前言:我们精心挑选了数篇优质结构优化方法文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。
【关键词】工业建筑;结构设计;优化方法
1工业建筑结构优化设计的探讨
1.1工业建筑优化设计的目的。目前,在工业建筑优化设计的过程之中,依据各类建筑,其优化需求目标基本上可以分成两类:(1)传统概念之上的建筑结构设计与优化,其主要就是针对成本结构来进行优化设计,在最大限度之上来充分的保障设计的质量以及结构设计的科学合理性,最终于现代社会低碳环保的各项要求相符。(2)主要就是利用建筑结构的设计优化来满足企业工业生产的各项目标,达到建筑整体而结构的布局及设备置放的部位、分析与处理施工流程之中的各项数据,来最大程度之上加大工业生产作业的效率,提升企业的市场竞争力。
1.2工业建筑结构设计优化中的常见问题。在目前建筑结构设计优化设计的施工经验之中来进行分析,一般问题都是出现在优化之中。现如今,应用钢结构的范围逐渐的加大,这对于概念性设计与空间美学产生了较大的影响。此外,大部分工业建筑结构设计优化之中,设计人员对于整个结构规划布局缺乏一个全面化的认识,最终相应的也就引发了优化效果不显著情况的出现以及大部分企业对工业建筑结构设计优化不认可。
2工业建筑设计优化
2.1建筑结构优化的注意事项。现如今,在进行建筑结构设计的时候,我们国家大多建筑师基本上都不会参前期方案的设计,针对结构可行性与合理性来进行分析,在后期工程建设与方案设计相应的也就加大了难度,当然这也就需要增加对于工程的投入及应用。在工程结构设计前期就得要及时的引入结构优化的设计理念,这样一来不仅仅可以统筹兼顾来分析出工程优化设计的各项需求,而且还可以缩减企业资金的投入量,那么就可以在工程的初期进行合理的控制。
2.2建立完善的工业建筑结构优化体系。在工业建筑结构优化设计的过程之中,因为各个工业建筑结构的设计缺失统一的指导方案,那么就会使得建筑内部结构优化无法满足工业建筑结构的各项要求。所以在进行优化设计之前,首先要做的就是得完成的管理体系建立起来,利用管理体系以及工业建筑结构优化设计之中出现的各项问题来进行分析,并及时的制定出来行之有效的措施来解决,逐渐的工作的内容完善起来,最终在最大限度之上来充分的满足工业建筑结构优化设计质量管理的目的,加大工业建筑结构优化设计质量及其后期正式应用的使用效率。
2.3建立工业建筑结构设计优化模型。为了进一步科学、合理化的实现工业建筑结构优化设计的工作可以有条不紊的进行,在真是开展优化工作之前,要将结构优化设计模型建立起来,在众多变量参数之中选择出来其中的重要参数,逐步将函数模型建立起来,最终实现最佳的优化方案。
2.4吊车水平载荷。大部分工厂的生产均要利用吊车来进行输送体积偏大的获取,吊车荷载主要可以分为水平与竖直。SAP2000在结构分析之中可以将吊车的水平荷载利用等效静载负荷的方式来加到排架桩之上,另外竖直荷载主要就是利用移动式的静载负荷来进行施加的。
2.5电厂煤斗。煤斗是一种大型设备,其主要特征表现在:高度高以及体积大,并且有水平地震的重要性。针对支承构建而产生附加的扭矩以及弯矩,那么就得要利用相应的计算来进行补偿附加的内力。其主要步骤为:首先在设备的重心位置加设相应的支承结构,将附加的内力进行缩减;其次则是在与支承梁杆的轴心位置垂直的部位加设梁结构,使得支承梁的扭矩转变成为作用在梁上的弯矩;再者就是这个时候梁的抗弯能力十分的强,最终转移危险;最后则是支承结构抗扭配筋在不断的强化,楼板强度也随即加强。
2.6磨煤机隔振。对于火电厂而言,其发电过程之中始终无法离开煤炭,那么其中的关键工具就是磨煤机。振动的程度也会在很大程度之上影响到其他设备,特别是配电装置以及发电机组所处的控室。为了可以有效的避免这些问题的出现,那么弹性支承系统也因此而出现。(1)应用了弹簧振系统之后,磨煤机基础台座的重量约为一般基础快的二分之一。由于将之前的占地空间缩减,这对于工艺布置而言十分的有利。(2)应用了弹簧隔振系统之后,降低了磨煤机振动的频率,另外最为关键的就是有效的降低了磨煤机对于周边厂房及人员的影响。(3)因为磨煤机基础台座和锅炉厂房结构之间出现分离的现象,磨煤机基础施工的灵活性偏大。磨煤机基础施工的进行交叉是的施工,可以有效的缩减施工周期。(4)调平磨煤机,基础沉降可以通过弹性弹簧隔振器来进行相应的调整。(5)应用弹簧隔振系统之后,磨煤机自身受到荷载影响偏小,减小了磨煤机磨损的程度,使得磨煤机的运行可靠性进一步的提升。另外还可以有效的延长磨煤机的使用寿命,加大磨煤机大修的周期。(6)和一般基础相比之下,在应用弹簧隔振系统之后,磨煤机基础的振动具备可控制性,最为关键的就是传递到基础下荷载量减小了,所以可以适当的缩减地基基础处理的资金。综上所述,工业建筑结构设计是一项较为繁杂的工作,那么需要考虑各个方面的因素,从选择原材料到工程设计以及设计优化等等各个部分,依据工业建筑结构的特征来来具体的进行操作。逐渐的优化设计方案,在最大限度之上设计出来经济合理的方案。
参考文献
1.1基于拉格朗日方程的刚柔耦合动力学建模在对硅片传输机器人动力学模型过程中,需要对实际机器人进行如下合理的假设:①将硅片传输机器人手臂等效为均质杆,将关节质量等效为集中质量;②将同步带以及谐波减速器等效为无质量线性弹簧,系统阻尼采用比例阻尼进行简化。经过上述假设后,硅片传输机器人手臂可由如图2所示的简化模型表示。硅片传输机器人手臂简化模型中各物理量参数定义及其数值见表1。1.2硅片传输机器人动态特性分析柔性系统一般有多阶固有频率以及模态,但并非所有阶固有频率和模态会对末端轨迹精度造成影响。为了有效地选取优化变量,首先应先对柔性系统进行固有频率及模态等动态特性分析,从中寻找对末端轨迹精度有影响的模态以及对应的固有频率阶数,从而将优化重点放在为对末端轨迹精度影响较大的固有频率阶数上。由于固有频率为系统的固有属性,因此将硅片传输机器人手臂的刚柔耦合动力学模型写为式(2)的形式进行模态分析根据模态分析理论,柔性系统固有频率以及模态振型可由式(3)求得,其中ω为固有频率,A为模态振型矢量硅片传输机器人手臂柔性关节系统的质量阵为时变矩阵,因此其固有频率会随着末端的位置变化而变化。采用表1的系统参数进行仿真得到硅片传输机器人手臂固有频率特性如图3所示。由图3中可以看出机械臂的固有频率随末端点位置变化而变化。选取末端点位置最远点进行模态分析,分析结果如图4所示。由模态分析结果可以看出,系统的第三阶模态各个关节角的振幅比例约为1:–2:1。根据硅片传输机器人手臂的结构原理,大臂、小臂以及末端手的关节角度按照1:–2:1运动时,末端点的运动轨迹为一条直线,故三阶振动状态对末端轨迹的直线度并不造成影响。因此,对于硅片传输机器人手臂进行优化设计时,只需要重点考虑一阶与二阶的振动,以提高系统一阶与二阶固有频率为主要目标。
2手臂结构优化变量确定
如何在可优化变量中找到对固有频率影响最大的设计变量通常需要进行灵敏度分析。当优化参数以一很小值变化时,将此时固有频率的变化量作为该结构参数对固有频率的灵敏度。通常固有频率对结构设计参数的灵敏度可由式(4)表示式(4)的前提条件为设计变量bj的修改量必须很小。而在实际应用中,对不同设计变量改变同样数值时的难易程度并不相同,而对优化变量改变同样百分比的数值的难易程度基本一致。例如硅片传输机器人柔性关节刚度数值相对较大,而手臂质量较小,如果同样采取0.1为改变量时,刚度修改比质量修改更容易。因此,本文提出固有频率权值的概念,并以权值作为优化参数的选择依据。2.1权值概念在结构优化设计中,固有频率一般为多个优化设计变量的隐函数,可将固有频率按式(6)进行展开,其中偏导数项即为固有频率的灵敏度,而权值向量则表示所有变量对固有频率数值“贡献”的比例。优化变量的权值越大说明该变量对固有频率的影响越大。2.2优化参数确定根据上述理论,分别对硅片传输机器人手臂的优化参数进行灵敏度分析与权值分析。结构参数对一阶固有频率的灵敏度分析结果如图5所示,结构参数对一阶固有频率的权值分析结果如图6所示;结构参数对二阶固有频率的灵敏度分析结果如图7所示,结构参数对二阶固有频率的权值分析结果如图8所示。从仿真结果中可以看出:当采用灵敏度作为选择依据时,关节处的等效惯量灵敏度最高,而其余参数均较小,当采用权值作为选择依据时,手臂质量、杆长以及柔性环节刚度对固有频率影响较大,显然采取权值作为判断依据更符合实际情况。其中权值为正表示参数增大时固有频率提升,权值为负表示参数减小时固有频率提升。分析结果表明:对一阶固有频率的权值较大的变量为:腕关节集中质量、末端手臂质量、小臂与末端手长度以及同步带的刚度;对二阶固有频率的权值较大的变量为:腕关节质量、小臂质量、末端手臂质量、小臂与末端手长度以及同步带刚度。本文只重点考虑质量的优化,且腕关节集中质量主要为轴承等标准件,无法进行优化。因此,最终的优化变量确定为:小臂质量与末端手臂质量。同时注意到大臂的质量对一阶与二阶固有频率均无影响,必要时可以考虑增加大臂的质量来增加竖直方向上的刚度。
3手臂结构优化设计
根据上述分析结果,最终选取硅片传输机器人小臂质量与末端手臂的质量作为优化参数,减小质量参数有助于固有频率的提高。然而大幅度的减小手臂的质量必然造成手臂在竖直方向上的刚度降低,从而使悬臂结构在竖直方向上的静态变形增大以及在竖直方向上的振动的加剧。因此在减小手臂质量的同时,需要考虑对竖直方向上变形的影响。3.1优化方法及约束方程推导将硅片传输机器人小臂与末端臂简化为图9所示的等截面空心梁。其中H与W为空间尺寸约束条件,通常为常数;h1、h2、h3为手臂厚度变量;L为手臂长度。OYZ为截面坐标系,YC为截面弯曲中性轴。硅片传输机器人小臂与末端臂的受力均可等效为图10所示的形式。图10中p为手臂自身重力引起的均布载荷,Fe为等效力,Me为等效转矩。则手臂末端的挠度、由于硅片传输机器人手臂为串联结构,故式(8)中的等效力与等效力矩均参数均与该手臂所承载的后端的手臂的质量以及长度参数有关。因此,在进行硅片传输机器人手臂结构优化设计时需要从末端手臂开始设计,随后再设计小臂。3.2末端手臂优化设计在硅片传输机器人末端手臂设计时,末端手臂所承受的等效力与等效转矩由末端手与负载的参数决定。通常末端手与负载的参数为常数,且末端手等效载荷以及尺寸约束参数数值如表2所示。仿真结果表明:末端总变形随末端手臂上壁厚度的增加而增加,但当上壁厚度大于2mm后末端总变形基本不变;侧壁的厚度对末端总变形的影响较小,基本可以忽略;末端总变形随着末端手臂下盖厚度增加而增加,但当下盖厚度大于1mm之后,总变形增加的较为缓慢。因此,末端手臂厚度尺寸最终确定为:上壁厚度2mm、侧壁厚度1.5mm、下盖厚度1.5mm。3.3小臂结构优化设计末端手臂优化完成后,小臂的等效力与等效转矩参数即可以确定。小臂受力及约束尺寸参数数值如表3所示。仿真结果表明:末端总变形随小臂上壁厚度的增加而增加,但当上壁厚度大于2mm后末端总变形基本不变;侧壁的厚度对末端总变形的影响较小,基本可以忽略;末端总变形随着小臂下盖厚度增加而增加,但当下盖厚度大于1mm之后,总变形增加的较为缓慢。因此,小臂厚度尺寸最终确定为:上壁厚度2.5mm、侧壁厚度2mm、下盖厚度1.5mm。
4优化前后性能及参数对比
优化前后的小臂与末端手臂的三维模型如图17所示(手臂的下端盖未显示)。优化前后手臂质量以及硅片传输机器人手臂系统的固有频率数值对比关系如表4所示优化前后硅片传输机器人手臂系统由悬臂引起的竖直方向上的静变形、静应力以及竖直方向上的振动频率如图18~23所示。由表5与表6可以看出:优化前后末端手臂质量降低了50%,小臂质量降低了18.8%;一阶固有频率平均值与二阶固有频率平均值均提高了10%;竖直方向上最大静态变形量降低了52.3%;系统最大应力降低了58.3%;竖直方向上的振动频率提高了45.2%。
5结论
截面优化 形状优化 拓扑优化 算法
结构优化设计是最近30年来才发展起来的一个新的技术,这是结构上的一次重大的飞跃,它让设计者们从被动的状态变为了主动状态。优化设计能够非常合理地使用每一种材料的性能,让结构内的每一个单元都能够很好的协调在一起,并且保证安全度是完全达标的。于此同时,它还能够帮助整体性的方案设计进行一个非常合理的决策。结构优化设计从出现到现在已经有40多年的历史了,而在过去的30年内,它在理论和算法等方面都取得了非常显著的进展。这些进展大部分是与连续变量优化设计相关的,另外少部分是与离散变量优化设计相关的。
1.结构优化设计理论
1.1 截面优化
截面优化的设计变量要么是板的厚度、杆的横截面积,要么是复合材料的方向角度或分层厚度,因此,在使用有限元对结构的位移与应力进行计算时,只需要直接地使用灵敏度分析以及适当的数学规划方法便能够完成截面优化的过程,而不需要对网格进行重新划分。对于几何状态一定的情况,有限元分析只需要在杆的横截面的性质发生改变的时候才重复地进行。对于板这类有连续性结构的东西,也只需要把各个单元的厚度作为设计的变量,得出的优化结果便是呈阶梯形分布的板的厚度。在这些优化设计的过程当中,设计变量和刚度矩阵一般情况下是简单的线性关系。所以,截面优化应该重点研究优化算法与灵敏度分析。
1.2 形状优化
形态优化的主要特征是在结构给定的前提下通过对结构的边界形状或内部的几何形状进行调整来节约材料并且对结构的特性进行改善。从对象上划分,形状优化主要可以分为块状、板状的连续体结构与桁架类的杆系结构。对于杆系结构形状进行优化的求解方法主要可以分为两类。第一类是综合法,即是将两类变量统一起来同时进行处理,运用无量纲化,然后构造近似数学模型进行求解。第二类是分步优化方法,即是将尺寸变量和几何变量分为两个设计空间,然后分别对这两类变量进行优化,也即是每一步将一个变量固定,同时优化另一个变量,两步之间通过迭代进行协调。
1.3 拓扑优化
拓扑优化已经成为了现今结构优化设计研究的一个焦点,因为它可以在工程结构设计的最初的阶段便为设计者提供一个概念性的设计,让结构在布局上运用到最好的方案,这样,拓扑优化就比截面优化和形状优化能够获得更大的经济效益,也更容易受到工程设计人员的亲睐。拓扑优化的目的是在设计空间中寻找结构的刚度最好的分布形式,从而来对结构的一些性能进行优化或者减轻结构的重量。
2.结构优化设计方法
2.1 数学规划法
数学规划方法的提出开创了现代结构优化的新时代,将优化问题转化成数学规划的形式求解也就是将问题转化为在设计的空间中,在一定的可行域内寻找最小目标等值面上的可行的点,这个点也就是问题的最优解。数学规划法有非常严格的理论基础,虽然它在一定的条件下能够收敛到最优的解,但是它要求问题能够非常明显地表达,而且大多数情况下还要求设计变量必须是连续变量,目标函数是连续的而且性态要良好。对于大型的结构优化问题,收敛性一般都不是很好,而且迭代的次数比较多,这样就加大了结构分析的工作量,降低了工作效率。近似概念大大地提高了规划方法的计算的效率。
2.2 最优准则法
直接地使用数学规划理论需要多次地调用函数进行计算,而且当设计变量增加时调用次数也会迅速增加,导致设计的效率太低,在这样一种背景下便出现了最优准则法,它是最先发展的一种结构优化设计方法。这种方法虽然计算效率比较高,但是在建立迭代公式的过程中受到很多假设的限制。
2.3 仿生学方法
近年来,对自然界进化进行模拟的算法有两类,即模仿自然界过程算法和模仿自然界结构算法,主要又可以分为:进化算法、神经网络算法与模拟退火。
结语
结构优化是一门综合性的学科,也是一个有很大发展潜力的研究方向,它具有一定的理论价值与应用价值。在理论上,它对结构设计提出了一个新理念,极大地促进了人类资源的合理配置。于此同时,结构优化问题的本身也带动了一些相关性学科的发展,对各个学科的发展提出了一些新要求。本文对结构优化的一些优化方法进行了简要的概括。截面优化相对来说已经比较完善,形状优化也渐渐地变得成熟,只有拓扑优化至今还处在理论探索的阶段。
参考文献
[1]侯贯泽,刘树堂,简国威.工程结构优化设计理论与方法[J].钢结构,2009,08:30-33.
[2]董立立,赵益萍,梁林泉,朱煜,段广洪.机械优化设计理论方法研究综述[J].机床与液压,2010,15:114-119.
[3]李晶,鹿晓阳,陈世英.结构优化设计理论与方法研究进展[J].工程建设,2007,06:21-31.
[4]钱令希,程耿东,隋允康,钟万勰,林家浩.结构优化设计理论与方法的某些进展[J].自然科学进展,1995,01:66-72.
关键词:建筑结构 设计 优化
建筑结构在设计的时候,经济性也是非常重要的因素,同时设计出来的建筑结构也要做到便于施工。在进行建筑结构设计的时候要充分满足安全、美观、实用、经济和施工方便的原则,这样设计出来的建筑结构才能更好的保证以后的使用效果。随着生活水平的提高,人们对于建筑的要求也在不断的提高。建筑结构设计工作的质量自然决定了工程的质量。所以,为了更好的完成建筑设计工作,本文讲述了建筑结构设计的基本原则及优化方案,可以为建筑设计工作提供一个参考。
一、建筑结构设计基本原则
建筑结构设计并非是无规则可循,它也是存在一定的原则的,主要可以分为四个方面,下面对施工设计的四个原则分别进行详细的论述。
1.1取大舍小原则
每一件事都会有一个大小之分的。建筑施工设汁中的取大舍小原则主要讲的建筑施工的过程中要有主次之分。一项工程,各个部位所需要的时间是不一样的,为了保证施工设计的合理性以及可行性,就会把一项工程分为主要和次要的两个部分,而这两个部分,也要有不同的重视程度。在施工的时候,要保证的是柱的强度要高于梁的强度,剪处承力要强于弯处,这些东西都在建筑施工设计的范围之内。取大舍小原则的实施会确保工程的进度质量还有成本。
1.2刚柔有度原则
刚柔有度原则主要指在进行建筑结构设计的过程中,要将过于钢化的建筑结构进行柔化,提高建筑物的整体稳定性。建筑结构设计刚柔有度要求设计人员对建筑结构的稳定性进行全方位考虑,对建筑设计中过多的钢化线条设计进行改善和调整,降低建筑物发生形变的可能性。
1.3多重设防原则
多重设防原则主要指在进行建筑结构设计的过程中,设计人员要对所有的设计结构进行把握,将建筑结构的整体作为主要设计核心,设计多重防线,保证建筑结构的安全性。多重设防要求设计人员要熟知建筑结构设计的各个环节,在设计中边行多重设卡,将建筑结构各部分的功能充分放大,提高设计效果。
1.4打通关节原则
打通关节原则主要指在边行建筑结构设计的过程中,设计人员要将建筑细节结构和主体结合在一起,将建筑细节结构融会贯通,实现建筑结构的统一。通过减少建筑结构中的关节,将建筑结构关节打通,实现对建筑整体的全方位把握,增强建筑没计的主体效果。
二、住宅建筑结构设计优化的方法
住宅建筑结构设计优化是要通过对拟建住宅进行模型的优化、计算方法的优化、并在计算和模拟的基础上制定有效的结构方案,再进行验证。
2.1结构优化模型的建立
在进行结构优化设计的过程中首要的问题是要根据实际的结构特性设定成为相关的结构设计参数,主要的有目标控制参数和约束控制参数。对于那些变化范围比较小的,且在结构的局部加强就能满足要求的部分参数,将其确定为预设参数,从而减少计算的工作量:对于目标函数,是要找到一组可以满足预定条件的钢筋截面积和截面的几何尺寸,目标是要让总造价最小。对于约束控制函数,包括前度和稳定约束、截面尺寸约束、结构整体约束、构建单元约束、正常使用状态的上下限约束条件等。参数的设计必须要与实际情况和规范相符。
2.2结构优化设计的计算方法
在结构优化设计计算方案的确定上,考虑到建筑结构的复杂性带来的变量多、约束条件多且非线性,因此在计算过程中,一般的做法是先将有约束的优化问题转化为无约束条件再进行求解,可选用的计算方有拉式乘子法、复合形法等。结构选型、尺寸和参数设计完成后,在计算方案的基础上设计优化程序。并在得到计算结果后,对结构进行综合分析,最后确定最合理的结构优化设计方案。
2.3建筑设计优化中所要解决的复杂性问题
设计房屋建筑结构最主要的目的,就是要使建筑物的安全性、耐久性以及功能性得以保障。保证其能在一定的期限中达到各个功能及要求的满足,此外还要做到建筑资金最大可能性的节约。房屋建筑结构优化的目标就是要保证所设计出的建筑物可以对一些自然界的外力作用予以实质性的抵抗。所设计出的房屋建筑不至于在外力影响下而坍塌。所以,对房屋建筑物抵抗外部因素的分析与研究是对建筑物设计与优化的关键。在某些比较复杂的外在自然因素中,相对较为特殊的就是地震的作用。因为地震的作用对其发生的地点、时间以及能量等级无法准确的确定。而且其活动的周期性也没有任何可供参考的规律,地震一旦发生,其破坏建筑物的威力也是非常严重的,因此对房屋建筑物加强抗震设计,是房屋建筑结构优化设计中必不可少的一个环节 。对刚度均匀堆成的房屋布置方案进行采取能够使房屋抗震能力得以提高,此外,根据房屋延性设计的原理,也能够保证建筑结构在强烈的地震中不会出现破碎性的破坏。
三、建筑结构设计优化的应用分析
建筑结构的优化设计要在保证建筑使用功能的条件下,利用结构优化设计技术达到提高结构安全度、降低工程造价、提高经济性的效果,也就是要贯穿建筑的整体设计、前期规划及抗震设计等阶段。
3.1结构优化设计的前期参与
建筑是相对长期的投资,常见的建筑使用年限均在50~100年间,这就要求结构能够保证在设计使用年限内,建筑能够保持基本的使用功能、良好的空间环境。因此,要在建筑方案设计初期就加入结构优化的考虑。这样可以有效避免出现结构不合理、工程造价高等问题。也就是说,在建筑方案的设计初期就加入结构的优化设计,是提高建筑利用率的有效方法。
3.2要注重建筑结构的细部优化
随着电子技术和建筑物结构设计优化理论的有效结合,在对其建筑物设计优化进行具体操作的过程中,其优化方案已经从一个建筑实践问题逐渐向数学问题进行转化。所以,建筑设计工作者必须对基于电子技术方面的建筑优化设计予以加强。除对整体性设计予以注重之外,还要对建筑结构的基本构件在进行精细设计上进行加强。比如,对矩形现浇板设计予以尽可能性的划分,这样做一方面使现浇板设计保证其受力的合理性,另一方面,也避免了建筑基本构件拐角裂缝的产生。
结语:
一个优秀的建筑施工设计,是整个施工过程中一个良好的开端,可以保证建筑的整体质量和整体效果。建筑结构设计对一个工程有着举足轻重的作用。总之,结构优化设计是在坚持可持续发展观、充分利用有限资源的基础上提出的,是符合社会发展需要的有力举措。
参考文献:
[1]胡金焱.浅谈建筑结构设计中应注意的问题[J].科技创新与应用. 2013,32.
关键词:结构设计;优化设计;实践
中图分类号:TU318 文献标识码:A
对于一个项目,工程结构总体的优化设计主要是针对围护结构、屋盖系统、结构体系、基础形式以及结构细部等进行相应的设计方案的优化设计。在设计的时候还必须考虑到相应的布置、选型、造价以及受力等方面的问题,然后根据工程的实际情况并结合建筑物的经济性要求,对建筑结构进行相应的优化设计。 为了适应时展的要求,建筑的结构形式必须不断的进行创新。对于结构设计师来说,要在确保建筑结构具有一定的安全保证的基础上设计更合理、更经济、更能体现创新的结构形式。
1 结构设计优化技术的现实意义
对建筑结构的设计进行必要的优化,在对于房屋结构相关的设计中的应用意义重大,不仅能够满足了建筑的实用与美观,而且还可以有效地对工程造价进行控制。对于建筑商来说,其当然希望用最少的投资,而获得最大的收益,然而又必须对建筑结构的科学性、可靠性以及安全性做出保证,这必然要求对建筑结构进行优化设计。
结构设计优化和传统房屋结构设计进行比较我们可以发现:运用设计优化的技术能够降低整个建筑工程造价10%~40%。结构设计优化技术能够使得建筑结构内部的每个单元都得到最佳的协调,并可以对材料的性能进行最合理的利用。这样不仅能够保证相关规定的安全系数,还能够实现建筑结构设计的经济性与实用性。
2 结构设计优化技术在建筑结构设计中的步骤
2.1 建立结构优化的模型
在我们对房屋结构整体进行必要的优化设计时候,可以分成三步进行建筑结构的优化设计。下面将对每一步骤进行详细的介绍:
2.1.1 要对设计变量进行合理的选择
通常在对设计变量进行选择时,我们把对建筑结构影响的主要参数作为设计变量。如目标控制的相关参数(损失的期望C2 和结构的造价C1)和约束控制相关参数(结构的可靠度PS)等;然而还有一些影响不是太大,其变化范围也不是很大或者由局部性以及结构的相关要求就能够满足相应的设计要求的一些参数,我们可以用预定参数来表示,这样能够使得我们的设计量、计算量以及编制程序的工作量均大大减小。
2.1.2 对目标函数进行确定
在进行结构设计优化的时候,我们还必须寻找一组能够满足相关的预定条件的截面相应的几何尺寸、钢筋面积以及相应的失效概率的函数,使得工程造价最少。 针对目标函数进行的优化设计都有条件和相对的,即为“最满意解”而不是最优解。
2.1.3 对约束条件进行确定
对于房屋的结构的设计优化来说,必须在确保结构整体可靠的基础上,对优化设计相关的约束条件进行相应的确定,设计优化的约束条件主要包括裂缝宽度约束、结构强度约束、尺寸约束、构件单元约束、应力约束、结构体系约束、从可靠指标约束到确定性约束条件以及从正常使用极限状态下的弹性约束到最终极限状态的弹塑性约束等约束条件。在进行结构设计的时候,我们必须对目标约束条件与实际的约束条件进行相应的比较与分析,确保每个约束条件都必须满足相应的要求,化繁为简,抓大放小,以实现最佳的设计。
2.2 对优化设计的计算方案进行设定
根据可靠度进行的房屋结构的优化设计具有多约束且非线性的优化问题以及复杂的多变量,在进行相应的分析计算中,一般把有约束的优化问题转换成无约束优化问题的求解。常用的优化设计的计算方法有拉格朗日乘子法、复合形法、准则法以及Powell(鲍威尔) 法等基于不同理论准侧的计算方法。
2.3 进行程序的相关设计
针对具体的工程设计,我们可以根据不同的设计要求选择有限元分析软件或者设计配筋软件,可以选择针对具体构件进行有限元分析或者是针对整体结构实际工程计算分析。针对复杂的超高超限的工程可以进行专门的不同目标函数的优化设计,具体可选用结构优化设计系统MCADS。
2.3 结果分析
我们必须对相应的计算结果进行必要的分析比较,选择出最佳的设计方案。在这个过程中,我们对出现的问题必须全方位、多角度的考虑。例如,钢结构满应力设计中病态杆的出现等。这一步骤在建筑结构设计优化中尤其重要,合理的选择设计方案,不仅能够确保结构的美观、安全性、合理性以及实用性,还能够对施工中的资金的投入有着重大的影响。在结构设计优化中只强调经济性要求,而忽略技术要求,是不正确的;同样只考虑技术要求,忽略经济性要求,也是不合理的。我们必须在满足现行规范的前提下,区分“应”和“宜”,对两者进行合理的配置,才能达到相关要求。
3 结构设计优化技术的实践应用
当下,限额设计已经成为常态,建设商经常附加各种各样的设计条件,对于这样的项目我们可以从前期设计、整体设计、旧房改造以及抗震设计等方面采用结构设计优化设计的方法来节约造价。下面对实践应用中的问题进行简单的说明:
3.1 结构设计优化应注意前期参与
前期方案直接会影响到工程的造价,然而很多建筑物的设计往往忽略了这一点。项目立项后,结构师应该及时跟进,对建筑方案提出合理的指导意见,避免出现超限、超规范的情况,前期参与能够让我选择合理的结构形式以及合理的设计方案,节约造价占50%以上。
3.2 概念设计结合细部结构设计优化
在没有具体数值量化的情况下,我们可以使用概念设计。例如,对地震的烈度进行设防时,由于它存在这不确定的因素,所以我们无法找到与实际相符合的计算式,所以在进行设计优化的时候我们可以使用概念设计的方法,把相应的数值作为参考与辅助相关的依据。同时在设计过程中,相关结构设计人员必须合理并灵活的使用结构设计优化的方法,从而达到最佳的效果。
在设计过程中必须对细部的结构进行相应的设计优化,物尽其材。例如,竖向柱构件采用高强度混凝土能够有效减少柱子截面,而对于水平构件来说就可以降低混凝土标号,这样既可以达到受力要求,又可以节约成本。后期的优化设计和细部结构精细化设计能节约一定的经济成本。此阶段通过优化设计能节约造价10%以上。
3.3 下部地基基础结构的设计优化
基础的设计尤为重要,基础造价能占到结构成本的30%左右,在地基基础的结构设计优化中,我们必须选取合适的基础方案,确定合理的持力层,尽量选择天然地基,桩基能不用则不用,可以有效降低成本、节约工期。如果不可避免的采用桩基,需根据桩端持力层的厚度选择合理的桩长,并根据土层情况确定是否采用后压浆灌注桩;而对于管桩,同样直径可以考虑选用方桩,能够提高20%的摩擦力。通过对多种设计方案进行必要的分析比较,然后选取最佳的设计方案。
4 结语
对于住宅建筑,目前限额设计已经成为常态,传统的结构设计理论与方法已经无法满足建设商的要求,在目前的设计中采用优化设计已经成为无法回避的问题。通过选择合理的结构体系以及基础方案,充分利用材料强度,降低自重,活学活用规范做到精细化设计能够节约可观的工程造价,适应建设绿色可持续发展社会的要求。
参考文献
[1]张炳华.土建结构优化设计[M].上海:同济大学出版社,2008:34-36.
[2]汪树玉.结构优化设计的现状与进展[J].基建优化,2007:12-13.
关键词:工程结构;优化设计;分析与方法
引言:
众所周知,不论在什么行业中,追求追优化的配置和设计是每一个行业从业者追求的目标。所谓的最优化设计,就是在诸多被选择的项目中根据自身的特点以及条件找到一种比较合理的,最节约成本以及实现利益最大化的设计方式与方法。
立足于工程结构的设计中,我们在最优化设计的过程中致力于将技术以及力学的相应概念做到最好的融合。在设计要求的基础上形成一些可以操作的,具有可行性的方案。进而通过科学的数学计算找到客观的,可以应用于实际的优化方案。在诸多工程结构设计的优化方案中,我们在选择了最佳方案的同时也就同时节约了成本,使得爱同样的时间内创造了巨大的效应,更加使得这些工程的工期变短,工程质量变的十分优良,是一种降低工程成本,提高质量的最佳选择则途径。
一、工程结构优化设计演变历史概述
对于工程结构设计,最开始是将直觉的准则法,如满应力准则法,满应变准则法等作为优化设计的基础性选择,在很长的一段时间中得到了很好的应用和成本的节约。一般来说,准则法的应用是为了主要提升单步设计变量修改幅度使之变得越来越大,并且在收敛速度上也有着显著的提升,但是这些不会改变结构的大小,也不会因为结构的复杂而改变。随着时间的推移,我们的研究者逐渐的将拓宽了优化设计的范围,从而数学规划法出现了。这就使得我们要针对一些特殊的工程进行很好的研究,因为这个时候的准则法已经不适用有所有具有个性的工程优化设计中了,主要是因为没有一些科学的,客观的理论准绳。与其相反,数学规划方法,站在比较科学的角度,对于结构设计有着严谨的研究,这样的算法能够有着科学性的展现。但是实际的工程结构优化设计一般都是有约束、非线性和隐式的优化问题.这两种方式都不是用于现代工程的发展和诉求。随之而来的就是模拟退火算法的出现.接着,到了二十一世纪,随着计算机的普遍应用,信息化以及全球化时代的到来,我们的研究方式与方法就随之而来了,在工程结构优化设计上有着很好的发展,诸多实用性方式出现,下面我们将做详细的研究。
一、 工程优化设计研究
1.为何设计---工程中结构不确定性的存在
在工程施工之前,对于其结构进行深入的分析和研究,并完成良好的设计是因为在工程设计以及进行的过程中,有着很多不确定性的存在。基于不确定性理论的工程结构优化设计主要考虑变量。但是出于安全性以及可靠性的角度考虑,先前的优化设计有些过时,我们要站在更新的角度上发展,所以之前的缺陷我们要有着很好的认识。主要分为以下几点。
第一, 缺乏结构可靠性的设计,不能保证稳定,安全。
第二, 没有对材料的可变性做出预算,不能真实的反映材料的参数。所以没有科学的数学建模可以支撑,难以形成最佳的方案。
第三, 在工程中存在着一些很复杂的施工情况,之前的设计不能很好的给予判断以及确定,这就使得我们的施工情况不能符合实际,没有真正意义上的达到最优。
2.工程优化设计方案研究
第一,形状优化。可以说,这种优化设计方案是当下比较流行的,主要是通过调整工程结构内外边界形状来改善结构性能和降低工程结构造价,其主要用来发掘工程系统构件的合理内外边界形状。具体上讲,这种优化也是将一些离散变量以及块体、板、壳类的连续变量包含在内。
第二,模拟退火算法。也就是通常所说的SA方式放大,也就是在施工的设计中进行固体加热,使之到达了一定的温度,进而在科学的作用下使之渐渐的变冷下来。因为在升温的时候,固体的内部结构法身了很大的变化,随着热能的增多内能变大,其中固体中组成部分也就是内部的元素也会随之变大。但是随着热胀冷缩原理的深入,当这个固体的整体变得冷却的时候,所有的元素变回到之前的一种有序的排列状态。也就是说,在固体中,元素因为在每一个趋近于平衡温度的时候都有着自己的平衡状态出现,最重要的是在常温的时候内能处于最小化状态,也就是我们所说的基态。这就是模拟退火算法.这种方法有着自身的好处,那就是:适用于离散型、连续型及混合型变量;鲁棒性、全局收敛性、隐含并行性较强,并且可以得到很广泛的应用。
第四, 粒子群优化算法。该种算法是近几年来比较流行的一种应
应用广泛,并有着实际用途的设计计算方式与方法。这个算法的研究十分奇怪,主要是来源于整个鸟群,从鸟群捕捉食物中找到灵感,这个算法是开始于随机解,并通过迭代寻找最优解,在设计的过程中不断的寻找一种适应度来找寻解的品质。这样的算法是比较方便以及会计的的,没有一些复杂的计算以及冗长的分析。是比较得到现代设计者以及施工方的喜爱的,效果也是比较明显的。
第五, 变密度法假设优化设计。可以说,变密度法假设优化设计
的主要设计对象是那些密度可以变更的材料,这就使得我们的设计具有一定的局限性。在设计的过程中我们要假定材料物理参数与密度间存在某种数学关系,并将所设计的材料的密度作为一种变量,致力于寻找到一种目标函数,这种目标函数以材料的最优质分配为主要目标。并且,我们在这种工程优化设计中可以找到一些优势或者是特色,具体来说,该种方式可以很好的展现出拓扑优化的本质特征,并且在实现的过程中显得比较简便,有利于操;同时这种程序的设计计算成功率比较高,但是精准度确实是不高,总而言之,这种方式的最大他点就是计算方法简单易行,但是适用范围十分受到局限,需要特定的材料以及特定的环境。
第六, 相对差商法和混沌优化相结合。该种范式是一种导出求解
离散变量桁架结构拓扑优化设计的混合算法,这种优化设计的计算方式和方法,将设计的体积最小最为最终目的。从而有力的实现了一种
拱坝的体形优化的设计和分析,在应用的过程中得到了很好的设计效果,节省了成本提升了利润。
最后,多目标优化。一般来说,多种目标优化方案就像字面上所述,不是一种单一的目标实现方式,而是在设计中考包含了多方面的设计方式以及方法,这样在计算的过程中,在实施的过程中保证了设计的安全性以及稳定性,更大的程度上实现了一种可靠性。在安全性的实现上,这种多元化的实施方案就要不断的加大结构的截面面积但是要取得最少重量的目标,在设计上就要使得截面面积变小。所以我们知道,这就不可能在全局上实现一种面面俱到的设计方案,所以,我们的设计管理者以及决定人,要在多方面分析只会走找到一个比好合适的方案做一个决定,并实施。可以说,这种多目标的优化设计对于工程系统决策是很重要,并有着很好的应用。
参考文献
1. 蔡新,郭兴文,张旭明.工程结构优化设计[M].北京:中国水利水电出版社,2003.
2. 张炳华,侯昶.土建结构优化设计[M].2版.上海:同济大学出版社,1998.
3. 刘齐茂,燕柳斌,邓朗妮.桁架形状优化的一种改进模拟退火算法研究[J].计算机工程与应用,2007
4. 姜冬菊.结构拓扑和布局优化及工程应用研究[D].南京:河海大学,2008
一、灰色线性规划方法
线性规划是运筹学的一个重要分支,它是一种在具有确定目标又有一定约束限制条件下,从所有可能的选择方案中找出最优方案的数学方法,也是目前研究多变量复杂系统常用的一种最优化方法。但是,一般的线性规划存在问题为:①静态规划不能反映约束条件随时间变化的情况;②当规划模型或约束条件中出现灰数时不便处理;③从理论上讲,定义在凸集上的凸函数是有解的,而实际计算中往往因技巧、技术问题使求解过程难以进行下去。
利用灰色系统的思想和建模方法,使上述问题得到了一定程度的解决。灰色线性规划弥补了一般线性规划的不足,它不要求目标函数中的效益系数、约束条件中的技术系数、资源量及其他限制量等都被固定下来,而允许技术系数是可变的灰数,约束值是发展的情况下进行,是一种动态的线性规划。灰色线性规划中的约束条件系数,是灰区间数,既可按下限规划,又可按上限规划,还可按区间内的任何一白化值进行规划。在区间内,只要可以得到一组白化值,便可得到一组优化方案,从而使规划灵活多变,有众多的调整余地,适应情况的发展变化,避免了常规线性规划使许多具体问题得不到可行解的结论,或解过于死板,无调整余地的缺点。
关于数学模型的求解,除由于灰色线性规划模型中效益系数、技术系数及约束系数是区间灰数外,为体现土地资源利用效益最高、费用最低、土地资源配置最佳的原则,取效益系数的上限、技术系数的下限、约束参数的上限,可得到土地资源利用结构的理论最优方案。另取效益系数的下限、技术系数的上限、约束参数的下限,可得到土地资源利用结构的警戒方案。根据今后土地开发利用可能采取的方针和政策,对不同投入水平和不同需求条件下的土地资源利用结构进行优化,据此分别得出不同投入水平和不同需求条件的不同组合,根据土地资源利用结构的现状取漂移系数,就可得到一组土地利用结构优化方案,再综合考虑社会效益、经济效益和生态效益,再根据研究区域目前的经济发展水平及未来的发展趋势,最终优选出一组土地资源利用结构优化方案,实现土地资源利用结构的优化配置和持续利用。
二、土地资源利用结构优化多目标线性规划模型
土地资源利用结构优化即是土地资源利用结构多目标线性规划数学模型。
需要说明的是,土地资源利用结构多目标线性规划模型中的其他约束可以是土地适宜性评价约束、土地总面积约束和数学上的非负约束等,特别强调的是本模型无论是目标函数还是约束条件都可以采用灰数,即本模型是灰色线性规划多目标模型见图1,若模型中所有变量都为白数即为通常的线性规划模型。
三、实例
本次计算实例选择环京津地区7各地级市,对其土地资源利用结构进行优化配置。
(一)环京津地区概况
河北省环京津地区包括唐山市、秦皇岛市、沧州市、保定市、廊坊市、张家口市和承德市7个地级市以及13个县级市、65个县城,国土面积共13.82万平方公里,占全省总面积的73.5%,其中7个地级市城市建成区面积417.97平方公里,占区域总面积的0.3%。2007年总耕地面积3855633公顷,总人口3974.77万人,占全省总人口6943.19万人的57%,人口平均密度为287.6人/平方公里,农村社会生产总值为124351338万元,占河北省的64%。
(二)环京津地区土地资源特点
河北省作为环京津地区的第一大省,是中国唯一兼有高原、山地、丘陵、平原、湖泊和海滨的省份,也是紧邻京津的省份,京津地区任何发展变化都与河北省密不可分,其土地资源利用的特点也随着京津地区的发展需求而发生变化。环京津土地资源的数量特征及其空间分布状况,构成了该地区土地资源的特点。
(三)模型采用的约束条件
本次计算采用灰色线性规划方法,建立多目标农业土地利用模型,约束条件总的分为3大类,即社会、经济和环境,包括12个约束条件。为了保证规划的动态性,约束系数aij和约束常数bi采用灰色GM(1,1)模型预测,并结合定性分析得到其白化值。再进行求解。
(四)目标函数的价值系数
由于环境生态约束与社会约束选择的是优化后的结果,在总目标中作为必须保证的约束处理,此时的总优化目标只取经济效益最大。
根据2007年统计资料,求得相应地类的价值系数,由于居民点和工矿用地及未利用土地不产生经济效益,故其价值系数取0。
(五)优化结果
根据以上给定的约束条件和建立的灰色线性规划模型,求得若干套环京津地区土地资源利用结构优化结果,选择有代表性的4套方案列于,由于采用灰色线性规划优化模型,任一灰变量在灰区间取任何一个不同的白化值都构成一套优化方案,在此不予赘述。
环京津地区土地资源利用结构优化是在社会需求、生态效益最优的的前提下,求农村社会总产值最大,本次分析选择与土地利用结构密切相关的农林牧渔总产值作为比较对象,上述所选4套优化方案与2007年实际各项产值相比。其中在2007年实际林业产值中包括果园产值。
四、结语
关键词:隔膜泵;隔膜腔;机械强度;ANSYS
中图分类号:TH323 文献标识码:A
作为高压隔膜泵液力端的核心部件,隔膜腔在输送固液两相流体过程中起到了非常重要的作用。隔膜腔用于连接隔膜室盖、进料阀和出料阀,因此隔膜腔的设计过程中需要考虑流体压力、螺栓预紧力和其他因素的影响。本文以某大型高压隔膜泵中隔膜腔为研究对象,基于有限元方法对隔膜腔进行了静力强度分析。通过ANSYS的后处理分析模块获得了隔膜腔的应力分布,扭曲和应力线性化结果。根据ASME VIII-2标准对隔膜腔的机械强度进行了校核,并在此基础上对隔膜腔的结构进行改进设计。分析结果可为隔膜腔的结构优化设计和降低成本提供一定的理论基础。
1 有限元模型的建立
图1(a)给出了隔膜腔的剖面图,从图中可以看出两个内腔圆角和最小壁厚分别用R1,R2和d表示。通过三维设计软件SolidWorks画出隔膜腔的1/4对称模型,如图1(b)所示。隔膜腔的材料采用ZG20Mn,材料属性如下:拉伸强度σb为510MPa,屈服极限σs为295MPa。根据ASME相关标准,材料的许用应力可通过下式计算出来。
Sm=min(σb/2.4, σs/1.5)(1)
将SolidWorks建立的隔膜腔几何模型输出为SAT格式档并导入有限元分析软件ANSYS,在ANSYS的前处理模块对隔膜腔划分网格。应力集中区域需要局部网格加密,最后获得隔膜腔有限元模型的单元数为173812,节点数为36952。根据隔膜泵实际的工作状态,定义隔膜腔的边界条件和载荷如下:隔膜腔的对称面施加对称边界约束,定义隔膜腔和隔膜室盖螺栓连接处施加600000N的预紧力,隔膜腔和出料阀螺栓连接处定义80000N的螺栓预紧力,隔膜腔内受液体压力的面施加20MPa的压力。图2给出了隔膜腔的载荷约束图。
2 应力分类及强度评定
图3给出了隔膜腔的Von Mises应力图和位移云图。从图中可以看出最大应力出现在隔膜腔的相贯线处。根据ASME VIII-2标准,定义了用于强度校核的四条线性化的应力计算路径,如图4所示。选择这些路径的原理如下:沿着壁厚的方向,根据最大应力节点定义一条或多条应力计算路径。应力线性化计算路径还应当在隔膜腔的应力集中区域进行定义。
根据应力产生的原因、应力集中区域和应力的性质,压力容器应力可以大致分为:主整体膜应力(Pm),主局部膜应力(PL),主弯曲应力(Pb)和次应力(Q)。利用这些应力和如下的校核方法可对隔膜腔的强度进行校核:主总体膜应力的等效值应当小于金属材料的许用应力(Sm)。考虑到应力的位置,主局部膜应力的等效值应当小于1.5倍材料许用应力(1.5Sm)。根据极限载荷设计理论,当膜应力和弯曲应力同时存在时,他们的和应当小于1.5倍的材料许用应力(1.5Sm)。更进一步考虑次应力的限制条件时,Pm(PL)+Pb+Q应当小于3倍的材料许用应力(3Sm)。
通过ANSYS的后处理模块,画出了沿着四条应力计算路径的等效应力变化曲线,如图5所示。四条应力计算曲线的最大等效应力列在了表1中。
表1 不同路径的最大等效应力
路径 薄膜应力(MPa) 薄膜+弯曲(MPa) 总应力(MPa)
1 40.12 84.25 90.74
2 33.25 82.03 94.22
3 44.45 66.49 62.83
4 45.38 58.16 62.85
将表1中的应力数据带入应力校核公式,可获得隔膜腔的应力校核结果,如式2-5所示。结果表明隔膜腔的应力满足强度使用要求。
Pm=40.12MPa
PL=45.38MPa< 1.5Sm=295.05MPa (3)
Pb +PL=84.25MPa< 1.5Sm=295.05MPa(4)
Pb +PL+Q=94.22MPa< 3Sm=590.1MPa(5)
通过修改隔膜腔的结构来优化隔膜腔的结构并降低制造成本。结构的修改方法如下:保持内腔几何尺寸不变,壁厚减小30mm,修改结构前后的模型对比如图6所示。
根据相同的应力分析方法,用ANSYS软件对修改结构后的隔膜腔进行应力分析。修改结构后的隔膜腔的应力线性化路径的定义位置与改结构之前的位置相同。修改结构的隔膜腔的最大等效应力列在表2中。
表2 不同路径的最大等效应力
(修改结构)
路径 薄膜应力(MPa) 薄膜+弯曲 (MPa) 总应力(MPa)
1 60.38 137.25 148.67
2 50.42 128.57 155.38
3 68.76 109.32 126.04
4 69.81 97.49 132.72
根据表2中的等效应力,按照ASME VIII-2标准对隔膜腔的强度进行校核,可以看出修改结构后的隔膜腔同样满足强度要求。
3 结论
通过对用于远距离管道输送的某型隔膜泵隔膜腔的应力分析和校核,可得到如下结论:
可通过有限元分析软件ANSYS对隔膜腔进行静应力分析,并且获得了工作压力下隔膜腔的最大应力位置和最大应力值。
根据ASME VIII-2标准中对应力的分类,在隔膜腔1/4对称模型上定义了四条不同的应力线性化计算路径,并且通过ANSYS后处理模块获得了等效应力变化曲线。隔膜腔的机械强度通过相关的应力校核方法进行了校核,结果显示修改结构前后的隔膜腔结构均满足强度要求。
通过减小壁厚获得了一种新的隔膜腔结构,新结构通过校核满足强度使用要求,通过比较结构,发现新结构减小了重量,降低了制造成本。
参考文献
[1]ANSYS help. USA: ANSYS company,2010.
关键词:建筑;结构设计;优化方法
中图分类号:TU318文献标识码: A
一直以来,居民住房问题是整个社会的焦点问题,房屋建筑设计也成为大家关注的话题。建筑结构设计必须从多个层面去考虑,首先是对工程建筑成本的投入和预算,工程竣工后怎么使用,还要在设计的同时尽可能地满足居住、使用者对建筑的各种需求等,所以在建筑机构设计优化方面提出了更高更多的标准。
一、建筑结构设计优化的意义
国家宏观调控力度在不断加大,原材料价格在不断上涨,在工程建设前期挖掘潜力,节约建筑成本、科学优化设计,有利于节约建筑原材料、保护环境,符合国家“低碳、节能、环保”理念,利国利民。
建筑工程造价中建筑结构成本大约占到总造价的50%,对建筑结构进行优化设计可以在很大程度上降低上程总造价,节约工程造价成本。建筑结构优化设计能有效的节省房屋建筑的投资成本,具有巨大的经济价值。据统计因为在设计过程中,设计质量差,造成功能布置不合理,相关专业工程师没有相互沟通,导致在施工过程中出现进行修改及返工现象,更是没法控制施工工期。同时因为工程存在安全隐患、工程质量差等问题,使得投资经常被消耗浪费。所以通过建筑结构设计优化可以减少投资浪费、降低安全隐患,有效的提高工程设计质量。
二、满足建筑结构设计优化的要点
首先,在完成建筑结构优化设计时安全性是首先要考虑的因素;其次,在社会不断进步、科学技术快速发展的背景下,人们的思想也在随之发生改变,在这些改变的基础上,人类在建筑功能上的要求也越来越多;再次,在建筑结构优化设计方面,应该从节能环保建材、优化建筑结构整体布局来实现节能环保。在建筑施工过程中产生的废弃材料要做好科学处理,注意废水排放的方式;最后,在确保安全稳定、功能全面、节能环保的同时降低投资成本才是建筑结构优化设计的经济性所在。
三、结构设计优化技术在应用中的问题
结构设计优化方法应用于实践之中,是目前一个比较广泛的课题,利用结构优化的方法在适用性能不改变的前提下使工程造价有所降低。结构设计优化设计应用于项目的前期设计、整体设计,抗震设计、旧房改造等设计的各个部分,多种效益都是非常可观的。在模型进行实践以及按照结构设计优化方法过程中,要注意以下几个方面。
(一)前期的设计参与
建筑总投资受前期方案的直接影响,所以现在存在的问题大都是前期方案阶段结构设计并不参与进行,建筑师进行设计方案时大多也不考虑结构的可行性及合理性,而建筑设计的最终结果却直接对结构设计造成影响,某些方案可能会增加结构设计的难度,并使得建筑总投资提高。如果在方案初期,结构优化设计就能参与进来,那么我们就能针对不同的建筑类别,选择合理的结构形式,合理的设计方案,获得一个良好的开端。
(二)地基基础的结构设计
地基基础的结构设计优化首先就是选择最恰当的方案,如果为桩基础,一定得依据施工现场的具体情况选择桩基类型,节省成本,减少不必要的浪费。对灌注桩的选择影响较多的就是桩端持力层,应多进行比较以确定最合适的方案。
(三)细部结构设计优化
概念设计应用于没有具体数值量化的情况,设计过程中需要设计人员灵活运用结构设计优化方法,达到最佳的效果。与宏观把握相对应,设计过程同时要注意对于细部结构设计优化,比如现浇板中的异形板拐角处易出现裂缝,可划分为矩形板。注意钢筋的选择,I级钢和冷轧带肋钢市场价格差不多,但是他们的极限抗拉力却相差很大,所以在塑性满足要求的情况下,现浇板的受力钢筋就可选择冷轧带肋钢筋。在做立面设计的时候,外立面上的悬挑板及配筋,满足基本的规范要求即可,达到既安全又经济的目的。
三、建筑结构设计优化方法
我国社会经济不断发展,人们的生活水平也不断提高,对房屋的设计质量和居住舒适度要求也越来越高,但由于人口增长迅速和土地资源有限,再加上近几年房价迅速飞涨态势,人们对于居住的房屋设计,包括空间设计、成本控制等方面要求越来越高,若对民用建筑结构进行优化设计,可有效降低成本,从根本上实现经济效益。设计人员在设计民用建筑结构时,应严格遵守经济、合理等原则,采用先进的现代化房屋设计理念,制定经济合理的房屋建筑方案,以实现减少工程造价、达到经济利益最大化的目的。结合实际,从具体实际情况出发,选择正确、合理的计算参数,有效完成结构计算。
(一)不可盲目依赖计算机
计算机功能毕竟不是绝对万能的,计算机程序本身也存在很多漏洞,所以结构设计人员不可完全依赖计算机完成结构计算,否则很容易出现计算结果出错的情况。设计人员应该对结构计算做出基本分析,还要清楚了解计算机程序的应用范围、理论基础与限制条件等。
(二)合理运用材料
材料是建筑结构的最基本物质,对材料选用必须要求合理、规范。所有材料都是宝贵的物质财富,都必须充分利用起来,不可浪费。将材料合理运用到结构构件的具体空间、环境特点以及力学特性上来,正确处理好一些边角材料,提高材料的利用率,降低投资成本。
(三)做到数据录入精准无误
建筑实施过程中数据的作用是十分重要的。结构尺寸、荷载及几何图形等数据记录,做的时候必须耐心核对,认真仔细。尽量避免因数据计算结果出现误差或错误,不然一定会为其付出悲痛的代价。
(四)加强建筑结构设计深度
民用建筑结构设计时,存在设计粗糙、标注不全、图纸偷工减料、图纸缺漏等问题,这主要由于设计师设计水平有限或缺乏责任心,严重影响了结构设计的安全性和整个建筑工程的质量。因此,为提升建筑结构设计深度和质量,设计师应注重自身设计能力的提升,并端正工作态度,做到认真负责。
(五)注重整体意识和具体空间的结合
整体把握好结构同结构之间,以及结构同构件之间的关系。来创造你自己与大自然、与这个场所、与这里的传统的对话,并将它们融入你心中的童话。同时将建筑物的空间性、时间性、安全性等纳入其中,让建筑物发挥出时代气息、科技气息、人文气息,从某种意义上应该更具有生物气息,要使建筑与人类、与自然相互衬托,实现社会与人类、自然的和谐发展。
(六)注重提高结构体系设计水平
在民用建筑结构设计中,普遍存在抗震结构不合理、规则性差以及楼层错层等情况,这与选用结构体系不合理有很大关系,因此,优化结构体系设计很有必要。
(七)重视实际结构与计算模型的差异
计算机所使用的结构计算程序从理论上来讲,是一种虚拟的计算模型。尽管这种虚拟的计算模型非常科学、严谨。因为现实的结构受力不是计算机可以直接处理的,所以用到现实中来又存在一些差异。必须从实际出发,不能忽视计算模型与实际结构的差异,将各种可能影响建筑结构的因素综合参考,确定好它们之间的约束关系,反复核对计算结果,仔细检查计算过程。确保结构设计和计算结果的正确性。
结语
总而言之,结构设计是个系统、全面的工作,需要扎实的理论知识功底,灵活创新的思维和严肃、认真、负责的工作态度。通过概念设计、正确的计算及合理的构造措施来保证,设计要在实践过程中不断的研究、探索和创新,使其经济性和适用性的目标得以实现。
参考文献:
关键词:结构设计;设计优化;探讨;应用
1 房屋建筑结构优化设计的重要性
如今,随着城市化进程的不断加快,城市建筑土地资源越来越紧缺,因此高层或超高层住房将成为城市住宅的发展方向,相较于传统的建筑模式,高层建筑等新型建筑的建设具有更大的难度,这就要求相关的施工建设人员应该重视房屋结构优化问题,在减少资金投入的同时,进行细致的建筑设计方案规划,运用新技术和新理念,建设出既安全又经济的建筑。根据相关数据可以看出合理的房屋结构设计可以减少建设资金投入,与没有进行设计优化的建筑相比采用优化法进行优化后的建筑能够节省10%~20%的建设费用。不过,在实际的施工建设过程中,优化设计的实施往往不是一帆风顺的,可能因为多方面的限制而难以进行。首先,很多施工单位都会因为赶工程进度,而不顾施工质量,对于房屋设计的缺陷不予及时的优化处理,而对最后的建筑质量造成影响。其次,还有一些施工建设人员自身经验不足、专业素质不高,无法进行建筑设计优化。最后,还因为一些施工建设人员和设计人员只注重建筑的部分建设,而忽视建筑的整体设计,不能准确的制定工程预案,影响建筑整体的造价。对建筑的结构进行设计优化能够合理的规划建筑设计,减少工程资金投入,房屋结构各个方面整合起来,能够保证建筑质量,为人们提供经济安全的住房。
2 建筑结构设计优化方法在房屋结构设计中的应用
2.1 分阶段优化与寿命优化。在限定时间内,每一个项目工程都有使用的期限,而且在每一个环节中,都可以设计出多种方案以供参考与挑选。也就是说,在每个阶段,都可以对方案进行优化。因此,房屋建筑结构的设计人员可在确定优化方法的时候,可以将各个阶段的性质作为依据,从而优化整体工程的寿命,并对建筑的施工质量予以保障,使得企业的经济收益能够有所增加。
2.2 局部优化与整体优化。复杂性与层次性是任何一个项目建筑设计都具备的两大特点。从复杂性方面来看,其主要包括零部件的选取、建筑原材料的选取以及结构类型的选取等内容。从层次性方面来看,其主要包括建筑的结构体系、设计体系以及安装设计体系等,而在每一个体系之内又包括了很多个下属体系。在设计房屋建筑的时候,设计人员应该优化各个下属的系统,冲破各个布局间的横向关联,对工程进行叠加。因此,在建筑任何房屋的时候,优化的着眼点都应该是整体而非局部。只有这样,才能达到真正设计优化的目的。
2.3 优化上部结构。要想模型建立与优化房屋建筑的上部结构,首先就要对剪力墙进行合理的布设,对剪力墙的质量均匀予以有效保证。这样,楼层的结构重心便能同楼层的平面刚度中心点实现重合,从而有效地削减了风力以及地震等外部荷载作用的扭转影响。如果房屋的类型允许的话,那么可以尽量使用大开间的剪力墙构造,并对剪力墙的墙肢长进行增加。这样做,不仅可以有效地对墙肢的数量进行缩减,还可以确保刚度能够与相关标准相符合,并以此作为前提与基础,有效地降低混凝土的使用数量。
3 房屋建筑结构设计优化的具体措施
3.1 地基是建筑结构的基础。对建筑物的稳定性起着决定性的作用。在进行建筑结构的地基设计时,要因地制宜,具体情况具体分析。进行建筑结构地基的设计优化首先是要选择合理的优化方案,如果是基础较深,那么就需要对拟建工程施工现场的地质情况进行全面仔细的勘察,然后再综合其他现场场地的各种因素进行基础选型及埋深等设计。
3.2 砌体结构的设计优化。砖砌体在房屋建筑结构中主要担负着抵抗侧向位移和承重的作用,它的布置方式较为多变,但是在跃层结构或表现出过大的受力结构中却并不适宜。通常应该对其进行以下方面的优化,优化平立面结构,保证建筑形体的规则性,抗侧力构件平面布置宜规则对称,侧向刚度沿竖向宜均匀变化。纵向抗震墙体在建筑整体中,必须保证有三条以上,合理规划门窗的开口规格,一般要将宽度控制在2m或2m以下,这样的设计有利于增加建筑结构的稳固性。
3.3 建筑底部剪力墙的设计优化。处于房屋建筑底部位置的框架剪力墙因为具有竖直方向抵抗侧力部件的不连续性,所以就增加了受力出现不平衡状况的因素。也就因此而增加了对建筑平面的要求。在设计中,应该尽最大可能将承重墙放置于框架梁之上,如果受到具体条件限制而只能放置于次梁时,就必须要将主梁与框架梁的钢筋配置适度增大,使放置承重墙的楼板厚度增加。
3.4 剪力墙的设计优化。对剪力墙进行优化设计,其中连梁是最为重要的环节。如果将连梁的剐度增加,就一会产生增加建筑结构地震作用的情况,同时也就造成了连梁与墙肢的内部受力分配大幅度增加,这样就应该将此处构件的钢筋配置适度增加,从而使建筑材料受到不必要的浪费。所以,在进行房屋建筑结构的设计时,不应该选择将大刚度窗下墙当做连梁的设计。应该选择的设计方式应该是把连梁设计成刚度与截面较小的弱连梁,并且在达到结构的刚度与变形程度要求的条件下,进行经济与变形能力等多方面思考,对构件进行合理的布置。一般来说,剪力墙设计越多,建筑结构也就具有更大的抗侧力,从而减少建筑结构的位移,却导致了地震力的增大。基于以上的考虑,进行剪力墙的设计时必须要掌握对称和分散与均匀的基本理念,以水平位移限度为准控制剪力墙的数目。
3.5 房屋建筑结构细部设计优化。进行建筑结构的设计优化,不但要关注整体设计,也应该对各个细部结构部件的设计给予重视,比如进行现浇板的设计时,为了达到去除拐角裂缝与结构受力均匀的目的就需要将异形板划分为矩形板。对于建筑结构底部的框架抗震墙的钢筋配置通常较大,如果在材料选用上使用冷轧带肋钢筋则能够适当减少钢筋配置,从而更加便于施工和达到控制工程造价的目的。在有关设计技术优化方面,也可以增加对现代化高科技的利用。
4 结语
总而言之,利用对建筑的结构进行设计优化,可以保证建筑自身的功能,并且对工程资金投入进行控制。另外,建筑企业及开发商不应过于重视结构设计优化的经济效益,利用缩减建材、降低质量标准、削弱技术性能等方法来追求利益,并且也不可以一味的关注技术而忽视经济效益。房屋结构的设计优化其最终的目的在于保证建筑的功能、提高建筑的质量、提升环保性能,增加企业收益。为了完成这一任务,设计人员应不断提高自身水平,紧跟时代步伐,勇于开拓创新,为人民的居住及生活提供安全保障。因此,对建筑结构设计优化方法在房屋结构设计中的应用进行谈论是值得相关工作人员深入思考的事情。
参考文献
关键词:建筑结构;设计优化;模型;计算
随着经济的发展,人们的生活水平也得到了一定的发展,居民对于购房过程中逐渐考虑多方面因素,无论是安全性还是经济性和外观设计,都成为了主导消费者选择的因素。因此在建筑结构设计中,不仅要对施工过程是否合理进行考虑,还要实现对设计方案的不断优化,从经济型以及安全性和外观设计等方面提高建筑的基本价值。文章对建筑结构的设计优化方案在房屋结构设计过程中的作用进行研究分析,希望能够更好的促进我国建筑设计者的创新意识的发展。
1结构设计优化方案的理论分析
站在理论层次来看,在进行结构设计优化的过程中,要充分考虑到安全性以及可靠性在建筑整个过程的发展和体现。与此同时,还要尽可能的保证建筑物的设计美观和结构合理。因此要想达到这些目标,需要不断的对结构设计方案进行合理的分析设置,并对计算方式进行合理的选择,以便能够更好的满足当前的既定目标。在实际设计的过程中,想要对房屋工程结构进行优化,就需要从围护结构以及屋盖系统和其他细节部分进行考虑。采取合理的方法对其造价以及结构进行整理的安排优化,不断实现经济性以及安全性目标的达成。为了更好的适应时代的发展需求,建筑结构的设计中要充分创新,不断提高设计的特殊性以及新颖性。从对称性以及独特性的角度出发,对建设设计方案进行不断的修改完善,并运用实际所学知识来实现对构架的合理布置,避免使用转换层机构。对不规则建筑设计的原则要进行恰当的处理与使用,从根本上完善设计方案,实现设计过程的整体优化。
2结构设计优化技术具体运用
2.1建立优化结构相关模型
在对房屋结构设计中,要充分对建筑结构设计优化方法进行使用。在具体实施的过程中,可以从三个步骤来实现最终的设计优化目的。(1)对设计变量的选择。在进行设计变量的选择过程中,要对影响建筑结构的相关参数进行系统的研究分析,并进行综合考虑选择。将对建筑结构影响的参数作为当前模型中的设计变量,这些变量主要包含损失的期望值以及结构的过后家和约束控制的相关参数等,最大程度的保证设计便变量选择的合理性。(2)确定目标函数。在进行实际优化的过程中,除了对必要的参数进行选择之外,还需要寻找到一些相关条件来实现对工程造价的降低,而这些条件主要包括相关建筑截面的具体尺寸以及钢筋的截面积等。(3)确定相关约束条件。在对房屋结构设计优化过程中,要保证房屋结构设计的合理性以及可靠性,确保相关的设计条件能够得到满足。而设计优化过程中的约束条件主要有裂缝宽度、结构强度、应力约束以及结构体系约束和尺寸约束等,在进行结构设计的过程中,要充分的对目标约束条件与实际情况形成对比,确保约束条件能够满足相关的规定要求,从而力求设计达到最佳。
2.2选择合理的优化计算方案
在进行方案设计的过程中,设计者要充分考虑当前的施工过程中的内部和外部环境,确保各种因素能够在可行的范围之内。借助对约束条件以及非线性优化问题等的具体研究和分析,最计算方案之中选取最适合当前施工状况的方案,从而确保方案设计更具有合理性。而在对设计方案进行优化的方法选择中,拉氏乘子法、复合形法以及Powcll法使用相对较为频繁。
2.3对程序问题进行设计优化
在对房屋结构设计的优化过程中,通过确定设计变量以及目标函数和约束条件从而实现对计算方法的合理选择,最终不断的实现对房屋结构设计的优化活动。而在优化过程中,还需要对对相关程序进行创新设计,以便于能够更好的对设计过程中出现的任何一个问题进行运算,确保设计方案的合理性。
2.4结果分析
在进行计算的过程中,要对计算结果的合理性进行再次的分析研究,最终来选取适合相关房屋结构设计的方案。在方案选取的过程中,要对能够产生影响的诸多因素都考虑在内,并且从多角度来看待这些因素所产生的问题,这能够更好的促进设计优化的作用,从而确保设计方案的合理性以及安全性。在施工问题上,设计方案能够更好的优化当前资源使用的程度和效率,确保资源不被合理的浪费的同时又能够保障相关技术支出不受缩减,其能够起到一个整体的统筹作用。
3结构设计优化技术的实践应用
在对于项目工程设计的过程中,无论前期设计还是后期设计,无论旧房改造还是抗震设计,结构设计优化技术运用在工程的每一个环节之中。因此,在结构设计过程中,要合理的选择结构的形式以及对设计方案进行深层次的优化,将概念设计和细节设计相结合,从而实现对方案最终的优化;在结构设计优化技术的实践作用之中,要充分将其运用在对地基基础的设计问题上,其能够更好的帮助房屋建筑实现安全性和可靠性,确保房屋建造的质量。
4结束语
分析建筑结构设计优化方法,可以得知,其对于房屋结构设计的作用是无法取代的。因此,选择合理的优化方案能够保证房屋建设在达到相关建设标准要求的基础上实现经济最大化。建筑结构的设计优化是一个相对复杂的概念,只有不断的加强研究和分析才能够更好的实现其在现实生活中的运用。文章在对建筑结构优化设计过程以及问题等多方面分析角度下,希望能够给相关的设计人员带来一定思考和启发,从而提高建筑结构的优化方案设计,实现房屋建造的安全性以及稳定性。希望文章对建筑结构优化设计方案的论述,能够促进读者对这一概念的更好的理解和思考。
作者:郭睿 单位:中铁工程设计院有限公司
参考文献:
[1]范国兴.建筑结构设计优化方法在房屋结构设计中的应用研究[J].鸡西大学学报,2014,(8):23-25.
现阶段,房屋设计需求呈现多样化的特点,房屋建筑不仅注重过硬的实用价值,而且还追求精致美观的外表,这些都对房屋的建筑结构设计提出了更高的要求。在房屋结构设计中,五个基本要素必须考虑周全,即安全性、经济适用性、施工便利性、实用性和美观性。而合理的建筑结构设计优化则既能满足建筑美观,造型优美的要求,又能使房屋结构安全、经济、合理,这便体现了建筑结构设计优化方法在房屋结构设计应用中的重要性。
关键词:
建筑结构设计;优化方法;应用;建筑
随着我国经济水平的不断提高,我们在考虑建筑的安全性和实用性的同时,对建筑的美观性和经济性方面的要求也不断提高。既要求建筑安全、实用,又要求建筑经济、美观,同时也要考虑到施工的便利性和时效性,那么对建筑结构进行必要的优化设计则显得尤为重要,而合理的建筑结构优化设计可以使得这些要求实现统一。在本文中,笔者结合自身的工作经验和所学的相关知识,对房屋建筑结构设计的相关优化方式进行介绍,并对建筑结构设计优化方法在房屋结构设计中的应用进行阐述。
1结构设计优化方式的理论体现
在建筑结构设计过程中,除了要考虑建筑结构的安全性、基本功能健全性等可靠性因素,我们还需要对其建筑本身的艺术美感进行考虑,这便是建筑结构设计优化的体现。通过对建筑结构设计优化方法进行理论分析,我们得知,在实际应用过程中,建筑结构设计优化方式主要体现在房屋工程的分层优化和总体优化两方面。对建筑结构进行设计时,在满足基本设计要求的前提下,应尽可能减小建筑物的质量中心和刚度中心之间的差异,保持平面结构的规则性以及对称性,以避免在水平荷载作用下建筑物产生较大的扭转效应。与此同时,在进行竖向设计时,应尽可能保证其同方向的承重构件上下贯通,使竖向刚度不发生突变,否则一旦发生刚度突变,建筑物会在水平荷载作用下产生严重的应力集中现象,对抵抗水平方向的动力荷载作用大大减小。此外,为了降低结构设计和分析方面的难度,我们可以尽量减少使用转换层结构。总而言之,在建筑结构设计过程中具体问题具体分析,综合多方面因素设计出最令人满意的建筑体系。
2建筑结构设计优化方法在房屋结构设计中的应用
2.1整体与局部优化每一个建筑项目的设计都包括两类特点,即复杂性和层次性。就复杂性而言,内容一般包括零部件选取、建筑原料选取以及结构类型的选取等;而层次性则主要包括建筑设计体系、建筑结构体系以及安装设计体系等内容,其中每个独立的体系又包括很多不同的下属体系,在设计房屋结构的过程中,设计人员应优化其每一个下属体系,冲破横向关联,实现工程叠加。所有的房屋建筑不仅要进行局部的优化,更应该注重整体的全面优化,这样才能够真正实现房屋结构的设计优化的意义。
2.2寿命与分阶段优化在固定的使用年限中,任何一个建筑工程项目的各个环节都有着各式各样可供挑选的设计方案,也就是说,在工程的任何一个阶段都能够开展优化工作。设计人员可以根据每个阶段的不同性质确定优化方案,进而优化工程寿命。最终的益处就是,一方面,使建筑工程的施工质量得到了保证,另一方面,使企业的经济收益得到了增加。
2.3桩基础优化建筑结构桩基础由预制桩和灌注桩两种类型组成。由于施工过程中灌注桩的质量控制较难实现,并且耗时较长、操作复杂,因此,在符合相关标准的前提下,实际施工应优先选择预制桩。另外,一般情况下,桩基越是深入,桩身与土壤之间的摩擦力和作用力就越大,因此,在选择预制桩的同时,还应尽可能选取长度较大的预制桩。
2.4上部结构优化在对房屋上部进行结构优化和建立模型的工程中,剪力墙的布置和设计是非常重要的一项因素。剪力墙的质量需要保证其均匀性,从而使得楼层结构的重心与其平面的中心点实现相互重合,实现削弱风力或是地震等外力因素的影响。在房屋类型允许的情况下,应该尽量采用剪力墙的大开间构造,增加其墙肢长度,这样一方面可以实现墙肢数量的缩减,另一方面还可以在刚度达标的前提下实现混凝土量的降低使用。另外,由于剪力墙采用钢材作为暗柱材料,所以通过剪力墙的大开间结构便能够实现钢筋使用数量的缩减,但是,如果建筑本身不具备相应的条件,并且对建筑物的抗震要求较高,则不能采用该类型的剪力墙。
2.5结构同建筑保持协调优化在进行建筑结构设计的时候,应该尽量保证建筑的整体平面和整体结构的紧密配合,最终实现结构合理和造型美观的设计效果。建筑系统应该尽量简洁,墙与柱的错位现象不可以发生,每一层的截面面积和高度都应该相通。在设计电梯或是楼梯的时候,应该尽量选择使用高强建材作为承重构件,实现降低自重,其他构件就应该尽量选择较轻质量的材质。在建筑的整体布局方面重心、质心与其刚心需要保证交叠,避免扭转现象的发生。
2.6结构同排水保持协调优化由于在整个建筑中,专门用于给排水的房间有很多机械设施,所以其相比较于普通房屋,荷载强度较大,因此,水泵房应该尽可能设在地下室区域。给排水房间里面的管道较为复杂,长度及粗细都不尽相同,因此,依照相关标准应该预留足够的尺寸和深度,同时加固其穿孔位置。除此之外,水平方向的管道如果贯穿承重墙,则应该及时对其进行维护和加固处理。尽量保证结构优化同排水优化的协调,避免管道绕梁绕柱等情况的发生。
2.7结构同电气保持协调优化电气的管线如果以导线形式安装于金属管的外部或是楼板处,则可能会造成预制结构施工难以开展。因此,导线如果贯穿结构梁体,那就需要在梁预制之前留下孔洞,与此同时需要保证墙体厚度与梁宽相同,如果做不到梁宽与墙体厚度相同,则需要确保梁的侧平面与墙体一侧相齐平,最终实现管线不在墙体外面。在房屋建设的过程中,电梯处的空洞很多、也预埋了较多的构件,因此,电梯房的强度需要单独进行计算分析,以保证合理设计,及施工的质量和安全。
3结语
综上所述,建筑结构设计方案的合理选择,不仅可以使建筑结构设计达到应有的技术要求,还可以减少不必要的经济损耗。建筑结构设计优化在房屋结构设计中是一个综合性比较强且极为复杂的系统性问题,这需要我们对其进行深入研究。本人结合自身的工作经验,阐述了建筑结构设计优化方法在房屋结构设计中的应用,希望此文对相关研究人员有所帮助。
参考文献
[1]王也.建筑结构设计优化方法在房屋结构设计中的应用[J].中华民居(下旬刊),2013(03):81-82.
[2]何冬霞.建筑结构设计优化方法在房屋结构设计中的实际应用[J].中华民居(下旬刊),2013(10):18-19.
关键词:建筑结构;设计;优化设计;分析
1 建筑设计优化的重要意义
使用合理的优化方法,对建筑的结构设计进行优化,既能降低整个工程的造价,还能提升建筑的经济价值,从而能够有效提升建筑的经济效益。
1.1 使工程的造价降低
建筑工程结构优化设计在会充分的考虑到现行阶段的建筑行业的发展趋势来进行剖析,根据现行的建筑特点来进行设计,如当前的高层建筑和高层的住宅偏多,因此其层数很多,在建筑用地面积不变的情况下建筑总面积很大,在面对高层建筑的结构设计时,为了节省用地,会将建筑物的房顶进行细致的规划,可以保证整个工程的总造价降低,节约成本。
1.2 能够提高建筑结构的经济效益
建筑结构的设计需要保证到建筑工程的经济效果,随着建筑的层数的增加,高度也会增加,与其相关的墙体面积、柱体面积及配套的设施如管道等都会增加很多,层数比较少或者高度比较低时相应的建筑就会节省一些这样的荷载。同时,高度越高的建筑,相邻之间的距离也会比较远,这样不利于节省用地开支的目标实现,如果让建筑的总高度下降,那各建筑之间的距离也会靠的近一些,这样可以节约用地。另外,相同面积的建筑之间,建筑的平面形状不同会使得其周长不同,越规则的平面形状其周长会小一些,并且能够提高其荷载的性能,增强了建筑的质量。优化创新后的建筑结构设计相较于传统的设计,能够有效降低建筑的总造价,能够有效的提高建筑结构的经济效益。
2 建筑结构设计优化的具体内容
建筑结构优化设计的内容可以分为目标函数选择、变量选择、约束条件选择三个步骤,每一个步骤都涉及到建筑结构优化设计的一个方面的内容。
2.1 目标函数选择
确定建筑结构的目标函数是建筑设计人员对建筑结构进行优化创新设计时的第一步,通过采用相应的技术与办法,以建筑的面积的参数以及建筑可以达到的安全标准为前提,结合建筑建设所用的建筑材料等进行系统的规划和计算,要保证相关的参数在计算的过程中要满足相关的需求。合理科学地选择建筑的工程造价模式是建筑设计相关人员在建筑结构优化设计过程中必须要进行的工作,要尽量优化建筑结构设计,在保证建筑质量的前提下,降低工程的总体造价。
2.2 变量选择
建筑工程的设计阶段,除了对建筑工程优化设计的目标函数进行正确的选择,还要对建筑结构的进行变量选择,变量的选择对于建筑结构的设计也是至关重要的。变量选择,顾名思义就是对影响建筑结构设计的各种会变化的因素进行分析和选择,并研究其中会对建筑结构设计造成的影响最大的一个因素,然后在实际的设计过程中,对其进行评估计算以及控制其影响程度,以发挥建筑工程结构设计优化方法的作用。
2.3 约束条件选择
建筑工程是一个复杂而又系统的工程,因此在实际的设计过程中,受许多约束条件所影响,在对建筑工程结构设计进行优化设计时,必须要考虑到建筑工程的约束条件、对约束条件的准确判断,能够实现建筑结构优化设计的最大化。比如,在建筑设计时,设计人员对结构的强度、尺寸、应力等等因素所存在的约束条件进行判断选择,要以建筑工程的实际情况作为出发点,进行科学合理的选择,使得建筑结构设计的优化工作具有模范性和科学性,给建筑工程的施工打好基础,提高整个工程项目的效率和经济效益。
3 建筑结构设计优化的具体措施
建筑结构的优化方法,是由建筑结构的整体设计优化方法以及建筑结构的细节结构优化方法@两个发面体现出来的。在建筑结构整体的优化设计中,要立足整体,全面的分析总体的数据,并相互协调,确保选出最优的优化方法。在细节结构优化设计中,要对建筑结构的各个方面进行剖析,合理划分为不同的部分,逐个解决相关的选型、布置、造价等几个部分的优化设计,实现降低工程造价的目标。
(1)拓扑优化法。拓扑优化法,就是通过在建筑结构设计优化过程中,结合建筑自身的特点以及实际的用途和情况,正确找到理想化的建筑结构分布形式,全面的分析建筑结构的刚度和其他与结构相关联的属性,来减少建筑结构自身的重量,从而提升建筑的性能。设计人员要充分掌握以及了解拓扑分析方法的优点,合理运用拓扑分析方法,使得设计出来的建筑结构拥有很强的逻辑性。
(2)截面优化法。截面结构的可靠性以及安全性是建筑结构优化设计时相关人员必须要考虑的一个重要方面。截面结构作为建筑结构的细节所在,其性能是最能体现出建筑的整体性能的。在实际的设计过程中,为了保证截面结构的的可靠性与安全性,设计人员要对建筑结构中所涉及的界面进行准确的计算,然后再进行设计,不仅可以提升建筑结构的稳定性,还可以提高建筑的美观程度。具体的方法有,可利用有限元方法来计算设计变量的结构位移情况以及应力特点,然后用计算设备对获得的数据进行验算和分析,得出结果后,根据其需求调整,确定调整的范围,在此范围中再进行区域优化设计。
(3)外形优化法。外形优化是在界面优化的基础上进行完善的,以达到更好提升建筑的结构设计质量的目的。在对建筑结构进行外形优化时,相关人员要对建筑的整体情况掌握得很清楚,再根据我国现行的建筑柱结构设计的相关标准,在掌握的建筑的情况的基础上进行改进。建筑结构的外形特征就是利用外形优化法来进行划分的。外形优化方法在实际的实施过程中,通常会采用连续性结构与杆系结构。建筑结构的节点坐标选取是杆系结构的重要环节,节点坐标在选取好后,要将其作为设计的一个变量,来实现建筑外形优化设计的目标及需求。
(4)细节部分结构设计与概念设计相结合。概念设计优化方法,是在比较缺乏详细的相关数据的情况下进行的。某些因素是具有不确定性的,比如地震,在对建筑的抗震能力进行设计时,由于缺乏详细的数据,只能通过概念设计的优化方法,将一些存在的数据当作辅助来进行。同时,通过结合上诉的一些结构优化方法,使得优化效果更佳。另外,在设计的过程中,对建筑结构的细节部分进行优化设计是必须要做的工作,如现浇混凝土施工过程中,异形板料的弯曲部分容易开裂是一个比较突出的问题,对此我们将其进行简化,然后再选择钢筋,这样能有效的降低混凝土出现开裂现象的几率,不仅提高了经济效益,最重要的是满足了建筑结构的基本需求。
(5)对地基结构进行优化设计。对建筑的地基进行优化设计也是优化整个建筑结构的有效方法。选择合适的方案对于地基的结构优化来说很重要,例如,桩基类型的选择,要以实际的施工情况为准,并实现降低造价的目标,然后以桩端持力层的厚度为参考,选择科学合适的灌注桩长度,且对不同的优化方案进行集中对比,尽量使得选择的方案是最佳的。再比如,桩筏基础是某建筑结构的原有设计方案,通过把该设计利用的桩筏基础改为桩基础的优化方法,设置不同的承台,在此优化中,在保证总的沉降值和不均匀沉降值的前提下,顾及到的是基础传力的传递路劲越短会越省材料的原因。与桩筏基础设计方案相比,桩基础是一个更好的选择。
4 结束语
综上所述,建筑结构的优化设计能够使得建筑质量更好、更加美观、降低工程造价以及提升建筑的经济效益,在建筑行业竞争激烈的今天能够提高企业的竞争力,也能够为人们带来更有安全保障和质量保障的建筑物,因此其在建筑工程中是一个很重要的环节。但在建筑结构优化设计在实际的实施过程中,是比较复杂的,需要多方面的出发,充分结合实际的情况选择科学合理的方案,以实现对建筑结构进行最佳的优化目标。
参考文献
[1]李贵江.建筑结构设计优化设计新方法探析[J].江西建材,2017(01).
关键词:建筑;结构设计;优化方法;应用
中图分类号:TU318文献标识码: A
引言
传统的建筑结构优化设计大部分都是以建筑造价为根本进行控制,而随着人们对建筑的实用性及整体效果要求的不断增加,建筑使用的方便性以及整体效果如今已经成了人们关注的重点。建筑结构设计优化的理念应注重实际为主,其内容就是对建筑方案、建筑结构含楼盖结构、基础结构以及围护系统结构等环节,建立起一种P于结构优化设计的模型,通过对各种不同的影响变量参数中的若干P键参数的科学的计算,确立最终的建筑工程结构设计的优化方案。
一、建筑结构设计优化的内容及意义
1.1建筑结构设计优化的内容
建筑结构设计优化主要体现在两个方面,一是对建筑工程总体结构进行优化设计,二是对建筑工程局部结构进行优化设计。其中,建筑工程局部结构的优化设计对象主要包括以下几点:1)基础结构方案;2)屋盖系统方案;3)围护结构方案;4)结构细部等。对上述对象进行优化设计时,通常还会涉及选型、受力分析以及造价分析等诸多内容。总之,对建筑结构设计进行优化的过程中,不仅要严格依据设计规范执行,还应充分结合建筑工程的具体情况,最终提高建筑工程的综合经济效益。
1.2建筑结构设计优化的意义
1.1节省工程造价
建筑工程造价中建筑结构的成本大约占到总造价的50%,对建筑结构进行优化设计可以在很大程度上降低工程总造价,节约工程造价成本。建筑结构优化设计能有效的节省房屋建筑的投资成本,具有巨大的经济价值。
1.2提高工程质量
目前设计单位的水平整体都在不断提升,但是首先很多工程师成本控制意识低,忽略对建筑工程的成本造价控制,只追求高的安全系数,从而造成设计过于保守;其次,没有相应的责任制,设计人员缺乏责任心,对建筑结构的设计概念不清楚,一味的使用计算机而不是大脑来进行计算,常常导致计算不合理或者与工程实际不吻合等等错误,使之结构设计存在安全隐患或者较大的浪费;另外,设计人员与建设单位的沟通不到位,没有完全理解建设单位的建造用途及建筑功能,进而造成建筑产品不能满足建设单位的需要。
据统计因为在设计过程中,设计质量差,造成功能布置不合理,相P专业工程师没有相互沟通,导致经常出现在施工过程中进行修改及返工现象,导致施工工期不能控制。同时因为工程质量差,工程存在安全隐患等问题,造成投资的巨大浪费。通过建筑结构设计优化可以有效的提高工程设计质量,降低安全隐患,减少投资浪费。
1.3建筑结构优化设计的社会意义
国家的宏观调控力度在不断的加大,原材料的价格在不断的上涨,从而在建设的前期挖掘潜力,节约建筑造成成本、科学的优化设计,有利于节约建筑的原材料、保护环境,符合国家“低碳、节能、环保”的理念,利国利民。
二、建筑结构设计优化方法
建筑结构设计优化是要通过对拟建项目进行模型的优化、计算方法的优化,并在计算和模拟的基础上制定有效的结构方案,再进行验证。
(一)结构优化模型的建立
在进行结构优化设计的过程中,首要的问题是要根据实际的结构特性设定成为相关的结构设计参数,主要的有目标控制参数和约束控制参数。对于那些变化范围比较小的,且在结构的局部加强就能满足要求的部分参数,将其确定为预设参数,从而减少计算的工作量;对于目标函数,是要找到一组可以满足预定条件的钢筋截面积和截面的几何尺寸,目标是要让总造价最小。对于约束控制函数,包括前度和稳定约束、截面尺寸约束、结构整体约束、构建单元约束、正常使用状态的上下限约束条件等。参数的设计必须要与实际情况和规范相符。
(二)结构优化设计的计算方法
在结构优化设计计算方案的确定上,考虑到建筑结构的复杂性带来的变量多、约束条件多等情况,因此在计算过程中,一般的做法是先将有约束的优化问题转化为无约束条件再进行求解,可选用的计算方有拉式乘子法、复合形法等。结构选型、尺寸和参数设计完成后,在计算方案的基础上设计优化程序。并在得到计算结果后,对结构进行综合分析,最后确定最合理的结构优化设计方案。
三、建筑结构设计优化设计的应用
4.1建筑结构设计初期的方案计划决定着施工建筑的总投入,现实中的问题是初期方案计划制定时建筑设计人员并没有积极参与,建筑施工中也没有考虑房屋结构优化的科学合理性,致使建筑结束后对房屋结构设计优化思想产生了约束,从而加大了建筑结构优化设计的技术难度,同时增加了建筑的投入资本。假设在建筑投建初期就与房屋优化设计相结合,就会根据需要建筑的结构选择科学的优化方案,减少不必要的成本投入。
4.2在进行建筑时候,有一些情况是不能使用具体数据进行施工建筑的,这种情况我们可以植入概念性设计理念。利用概念性设计理念针对相同的房屋建筑方案,能够产生不同的建筑结构设计 把建筑结构设计确定之后,相同荷载的情形下也会出现不同的方式进行分析。进行分析的时候所应用的材料、参数等不具有唯一性,细部的结构设计也会不一样。以上这些情况也是没有办法使用计算机处理的,需要设计人员进行概念性判断。
4.3虽然需要进行概念性结构设计的问题很多,但是都是期望能够借助概念性结构设计,使房屋建筑体在种种不能预料的外在作用时不会受到损害,或者是最大限度的降低损害程度。最难以掌控的是地震损害,地震造成的损害也是最强烈的。因此,进行房屋结构设计时就应该充分考虑这个因素,房屋施工中保持均匀的刚度,对称的设置都是能够降低地震对房屋造成损害的重点,房屋结构在地震破坏中避免脆性损害的关键设计是延性的结构设计。还有针对现浇板的拐角位置容易发生裂缝的现象,可使用矩形状的现浇板替换,房屋钢筋的使用也是关键,分析钢筋的不同功效,结合经济使用的思想,冷轧钢筋可以用作现浇板受力钢筋。
结束语
建筑物的增多,导致土地资源有限,土地的价格越来越高,从而导致了建筑商的建筑成本也越来越高。降低建筑成本是建筑商首先考虑的方法,对于控制建筑成本,结构优化设计思想是目前国内外比较有价值的一套理论系统。要科学合理的对建筑结构进行优化设计,使其在建筑业的发展中发挥更好的作用,降低建筑成本。通过概念设计、正确的计算及合理的构造措施来保证,设计要在实践过程中不断的研究、探索和创新,使其经济性和适用性的目标得以实现。
参考文献
[1]汪树玉.结构优化设计的现状与进展[J].基建优化,2007(5):82-83.
关键词:强度设计; 优化设计; 敏度分析; 稳定性
中图分类号:V244文献标志码:B
0引言
飞机强度设计是飞机总体设计阶段极为重要的环节.要实现强度设计的目标,需要反复迭代以及运用优化设计等方法,再结合实际工程经验实现.
优化设计是一门新的学科,是运用数学规划方法驱动有限元计算技术进行设计,按照所设定的目标反复迭代,寻求最优化设计方案的过程.近年来,运用大型通用有限元软件MSC Nastran进行优化设计越来越多,主要有以下2种方式:直接运用优化模块和运用其二次开发自行编写优化算法,然后再驱动所需有限元模块进行求解.
程鹏[1]对MSC Nastran软件的优化方法进行论述;范志强等[2]运用Nastran软件对航空发动机整体叶盘进行优化,使质量减轻45.66%,并使局部应力得到改善;黄国宁等[3]等对简单机翼梁进行优化,得到令人满意的结果;隋允康等[4]和李善坡等[5]运用PCL二次开发自行编写优化程序驱动MSC Nastran软件,进行一些有意义的尝试和应用.
MSC Nastran在航空业的运用已非常的广泛,但优化模块应用却不多见,现有文献只是对飞机局部零件或者某一受力构件进行优化设计的描述,尚无对飞机全机或部件进行优化的研究.本文利用MSC Nastran的优化算法,结合多年的飞机结构强度设计经验,对MA700飞机全机结构强度刚度优化进行初步讨论,并以机翼为例进行优化设计计算,为今后优化设计的应用积累经验.
MA700飞机要求长寿命、轻质量和高可靠性的结构,并且将取得CAAC,FAA和EASA适航证.为实现结构设计的高标准和严要求,必须开展全机结构优化设计研究.
1基本理论
在工程应用中,绝大多数优化问题属于带约束的设计优化,对于约束优化,一般有间接法和直接法等2种处理方法.直接法对优化变量按照一定方向进行搜索,逐步逼近最优点.直接法理论简单,并利用敏度分析替代搜索方向,易于利用当前的有限元方法数值求解,且经常能得到较为满意的结果.本文采用直接法中的可行方向法进行结构优化设计计算.
1.1优化描述
优化设计可归结为求解一组设计变量,且满足约束条件,其目标函数最小.在飞机强度设计中,即为找到一个结构设计方案,该方案满足规定的结构设计准则,并且使飞机结构质量最轻.
优化问题可以归纳为以下数学模型设计变量:
2优化设计模型
2.1优化模型
由于全机结构优化规模很大,设计变量和约束响应很多,必须按照部件分层次进行.根据各部件之间的传力关系,分为机翼、尾翼和机身等3大部分进行优化.考虑机翼传力受机身影响较小,当机翼优化时,机身只起提供边界条件的作用,并不参与优化计算.当尾翼优化时,先进行平尾优化设计(平尾优化方法类似于机翼),取得较为满意的结果后再对垂尾进行优化.当机身优化计算时,只需将前面优化完的尾翼用作传力结构,将机身结构设定设计变量进行优化.
对全机结构进行逐步分层,可以得到所有的设计变量,飞机结构层次分解示意见图3.根据图3,又可以分解为蒙皮、长桁、梁、框、肋和墙等构件,对这些构件进行整理,便可得到必要的设计变量.全机结构优化目标函数、设计变量和约束条件汇总见表1.
优化前、后机翼应力计算结果见图11,可知,机翼最大应力明显降低,由初始的510 MPa降低为356 MPa,基本上满足应力约束350 MPa.蒙皮稳定性模态由优化前的0.56提高到0.97,基本满足稳定性约束条件.(a)优化前(b)优化后图 11优化后机翼应力计算结果
Fig.11The wing stress result before and after optimization analysis
4结论
对全机主传力结构优化设计进行分析和讨论,采用MSC Nastran尺寸优化设计,对机翼进行优化设计计算研究,得到以下结论.
(1)优化过程不一定就是减重过程.在某些情况下,结构质量经过优化会有所增加,因此,设计计算时必须要有较为准确的载荷工况.
(2)对飞机主传力结构进行优化时必须考虑稳定性.如果不考虑稳定性,可能致使优化出现错误的数值结果,使结构不满足传力要求.
(3)经过对优化结构的分析,证明MSC Nastran尺寸优化求解结果趋势正确.
参考文献:
[1]程鹏. MSC Nastran优化设计方法的讨论[J]. 航天器工程, 1996(5): 90-97.
[2]范志强, 马枚, 王荣桥. 航空发动机整体叶盘优化设计[J]. 燃气涡轮试验与研究, 2000, 13(4): 27-30.
[3]黄国宁, 陈海, 霍应元. MSC Nastran优化功能在结构强度设计中的应用[J]. 计算机辅助工程, 2006, 15(S1): 50-52.