前言:我们精心挑选了数篇优质金融数据论文文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。
(一)监督得不到有效合理的控制,导致统计工作产生风险我们大家都知道统计数据一般都是反映宏观整体现象,这种宏观整体现象往往都掩盖了事物的个体本质,因此大多数公众与某些部门对它产生怀疑却无从下手去监管,另外统计部门在统计信息时,占有主动权,具有权威性,这种信息的不对称性也容易产生职业道德风险,再有统计部门的垂直领导形式,使其工作都是“上派下行”,从而导致一些统计数据都是现有目标,再有统计,最后达到预期结果,统计工作的这种被动与尴尬已经成为普遍现象,这种从上到下无人监督,无人管理的现象所产生的后果是距离现实在越来越远,“此地无银三百两”的故事距离我们越来越近,社会将进入颠倒是非,真假难辨的恶性循环之中。
(二)统计法的力度不够,加速统计数据的风险产生从上边统计风险产生原因我们可以看到都是由于某些政府和个人短期利益的因素,而导致统计产生巨大的风险,这种短期的效益与其产生的长期风险是远远不对称的,但是许多政府与某些单位以及个人却还是选择了这一瞬间的短期利益,这是为何?我们常常听到某些单位或个人由于违反各种会计法、经济法,最后导致严重违反财经纪律、贪污腐化从而导致受到行政法律的制裁,严重者触犯刑法,最高可判无期乃至死刑和罚金。但是统计法律法规却没有这么大的力度,即使提供了虚假数据,即使受到行政处罚,也都是轻描淡写、隔靴搔痒而已,从根本起不到惩戒、震慑和遏止作用,却反而助长了统计数据失真的力度,加速了统计风险的速度。最后形成了“统计统计,三分统计,七分估计”的熟语。这也很好地回答了上述问题产生的根本原因。
二、针对当前我国统计工作职业道德产生的风险应采取的措施
(一)全面提高相关业务人员的综合业务素质统计工作涉及面广,对理论知识与实际工作能力要求高,它要求相关业务人员不仅懂得国家的法律法规,而且还要求相关业务人员掌握一定的财务、审计、经济、统计分析等一定理论知识,并且还特别强调了统计人员应该加强爱岗敬业、尽职尽责的职业道德,德才兼备,以德为先的职业道德和业务素质修养永远是统计人员的最起码要求,也是有效地避免统计风险的基本前提,所以统计人员应该通过各种渠道提高自己的综合水平,如参加各种统计相关的考试、学习辅导班以及业务比赛活动,使他们融入当今社会潮流之中,这样可以增强统计人员的自我提升、自我风险保护意识,这也是抵制社会上统计工作不正之风最有效的措施。
(二)政府及主管领导要用正确的发展观去指导统计工作我们大家都知道统计是为政府部门服务的,这是国家参与宏观调控的重要手段,但是在当今的市场经济体制下,以市场微观调控为主,国家宏观调控为辅的理念指导下,统计需要减少政府的干涉,甚至消除人为干预,这样才有助于国家的经济建设。所以各级政府应该转变职能态度,从而合理地引导各级主管领导具有科学的世界观,进而正确指导统计工作,引导宽松的统计工作环境,使统计工作者在良好的工作氛围中,放下包袱,努力工作,为国家制定合理有效的重大决策提供真实的数据,从而真实地反映国家的宏观目标,这样更有力促进社会经济的发展,促进人们的安全、社会的和谐。
(三)加强统计数据的监督反映统计数据失真给统计工作带来了一定的风险与隐患,其最大原因就是统计数据缺乏像会计工作那样的监督机构,另外统计数据的公布也非常笼统化,不如财务指标那样详细,计算方法与方式也不像会计那样进行详细地披露。所以国家应该尽早地出台一些法律法规以及有关政策,让统计部门加大信息披露的力度,如时间间隔应该缩短,披露的数据来源、方法、处理的过程等统计信息应该详细,让数据的使用者与监督者能够很好地分析数据的真实可靠程度,这样不仅增强了统计的公众监督力度,又有利于公众对统计的了解与认可,进而也让统计工作者工作起来有的放矢,避免了其左右为难的工作情绪,更避免了统计工作的重大隐患风险的存在。
(四)加强统计法律法规建设,完善统计规章制度目前国家对会计、经济等各种法律法规都进行了不断的完善与调整,此种方式方法得到了有效的反映,如偷税漏税逐步减少,行贿受贿、大吃大喝公款的现象极度收敛,这样不仅促进国家经济的发展,也受到了百姓的拥护与好评。那么如果在这种良好的氛围下,大力加强统计法律法规的建设,对那些原来不合理、不完善、不适合市场经济体制下的统计法律法规及规章制度进行删除或者合理的更新,并加以完善和必要的补充,如加大对政府与部门人为反方向干扰统计工作的监督与惩罚,加大胁迫统计工作者编制虚假数据而承担的法律后果,以及统计工作者在此过程中给予抵制而受到的奖励制度和听之任之、同流合污而承担的法律后果等等规定。这样统计工作者才能坚定地拿起法律的武器来保护自己,使自己勇敢地面对不法分子坚持真理,永不胆怯。因为谁也不能拿自己的一生和终身的家产去赌注,迫使不法分子没有可乘之机。这是杜绝统计工作职业道德风险,强化统计职业道德意识最有效的措施。
三、结束语
关键字:数据挖掘金融数据
金融部门每天的业务都会产生大量数据,利用目前的数据库系统可以有效地实现数据的录入、查询、统计等功能,但无法发现数据中存在的关系和规则,无法根据现有的数据预测未来的发展趋势。缺乏挖掘数据背后隐藏的知识的手段,导致了数据爆炸但知识贫乏”的现象。与此同时,金融机构的运作必然存在金融风险,风险管理是每一个金融机构的重要工作。利用数据挖掘技术不但可以从这海量的数据中发现隐藏在其后的规律,而且可以很好地降低金融机构存在的风险。学习和应用数扼挖掘技术对我国的金融机构有重要意义。
一、数据挖掘概述
1.数据挖掘的定义对于数据挖掘,一种比较公认的定义是W.J.Frawley,G.PiatetskShapiro等人提出的。数据挖掘就是从大型数据库的数据中提取人们感兴趣的知识、这些知识是隐含的、事先未知的、潜在有用的信息,提取的知识表示为概念(Concepts),规则(Rules)、规律(Regularities)、模式(Patterns)等形式。这个定义把数据挖掘的对象定义为数据库。
随着数据挖掘技术的不断发展,其应用领域也不断拓广。数据挖掘的对象已不再仅是数据库,也可以是文件系统,或组织在一起的数据集合,还可以是数据仓库。与此同时,数据挖掘也有了越来越多不同的定义,但这些定义尽管表达方式不同,其本质都是近似的,概括起来主要是从技术角度和商业角度给出数据挖掘的定义。
从技术角度看,数据挖掘就是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中,提取隐含在其中的、人们事先不知道的、但又是潜在的和有用的信息和知识的过程。它是一门广义的交叉学科,涉及数据库技术、人工智能、机器学习、神经网络、统计学、模式识别、知识库系统、知识获取、信息检索、高性能计算和数据可视化等多学科领域且本身还在不断发展。目前有许多富有挑战的领域如文本数据挖掘、Web信息挖掘、空间数据挖掘等。
从商业角度看,数据挖掘是一种深层次的商业信息分析技术。它按照企业既定业务目标,对大量的企业数据进行探索和分析,揭示隐藏的、未知的或验证已知的规律性并进一步将其模型化,从而自动地提取出用以辅助商业决策的相关商业模式。
2.数据挖掘方法
数据挖掘技术是数据库技术、统计技术和人工智能技术发展的产物。从使用的技术角度,主要的数据挖掘方法包括:
2.1决策树方法:利用树形结构来表示决策集合,这些决策集合通过对数据集的分类产生规则。国际上最有影响和最早的决策树方法是ID3方法,后来又发展了其它的决策树方法。
2.2规则归纳方法:通过统计方法归纳,提取有价值的if-then规则。规则归纳技术在数据挖掘中被广泛使用,其中以关联规则挖掘的研究开展得较为积极和深入。
2.3神经网络方法:从结构上模拟生物神经网络,以模型和学习规则为基础,建立3种神经网络模型:前馈式网络、反馈式网络和自组织网络。这种方法通过训练来学习的非线性预测模型,可以完成分类、聚类和特征挖掘等多种数据挖掘任务。
2.4遗传算法:模拟生物进化过程的算法,由繁殖(选择)、交叉(重组)、变异(突变)三个基本算子组成。为了应用遗传算法,需要将数据挖掘任务表达为一种搜索问题,从而发挥遗传算法的优化搜索能力。
2.5粗糙集(RoughSet)方法:Rough集理论是由波兰数学家Pawlak在八十年代初提出的一种处理模糊和不精确性问题的新型数学工具。它特别适合于数据简化,数据相关性的发现,发现数据意义,发现数据的相似或差别,发现数据模式和数据的近似分类等,近年来已被成功地应用在数据挖掘和知识发现研究领域中。
2.6K2最邻近技术:这种技术通过K个最相近的历史记录的组合来辨别新的记录。这种技术可以作为聚类和偏差分析等挖掘任务。
2.7可视化技术:将信息模式、数据的关联或趋势等以直观的图形方式表示,决策者可以通过可视化技术交互地分析数据关系。可视化数据分析技术拓宽了传统的图表功能,使用户对数据的剖析更清楚。
二、数据挖掘在金融行业中的应用数据挖掘已经被广泛应用于银行和商业中,有以下的典型应用:
1.对目标市场(targetedmarketing)客户的分类与聚类。例如,可以将具有相同储蓄和货款偿还行为的客户分为一组。有效的聚类和协同过滤(collaborativefiltering)方法有助于识别客户组,以及推动目标市场。
2..客户价值分析。
在客户价值分析之前一般先使用客户分类,在实施分类之后根据“二八原则”,找出重点客户,即对给银行创造了80%价值的20%客户实施最优质的服务。重点客户的发现通常采用一系列数据处理、转换过程、AI人工智能等数据挖掘技术来实现。通过分析客户对金融产品的应用频率、持续性等指标来判别客户的忠诚度;通过对交易数据的详细分析来鉴别哪些是银行希望保持的客户;通过挖掘找到流失的客户的共同特征,就可以在那些具有相似特征的客户还未流失之前进行针对性的弥补。
3.客户行为分析。
找到重点客户之后,可对其进行客户行为分析,发现客户的行为偏好,为客户贴身定制特色服务。客户行为分析又分为整体行为分析和群体行为分析。整体行为分析用来发现企业现有客户的行为规律。同时,通过对不同客户群组之间的交叉挖掘分析,可以发现客户群体间的变化规律,并可通过数据仓库的数据清洁与集中过程,将客户对市场的反馈自动输人到数据仓库中。通过对客户的理解和客户行为规律的发现,企业可以制定相应的市场策略。
4.为多维数据分析和数据挖掘设计和构造数据仓库。例如,人们可能希望按月、按地区、按部门、以及按其他因素查看负债和收入的变化情况,同时希望能提供诸如最大、最小、总和、平均和其他等统计信息。数据仓库、数据立方体、多特征和发现驱动数据立方体,特征和比较分析,以及孤立点分析等,都会在金融数据分析和挖掘中发挥重要作用。
5.货款偿还预测和客户信用政策分析。有很多因素会对货款偿还效能和客户信用等级计算产生不同程度的影响。数据挖掘的方法,如特征选择和属性相关性计算,有助于识别重要的因素,别除非相关因素。例如,与货款偿还风险相关的因素包括货款率、资款期限、负债率、偿还与收入(payment——to——income)比率、客户收入水平、受教育程度、居住地区、信用历史,等等。而其中偿还与收入比率是主导因素,受教育水平和负债率则不是。银行可以据此调整货款发放政策,以便将货款发放给那些以前曾被拒绝,但根据关键因素分析,其基本信息显示是相对低风险的申请。
6.业务关联分析。通过关联分析可找出数据库中隐藏的关联网,银行存储了大量的客户交易信息,可对客户的收人水平、消费习惯、购买物种等指标进行挖掘分析,找出客户的潜在需求;通过挖掘对公客户信息,银行可以作为厂商和消费者之间的中介,与厂商联手,在掌握消费者需求的基础上,发展中间业务,更好地为客户服务。
7.洗黑钱和其他金融犯罪的侦破。要侦破洗黑钱和其他金融犯罪,重要的一点是要把多个数据库的信息集成起来,然后采用多种数据分析工具找出异常模式,如在某段时间内,通过某一组人发生大量现金流量等,再运用数据可视化工具、分类工具、联接工具、孤立点分析工具、序列模式分析工具等,发现可疑线索,做出进一步的处理。
数据挖掘技术可以用来发现数据库中对象演变特征或对象变化趋势,这些信息对于决策或规划是有用的,金融
行业数据的挖掘有助于根据顾客的流量安排工作人员。可以挖掘股票交易数据,发现可能帮助你制定投资策略的趋势数据。挖掘给企业带来的潜在的投资回报几乎是无止境的。当然,数据挖掘中得到的模式必须要在现实生活中进行验证。
参考文献:
丁秋林,力士奇.客户关系管理.第1版.北京:清华人学出版社,2002
张玉春.数据挖掘在金融分析中的应用.华南金融电脑.2004
无论是政治,还是经济形势,任何政府、企业、个人,面对未来进行投融资等项目决策,不经过数据分析论证就简单的决定会带来巨大的危害,已经渐渐的被人们认同。所以,只要参与社会政治、经济等活动,进行投融资,期望带来一定的经济效益,或者社会效益,就必须加强数据分析工作,对投融资意向进行评估,为决策提供科学的依据。
(一)项目数据分析
1、什么是项目数据分析工作
项目数据分析就是研究将经济学理论用数学模型表示,并应用于项目投资分析的方法论。项目数据分析过程是:提出项目(研究机会)、初步可行性研究(市场、技术、资源、环境研究、效益、风险分析评价)、测算经济效益、评估和决策、可行性研究(市场、技术、资源、环境研究、效益、风险分析评价)、评估和决策、项目实施。
2、项目数据分析工作的内容、特点
(1)项目分析工作的内容
一般来说,项目数据分析的内容包括项目的经济效益评价、项目的风险分析和项目的比较选择。
项目的经济效益评价主要是在假设项目没有风险情况下的经济效益,主要针对非贴现指标(会计收益率和投资回收期)和贴现指标(净现值、内部收益率、获利指数和动态投资回收期)。
项目的风险分析,主要是进行盈亏平衡分析、敏感性分析和概率分析。
项目的比较选择,主要是独立方案、互斥方案和不完全互斥方案的设计、评估等选择。
(2)项目分析工作的特点
项目数据分析工作是一门边缘科学,其特点是以定量分析为主要分析手段,通过分析翔实的数据进行项目的论证得出定性结论,并以定量数据进行说明。显然,项目数据分析,必须通过建立数学模型的方法进行分析涉及经济学、数学、统计学和预测学。
(二)什么是投融资
1、项目投融资的概念。
投资是指 “为了在获得预期的收益而作出的确定的垫支或牺牲的各种经济行为” 。因此,投资并不局限于与基础建设相关的经济活动,还包括证劵投资、信贷投资和信托投资。
2、项目投资的特点
项目投资的特点是现在投入资金进行经济效益的博弈,通过对该项目的管理进行长期或者未来的收益,不仅具有时间性,而且具有较强的风险性,其本质就是获得预期的收益。
一些大型的投资项目,通常都由一家专业的财务顾问公司担任其项目的财务顾问,财务顾问公司做为资本市场中介于筹资者与投资者之间的中介机构凭借其对市场的了解以及专门的财务分析人才优势,为项目制定严格的,科学的,技术的财务计划以及形成最小的资本结构,并在资产的规划和投入过程中做出理性的投资决策。
(三)项目数据分析工作对投融资具有重要的意义
1、数据分析工作提高了工作效率,增强了管理的科学性。无论是国家政府部门、企事业单位还是个人,数据分析工作都是进行决策和做出工作决定之前的重要环节,数据分析工作的质量高低直接决定着决策的成败和效果的好坏。
2、越来越多的企业将选择拥有中国项目数据分析师资质的专业人士为他们的项目做出科学、合理的分析,以便正确决策项目;越来越多的风险投资机构把中国项目数据分析师所出具的项目数据分析报告作为其判断项目是否可行及是否值得投资的重要依据;越来越多的企业把中国项目数据分析师课程作为其中高管理层及决策层培训计划的重要内容;越来越多的有志之士把中国项目数据分析师培训内容作为其职业生涯发展中必备的知识体系。
二、从事项目数据分析工作的感受
(一)从数据分析师的角度,项目数据工作需要做到以下几个方面的服务,才可以为被服务对象提供优质的有价值的投融资报告。
1、真诚服务
所谓真诚服务,主要是因为投融资报告的价值来自于数据分析师精湛的业务能力,细致的数据搜集能力、阅读能力、分析能力和预测能力。无论是竞争性项目、还是基础性项目,由于数据分析工作时一门边缘科学,需要对真实和翔实的数据进行定量或者是定性分析,需要对国家或者国际政策进行审读,需要对经济形势进行判断,需要对项目所属的行业进行科学的宏观把握,因此,项目数据分析师在搜集相关数据,在分析相关数据时,在阅读国家或者国及政策时,在斟酌行业趋势时,都需要真诚的付出,否则,闭门造车或者移花接木式的投融资报告,只能是危害客户,只能给客户带来更大的风险,而不是丰厚的收益。
2、真心服务
所谓真心服务,主要是指项目数据分析师在服务客户时,需要站在客户的角度思考问题。由于项目数据分析师,是从属于某公司,因此从公司利益出发,需要为公司赚取一定的利润,这部分利润就来自于数据分析师所服务的客户。从客户角度思考,实际上客户委托数据分析师针对企业的项目意向而进行的数据分析,实际是希望数据分析师提供的项目方案,不仅是可行的,能够为公司获得预期利益,而且是风险较小的,可以操作实施的投融资报告。
3、真实服务
所谓真实服务,就是指数据分析师在进行项目数据分析,通过建立数学模型的方法进行分析并提出具有科学性的、前瞻性的、科学性的、可操作性的投融资项目预测报告时,需要是真实服务。一般来说,客户在提出项目设想时,是充满了憧憬,也具有天真的幻想,那么数据分析师提出的可行性报告如果是刻意逢迎客户的主张,那么对客户来说将是灾难性的打击。
4、真情服务
所谓真情服务,主要侧重于项目付诸于实践中,项目数据分析师跟踪调查项目实施的禁毒,以及修正项目风险分析和比较选择。
(二)从数据分析师所服务的客户角度来看,客户也需要做到以下几个方面的工作:
1、信赖数据分析师的服务
对数据分析师服务的企业来说,信赖数据分析师是必要的。一方面,投融资项目报告,制定严格,具有科学性,是理性的投资决策;另一方面,
2、忠诚数据分析师的服务
3、诚挚和数据分析师的合作
数据分析师在进行投融资项目分析时,一方面,客户的意项是否描述清晰、完整、完全,是非常重要的,它决定了投融资项目报告的起点和方向;另一方面,企业的真实经营状况,也对项目报告具有决定性的意义。因此,企业需要同数据分析师进行诚挚的、真诚的合作,否则,项目数据报告就存在不可预知的、本可避免的巨大风险。
三、为项目方和投资方案例分析
支持创新 不忘避险—“倍爱康”生物科技项目作为股东类项目,“中投信保”为“倍爱康”提供4笔贷款担保,累计担保余额1900万元,实现保费收入28.5万元。
“倍爱康”是由冶金自动化研究院投资兴办的高新技术企业,主营磁分离酶联免疫检测系统等医疗器械和试剂的购销与制造。企业贷款用途为引进加拿大的磁酶免系统。但贷款后对该产品的市场推广未见成效,研发费用又较高,在销售无法取得突破的情况下,使得公司的净利水平偏低。同时,下游各地方医院压款情况严重。虽引入的国外先进技术不如预期般成功,企业仍按时还贷,该项目顺利完结。