区域化发展。②在设计分析上日益要求面对多机系统模型来处理问题。③在理论工具上越来越多地借助于现代控制理论。④在控制手段上日益增多了微机、电力电子器件和远程通信的应用。⑤在研究人员的构成上益需要多“兵种”的联合作战。
1.2 整个电力系统自动化的发展则趋向于:
①由开环监测向闭环控制发展,例如从系统功率总加到AGC(自动发电控制)。②由高电压等级向低电压扩展,例如从EMS(能量管理系统)到DMS(配电管理系统)。③由单个元件向部分区域及全系统发展,例如SCADA(监测控制与数据采集)的发展和区域稳定控制的发展。④由单一功能向多功能、一体化发展,例如变电站综合自动化的发展。⑤装置性能向数字化、快速化、灵活化发展,例如继电保护技术的演变。⑥追求的目标向最优化、协调化、智能化发展,例如励磁控制、潮流控制。⑦由以提高运行的安全、经济、效率为完成向管理、服务的自动化扩展,例如MIS(管理信息系统)在电力系统中的应用。
近20年来,随着计算机技术、通信技术、控制技术的发展,现代电力系统已成为一个计算机(Computer)、控制(Control)、通信(Communication)和电力装备及电力电子(Power System Equiqments and Power Electronics)的统一体,简称为“CCCP”。其内涵不断深入,外延不断扩展。电力系统自动化处理的信息量越来越大,考虑的因素越来越多,直接可观可测的范围越来越广,能够闭环控制的对象越来越丰富。
3、 具有变革性重要影响的三项新技术
3.1 电力系统的智能控制 电力系统的控制研究与应用在过去的40多年中大体上可分为三个阶段:基于传递函数的单输入、单输出控制阶段;线性最优控制、非线性控制及多机系统协调控制阶段;智能控制阶段。电力系统控制面临的主要技术困难有:
①电力系统是一个具有强非线性的、变参数(包含多种随机和不确定因素的、多种运行方式和故障方式并存)的动态大系统。②具有多目标寻优和在多种运行方式及故障方式下的鲁棒性要求。③不仅需要本地不同控制器间协调,也需要异地不同控制器间协调控制。
智能控制是当今控制理论发展的新的阶段,主要用来解决那些用传统方法难以解决的复杂系统的控制问题;特别适于那些具有模型不确定性、具有强非线性、要求高度适应性的复杂系统。
智能控制在电力系统工程应用方面具有非常广阔的前景,其具体应用有快关汽门的人工神经网络适应控制,基于人工神经网络的励磁、电掣动、快关综合控制系统结构,多机系统中的ASVG(新型静止无功发生器)的自学习功能等。
3.2 FACTS和DFACTS
3.2.1 FACTS概念的提出 在电力系统的发展迫切需要先进的输配电技术来提高电压质量和系统稳定性的时候,一种改变传统输电能力的新技术――柔流输电系统(FACTS)技术悄然兴起。
所谓“柔流输电系统”技术又称“灵活交流输电系统”技术简称FACTS,就是在输电系统的重要部位,采用具有单独或综合功能的电力电子装置,对输电系统的主要参数(如电压、相位差、电抗等)进行调整控制,使输电更加可靠,具有更大的可控性和更高的效率。这是一种将电力电子技术、微机处理技术、控制技术等高新技术应用于高压输电系统,以提高系统可靠性、可控性、运行性能和电能质量,并可获取大量节电效益的新型综合技术。
3.2.2 FACTS的核心装置之一――ASVC的研究现状 各种FACTS装置的共同特点是:基于大功率电力电子器件的快速开关作用和所组成逆变器的逆变作用。ASVC是包含了FACTS装置的各种核心技术且结构比较简单的一种新型静止无功发生器。
ASVC由二相逆变器和并联电容器构成,其输出的三相交流电压与所接电网的三相电压同步。它不仅可校正稳态运行电压,而且可以在故障后的恢复期间稳定电压,因此对电网电压的控制能力很强。与旋转同步调相机相比,ASVC的调节范围大,反应速度快,不会发生响应迟缓,没有转动设备的机械惯性、机械损耗和旋转噪声,并且因为ASVC是一种固态装置,所以能响应网络中的暂态也能响应稳态变化,因此其控制能力大大优于同步调相机。
3.2.3 DFACTS的研究态势 随着高科技产业和信息化的发展,电力用户对供电质量和可靠性越来越敏感,电器设备的正常运行甚至使用寿命也与之越来越息息相关。可以说,信息时代对电能质量提出了越来越高的要求。
DFACTS是指应用于配电系统中的灵活交流技术,它是Hingorani于1988年针对配电网中供电质量提出的新概念。其主要内容是:对供电质量的各种问题采用综合的解决办法,在配电网和大量商业用户的供电端使用新型电力电子控制器。
4、基于GPS统一时钟的新一代EMS和动态安全监控系统
4.1 基于GPS统一时钟的新一代EMS 目前应用的电力系统监测手段主要有侧重于记录电磁暂态过程的各种故障录波仪和侧重于系统稳态运行情况的监视控制与数据采集(SCADA)系统。前者记录数据冗余,记录时间较短,不同记录仪之间缺乏通信,使得对于系统整体动态特性分析困难;后者数据刷新间隔较长,只能用于分析系统的稳态特性。两者还具有一个共同的不足,即不同地点之间缺乏准确的共同时间标记,记录数据只是局部有效,难以用于对全系统动态行为的分析。
4.2 基于GPS的新一代动态安全监控系统 基于GPS的新一代动态安全监控系统,是新动态安全监测系统与原有SCADA的结合。电力系统新一代动态安全监测系统,主要由同步定时系统,动态相量测量系统、通信系统和中央信号处理机四部分组成。采用GPS实现的同步相量测量技术和光纤通信技术,为相量控制提供了实现的条件。GPS技术与相量测量技术结合的产物――PMU(相量测量单元)设备,正逐步取代RTU设备实现电压、电流相量测量(相角和幅值)。
【关键词】THLZD-2;THLDK-2;实验平台
随着电力系统的发展,其在国民经济中起着越来越重要的作用。电力系统数字仿真虽然已经已成为电力系统研究、规划、运行、设计和教学等各方面不可或缺的工具,特别是电力系统新技术的开发研究、新装置的设计和参数的确定更是需要通过仿真来确认。但是在电力系统教学中,单纯采用仿真的教学方式,学生由于对物理概念不够直观,难于接触电力系统模型,教学效果并不理想[1-2]。
为此滨州学院采用THLZD-2型电力系统综合自动化实验平台电力系统综合自动化实验平台,把真实的电力系统缩小到实验室中,能够便于学生直观理解与掌握电力系统概念与知识,增强学生学习的积极性与主动性。
一、电力系统综合实验室组成
我校电力系统综合实验室主要由4套THLZD-2型电力系统综合自动化实验平台与一套THLDK-2型电力系统监控实验平台组成,可以完成很多涵盖专业领域的实验,包括《电力系统稳态分析》、《电力系统暂态分析》、《电力系统继电保护原理》、《电力系统自动装置原理》、《电力系统自动化》、《电网监控及调度自动化》、《电力系统远动》等专业课程的实验[3]。
1.THLZD-2型电力系统综合自动化实验平台
THLZD-2型电力系统综合自动化实验平台是一套集多种功能于一体的综合型实验装置,展示了现代电能发出和输送全过程的工作原理。这套实验装置由THLZD-2电力系统综合自动化实验台(简称“实验台”)、THLZD-2电力系统综合自动化控制柜(简称“控制柜”)、无穷大系统和发电机组和三相可调负载箱等组成。
(1)发电机机组部分。用直流电动机(PN=2.2kW,UN=220V,nN=1500rpm)模拟原动机,包括模拟直流电动机,直流电动机和同步发电机经联轴器软联接后,固定在底盘上,机组的底盘装有四个轮子和四个螺旋式的支撑脚,构成可移动式机组,方便移动。同时,发电机组还装有光电编码器,功角测量装置和其它配套件。
(2)实验操作台主要包括:输电线路单元、微机线路保护单元、.控制方式选择单元监测仪表单元、指示单元、设置单元、设备接口单元、电源单元。
(3)THLZD-2型电力系统综合自动化控制柜包括:测量仪表单元、原动机控制单元、发电机励磁单元、准同期单元、设备接口单元、电源单元。
(4)无穷大系统。所谓无穷大系统可以看作是内阻抗为零,频率、电压及其相位都恒定不变的一台同步发电机。在本实验系统中,由于15kVA自耦调压器的容量远大于单台发电机组的容量,故由15kVA自耦调压器模拟无穷大系统。
(5)三相可调负载箱简介采用柜式结构,配有脚轮可移动。包括阻性负载和感性负载。
阻性负载包括一组3×1600?/0.2A (0.1kW)板式电阻,两组3×800?/0.4A(0.2kW)板式电阻,一组3×320?/1A(0.5kW)板式电阻和两组3×160?/2A(1kW)板式电阻,通过开关投切可调节阻性负载的大小。感性负载由三个200mH的电感和自耦调压器构成感性负载,通过开关投切可调节感性负载的大小。
2.THLDK-2型电力系统监控实验平台
THLDK-2型电力系统监控实验平台是一个高度自动化的、开放式多机电力网络综合实验系统,它是建立在THLZD-2型电力系统综合自动化实验平台的基础之上,将多个实验平接成一个复杂多变的电力网络系统,并配置微机监控系统实现电力系统“四遥”功能,还结合教学,提供电力系统潮流系统分析。
本实验平台能反映现代电能的发、输、变、配、用的全过程,充分体现现代电力系统高度自动化、信息化、数字化的特点,实现电力系统的监测、控制、监视、保护、调度的自动化。
此外,本实验平台针对新课程体系,适合创建开放式现代实验室和培训中心,有利于提高学生和学员的实践能力和创新思维,为电力行业培养出更多高素质的复合型人才。
电力系统监控实验平台整体结构如下图1-1所示。
图1-1 电力系统监控实验平台整体结构
THLDK-2型电力系统监控实验平台主要由计算机系统,实验操作台和模拟无穷大系统三大部分组成,与多台THLZD-2型电力系统综合自动化实验平台配合共同完成实验项目。
本套多机电力网络综合实验系统,深化了电力专业的教学内容,能进行基础课程学习、专业课程设计以及综合实验开发一套完整的基础平台,不仅能满足现代开放型、研究型、综合型的电力专业教学体系,而且能提高专业实验的教学质量和水平,更有利于培养学生综合分析问题和解决问题的能力。
二、THLZD-2型电力系统综合自动化实验平台的应用
电力系统综合实验室可以完成电气工程与自动化技术专业本科教学,并且能够完成开放型与创新型实验,不仅能够使学生掌握电力系统的基本概念,基本知识,而且能够培养学生的实践能力与创新能力。
1.本科教学工作
本实验室4套THLZD-2型电力系统综合自动化实验平台可以单独完成的实验有:
(1)发电机组的起动与运转实验,可以使学生熟悉发电机组中原动机(直流电动机)的基本特性,掌握发电机组起励建压,并网,解列和停机的操作。
(2)发电机励磁实验,可以使学生熟悉不同励磁方式对发电机影响。
(3)并网实验,能够使学生掌握不同条件下的并网,对电力系统的影响及并网的条件。
(4)单机-无穷大系统稳态运行方式实验,能够使学生熟悉远距离输电的线路基本结构和参数的测试方法。
(5)电力系统功率特性和功率极限实验,能够使学生加深理解发电机功率特性和功率极限的概念,通过实验了解提高电力系统功率极限的措施。
(6)电力系统暂态稳定实验,通过实验加深对电力系统暂态稳定内容的理解,通过实际操作,从实验中观察到系统失步现象和掌握正确处理的措施,了解提高暂态稳定的措施。
THLZD-2型电力系统综合自动化实验平台与THLDK-2型电力系统监控实验平台组合后可以完成组网实验,能够完成复杂电力系统运行实验、电力系统分析实验(包括潮流计算、复杂电力系统故障计算)等实验。
2.开放型与创新型实验开展
THLZD-2型电力系统综合自动化实验平台与THLDK-2型电力系统监控实验平台组合后学生可以完成开放与创新型实验。学生可以自己设计不同机组的组网实验,完成电力不同运行方式潮流计算,故障分析,并且能够通过组态软件实时监控电力系统的运行状态,进行安全分析。
3.科研平台
THLZD-2型电力系统综合自动化实验平台包括电力系统的发输部分的基本原理,并且每台发电机都包括励磁装置和准同期并网装置。发电机有多种励磁方式可以选择,并且运行方式和运行参数可以修改。准同期装置参数也可以设置与修改,完成不同条件下的并网实验,因此本实验平台可供科研使用。
三、试验中问题探讨及建议
(1)学生做发电机并网实运行实验中,在完成实验按下分闸按钮后,发电机突然出现飞车现象,转速突然远远高于发电机的额定转速。此问题主要原因是学生在完成并网实验后,在没有将发电机组的有功无功调到零的情况下直接按下分闸断路器,而导致发电机的转速突然增加。
(2)本实验平台短路故障设置点固定,在做暂态及创新设计实验时缺乏灵活性,建议设备以后能有所改进
四、总结
THLZD-2型电力系统综合自动化实验平台的应用,深化了本科教学内容,为电力系统开放型与创新型实验提供了条件,也为教师提供了科研平台,总结了试验中的存在问题及整改建议。
参考文献
[1]李明伟,李建月.我院电气工程及其自动化专业建设的思考与探索[J].洛阳理工学院学报(自然科学版), 2009,19(4):94-96.
【关键词】发展;电力系统自动化;新技术;探讨
1 变电站电力系统自动化概述
变电站电力系统是把一些设备组装起来,用以切断或接通、改变或者调整电压,在电力系统中,变电站是输电和配电的集结点,变电站主要分为:升压变电站,主网变电站,二次变电站,配电站。电力系统综合自动化是基于科技发展和计算机网络技术的出现而逐步形成的一个概念,是一个综合发电厂、变电站、输配网络和用户的集成概念,其概念研究和实现的主要目的就是如何更好地掌控和监视电力从出厂到供应的全过程,使输配过程更有效和通畅。
2 电力系统自动化总的发展进程
2.1 当今电力系统的自动控制技术正趋向于
(1)在控制策略上日益向最优化、适应化、智能化、协调化、区域化发展。
(2)在设计分析上日益要求面对多机系统模型来处理问题。
(3)在理论工具上越来越多地借助于现代控制理论。
(4)在控制手段上日益增多了微机、电力电子器件和远程通信的应用。
(5)在研究人员的构成上益需要多“兵种”的联合作战。
2.2 整个电力系统自动化的发展则趋向于
(1)由开环监测向闭环控制发展,例如从系统功率总加到AGC(自动发电控制)。
(2)由高电压等级向低电压扩展,例如从EMS(能量管理系统)到DMS(配电管理系统)。
(3)由单个元件向部分区域及全系统发展,例如SCADA(监测控制与数据采集)的发展和区域稳定控制的发展。
(4)由单一功能向多功能、一体化发展,例如变电站综合自动化的发展。
近20年来,随着计算机技术、通信技术、控制技术的发展,现代电力系统已成为一个计算机(Computer)、控制(Control)、通信(Communication)和电力装备及电力电子(Power System Equiqments and Power Electronics)的统一体,简称为“CCCP”。其内涵不断深入,外延不断扩展。电力系统自动化处理的信息量越来越大,考虑的因素越来越多,直接可观可测的范围越来越广,能够闭环控制的对象越来越丰富。
3 三项新技术对电力系统自动化的影响
3.1智能控制在电力系统自动化中的作用
电力系统的控制研究与应用在过去的40多年中大体上可分为三个阶段基于传递函数的单输入、单输出控制阶段;线性最优控制、非线性控制及多机系统协调控制阶段;智能控制阶段。电力系统控制面临的主要技术困难有:
(1)电力系统是一个具有强非线性的、变参数(包含多种随机和不确定因素的、多种运行方式和故障方式并存)的动态大系统。
(2)具有多目标寻优和在多种运行方式及故障方式下的鲁棒性要求。
(3)不仅需要本地不同控制器间协调,也需要异地不同控制器间协调控制。
智能控制是当今控制理论发展的新的阶段,主要用来解决那些用传统方法难以解决的复杂系统的控制问题;特别适于那些具有模型不确定性、具有强非线性、要求高度适应性的复杂系统。
3.2 FACTS和DFACTS技术的实效应用
(1)FACTS概念的提出
在电力系统的发展迫切需要先进的输配电技术来提高电压质量和系统稳定性的时候,一种改变传统输电能力的新技术___柔流输电系统(FACTS)技术悄然兴起。
所谓“柔流输电系统”技术又称“灵活交流输电系统”技术简称FACTS,就是在输电系统的重要部位,采用具有单独或综合功能的电力电子装置,对输电系统的主要参数(如电压、相位差、电抗等)进行调整控制,使输电更加可靠,具有更大的可控性和更高的效率。这是一种将电力电子技术、微机处理技术、控制技术等高新技术应用于高压输电系统,以提高系统可靠性、可控性、运行性能和电能质量,并可获取大量节电效益的新型综合技术。
(2)FACTS的核心装置之一___ASVC的研究现状
各种FACTS装置的共同特点是:基于大功率电力电子器件的快速开关作用和所组成逆变器的逆变作用。ASVC是包含了FACTS装置的各种核心技术且结构比较简单的一种新型静止无功发生器。
(3)DFACTS的研究态势
随着高科技产业和信息化的发展,电力用户对供电质量和可靠性越来越敏感,电器设备的正常运行甚至使用寿命也与之越来越息息相关。可以说,信息时代对电能质量提出了越来越高的要求。
DFACTS是指应用于配电系统中的灵活交流技术,它是Hingorani于1988年针对配电网中供电质量提出的新概念。其主要内容是:对供电质量的各种问题采用综合的解决办法,在配电网和大量商业用户的供电端使用新型电力电子控制器。
3.3 基于GPS统一时钟的新一代EMS和动态安全监控系统
(1)基于GPS统一时钟的新一代EMS
目前应用的电力系统监测手段主要有侧重于记录电磁暂态过程的各种故障录波仪和侧重于系统稳态运行情况的监视控制与数据采集(SCADA)系统。前者记录数据冗余,记录时间较短,不同记录仪之间缺乏通信,使得对于系统整体动态特性分析困难;后者数据刷新间隔较长,只能用于分析系统的稳态特性。两者还具有一个共同的不足,即不同地点之间缺乏准确的共同时间标记,记录数据只是局部有效,难以用于对全系统动态行为的分析。
(2)基于GPS的新一代动态安全监控系统
基于GPS的新一代动态安全监控系统,是新动态安全监测系统与原有SCADA的结合。