前言:我们精心挑选了数篇优质抗震结构设计论文文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。
摘要:我国是一个地震多发的国家。因此,现在越来越多的人非常重视建筑结构的抗震设计问题。所以,本文主要就建筑结构的抗震设计中关键问题、具体的抗震设计举措进行研究与分析。
关键词:建筑结构;抗震设计;关键问题;具体举措
【中图分类号】TU318【文献标识码】A【文章编号】2236-1879(2017)20-0217-01
引言:随着我国经济快速发展,一栋栋高楼大厦拔地而起,但与此同时,在我国是地震多发国家的背景下,建筑抗震等安全因素成为设计需要考虑的因素之一,现阶段,我国的建筑抗震水平较高,但因地震导致房屋倒塌的情况时有发生,为了能更好的提高建筑抗震水平,在建筑抗震设计方面更加合理,作为中学生了解建筑结构的抗震设计中关键问题、具体的抗震设计举措是很有必要的。建筑结构抗震设计关键问题
(一)场地的科学选择。
建筑场地的科学选择,直接关系到建筑结构抗震设计的水平与质量。因此,有关的工程设计人员需要对于建筑物建设的场地进行全面的考察工作,选择具有土质松软、地质元素分布不均衡的区域来进行地段的选择,避免地震发生时产生出地裂或者是地表错动问题。
(二)建筑结构的合理化抗震设计。
建筑结构的合理化设计也对于提升建筑抗震设计的质量与水平发挥着重要的作用。比如:使用高强度的建筑材料使得建筑物的结构框架具有完整性的构造。而高质量设计图纸的应用,可以使得建筑物的各个部位进行更加合理、科学的布局,最终形成强有力的抗震效果。
(三)建筑平面布置的规则性。
进行满足有关抗震设计要求的施工,可以极大提高建筑的抗震水平与能力。比如:综合的考虑到各个方面的因素,应用现代的网络信息技术进行对称性的结构设计,将会对于建筑的抗震实际效果进行科学的提升。同时,我们需要清楚的了解到各种科学的设计需要真正的落实到施工实践中,使得设计的成果真正转变为实际的应用成果[1]。
一、建筑结构抗震设计的具体举措
(一)基础隔震措施。
所谓的基础隔震指的是应用各种各样的减震装置来完成有关建筑物的结构抗震设计。具体来讲,将有效的抗震、隔震的装置应用到建筑物自身的部位中,从而达到保护建筑物,使其具有良好抗震、隔震效果的一种方式。但是,这种方式不适用于高大的建筑物中。原因在于,在高大建筑物中应用抗震装置会导致建筑物产生出自振周期问题,无法达到应有的抗震效果。在我国的生活中常见的抗震装置有橡胶垫装置、混合隔震装置等。对于这些装置应用摩擦移动或者是粘弹性隔震的方式就可以进行有效的防震,保障建筑物具有良好的防震要求[2]。
(二)特殊材料在地基隔震中的应用。
应用特殊的材料全面保障建筑物的地基具有良好的防震性能,也是一个重要的防震举措。具体来讲,应用高效的沥青原料与粘土、砂子等进行混合性的应用,可以提高建筑物整体的质量与水平,保障建筑物的安全。目前这种方法已经在建筑物的防震设计中进行了一定程度的应用,并且取得了不错的应用效果[3]。
(三)建筑结构悬挂隔震。
所谓的建筑结构悬挂隔震指的是在进行建筑物结构设计工作中,应用悬挂的方式来对于建筑物大部分结构或者是整体的结构进行有效减震处理,使得地震发生时地震灾害的破壞力量对于悬挂的建筑结构没有非常大的影响,最终减轻地震对建筑的破坏程度,避免重大的人员伤亡与财产损失。比如:在一些大型钢结构建筑中应用悬挂的方式来进行有关的设计,使得有关的子框架通过锁链或者是吊杆方式的应用悬挂在主框架上。这种设计方式应用的意义在于地震发生之后,地震一部分破坏力量会传导在这些锁链或者是吊杆上,降低了地震对于建筑物地基以及墙面的影响,提高了建筑物地基抗震的实际效果[4]。
(四)建筑层间的隔震。
对于建筑物层间进行有效的隔震是一种操作简单、工序简单的应用方式。但是,这种方式与其它方面的隔震使用举措比较起来只能对于地震破坏力量的10%到30%进行有效的预防,无法从根本上形成强有力的抗震效果。因此,这种方式需要与其它模式的抗震举措进行综合性的应用,形成对于建筑物的有力保护,全面提高其应对地震破坏力量的能力。
(五)建筑结构的加固隔震。
为了全面提高建筑物结构的抗震能力,我们需要采取各种的方式对于建筑物进行必要的加固处理,提升建筑物的质量。具体来讲,第一,在建筑物竣工之后,有关的工程施工技术人员可以应用阻尼的方式对于建筑物进行全面的加固,最终使得建筑结构的抗震效果得到加强。第二,为了提高高层建筑的抗震效果,我们可以应用消能减震装置来提高其抗震的能力,使得高层建筑也可以在地震发生时具有对地震破坏力的抵御能力,避免重大的财产损失与人员伤亡。比如:消能减震装置在建筑物隔震夹层中进行应用,可以极大提高建筑物结构的抗震效果[5]。
二、结论:
通过上述几个方面,对于建筑物结构抗震若干问题进行科学的研究与探讨,有利于建筑物施工的企业应用众多的具体方法全面提高建筑物结构抗震的质量与水平,保障建筑物在地震发生时具有强有力抵御地震的能力,减少人员的伤亡与财产上的损失。如今总体的设计理念与方式比较先进,但也需要与时俱进,不断提高建筑抗震等级,为人们的生命和财产安全提高保障。
参考文献
[1] 古力铭. 关于建筑结构抗震设计若干问题的讨论[J]. 四川水泥,2015,06:60.
[2] 曹振. 关于建筑结构抗震设计若干问题的讨论[J]. 门窗,2015,06:126.
[3] 邱子龙. 关于建筑结构抗震设计若干问题的讨论[J]. 建材与装饰,2016,08:76-77.
[4] 李琛琛. 关于建筑结构抗震设计若干问题的讨论[J]. 科技创新与应用,2016,18:245.
1.1合理的选址在建筑结构抗震水平设计中,合理的选址是最基本的先决条件。为了保证选址的正确、合理性,我国政府部门已经出台了《中华人民共和国减灾抗震法》等法律条文,其中明确规定“对于有可能发生的重大建设性工程以及次生灾害进行严格的地震安全指标评价,按照地震安全评价结果,明确相关建筑物的抗震设防要求,并对其进行分别设防”。建筑结构的设防标准根据其实际质量可分为四个标准,其中:甲类:地震时间或大型建筑工程可能发生的次生建筑类灾害;乙类:地震中不能中断使用功能,且必须要逐步恢复的建筑类型;丙类:除甲、乙两类建筑外的其他普通建筑类型;丁类:抗震级别相对较低的建筑。根据对相关法规的分析,在进行建筑物结构设计时,必须要选择对建筑有利的场地,避免在不利地段建设大型民用建筑,以防止地震破坏隐患的出现。对于一些软基地段,也必须要进行充分的处理,才能够进行合适的建筑设计。另外对于地震可能引起的次生灾害问题,也必须要予以正确的处理,进一步保证选址的正确性。
1.2科学的设计当地震发生时,不同的建筑结构所受到的地震影响是不同的,为了最大限度降低地震灾害的影响,建筑设计人员在抗震设计环节中,要根据当地地段的实际情况来进行建筑结构的选择。目前,我国常用的鹅建筑结构可以分为“钢筋混凝土结构”、“砌体结构”、“钢混结构”和“钢结构”四种类型。通过对四种结构的比较分析得出,钢筋混凝土结构的抗震能力相对较强,因为其自身具有较好的柔韧性,所以当建筑物因地震灾害而出现应力变形时,钢筋混凝土结构能够依靠自身良好的承载力对其进行一定程度的控制,这是其它三种结构所不具备的优势。近年来,高层建筑建设的增多,大大增大了其在地震灾害影响下的水平位移和抗侧移刚度,这在无形之中就加大了地震灾害的影响,为了避免地震灾害影响程度的增大,在设计和审核高层建筑抗震设计时,必须要考虑结构的侧移度。
1.3坚实的质量地震作为破坏性超强的自然灾害,想要最大限度降低其对建筑的破坏,保证建筑设计坚实的质量是最基本的防护措施。相比较而言,我国建筑设计水平发展较为缓慢,在地震设计方面也存在不够合理的情况,这使得很多建筑结构都出现了地震安全隐患,过大的自身重量也加大了地震危害。为了保证建筑结构抗震水平,必须要在建筑抗震设计环节中科学的运用抗震理论,根据相关设计原则,利用有效措施来提高建筑结构的可靠性与安全性。
2实现建筑结构抗震水平设计的措施
2.1基础性防震措施应用基础性防震措施根据建筑的结构的不同位置有着不同的措施:(1)地基隔震。地基隔震是在建筑地基与土层之间设置缓冲层,以便在地震发生时减小建筑与土层之间的震动碰撞,实现对震能的有效吸收和反射作用,减小地震对建筑物的破坏。目前,我国最常使用的地基隔层为沥青原料隔震层。(2)基础隔震。基础隔震是整个建筑结构抗震设计中的关键,想要降低地震对建筑物的破坏,就必须要做好基础隔震措施。在对建筑基础采取抗震措施时,为了减小地震对上部结构的破坏,需要在建筑物的上部结构和基础位置接触处设置隔震层,防止地震力由地基处向上部结构传播,降低地震对建筑上部结构的破坏。基础抗震装置一般采用混合隔震装置、基底滑移隔震装置和夹层橡胶隔震装置等。(3)间层隔震。间层隔震是为了吸收地震的冲击余力而设置的,间层隔震的有效设置能够对震力进行再次削减,以达到降低地震对建筑的破坏作用。间层隔震一般都安装在原始结构层上,其实我国最早使用的的抗震措施,具有施工操作简单的优势。(4)悬挂隔震。悬挂隔震是通过悬挂的方式,将建筑物全部或部分结构脱离地面,从而在地震出现时,降低地面震动与建筑物之间的震力作用。目前,此种抗震措施多用于大型钢结构建筑当中,收到了较为不错的抗震效果。
2.2机敏减震支撑体系机敏减震支撑体系是集成现代科技技术的防震系统,其利用活塞运动的原理,对建筑结构进行设计。在地震灾害发生时,保证建筑结构中的内、外钢能够通过不断的滑动来消减地震的破坏力,减轻震力破坏和消耗地震作用力的传导。目前,这项技术还在不断的研究和完善当中,相信其很快就能够实现有效的应用,为建筑抗震设计水平的提升做出贡献。
2.3效能减震技术应用效能减震是实现对地震所产生动能的消耗,来减轻地震能的传导大小,从而降低其对建筑物的破坏程度。目前,在此技术方面一般采用消能器和阻尼器,两种器械都能够实现地震能量的有效消耗和吸收,减小震力对建筑主体的破坏,以达到对建筑主体结构安全、稳性定的保护。目前,效能减震技术在我国建筑防震设计中得到了有效的应用,其在新建筑的防震设计和旧建筑的抗震加固方面,都起到了良好的效果。
3总结
不确定性的地面运动的影响。地震动是地壳快速释放能量过程中产生具有不确定性的多维振动,它是通过地震波的传播实现的,它的随机性和复杂性让人难以预测。地震动的各个分量对建筑都具有危害作用,即一个竖向分量、两个水平分量和一个转动分量。地震灾害具有突发性、破坏性、难以预测性,甚至是毁灭性的。结构动力特性的影响。影响结构动力分析的因素主要有:结构质量分布不均匀;基础与上部结构的协同作用;节点的非刚性转动;偏心扭转可能使位移增加;柱的轴向变形可能会使周期变长,加速度降低;材料的影响。混凝土的弹性模量随着时间的增长或应变的增大而降低,这意味着自振周期可能增长,而加速度反应将减小。阻尼变化的影响。钢筋混凝土结构阻尼比受震松动以后会变大,且自振周期变长。基础不同沉降量的影响。按一般荷载设计的框架结构,当地震系数大于0,基础差异沉降可能造成实际弯矩与设计弯矩出现较大的误差,而这种误差在设计中一般未予考虑。建筑结构的施工质量。施工质量是影响结构抗震能力的一个重要因素。施工的任一环节都可能对建筑结构的抗震性能造成重要影响。这就是为什么“豆腐渣工程”的抗震性能总是和设计值相差甚远。
2.建筑结构抗震设计方法
2.1结构地震分析法
结构抗震设计的首要任务就是对结构最大地震反应的分析,需要确定内力组合及截面设计的地震作用值。常用的地震分析法有底部剪力法、弹性时程分析方法、振型分解反应谱法、非线弹性静力分析法以及非线弹性时程分析法。其中最为简单的属底部剪力法,其在质量、刚度沿高度分布较均匀的结构中较为适用。假设结构的地震反应以线性倒三角形的第一振型为主。并通过第一振型周期的估计来确定地震影响系数。对于较为复杂的结构体系,采用振型分解反应谱法来计算,它的思路就是根据振型叠加原理,将各种振型对应的地震作用、作用效应以一定方式叠加起来得到结构总的地震作用、作用效应。而弹性时程分析适用于特别不规则和特别重要的结构中,将建筑物看作弹性或弹塑性振动系统,直接输入地面振动加速度记录,对运动方程积分,从而得到各质点的位移、速度、加速度和剪力时程变化曲线。非线弹性时程分析法可以准确完整的反映结构在地震作用下反应的全过程。按非线弹性时程分析法进行抗震设计,能改善结构抗震能力和提高抗震水平。非线弹性静力分析法考虑了结构弹塑性特性,在结构分析模型上施加某种特定倾向力模拟地震水平侧向力,并逐级单调增大,构件一旦屈服,修改其刚度直到结构达到预定的状态。
2.2建筑结构抗震设计方法
为了确保建筑结构的抗震能力最佳,所设计的结构在强度、刚度、延性及耗能能力等方面都达到最佳,质量分布均匀,平面对称、规则抗侧向力较好的体系及刚度与承载能力变化连续的结构体系是优先考虑的设计方案,从而经济地实现“小震不坏,中震可修,大震不倒”的目的。
(1)根据我国的抗震设计规范,建筑持力层的选择非常重要,它关系着整个建筑物的安全性能,同时规范还指出,建筑的形体要适当,要求建筑的形状及抗侧力构件的平面布置宜规则,并有整体性,不宜用轴压比很大的钢筋混凝土框架柱作为第一道防线。
(2)抗震结构体系布置是建筑结构抗震设计的关键问题,如房屋建造中框架结构体系和砌体结构的选择问题。地震后会有余震,抗震结构体系应具有多道抗震防线。如框架结构设计中为了避免部分构件破坏而导致整个体系丧失抗震能力,将不承受重力荷载的构件用作传递途径。
(3)传统的结构抗震是通过增强结构本身的抗震性能(强度、刚度、延性)来抵御地震作用的,即由结构本身储存和消耗地震能量。消能减震设计指在结构中设置消能器来消耗地震输入的能量,减轻结构的地震反应,减小结构发生破坏和避免结构物直接倒塌以达到预期防震减震要求。隔震设计指在建筑物基础与上部结构之间设置隔离层,即安装隔震装置,通过隔震装置延长结构的基本周期,避免地震能量集中使结构发生屈服和破坏。这是一种以柔克刚积极主动的抗震对策,是一种新方法、新对策、新途径。
(4)尽可能多设置几道抗震防线,一个较好的抗震建筑结构由若干个延性较好的分体系组成,并由延性较好的结构构件连接协同工作。强烈地震之后往往伴随多次余震,如果只有一道防线,则在第一次破坏后再遭余震,将会因损伤积累导致倒塌。如像教学楼这种相对大开间、单跨、大窗口、悬臂走廊的纯框架结构,其纵、横方向的刚度不均匀,很容易发生扭转破坏,而整个结构只有框架一道防线,一旦柱子发生破坏,没有其他约束措施,整个框架因丧失全部承载能力而倒塌。防止脆性和失稳破坏,增加延展性。设计不良的细部结构常常发生脆性和失稳破坏,应该防止。刚度的选择有助于控制变形,在不增加结构的重量的基础上,改变结构刚度,提高结构的整体刚度和延展性是有效的抗震途径。
(5)场地条件就是导致建筑震害过于严重的关键因素,所以选择最为有利的地形最大限度的防止建筑物出现在不利于抗震功能发挥的区域。选择在抗震过于危险的区域来建造房屋,有可能对人们的生命财产安全带来危害。在汶川地震时,北川县城西的房屋建造在有滑坡隐患的山体之下,在地震的作用下,山体崩塌、滑坡,将大量的房屋掩埋,死亡1600人,损失惨重。
3结语
建筑抗震设计的内容包括了各方各面的知识,比如说地震基础知识,场地、地基和基础知识。设计者对存在民用建筑中的相关理论以及方法等要进行重点把握,对如何进行减震进行学习。在工作过程中,设计者应该具备较强的责任心和严谨的工作态度。地震在我国多发,因此必须加强对建筑抗震性设计的重视程度,提高建筑物的抗震能力,较少地震导致的危害。
2建筑抗震设计的思想与方法
2.1选择建筑场地建筑设计之前,先进行建筑结构选址时,要对将要施工的现场环境进行全面的勘测,熟悉掌握当地水文地质的具体情况,对已有材料进行分析对比,从而选择出合适的场地。选址要有利于抗震,计算好建筑的高度和负荷,尽量选择硬度大、地域宽广平坦的地区来建造高层大建筑。在选择地基时,要注意避开斜坡崎岖地段,以避免滑坡、泥石流等自然灾害。还要选择地质均匀的建筑场地作为地基,以避免地震时出现地面裂开,沉降不均匀的现象,因而导致建筑物倾斜。
.2建筑结构规则建筑物的结构规则很重要,往往一些结构简单的建筑在地震中毁坏程度最低,因为结构简单规则的建筑受力较为均匀,在震中不易发生倾斜,稳固性较好。据有关人士表示,在保证建筑的长宽为2比1时,能够产生最大的抗震效果,此外,对称结构的抗震性能更好,能够减少毁坏发生的几率。建筑的竖直结构不规则也很容易导致建筑底层的承受力倾斜,竖向规则的建筑可以在地震中保持相对平衡。
2.3增强建筑材料的延展性钢和木材是代表性的建筑材料,具备一定的延展性能。我国传统的木结构建筑有着良好的抗震性,在几次地震中,我国的文物木质建筑虽然因为年代久也有损坏,但相对浮躁的现代建筑受地震的影响就晓得多了。在钢制的钢梁结构中,延伸性能比较好,能够有很大程度的变化幅度,吸收作用力。对于建筑整体来说,增强建筑材料的延展性可以很好的提高建筑的强度,即使在地震中发生一次稍微偏移,地震中的能量被延展性材料吸收,短时间内可恢复到其原本位置,这样就可以避免建筑在地震中局部受力过大发生崩裂。
2.4减轻建筑的质量对于高层建筑,建筑质量越大,其中心离地面也越高,摆动周期也会变大,建筑顶点的位移也很大,建筑的危险性也就明显变大。因此,对于特定环境下的高层建筑,要综合各方面因素,对其进行高度限制。在进行建筑设计时应该对建筑的重心进行合理设计,保持高层的建筑质量轻,低层的质量重,能够减轻建筑的倾斜力矩的产生。所以建筑材料最好选择质量轻强度大质量好的材料。
2.5选好建筑材料建筑过程中应该注意建筑材料的选择,对建筑部位的承载能力进行分析,对材料参数的误差进行合理的分析。抗震计算时应考虑各种材料的刚度、质量、延展性、承载力等,另外还要选择不同振动频率的材料,避免在地震中建筑材料共振,破坏力加倍。
2.6采用现浇板工艺现浇板是指在施工现场就搭好模板,然后安装好钢筋,再浇筑混凝土,最后拆除模板。现浇楼板不仅在增强房屋的整体性和抗震性能上占有优势,而且具有很大的承载力,刚度和强度都相对较高。同时在隔声,隔热,保温以及防水等方面与普通的预制空心板相比,也有相当好的效果。
2.7加强建筑薄弱部分可以对建筑薄弱部分加双重保护,使建筑重要部位第一层材料毁坏时还有第二层材料替补,延缓地震对建筑的破坏,使高层建筑中的居民有更多时间逃生,加强建筑的安全性。对建筑中受力较大,承载力薄弱的底层结构等部位来进行加固处理,采取有效措施增强建筑的强度和刚度。提高短柱的延展性和承载力,采用“强柱弱梁”的框架,在地震中可以利用梁的形变吸能来消耗地震的能量,这样可以有效避免框架坍塌。
2.8抗震防线的设计为避免建筑物的局部毁坏影响整体的结构,有必要进行抗震系统的设置。比如说抗震墙能够成为框架受损后的第二框架,抗震墙能有效的减缓建筑倒塌时间,减轻地震震波对建筑的毁坏,然而只有一道防线是不够的,需要多设置几道抗震防线才能加强建筑的抗震效果。此外设计木质楼梯也能起到一个预防目的,木质材料延性大,有诸多优点,可作为重要逃生通道,给被困地震中的人增加生还的机会。在人流量大的建筑群里,还需要建筑特殊通道,便于人员疏散。
3结语
关键词:建筑结构;抗震设计;问题分析
中图分类号:TU318 文献标识码:A 文章编号:
1、建筑结构抗震设计的基本原则
1.1结构构件应具有必要的承载力、刚度、稳定性、延性等方面的性能
(1)结构构件应遵守“强柱弱梁、强剪弱弯、强节点弱构件、强底层柱(墙)”的原则。(2)对可能造成结构的相对薄弱部位,应采取措施提高抗震能力。(3)承受竖向荷载的主要构件不宜作为主要耗能构件。
1.2设置多道抗震防线
(1)一个抗震结构体系应由若干个延性较好的分体系组成,并由延性较好的结构构件连接协同工作。例如框架—剪力墙结构由延性框架和剪力墙两个分体组成,双肢或多肢剪力墙体系组成。(2)强烈地震之后往往伴随多次余震,如只有一道防线,则在第一次破坏后再遭余震,将会因损伤积累导致倒塌。抗震结构体系应有最大可能数量的内部、外部冗余度,有意识地建立一系列分布的屈服区,主要耗能构件应有较高的延性和适当刚度,以使结构能吸收和耗散大量的地震能量,提高结构抗震性能,避免大震时倒塌。(3)适当处理结构构件的强弱关系,同一楼层内宜使主要耗能构件屈服后,其他抗侧力构件仍处于弹性阶段,使“有效屈服”保持较长阶段,保证结构的延性和抗倒塌能力。
1.3对可能出现的薄弱部位,采取措施提高其抗震能力
(1)构件在强烈地震下不存在强度安全储备,构件的实际承载能力分析是判断薄弱部位的基础。(2)要使楼层(部位)的实际承载能力和设计计算的弹性受力的比值在总体上保持一个相对均匀的变化,一旦楼层(部位)的比值有突变时,会由于塑性内力重分布导致塑性变形的集中。(3)要防止在局部上加强而忽视了整个结构各部位刚度、承载力的协调。(4)在抗震设计中有意识、有目的地控制薄弱层(部位),使之有足够的变形能力又不使薄弱层发生转移,这是提高结构总体抗震性能的有效手段。
1.4选择合理的结构形式
抗震结构体系是抗震设计应考虑的关键问题。按结构材料分类,目前主要应用的结构体系有砌体结构、钢结构、钢筋混凝土结构、钢-混凝土结构等;按结构形式分类,目前常见的有框架结构、剪力墙结构、框架剪力墙结构、简体结构等。结构体系的确定受到抗震设防烈度、建筑高度、场地条件以及建筑材料、施工条件、经济条件等诸多因素影响,是一个综合的技术经济问题,需进行周密考虑确定。
2、建筑抗震设计中存在的问题
2.1缺乏前期勘察资料
缺乏岩土工程勘察资料或资料不全。有的在扩初设计阶段还缺建筑场地岩土工程的勘察资料,有的在扩初设计会审之后就直接进入了施工图设计,有的在规划设计或方案设计会审后就直接进入了施工图设计。无岩土工程勘察资料,设计缺少了必要的依据。结构的平面布置中外形不规则、不对称、凹凸变化尺度大、形心质心偏心大,同一结构单元内,结构平面形状和刚度不均匀不对称,平面长度过长等。
2.2部分建筑物高度过高
按我国现行高层建筑混凝土结构技术规程规定,在一定设防烈度和一定结构型式下,钢筋混凝土高层建筑都有一个适宜的高度。在这个高度,抗震能力还是比较稳妥的,但是目前不少高层建筑超过了高度限制。在震力作用下,超高限建筑物的变形破坏性会发生很大的变化,建筑物的抗震能力下降,很多影响因素也发生变化,结构设计和工程预算的相应参数需要重新选取。
2.3地基的选取不合理
由于城市人口的增多和相对空间的缩小,不少建筑商忽略了这一问题,哪里商业空间大就在哪里建。建筑应选择位于开阔平坦地带的坚硬土场地或密实均匀中硬土场地,远离河岸,不应垮在两类土壤上,避开不利地形、不采用震陷土作天然地基,避免在断层、山崖、滑坡、地陷等抗震危险地段建造房屋。建筑的地基选取不恰当可能导致抗震能力差。
2.4材料的选用不科学,结构体系不合理
在地震多发区,采用何种建筑材料或结构体系较为合理应该得到人们的重视。由于我国建筑结构主要以钢筋混凝土核心筒为主,变形控制要以钢筋混凝土结构的位移限值为基准。但因其弯曲变形的侧移较大,靠刚度很小的钢框架协同工作减小侧移,不仅增大了钢结构的负担,而且效果不大,有时不得不加大混凝土的刚度或设置伸臂结构,形成加强层才能满足规范侧移限值。
2.5抗震设防烈度较低
许多专家提出,现行的建筑结构设计安全度已不能适应国情的需要,建筑结构设计的安全度水平应该大幅度提高。我国现行抗震设防标准是比较低的,中震相当于在规定的设计基准期内超越概率为lO%的地震烈度,较低的抗震设防烈度放松了建筑的抗震要求。
2.6平面布局的刚度不均
抗震设计要求建筑的平、立面布置宜规正、对称,建筑的质量分布和刚度变化宜均匀,否则应考虑其不利影响。但有的平面设计存在严重的不对称:一边进深大,一边进深小;一边设计大开间,一边为小房间;一边墙落地承重,一边又为柱承重。这些都对抗震极为不利。
3、建筑结构抗震设计的措施
3.1建筑选址要正确。
避免抗震危险地段,选择对抗震有利的场地、地基和基础在进行设计时,应根据工程需要,掌握地震活动情况和工程地质的有关资料,作出综合评价,宜选择坚硬土或开阔平坦密实均匀的中硬土等有利地段;避开软弱土、液化土、河岸和边坡边缘,平面分布上成因、岩性、状态明显不均匀的土层等不利地段;同一结构单元不宜设置在性质截然不同的地基土上,也不宜部分采用天然地基,部分用桩基,当地基有软弱黏性土、液化土、新近填土或严重不均匀土层时,宜加强基础的整体性和刚度。
3.2合理的确定平立面布置。
建筑物的动力性能基本上取决于它的建筑布局和结构布置。建筑布局简单合理,结构布置符合抗震原则,从而确保房屋具有良好的抗震性能。建筑物的平、立面布置宜规则、对称,质量和刚度变化均匀,避免楼层错层。对体形复杂的建筑物合理设置变形缝,在结构设计时要进行水平地震作用计算和内力调整,并应对薄弱部位采取有效的抗震构造措施,严格控制建筑物的高度和高宽比。
3.3 结构选型和结构布置要合理。
结构选型根据建筑的重要性、设防烈度、房屋高度、场地、地基、基础、材料和施工等因素,经技术、经济条件比较综合确定。单从抗震角度考虑,作为一种好的结构形式,应具备下列性能:延性系数高;匀质性好;正交各向同性;构件的连接具有整体性、连续性和较好的延性,并能发挥材料的全部强度。结构布置遵循的原则是平面布置力求对称,使构件分配的力均匀;竖向布置力求均匀,尽可能使其竖向刚度、强度变化均匀,避免出现薄弱层,并应尽可能降低房屋的重心。
3.4刚度、承载力和延性要匹配。
当结构具有较高的抗力时,其总体延性的要求可有所降低;反之,较低的抗力需要较高的延性要求相配合。地震时建筑物所受地震作用的大小与其动力特性密切相关,具有合理的刚度和承载力分布以及与之匹配的延性。提高结构的抗侧刚度,往往是以提高工程造价及降低结构延性指标为代价的。要使建筑物具有很强的抗倒塌能力,最理想的是使结构中的所有构件都具有较高的延性,然而实际工程中很难做到。有选择地提高结构中的重要构件以及关键杆件的延性是比较经济有效的办法。
4、结束语
抗震设计问题是一个非常复杂的过程,涉及面非常广泛,需要在设计过程中考虑全面。在以后的设计过程中,还有许多方面需要我们进一步的探讨和研究,我们也期待有更多新型抗震技术应用于建筑中来,减轻地震带来的危害。
参考文献:
关键词:建筑结构;抗震设计;若干问题;思考
中图分类号:TU3文献标识码: A 文章编号:
随着经济的发展和城市化进程的加快,城市中的高层建筑逐渐增多,建筑的安全性和稳定性受到人们的关注,设计者需要加强对建筑的抗震性设计,减少建筑在地震灾害中的破坏,提高建筑的抗震能力。建筑结构的抗震设计是专业性技术性极强的工作,设计者需要加强抗震场地的选择,提高建筑的整体性和刚度,合理的计算建筑结构的参数,整体上提升建筑结构的抗震性。
建筑结构抗震的基本要求
1、结构构件要具备相关性能。建筑结构的构件是建筑的重要组成部分,构件要具备必要的稳定性、承载力、延性和刚度,建筑结构设计上应该遵循强柱弱梁、强剪弱弯和更强节点核芯区的设计原则,结构的薄弱部位应该进行重点的设计,已经承载了竖向荷载的构件不宜作为主要的耗能构件,结构的构件要满足建筑抗震性的要求。
2、抗震防线的设置。建筑结构抗震性设计是建筑设计的重要组成部分,设计者需要按照建筑设计的要求来设置抗震防线,实现结构构件之间的协同作业。建筑多道抗震防线设置的目的是减少地震对建筑的损坏,实现建筑的内部和外部赘余度设计,建立建筑的屈服区,提高构件的适当刚度和延性,处理好建筑结构内部的强弱关系。建筑抗震防线的设计要避免部分设计过强和部分设计过弱的问题,避免建筑的不合理设计,提高建筑的稳定性设计。
3、加强薄弱部位的抗震性设计。建筑抗震性的设计需要从整体的角度进行,薄弱部位的结构部件要加强设计,提高构件的实际承载力。设计者要实现设计计算的弹力值和实际受力值之间的均匀变化,防止变形力的集中,实现建筑部件之间承载力和刚度的协调。设计者要在设计的过程中有目的加强薄弱部位的抗震设计,对建筑的变形能力进行控制,提高建筑的总体抗震能力。
二、建筑结构抗震设计的关键环节
1、抗震场地的选择。施工场地的地质情况直接影响着建筑的稳定性,建筑结构的抗震性设计需要加强对地基的勘察和检验,在地基稳定性不足的情况下要对桩基进行施工,加强地基的稳定性,减轻地震灾害对建筑的影响。设计者需要选择有利的建筑抗震场地,在加强建筑本身稳定性的基础上减小地基等外部因素对建筑稳定性的影响。在施工场地无法满足有利抗震要求的情况下,设计人员和施工人员可以首先加强地基的稳定性,采取地基液化的方式来消除地基的缺陷,提高建筑上部结构的稳定性。
2、建筑结构的选型和布置要求。现在城市中的高层建筑逐渐增多,建筑的形式逐渐多样化,设计者需要在加强形态设计的同时提高建筑的稳定性。一般而言,建筑的抗震性要求建筑结构形状应该简单,建筑的凹角是不可避免的,房屋突出部分的长度应和宽度保持一定的比例,房屋立面的局部收进尺寸应该严格按照建筑设计的要求进行设计,结构平面长度不应该过大。此外,设计者还要实现建筑平立面质量和刚度分布的均匀和对称,减小建筑的刚度偏心,对建筑薄弱部位的构件要进行充分的计算和设计,避免构件的变形,实现建筑内部结构的对称性。设计者可以对地震缝进行利用,将建筑的结构分成具有规则和简单的小单元。
3、建筑的整体性和刚度设计。城市中的高层建筑都是具有空间刚度的由楼盖和承重构件组成的结构体系,建筑的抗震性主要是由建筑的稳定性和空间的刚度来决定的,刚性楼盖实现了地震作用的分配。近年来,钢筋混凝土在建筑结构中得到了重要的应用,现场浇筑的钢筋混凝土具有水平刚度大和整体性好的优点,可以有效的避免散落和滑移问题,增加建筑整体性,是比较理想的建筑抗震构件。钢筋混凝土楼板还可以控制建筑的层间变形,实现荷载的有效传递,减轻楼板和墙体之间的约束力。因此,设计者需要对现行的现浇混凝土结构进行研究,通过增设构造柱和配置钢筋的方法来加强建筑的整体性,提高建筑的空间强度,整体上提升建筑的抗震性能。
4、建筑结构参数的计算。建筑抗震性设计中包括了房屋构件的变形计算和墙梁柱板的承载力计算,设计者在计算之前需要根据建筑的实际要求和建筑设计规范来建立有效的计算模型,根据模型来简化建筑构件的计算和处理。设计者可以将有关的数据输入到计算机中,对复杂构件的变形和内力进行系统的分析和计算,设计者要对结构的位移、自振周期、层间刚度比、扭转系数以及剪重比进行计算,对结构的扭转效应进行考虑。建筑抗震性设计是专业性技术性极强的工作,构件的计算和分析工作很难一次完成,设计者要在设计理论和设计模型的指导下对试算的结果进行反复的调整,提高建筑防震性设计的合理性。
5、建筑结构的延性抗震设计。结构延性是建筑抵御地震灾害的关键,结构的延性抗震设计是建筑抗震设计的重要组成部分。设计者要按照强柱弱梁的原则进行设计,将柱截面的弯矩进行增大设计,对控制截面的整体承载力进行精确设计。构件抗剪能力是建筑抗震性的重要组成部分,设计者要人为的增大构件抗剪能力,通过增大剪力墙端、梁柱节点、柱端和梁端的系数来提高建筑的剪力值,提高验算和设计的精确度,减小建筑在地震中的剪切破坏。此外,设计者还要提高建筑的塑性耗能能力和建筑的塑性转动能力,对可能出现塑性铰的部位进行重点的设计,加密箍筋,对轴压比进行有效的限制,提高建筑整体稳定性。
三、我国建筑抗震性设计中存在的问题
建筑抗震性要求是建筑稳定性和安全性的关键,设计者要按照设计规范和建筑抗震要求来加强对关键设计环节的控制,整体上提升建筑抗震性的设计质量。在建筑抗震性设计的过程中也存在建筑高度、建筑结构体系、材料选用以及轴压比等问题,设计者需要采取有效的措施进行预防。首先,建筑高度需要符合城市发展的需要,要和施工技术和城市发展水平相适应。其次,设计者要进行转换层和加强层的设计,提高柱结构的抗剪力程度,尽量选用混凝土结构。再次,短柱和轴压比问题会大大削弱结构的延性和塑性变形能力,设计者要加强强柱弱梁设计,对柱的剪跨比和轴压比进行确定,避免短柱问题的发生,按照建筑的施工要求进行轴压比限值的调整。此外,设计者还要提高建筑结构设计的安全度系数,对抗震设计的原则进行重新的审视,提高建筑的抗震设防烈度,采用弹性设计来提高建筑的安全性,减轻地震对建筑安全性和稳定性的破坏。
结语:
随着经济的进步和城市建设进程的加快,城市中的高层建筑甚至是超高层建筑逐渐增多,建筑的抗震性设计逐渐受到人们的关注。建筑结构抗震性设计是专业性技术性极强的工作,设计者需要加强对建筑场地的选择,对建筑构件和整体的弹性和塑性进行设计,利用计算机来提高各项参数的准确性和可靠性,整体上提升建筑的稳定性设计,减轻建筑在地震灾害中的损失。
参考文献:
[1] 赵西安.高层建筑结构抗震设计的一些建议[J]. 工程抗震. 2011(04)
[2] 魏琏.水平地震作用下不对称建筑的抗震计算[J]. 建筑科学. 2010(01)
关键词:多层枢架结构,房屋设计,问题
钢筋混凝土多层框架房屋,结构设计看似简单,但如果设计不当,将会给建设单位带来浪费或不安全的种种问题。本文就钢筋混凝土多层框架房屋结构实际设计中应注意的问题作了简要的分析探讨。
1.关于多层框架基础类型的选择问题
多层框架类型多层框架基础类型的选择,取决于地质条件,上部结构荷载的大小。上部结构对地基不均匀沉降及倾斜的敏感度及施工条件等因不。设计时应做技术经济比较,综合考虑后确定。对于框架结构的受力分析和辅助设计。可借助PKPM进行,其主要步骤:厚度:双向板为1/40板跨,单向板为1/35板跨。然后进行挠度和裂缝计算。最后确定板厚及配筋。柱截面:At=N/arc,a为轴压比,fc凝土压强度设计值。受荷面各及经验系数确定。初选梁截面:粱高为跨度的l/lO一1/15,粱宽通常为1/2—/3梁高。输入荷载:楼面荷载,梁上荷载,柱节点荷载,风载及地震信息。用PKPM中的SATWE内力分析程序进行计算。框架柱首先要满足轴压比限制,对超筋和构造配筋的梁柱进行调整,直至配筋,截面大小适中为止。另检查结构的自振周期,以名产生共振。基础选型:常用的基础型式有柱下独立基础。柱下条基,柱下筏板及柱基。
2.关于多层框架结构的参数选取问题
《抗震规范》中指出,所有的计算机计算结果,应经分析判断确认其合理、有效后方可用于工程设计。论文大全。通常情况下,计算机的计算结果主要是结构的自振周期、楼层地震剪力系数、楼层弹性层间位移(包括最大位移与平均位移)和弹塑性变形验算时楼层的弹塑性层间位移、楼层的侧向刚度比、振型参与质量系数、墙和柱的轴压比及墙、柱、梁和板的配筋、底层墙和柱底部截面的内力设计值、框架——抗震墙结构抗震墙承受的地震倾覆力矩与总地震倾覆力矩的比值。超筋超限信息等等。
为了分析判断计算机计算结果是否合理。结构设计计算时,除了有合理的结构方案、正确的结构计算简图外。正确填写抗震设防烈度和场地类别。合理选取电算程序总信息中的其他各项参数也是十分重要的。
多层框架结构房屋有时也设置地下室。由于隔墙少,常采用筏板式基础。在电算时,应将地下室层数和上部结构一起输入,并在总信息中按实际的地下室层数填写。这样,计算地基和基础底板的竖向荷载可以一次形成,并且在抗震计算时,程序会自动对框架底层柱底截面的弯矩设计值乘以增大系数。同时通过对层侧移刚度比的分析比较,还可以正确判断和调整房屋的嵌固位置,并采取相应的抗震构造措施。保证楼板有必要的厚度和最筋率等等;当结构表现为竖向不规则时。不仅要验算薄弱层,而且还要对薄弱层的地震剪力乘以1.15的增大系数。如果在结构总体计算时。论文大全。总信息中填写的地下室层散少于实际输入的层数,弯矩设计值增大系数将会乘错位置,从而在发生地震时,会使极易发生震害的底层柱底部位因抗震能力降低而破坏。
3.关于框架计算简图的问题
无地下室的钢筋混凝土多层框架房屋,独立基础埋置较深,在一0.05m左右设有基础拉梁时,应将基础拉梁按层1输入。以某学生宿舍楼为例,该项目为层钢筋混凝土框架结构,丙类建筑,建筑场地为II类;层高3.3m,基础埋深4.Om基础高度0.8m,室内外高差0.45m。根据《抗震规范》第6.1.2条,在8度地震区该工程框架结构的抗震等级为二级。设计者按3层框架房屋计算,首层层高取3.35m,即假定框架房屋嵌固在一0.05m处的基础拉梁顶面:基础拉梁的断面和配筋按构造设计:基础按中心受压计算。显然,选取这样的计算简图是不妥当的。因为,第一,按构造设计的拉梁无法平衡柱脚弯矩;第二,《混凝土结构设计规范》—2002)第7.3.11条规定,框架结构底柱的高度应取基础顶面至首层楼盖顶面的高度。工程设计经验表明,这样的框架结构宜按4层进行整体分析计算,即将基础拉梁层按层1输入,拉梁上如作用有荷载,应将荷载一并输入。论文大全。这样,计算剪力的首层层高为Hl=4—0. 05=3.95m,层2层高为3.35m,层3、4层高为.3m。根据《抗震规范》第6.2.3条,框架柱底层柱脚弯矩设计值应乘以增大系数1.25。当设拉梁层时,一般情况下,要比较底层柱的配筋是由基础顶面处的截面控制还是由基础拉梁顶面处的截面控制。考虑到地基土的约束作用,对这样的计算简图,在电算程序总信息输入中,可填写地下室层数为1,并复算一次,按两次计算结果的包络图进行框架结构底层柱的配筋。
综上所述,以上的几个问题在钢筋混凝土框架结构设计中经常遇到,也经常被忽略。所以,我们设计工作者应按规范和相应的构造要求,严格执行,从根本上消除设计隐患,确保设计质量。
【参考文献】
[1]林岳峰对多层框架房屋结构设计相关问题的分析 [J],广东科技2006(10).
[2]苑大欣.于镇.多层框架房屋结构设计中的几点思考[J] ,房材与应用,2006,34(4).
[3]李强.钢筋混凝土多层框架房屋结构设计中常见问题分析[J] ,开封大学学报2006,20(2).
[4]林同炎.S.D.思多台斯伯利,结构概念和体系[M],建筑工业出版社.
【关键词】结构转换层 高层建筑 结构设计 高层建筑设计 转换层设计
中图分类号: TU97 文献标识码: A 文章编号:
一.引言
随着我国现代高层建筑高度的不断增加,建筑的功能也日趋复杂,在高层建筑竖向立面上的造型也呈现多样化。在某些建筑结构中,通常会要求上部的框架柱或是剪力墙不落地,在建筑结构中需要设置较大的横梁和桁架来作为支撑,甚至有时要改变竖向的承重体系,此时就要求设置转换构件,将上部和下部两种不同的竖向结构进行过度和转换,通常这种转换构件占据约为一至二层,这种转换构件即为转换层。结构转换层在很大程度上改变了建筑的结构体系,在进行设计时要慎重考虑。
二.转换层结构施工特点
由于高层建筑结构下部楼层受力很大,上部楼层受力较小,正常的结构布置应是下部刚度大、墙体多、柱网密,而到上部则逐渐减少墙体及柱的布置,以扩大柱网。这样,结构的正常布置与建筑功能对空间的要求正好相反。因此,为了适应建筑功能的变化,就必须在结构转换的楼层设置水平转换构件,部分竖向构件在转换层处被打断,使竖向力的传递被迫发生转折,而转换层就是实现转折功能的大型水平构件。转换层的结构形式一般有以下几种构成:箱式转换、梁式转换、空腹桁架式转换、桁架式转换、板式转换和斜撑式转换等。 带转换层的高层建筑是一受力复杂、不利抗震的结构体系,该结构及其支撑系统有自身的特点。众多高层建筑采用梁式转换层进行结构转换,这主要是由于:
1.转换层设计带转换层的多高层建筑,转换层的下部楼层由于设置大空间的要求,其刚度会产生突变,一般比转换层上部楼层的刚度小,设计时应采取措施减少转换层上、下楼层结构抗侧刚度及承载力的变化,以保证满足抗风、抗震设计的要求。转换构件为重要传力部位,应保证转换构件的安全性。2.8度抗震设计时除考虑竖向荷载、风荷载或水平地震作用外。还应考虑竖向地震作用的影响,转换构件的竖向地震作用,可采用反应谱方法或动力时程分析方法计算;作为近似考虑,也可将转换构件在重力荷载标准值作用下的内力乘以增大系数1.1。
2.经济指标
从抗剪和抗冲切的角度考虑,转换板的厚度往往很大。一般可2.0m~2.8m 。这样的厚板一方面重量很大,增大了对下部垂直构件的承载力设计要求,另一方面本层的混凝土用量也很大。
转换梁常用截面高度为1.6~4.0m,只有在跨度较小以及承托的层数较少时才转换梁常用截面高度0.9~1.4m,而跨度较大且承托较大且承托的层数较多时,或构件条件特殊时才采用较大的截面高度4.0~8.2m 。
3.抗震性能
由于厚板集中了很大的刚度和质量,在地震作用下,地震反应强烈。不仅板本身受力很大,而且由于沿竖向刚度突然变化,相邻上、下层受到很大的作用力,容易发生震害。以往的模型振动台试验研究表明,厚板的上、下相邻层结构出现明显裂缝和混凝土剥落。另外,试验还表明,在竖向荷载和地震力共同作用下,板不仅发生冲切破坏,而且可能产生剪切破坏,板内必须三向配筋。
4.转换层结构的基本功能
从结构角度看,转换层结构的功能主要有:
(1)上、下层结构形式的转换
这种转换层广泛用于剪力墙结构和框架--剪力墙结构,将上部的剪力墙转换为下部的框架。
(2)上、下层结构轴网的转换
转换层上下结构形式没有改变,但通过转换层使下层柱的柱距扩大,形成大柱网,这种形式常用于外框筒的下层以形成较大的入口。
(3)下、下层结构形式和结构轴网同时转换
上部楼层剪力墙结构通过转换层改变为下部框架结构的同时,下部柱网轴线与上部剪力墙的轴线错开,形成下、下结构不对齐的布置。
5.转换层结构设计方法存在的问题
目前在多、高层建筑中,绝大多数的开发商都会要求建筑物具有完备的建筑功能,建筑师在建筑设计中也往往首先想到采用结构转换层来完成上、下层建筑物功能的转换。但一些结构设计人员在实际进行转换层设计时显得无从下手,没有可操作、可遵循的设计思路、设计原则来进行结构设计。造成这种现象的主要原因是当前转换层设计没有相关的可遵循的设计准则,使设计人员难以进行结构选型、截面确定、计算模型确定、计算方法确定,计算结果应用以及配筋方法的实施等一系列结构设计步骤。这种现状与我国当前高层建筑的迅猛发展足不适应的。转换结构层具有与一般结构层相比结构重量大、结构层刚度大、几何尺寸超大、受力复杂等特点。这样的尺寸和重量意味着转换结构组成了建筑物的主要构件。它们设计的是否合理、安全、经济对整个结构的安全性、结构造价、施工费用等有着重要影响。现有的转换层设计方法,主要是针对形式简单、受力相对简单的转换梁,对于受力复杂的转换梁还没有深入研究。即便是对于形式简单的转换梁,其受力性能也没有完全清楚,而往往是互相混淆,设计概念小明确,设计原则不准确。
三. 带结构转换层的高层建筑结构设计
1. 带转换层的高层建筑结构设计原则
高层建筑中转换层的设置造成建筑物竖向刚度的突变,地震作用时在转换层上下容易形成薄弱环节,对结构抗震不利,故转换层结构在设计时应遵循以下原则:
(1)为防止沿竖向刚度变化过于悬殊形成薄弱层,设计中应考虑使上、下层刚度比γ≤2,尽量接近1。这样才能保证结构竖向刚度的变化不至于太大,使上柱有良好的抗侧力性能,减少竖向刚度变化,有利于结构整体受力。
(2)尽可能减少需结构转换的竖向构件,直接落地的竖向构件越多,转换结构越少,转换层造成的刚度突变就越小,对结构抗震更有利。
(3)设计中应保证转换层有足够的刚度,一般应使梁高度不小于跨度的1/6,才能保证内力在转换层及其下部构件中分配合理,转换梁、剪力墙柱有良好的受力性能,能较好的起到结构转换作用。
(4)必须控制框支剪力墙与落地剪力墙的比例,当剪力墙较多且考虑抗震时,横向落地剪力墙数目与横向墙总数之比不宜少于50%,非抗震时不宜少于30%。
(5)转换层以上的剪力墙和柱子应尽量对称布置,梁上立柱应尽量设在转换梁跨中,以免转换梁变形时,在梁上立柱的柱脚处产生较大转角,带动立柱柱脚产生较大变形,引起柱的弯曲及剪切,使立柱产生很大的内力而超筋。
(6)转换层结构在高层建筑竖向的位置宜低不宜高。转换层位置较高时,易使框支剪力墙结构在转换层附近的刚度、内力和传力途径发生突变,并易形成薄弱层,对抗震设计不利,其抗震设计概念与底层框支剪力墙结构有较大差异。当必须采用高位转换时,应控制转换层下部框支结构的等效刚度,即考虑弯曲、剪切和轴向变形的综合刚度,这对于减少转换层附近的层间位移角及内力突变是十分必要的,效果也很显著。另外,对落地剪力墙间距的限制应比底层框支剪力墙结构更严一些。对平面为长矩形的建筑,落地剪力墙的数目应多于全部横向剪力墙数目的一半。
2.转换层的应用
(1)梁式转换层
作为目前高层建筑结构转换层中应用最广的结构形式,它具有传力直接明确及传力途径清晰,同时受力性能好、工作可靠、构造简单、计算简便、造价较低及施工方便等优点。转换梁不宜开洞,若必须开洞则洞口宜位于梁中和轴附近。转换梁有托柱与托墙两种形式,其截面设计有4种方法,即普通梁截面设计法、偏心受拉构件截面设计法、深梁截面设计法和应力截面设计法。转换梁的截面尺寸一般由剪压比(mv=Vmax/febh0)计算确定,应具有合适的配箍率,以防发生脆性破坏,其截面高度在抗震和非抗震设计时应分别小于计算跨度的16和18。(2)厚板转换层 当转换层上、下柱网轴线错开较多而难以用梁直接承托时,可采用厚板转换层,但厚板的巨大荷载会集中作用于建筑物中部,振动性能复杂,且该层刚度很大、下层刚度相对较小,容易产生底部变形集中,其传力途径十分复杂,是一种对抗震十分不利的复杂结构体系,应进行整体内力分析、动力时程分析及板的内力分析等。厚板的厚度可由抗弯、抗剪、抗冲切计算确定;可局部做成薄板,厚薄交界处可加腋或局部做成夹心板,一般厚度可取2.0~2.8m,约为柱距的1/3~1/5。厚板应沿其主应力方向设置暗梁,一般可在下部柱墙连线处设置。转换层厚板上、下一层的楼板应适当加强,楼板厚度不宜小于150mm。
(3)箱式转换层
当需要从上层向更大跨度的下层进行转换时,若采用梁式或板式转换层已不能解决问题,这种情况下,可以采用箱式转换层。
它很像箱形基础,也可看成是由上、下层较厚的楼板与单向托梁、双向托梁共同组成,具有很大的整体空间刚度,能够胜任较大跨度、较大空间、较大荷载的转换。
(4)桁架式转换层
这种形式的转换层受力合理明确,构造简单,自重较轻,材料节省,能适应较大跨度的转换,虽比箱式转换层的整体空间刚度相对较小,但比箱式转换层少占空间。
(5)空腹桁架式转换层
这种形式的转换层与桁架式转换层的优点相似,但空腹桁架式转换层的杆系都是水平、垂直的,而桁架式转换层则具有斜撑竿。空腹桁架式转换层在室内空间上比桁架式转换层好,比箱式转换层更好。
四.结束语
高层建筑的迅速发展,从以往的简单体型和功能单一的时代开始走向体型复杂,建筑的功能呈现多样化发展。在高层结构设计中,带转换层结构设计不能简单设置成“承上启下”,而要在实际结构上实现上部结构和下部结构的过度和转换。
参考文献:
[1] 熊进刚 李艳 带结构转换层的高层建筑结构设计[期刊论文] 《南昌大学学报(工科版)》 ISTIC -2002年4期
[2]季静 韩小雷 杨坤 郑宜 Ji Jing Han XiaoLei Yang Kun Zheng Yi带主次梁转换层的超限高层建筑结构设计[期刊论文] 《结构工程师》 ISTIC -2005年2期
[3]丁奇峰 带结构转换层的高层建筑结构设计 [期刊论文] 《城市建设理论研究(电子版)》 -2013年6期
[4]韩小雷 杨坤 郑宜 季静 带梁式转换层的超限高层建筑结构设计[期刊论文] 《昆明理工大学学报(理工版)》 ISTIC PKU -2004年6期
[5]黄瑛 带转换层高层结构综合楼设计 [期刊论文] 《铁道标准设计》 ISTIC PKU -2005年1期
[6]侯俊杰 带结构转换层的高层建筑结构设计 [期刊论文] 《城市建设理论研究(电子版)》 -2013年5期
【关键词】钢筋混凝土,建筑工程,结构设计,优化研究
中图分类号:TU37 文献标识码:A 文章编号:
一.前言
伴随着我国建筑行业的迅速发展,工程建筑行业日渐成为了我国国民经济新的经济增长点,不仅仅在国民经济的增长中占据着越来越重要的地位,而且在改善居民生活方式,提高居民的生活质量方面有着巨大的推动作用。随着钢筋混凝土建筑结构在建筑行业中的广泛应用,建筑结构的设计和施工都有了新的标准和要求,在钢筋混凝土结构的设计施工中,不仅仅要使得结构的平面,立面布置符合相关规则,更要使得建筑结构的各种构件的强度和变形能够达到相关的标准,同时,要在满足建筑设计基本目标的基础上,更加重视建筑结构的抗震设计,提高建筑结构的抗震能力,保证整个建筑结构的质量。
二.钢筋混凝土建筑结构设计的优化措施
1.严格控制钢筋混凝土建筑结构设计中的各种材料设计
(一)在掺合料选择方面上。选择一些增加混凝土强度性能的一些掺合料。
(二)沙,沙石,水泥的配合比上面,优化三者配合比。
(三)在水泥的选择方面上。根据工程的需要,选择相对应的水泥。
(四)在钢筋的选型上面。比如,用U型钢,工字钢代替圆形钢。
2.结构体系的选型方面
由于大开间剪力墙结构体系,可以做到房间不露出梁柱,有效空间大、隔音效果较好,当采用钢制模板时,墙面和楼板表面平整并且不需要在湿作业的情况下抹灰。另外该结构体系不但用钢量少,施工周期短、造价低,还具有整体性强、侧向刚度大等优点,有利于抗风抗震,所以自九十年代起建筑结构体系基本上都采用大开间现浇钢筋混凝土剪力墙结构。随着经济的发展,为了进一步降低建筑造价,近几年来部分地区越来越多地采用短肢剪力墙与简体或一般剪力墙组成的结构体系。这个结构体系也属于剪力墙结构的一种。它的特点是建筑平面布置更具灵活性,并且又能节省钢筋和混凝土用量,减轻建筑的总重量,从而降低地基基础造价。
3.建筑结构的基础设计方面
在建筑的基础设计中,要综合考虑建筑场地的地质情况以及水位、使用功能、上部结构类型、施工条件和相邻建筑的相互影响,以保证建筑物不会过量沉降或倾斜,而且还能满足正常使用要求。另外还要注意相邻地下建筑物及各类地下设施的位置,以保证施工的安全。
4.建筑结构设计的抗震方面
(一)房建结构设计要从建筑的全局出发
全面考虑各种建筑部位的功能,在此基础上,科学设计每个部分的构件,保证每个部件之间的契合,促使每个部件或者是若干部件组合起来可以完成某一特定的设计要求,满足一定的现实需求,同时,通过抗震设计,使得每个构件都可以具有相应的承载力,当地震来袭,每个构件都可以有着一定的次序先后破坏,整体组合构件将会有着更强大的承载力和柔性,从而延缓地震破坏的速度,消耗爆发的能量。增强建筑的整体抗震能力。
(二)要严格选择地基选址
地基选址是进行建筑结构设计的基础,因此,在房间结构抗震设计中,要科学避开山嘴,山包,陡坡,河流等不利因素,要本着坚硬,牢固,平坦,开阔的选址原则。亲身实地,利用先进技术设备,进行地质勘探,山石水土监测,并取样论证,科学严谨分析。力求使得整个地基牢固可靠,地质稳定无渗漏,无坍塌,无暗河,无熔岩,无火山……从而保证整个地基不会因为承载而发生小范围的坍塌。影响到整体承载能力和抗震能力设计。
(三)采用合理的建筑平立面
建筑物的动力性能基本上取决于其建筑布局和结构布置。建筑布局简单合理,结构布置符合抗震原则,通过无数次的实验表明,简单、规则、对称的建筑结构抗震能力强,对延缓地震烈度范围延伸,消耗地震的能量,减少地震对整体结构的破坏,而且,对称结构容易准确计算其地震反应。
5. 加强对连梁的设计优化
(一)对连梁的刚度进行折减
连梁由于跨高比较小与之相连的墙肢刚度大等原因,在水平力作用下的内力往往很大,在连梁遇到外力发生屈服的过程中,主要有几个表现,比如出现裂缝,连梁的刚度减弱,内力发生重新分布,因此,一般而言,在进行建筑结构设计之前,要对连梁的刚度实施折减,从高规中的相关条款解释而言,是要对整个混凝土建筑结构的各个环节的刚度和弹性进行比较科学合理的分析,但是,在具体实际的操作过程中,各个部分的构件都需要承担比较大的弯矩和剪力,并且配筋设计具有很大的难度,因而,在笔者多年的建筑结构设计过程中,可以减少对竖向荷载能力的考虑,而更多的进行适当的开裂设计,将内力转移到墙体上去,如此,可以更好的实现建筑结构设计的优化。
(二)在设计过程中适当的减少连梁的高度
在进行连梁的设计中,为了达到降低连梁刚度,减少地震影响效果的目的,可以在保证整个建筑功能的基础上,让连梁的总体的跨度不断增加,如此,可以很大程度的让连梁的整体高度降低,一定程度而言,也使得可以讲整个连梁的整体承载能力控制在一定的范围之内,既可以让设计得到优化,又可以让建筑的功能得到正常发挥。
(三)在连梁设计过程中适当增加厚度
在进行连梁设计,在做好各种构件的设计优化的基础上,可以让连梁的整体截面的宽度进一步扩大,如此,不仅仅可以让建筑结构整体的刚度变大,也能够让整个地震过程中产生的各种内力作用相对而言变得更大。而且,由于连梁的抗剪承载力与连梁宽度的增加成正比。通过剪力墙的厚度增加,也有可能达到让连梁抗剪承载力符合限度的目的。
(四)提高混凝土等级
为了让连梁的抗剪承载能力不会超过规定个标准,可以合理的提高剪力墙的混泥土的等级,当混泥土的等级得到提升,混泥土的弹性模量增加比例会小于抗剪承载力的提升比例,从而,可以达到控制目标。
6.建筑结构设计的施工方面
为满足结构承载力的需求,通常在结构设计中柱与梁板选择不同强度等级的混凝土。施工规范规定柱的施工缝宜留设在梁底标高以下20mm-30mm处,其原则是施工缝宜留在结构受力小且便于施工的位置。施工时,为方便柱身混凝土的下料与振捣,在梁内钢筋未绑扎之前进行浇注。按施工规范的要求,当梁柱的混凝土强度等级不同时,节点处应按。弱梁强柱”的原则。在实际施工中,施工班组制定合理的节点保证措施,监理人员加强对浇注质量的监管和提高整体结构的抗震性能十分重要。
三.结束语
钢筋混凝土建筑结构设计是一项专业性极强的工作,必须综合考虑到多种因素,既要满足居民的生活生产多种需要,更要从地震防护,防水防渗漏等各种因素对建筑结构做出性能设计,同时,从城市整体的人文自然,交通政治等各方面的因素出发,选择合理的建筑结构体系,做出科学严谨的设计,实现实用价值和美学价值的统一,为整个建筑业的发展和居民生活质量的提高,奠定基础。
参考文献:
[1]刘利峰 钢筋混凝土建筑结构设计优化研究 [期刊论文] 《科技资讯》 -2010年20期
[2]张红标 建筑结构设计成本优化研究--以深圳高层钢筋混凝土建筑结构为例 [学位论文] 2011 - 浙江大学:企业管理
[3]张民 钢筋混凝土框架-剪力墙结构设计的优化研究 [学位论文]2008 - 同济大学土木工程学院 同济大学:结构工程
[4]洪叶 空间钢筋混凝土框架结构优化研究 [学位论文]2007 - 上海大学:结构工程
【关键词】水电站工程主厂房设计排架结构设计 水电站设计结构设计
中图分类号:K826.16 文献标识码:A 文章编号:
一.引言。
我国是世界上河流资源众多的国家之一,有着较为丰富的内河、内江资源。随着经济的快速发展,在河流和江河上开展的水利工程建设也越来越多。水利工程中的水电站建设一直是工程施工的重点控制内容,由于水电站主厂房需要放置发电机、水轮机等发电相关设备,同时,主厂房结构又多为单层建筑结构,在进行结构设计时多采用排架结构。排架结构在自身的平面内具有较强的承载能力和较好的钢度,但由于各排架间的承载能力较为软弱,在水利工程中,无论是在设计阶段还是施工阶段,都要引起高度重视。
二.水电站主厂房的结构布置设计。
1.水电站厂房的结构组成以及相关用途。
(1)水电站主厂房的上部结构:屋顶、排架柱、吊车梁、发电机层和安装间楼板、围护结构等,通常为钢筋混凝土结构。
屋顶部分有层面板和屋架或是屋面大梁组成,屋面板的作用为遮风避雨,隔热隔阳,屋面层部分包括隔热层、防水层、保护层以及预制钢筋混凝土大型屋面板。
排架柱是用来承受屋架、吊车梁、屋面大梁和外墙所传递的荷载,以及排架柱本身的重量,同时这些荷载通过排架柱传给房下部结构中的大体积混凝土。
吊车梁是起吊部件在制动过程中操作的移动集中垂直荷载,或者是承载吊车荷载,在吊车起重部件的时候,将启动和制动过程中产生的横向和纵向水平荷载,传给排架柱。
发电机层楼板需要承载自重、人的活荷载、机电设备静荷载;安装间的楼板承受安装机组或机组检修时的荷载和自重。
由外墙、抗风柱、圈梁以及联系梁等组成的围护结构,能承受风荷载,同时承载梁上砖墙传下的自重和荷载,将荷载传给壁柱或排架柱。
(2)水电厂主厂房的下部结构。
水电站主厂房的下部结构包括:发电机机墩、蜗壳及固定导叶、尾水管等,下部结构一般为大体积水工钢筋混凝土结构。
发电机机墩承载着发电机的自重、水轮机轴向水压力和机墩自身重量,并将自重力量传递给蜗壳混凝土和座环。
蜗壳和固定导叶是将机墩传递下来的荷载传到尾水管上。尾水管将水轮机座环传递过来的荷载,通过尾水管的框架结构传到基础上。
三.水电站的主厂房架构设计。
1.选择立柱截面形式。
在水电站的主厂房中,其结构立柱一般都是采用矩形截面,尤其是在吊车的起重能力超过10吨以上时,下柱的截面高度不应小于下柱高度的1/12,截面的宽度应不小于下柱高度的1/25。立柱高度根据厂房顶梁定的高程与发电机层地面的高程差来确定。在一般情况下,水电站的主厂房排架柱的截面尺寸基本上都比较大,这是为了满足强度和稳定的要求。柱截面的选择要能满足顶端的横向位移的控制要求。
2.厂房屋面板荷载计算以及型号选择。
发电站的主厂房一般选择安全等级为二级以上的大型屋面板,屋面板无悬挂荷载,其抗震设计的强度为6度。由于屋面的活荷载与雪荷载部同时都存在,屋面具有较大的活荷载,因此要根据实际屋面的荷载设计,布置屋架的上、下弦支撑。
3.吊车梁设计。
设计吊车梁的截面时,由于T形截面具有较大的钢度,同时具有较好的抗扭性能,在固定轨道时较为方便,在进行检查时拥有较宽的走道,比较适合大、中型的吊车梁,因此一般在选择吊车梁的截面时多采用T形截面。
4.确定控制截面和荷载作用中的内力组合。
根据排架柱受力的特点,分别取牛腿处截面、上柱底面和下柱底面(采用室内厂房地面的下0.5米处为下柱的柱底),为排架柱配筋计算的控制截面。在厂房横向跨度较小、吊车的荷载受力不大时,也可以将柱底截面作为控制下柱的配筋,并且把柱底面的截面内力值作为柱基设计的依据。如果水电站处于地震带上,要在内力计算和组合中,包含地震作用下的控制截面内力。
5.排架内力计算。
排架的内力计算和内力的组合采用手算极为复杂,因此在条件允许的情况下,尽量多采用电算方法。采用电算方法时,可使用由我国建筑科学研究院研发的CAD系统PMCBC平面结构或PKPM结构设计软件,根据水电站的实际情况,结合在施工地区的地震作用的内力计算和组合,编制计算程序。同时,依据各个截面的内力,通过系统计算,确定柱的配筋。设置配筋时,为避免其他不确定因素造成影响,设计中尽量采用对称配筋设计。
进行排架设计时,要根据下部柱子的高度和牛腿的尺寸作为参考,来计算柱截面的尺寸。根据屋面的防水层、砂浆找平层、加气混凝土、预应力混凝土屋面板以及风荷载、雪荷载等因素的标准值计算屋面的恒荷载,了解屋面结构承载能力。由于排架承载的荷载包括屋盖的自重、屋面的雪荷载、活荷载、吊车的荷载、横向风荷载等,在进行计算时要采用各项荷载的标准值,在此基础之上,才能进行内力组合。
6.排架结构注意事项。
(1)水电站采用钢筋混凝土的单层排架结构,一般不适合采用砖山墙承重,而应该在厂房的两端位置设置端排架。要在屋架和山墙顶部相对应的高度位置上设置钢筋混凝土卧梁,并要和屋架端头上部高度处的圈梁保持连续的封闭。
(2)水电站的主厂房中设置有吊车时,排架柱的预埋件通常都较多,因此在进行排架结构设计时,要将各个位置、尺寸、数目进行仔细核对,避免在施工中由于位置错误或尺寸偏差,造成屋面梁构件、吊车梁等无法准确安装。
(3)在排架结构设计时,为了提高结构的抗震能力,加强结构的整体性,要在柱外侧沿着竖向位置每隔500mm的位置上留出2∮6钢筋和外墙体的拉结。同时在外墙的圈梁上的对应位置上,设置不超过∮12的拉结筋。在主厂房的电气设计中,为保证生产照明,在柱上要设置照明灯具,灯具设置高度要以具体情况而定,以符合安全生产要求为度。在进行柱的预制时,要做好电线管的预埋,以便于后期的电线施工。
(4)水电站的主厂房设计时,考虑在地震的作用下,厂房的角柱柱头处于双向地震的作用,同时抗震强度为角柱较强,而中间排架较弱,同时受到侧向的变形约束和纵向压弯作用,为了避免施工后由于地震作用,发生角柱顶部的开裂,造成端屋架塌落和柱头折断,在进行结构设计时,要提高主厂房中的角柱柱头密箍筋的直径。
(5)为了提高水电站单层厂房的抗震验算,要进行横向和纵向两个方面的验算。一般来讲,在设计结构能满足规范和要求的条件下,七度时的一类、二类场地,在柱的高度低于10米,而且排架结构的两端具有墙支撑的单跨度厂房中,可以不进行横向和纵向截面的抗震验算。但为了提高水电站在施工完成后的服务年限,保障水电站的正常生产,进行结构设计时,尽可能要考虑抗震作用,有条件的尽量进行横向和纵向的抗震验算。
四.结束语
水电站的排架柱承载着结构中的荷载,其控制截面的内力和组合较难控制。本文就排架结构的设计进行了简单分析,提出了一定的解决方法。由于水电站主厂房的排架结构设计、施工、管理和控制都需要严谨的科学态度和专业的操作技能,因此,加强水电站施工建设,完善厂房的排架柱设计,有待大家的共同努力。
参考文献:
[1] 刘少红 水电站工程主厂房排架结构设计 [期刊论文] 《科技资讯》2009年12期
[2] 巴哈尔古丽·里瓦依丁Bahaerguli · Liwayiding吉林台一级水电站工程主厂房排架结构设计 [期刊论文] 《西北水力发电》2007年2期
[3] 刘益民 宝鸡峡林家村水电站主厂房排架柱加固设计与施工 [期刊论文] 《陕西水利》2009年6期
[4] 覃丽钠 李明卫 矩形钢管混凝土柱在水电站厂房中的应用 [期刊论文] 《贵州水力发电》2011年6期
关键词:工建筑工程;抗震结构;设计
Abstract: In recent years the quality requirements for construction projects showing increased year by year trend, especially in the construction of related facilities for construction projects, is to become the focus of attention, the earthquake construction of the building construction project is one of the important part. This paper will combine with many years of practical experience, civil engineering seismic analysis focus on the simple exposition, for reference.Key words: construction work projects; seismic structure; design
中图分类号:TU3文献标识码: A 文章编号:2095-2104(2012)06-0020-02
0引言
由于我国处于地壳运动中的两条地震带上,导致我国相关城市经常会遭受到地震灾害的影响,从上世纪六、七十年代的几次地震中足以看出,因建筑物倒坍、倾斜等而造成的人员伤亡和财产损失占到了整体灾害损失80%左右,因此,加强对建筑工程抗震结构施工,从而提高建筑项目的稳定性能已刻不容缓。
加强对建筑工程的抗震结构建设,首先需要对建筑结构进行抗震结构分析工作,以使其在建设施工过程中抗震效益得到最大程度的发挥,因此起初的设计分析工作尤为关键。当然,在对建筑工程进行抗震结构设计时,应充分对相关的影响因素进行考虑,使其整体概念符合设计施工的标准规范。简言之,抗震结构概念设计是指在特定的建筑空间及地理条件下,通过整体概念对结构的总体方案进行分析,依据结构总体系与分体系之间的力学关系、结构破坏机理、震害、试验现象和工程经验所获得的基本设计原则和设计思想,从整体的角度来确定建筑结构的总体布置和抗震细部构造措施的宏观控制。概念设计受到国内外工程界的普遍重视,并将发挥更大的作用。
1概念设计的重要性和必要性
随着社会经济的发展和生活水平的提高,人们对建筑结构设计也提出了更高的要求。发展先进计算理论,加强计算机的应用,加快新型高强、轻质、环保建材的研究与开发,使建筑结构设计更加安全、适用、可靠、经济已成为当务之急。而且针对建筑结构设计的现状,提倡采用概念设计思想来促进结构工程师的创造性,推动结构设计的发展,是非常有必要的。这就需要工程界和教育界共同的努力,而推广概念设计思想是一种有效的办法,分析如下:
1.1建筑抗震设计规范(GB50011-2001)(以下称新抗震规范)
以可靠度理论为基础,吸收了延性设计的思想。但对于一些具体问题,例如“中震可修”的设防目标等,规定相当模糊。所以我们不能盲目地照搬照抄规范,应该把规范作为一种指南和参考,并在实际工程应用中作出正确的选择。这就要求我们对整体结构体系与各基本分体系之间的力学关系有透彻的认识,把概念设计应用到实际工作中去。
长期以来,人们认为结构设计很简单,只需遵循规范和手册,等建筑师完成建筑设计后,使用计算机就可以完成结构设计。但这不能充分地运用结构设计者的知识和技能,而且还会与建筑设计方案产生分歧和矛盾。所以我们应考虑在结构设计中如何运用概念设计,比如结构的抗风设计与抗震设计,抗震设计要求能消减外荷载,吸收或转换震动的能量;而抗风设计则要求结构在风的作用下动力效应较小,刚度较大。这一矛盾必然影响结构体系的抗风和抗震性能。为了弥补这一缺陷,需要合理的概念设计与延性构造措施来加以保证。
1.2概念设计的重要性,还体现在方案设计阶段。初步设计过程是不能借助计算机来实现的,这就需要结构工程师综合运用结构概念,选择最为可靠、经济的结构方案。为此,需要工程师不断地丰富自己的设计理念,深入了解各类结构的性能,并能有意识地、灵活地运用它们。运用概念性近似估算方法,可以在设计方案阶段迅速、有效地对结构体系进行构思、比较与选择。所得方案往往概念清晰、定性准确,避免后期设计阶段一些不必要的繁琐运算,具有较好的经济可靠性能。同时,这也是判断计算机内力分析输出数据可靠与否的主要依据。美国一些著名学者和专家曾说过:“误用计算机造成结构破坏而引起灾难只是一个时间的问题。”计算软件的选择和使用不当,也会造成结构设计的不合理,甚至影响到建筑物本身的安全性。应用概念设计的思想,可以避免此类情况的发生。
1.3新抗震规范提出了在建筑物内设置地震反应观测系统的要求,并提出了结构两个主轴方向的动力特性(周期和振型)相近的抗震概念。所以在结构概念设计中还应该注意结构与场地的共振问题。例如在唐山地震时,天津塘沽地区的7-10层框架结构房屋破坏严重,而3-5层的砖混结构住宅却只有轻微损坏。后来经调查发现,框架房屋的自振周期和场地的卓越周期一致导致共振,而3-5层砖混住宅的自振周期远低于场地的卓越周期,因此破坏较轻。
1.4建筑结构的抗震设计,存在着许多模糊而且不确定的因素。例如地震作用是一种随机性很强而且循环往复的荷载,建筑物的地震破坏机理又十分复杂,要准确计算或预测建筑物所遭遇的地震特性和参数,还难以做到。风荷载的脉动性与涡流作用情况也是如此。因为建筑物受到的地震作用难以确定,所以适用、安全、经济的结构体系必须注重概念设计。
2概念设计的理解及应用
结构抗震设计的目的是使结构在强度、刚度、延性以及节能等方面取得最佳,从而满足“小震不坏,中震可修,大震不倒”的要求。在当前的科技水平和经济条件下,为了保证结构具有可靠的抗震性能,概念设计应充分考虑以下因素:场地条件和场地土的稳定性,建立结构计算模型,抗震结构体系的选取,材料效用,风作用、温度作用以及结构的空间作用等。
2.1现行抗震计算模型的理解和应用
新抗震规范规定:一般情况下,应允许在建筑结构的2个主轴方向分别计算水平地震作用并进行抗震验算,各方向的水平地震作用应由该方向抗侧力构件承担。而实际结构难以实现强柱弱梁的主要原因则是计算模型问题。即:仅仅对相互正交的2个主轴方向进行内力分析和强度设计,不能真实反映结构的空间作用。所以,应用概念设计的原理,结合大量震害和试验研究成果,所得出的结论是:构件的最不利受力状态随着构件和地震作用方向而变化。当地震作用方向与结构主轴方向一致时,梁处于最不利受力状态;当地震作用与结构的主轴方向呈45度时,大多数柱处于最不利受力状态。
2.2结构薄弱部位抗震构造措施的理解和应用
结构薄弱部位的处理,如建筑平面外墙转角处的转角窗,限制了角部结构竖向抗侧力构件的设置,如果采用概念设计,解决这一问题的方法是2竖向构件间应设厚板、暗梁等可靠拉结。再如,由于节点部位的重要性,所以引入抗裂性的概念,以此来比较梁、柱节点偏心所引起的节点性能的变化。建议在地震区,不宜采取梁柱偏心过大的节点形式,而且构件节点的承载力不应低于其连接构件的承载力。
3建筑结构抗震设计的前景展望
结构抗震体系由传统的以“硬抗”为主的抗震体系向以“柔抗”为主的结构减震控制体系发展。结构减震体系采用的是以“柔”克刚的新概念,它通过调整结构动力特性、隔震、减能或控制来达到抗震的目的,在未来的工民建中结构抗震的思路将向着减轻危害的方向发展。
4总结
经过多年的抗震探索和研究,设计中引入了概念设计的设计新理念。这种设计理念从宏观角度对建筑抗震结构进行设计,在某些方面弥补了以往设计思路对抗震结构思考的不足之处,为今后的工民建结构抗震设计开辟了新路。
参考文献:
[1] 杨星;;地下室结构的分析与设计探讨[A];计算机技术在工程建设中的应用――第十三届全国工程建设计算机应用学术会议论文集[C];2006年
【关键词】剪力墙结构,高层建筑框架结构,设计,应用
中图分类号: TU398+.2 文献标识码: A 文章编号:
一 前言
由于科学技术的进步和人们生产生活方式的改变,人们对建筑结构设计的要求也越来越高,随着建筑结构设计理论的逐渐完善,剪力墙结构凭借着刚度大,可以有效的减少侧移,建筑结构抗震性能很好,可以保证建筑的安稳和稳定性,因此,在建筑结构设计中被广泛的推广运用,为我国的经济发展和人们生活质量的改善提供了强大的动力。因此,加强剪力墙结构在建筑结构设计中的应用探究,有着十分重大的意义。笔者将从结合多年的施工经验,对高层建筑框架剪力墙结构设计的基本原则,墙肢分类,设置,边缘构件的布置,和连梁的设计等多方面做出分析,并提出剪力墙结构设计的优化措施。
二 墙肢的分类和结构布置
2.1墙肢的分类
在剪力墙的分类中,最重要的分类依据是墙肢的高度和厚度比值。一般有短肢剪力墙和一般剪力墙两种,同时,也可以根据墙面的开洞大小分为整截面墙、整体小开口墙、联肢墙和壁式框架等几种类型。
2.2厚度选择
剪力墙的墙肢厚度关系到剪力墙出平面的的稳定性和刚度。因此,在选择时候,一定要遵守相关的技术规程。在住宅建筑的设计中,填充墙的厚度和剪力墙的厚度相同,多会选取两百毫米左右。如果高层建筑没有地下室,在进行剪力墙的设计时候,可以在综合考虑到建筑结构平面的基础上,减少一字型的剪力墙结构设计,多采用十字形等形状。这样既可以使得翼缘长度大于其厚度,让建筑结构抗震性能更好的发挥,同时也可以满足建筑设计的美观性和实用性。
2.3剪力墙的结构布置
随着建筑越来越高,建筑的综合性能也日渐提升,因此,建筑设计中,应该使得建筑具有很好的空间工作性能。因此,在进行剪力墙结构设计时候,应该采用双向布置,科学合理的构成建筑结构的空间性能。同时,由于对建筑的抗震性能有了更高的要求,因此,在剪力墙设计时候,严禁在需要抗震设防区域使用单向剪力墙设计。在进行剪力墙设计时,要保证平面均匀分布,刚度中心要和建筑的整体质心相重合或者是尽量靠近,如此可以很大程度上减小扭转效应。
如果刚度中心和质心相距很远,可以改变墙肢长度和连梁的高度调整刚心位置。在进行建筑结构设计中,剪力墙由于抗侧刚度很大,整体结构的自振周期很短,使得整体建筑受到的水平地震作用很大,不利于建筑结构的稳定,因此,可以综合考虑到剪力墙的抗侧刚度和承载力,减小墙体的纵横厚度,加大墙体之间的距离,或者是合理减少墙体的总体数量,如此,可以达到降低墙体自身重量的目的。同时,可以降低墙体的整体水平地震的剪力和弯矩程度。
三 连梁的设计布置
连梁的跨高以及截面的尺寸会受到各种条件的影响和限制,因此,在剪力墙的连梁设计中,会因为设计的不合理,容易出现连梁承载力或者是连梁的界面难以达到相关规定的标准,从而既会影响到工程的施工,又会影响到工程的质量。因此,要综合多种情况,进行设计和处理。
3.1提高混凝土等级
为了让连梁的抗剪承载能力不会超过规定标准,可以合理的提高剪力墙的混凝土的等级,当混凝土的等级得到提升,混凝土的弹性模量增加比例会小于抗剪承载力的提升比例,从而,可以达到控制目标。
3.2增加剪力墙洞口的宽度、减小连梁高度
在进行连梁的设计中,为了达到降低连梁刚度,减少地震影响效果的目的,可以选择扩大剪力墙所开洞口的宽度,也就是增加连梁的总体跨度,从而使的连梁的高度降低。使得连梁的承载力保证在一定的标准范围内。
3.3对连梁的刚度进行折减
连梁由于跨高比较小与之相连的墙肢刚度大等原因,在水平力作用下的内力往往很大,连梁屈服时表现为梁端出现裂缝,刚度减小,内力重分布。因此,在开始进行结构整体计算时,就需对连梁刚度进行折减。高规中解释说高层建筑结构构件均采用弹性刚度参与整体分析,但抗震设计的剪力墙结构中的连梁刚度相对墙体较小,而承受的弯矩和剪力很大,配筋设计困难。因此,可考虑在不影响其承受竖向荷载能力的前提下,允许其适当开裂而把内力转移到墙体上。
3.4增加剪力墙的厚度
在进行连梁设计时,可以增加剪力墙的厚度,使得连梁的截面宽度变大,不仅仅可以让建筑结构整体的刚度变大,也使得地震产生的内力作用变得更大,由于连梁的抗剪承载力与连梁宽度的增加成正比。通过剪力墙的厚度增加,也有可能达到让连梁抗剪承载力符合限度的目的。
四 剪力墙结构计算和设计的优化的措施
4.1剪力墙结构计算方面的优化
4.1.1楼层最小剪力系数的调整原则。在满足短肢剪力墙承受的第一振型底部地震倾覆力矩占结构总底部地震倾覆力矩不超过40%的前提下,尽可能减少剪力墙的布置,以大开间剪力墙布置方案为目标,使结构具有适宜的侧向刚度使楼层最小剪力系数接近规范限值,这样能够减轻结构自重,有效减小地震作用的输入同时降低工程造价。
4.1.2楼层最大层间最大位移与层高之比的调整原则。规范规定在计算多地震作用的楼层最大层间位移时,以楼间弯曲变形为主,计入扭转变形,可不扣除结构整体弯曲变形,因此,对于高层建筑应尽可能扭转变形最小,但又不能仅根据这些层间位移不够,不加分析地增加竖向构件的刚度。在实际工程设计中,有些设计人员一看到某一方向层间位移不能满足规范要求,就不断地增加该项的侧向刚度,此举虽然可以解决问题,但应该注意此时结构的剪重比,若与规范限制接近则可行,若剪重比已经较大,则不应一味地增加也要学会减小对应一侧的结构刚度,使其剪重比减小,地震作用减小,同样可以达到较好的效果。
4.2剪力墙结构设计方面的优化
4.2.1剪力墙墙肢截面宜简单、规则。剪力墙的竖向刚度应均匀,剪力墙的门窗洞口宜上下对齐,成列布置,形成明确的墙肢和连梁。应力分布比较规则,又与当前普遍应用的计算简图较为符合,设计结果安全可靠。宜避免使墙肢刚度相差悬殊的洞口设置,当剪力墙的洞口布置出现错洞,叠合错洞时,墙内配筋应构成框架形式。
4.2.1剪力墙的特点是平面内刚度及承重力大,而平面外刚度及承载力都相对很小,应控制剪力墙平面外的弯矩,保证剪力墙平面外的稳定性。当剪力墙墙肢与其平面外方向的楼面梁连接时,应采取足够的措施减少梁端部弯矩对墙的不利影响。
五 结束语
总之,剪力墙结构在我国建筑行业的广泛运用,既可以大力推进我国建筑质量的提高,又可为我国的社会主义和谐社会奠定强大的基础,在进行剪力墙结构设计时候,必须综合考虑多方面因素,严格遵守设计规程,进而保证设计的科学合理。
参考文献;
[1] 李成华 剪力墙结构在建筑结构设计中的应用分析 [期刊论文] 《城市建设》 -2009年35期
[2] 王福贵 剪力墙结构在建筑结构设计中的应用分析 [期刊论文] 《城市建设理论研究(电子版)》 -2008年1期
关键词:结构设计
一、 基础设计方面的问题
1、 建造在斜坡上或边坡附近的建筑物和构筑物,未验算其稳定性。论文写作,结构设计。。当设有一侧或多侧开口的地下室时,主体设计未考虑土压力影响进行受力分析,并验算整体建筑的抗倾覆和抗滑移稳定性。当地下水埋藏较浅,建筑地下室或地下构筑物存在上浮问题时,未进行抗浮验算。
2、 建筑物地存在液化土层时,未对桩基础抗震承载力进行验算。未根据具体工程情况考虑桩侧负摩阻力对基桩承载力的影响。
3、 桩基础设计中,仅按竖向荷载作用进行布桩,未验算弯矩作用下承台底部边桩的反力。尤其是框剪结构的剪力墙及剪力墙结构核心筒底部弯矩和剪力对基础承载力的影响较大,不应遗漏。对于水位较高的地下室和短肢剪力墙、大跨度结构等弯矩较大的承台底部桩基尚应验算是否存在向上的抗拔力。
4、 抗拔桩设计时,桩身配筋量仅按强度要求进行计算,缺少裂缝宽度验算,按裂缝宽度控制计算结果的配筋量远大于按强度要求计算的配筋量,在设计中往往缺抗拔桩静载试验及其配筋做法等要求说明。有抗拔要求的承台按一般桩基受压的承台进行配筋,承台顶部受拉区未配筋,筏基基础梁或地下室底板梁的受力方向与一般楼屋面梁板不同,其梁配筋设计也采用平法表示但未附加图示说明,存在安全隐患。
5、 目前建筑工程大量采用截面尺寸较小的预应力管桩,且在多层建筑中采用单柱单桩或一柱两桩基础,柱底弯矩由基础梁和桩共同承受。单柱单桩或垂直于两桩连线方向的基础梁设计中,未考虑平衡该方向柱脚在水平风荷载或地震作用下所产生弯矩因素,基础梁两端箍筋未按框架梁抗震构造要求设置箍筋加密区,基础梁的上下主筋在桩台内锚固长度与构造做法要求未加说明。论文写作,结构设计。。桩身考虑承受上部结构传来的弯矩作用时也未进行抗弯承载力计算,存在着抗震薄弱环节,给工程留下潜在的隐患。
6、 天然地基扩展基础持力层或桩基持力层下面存在软弱下卧层,有的工程既不进行沉降验算,又不作软弱下卧层地基承载力验算。
7、 天然地基独立基础带梁板式的地下室底板设计中,地下室底板与柱下独立基础埋置于同一持力层上,结构计算中仅按上部结构荷载全部由柱下独立基础承担,而地下室底板仅按一般地下室底板受荷情况进行设计,实际上整个地下室底板与柱下独立基础在上部荷载作用下,将会一起发生沉降变形共同受力,按上述计算原则进行设计,对底板而言是偏于不安全的,有可能会导致地下室底板承载能力不足而开裂。按照变形协调受力的原理,应当将地下室底板与独立基础连为一体按弹性地基有限元受力分析。也可以采取如下模式:除了柱下独立基础之外,其地下室底板与持力层之间采取褥垫处理措施。这时,底板可不参与独立基础分担上部荷载,而按底板本身承受底板与疏水垫层自重、地下水上浮力、人防等效荷载(有人防时考虑)等进行设计。
二、 地下室外墙设计存在的问题
1. 地下室外墙配筋计算:有的工程外墙配筋计算中,凡外墙带扶壁柱的,不区别扶壁柱尺寸大小,一律按双向板计算配筋,而扶壁柱按地下室结构整体电算分析结果配筋,又未按外墙双向板传递荷载验算扶壁柱配筋。论文写作,结构设计。。按外墙与扶壁柱变形协调的原理,其外墙竖向受力筋配筋不足、扶壁柱配筋偏少、外墙的水平分布筋有富余量。建议:除了垂直于外墙方向有钢筋砼内隔墙相连的外墙板块或外墙扶壁柱截面尺寸较大(如高层建筑外框架柱)之间外墙板块按双向板计算配筋外,其余的外墙宜按竖向单向板计算配筋为妥。竖向荷载(轴力)较小的外墙扶壁桩,其内外侧主筋也应予以适当加强。外墙的水平分布筋要根据扶壁柱截面尺寸大小,可适当另配外侧附加短水平负筋予以加强,外墙转角处也同此予以适当加强。
2. 地下室外墙计算时底部为固定支座(即底板作为外墙的嵌固端),侧壁底部弯矩与相邻的底板弯矩大小一样,底板的抗弯能力不应小于侧壁,其厚度和配筋量应匹配,这方面问题在地下车道中最为典型,车道侧壁为悬臂构件,底板的抗弯能力不应小于侧壁底部。地下室底板标高变化处也经常发现类似问题:标高变化处仅设一梁,梁宽甚至小于底板厚度,梁内仅靠两侧箍筋传递板的支座弯矩难以满足要求。地面层开洞位置(如楼梯间)外墙顶部无楼板支撑,计算模型和配筋构造均应与实际相符。车道紧靠地下室外墙时,车道底板位于外墙中部,应注意外墙承受车道底板传来的水平集中力作用,该荷载经常遗漏。
3. 地下室外墙在计算中,有的工程漏掉抗裂性验算。外墙的厚度目前做得比较薄,外墙钢筋保护层比较厚,其裂缝宽度控制在0.2mm之内,往往配筋量由裂缝宽度验算控制。
三、 上部结构设计存在的问题
1. 《建筑结构荷载规范》(GB50009-2001)中对基本风压值未明确的地区较多,基本风压值的取值较乱, 50年一遇基本风压值不应小于30年一遇基本风压值的1.1倍,对于山区的建筑物,风压高度变化系数应考虑地形条件的修正。对于特别重要或对风荷载比较敏感的高层建筑,其基本风压应按100年重现期的风压值采用。论文写作,结构设计。。
2. 有的工程楼屋面板电算配筋时,对边梁的截面尺寸与跨度大小不加区分约束条件进行分析,一律按嵌固边支座约束条件计算,其结果有的边梁处板面支座负筋配的很多钢筋,而板跨中和内跨支座板面负筋配筋不够。设计跨度较大的悬挑板时,挑板所在的边梁和内跨板设计时未考虑挑板传来的弯矩作用也是常见的问题。
3. 非结构构件的抗震设计普遍被忽视。有的工程建筑因为造型需要,在屋面上用砖砌筑较高的女儿墙,仅在墙体内设置钢筋砼构造柱与压顶梁,也不进行抗风与抗震的验算,在台风或地震作用下,有倒塌砸人或砸坏屋面板的可能,虽然是非结构构件,但是结构设计未采取可靠措施,将给工程留下安全隐患。屋顶高大女儿墙采用钢筋砼结构按悬臂结构设计时,作为嵌固端的边梁未考虑女儿墙传来的扭矩作用,相邻的屋面板也未加强,同样存在安全隐患。
4. 地下室顶板室内外板面标高变化处,当标高变化超过梁高范围时则形成错层,未采取措施不应作为上部结构的嵌固部位,规范明确规定作为上部结构嵌固部位的地下室楼层的顶楼盖应采用梁板结构,地下室顶板为无梁楼盖时不应作为上部结构嵌固部位。结构计算应往下算至满足嵌固端要求的地下室楼层或底板,但剪力墙底部加强区层数应从地面往上算,并应包括地下层。
5. 抗震规范和高规对建筑物的平面不规则(包括扭转不规则、凹凸不规则和楼板局部不连续)和竖向不规则作出了明确的定义和限制。论文写作,结构设计。。其中凹凸不规则定义为结构平面凹进的一侧尺寸大于相应投影方向总尺寸的30%,楼板局部不连续定义为楼板的尺寸和平面刚度急剧变化,例如有效楼板宽度小于该层楼板典型宽度的50%,或开洞面积大于该层楼面面积的30%,并规定不应采用同时具有多项平面、竖向不规则以及某项不规则程度超过规定很多的设计方案。在实际工程中入口门厅、越层会议室和餐厅、立面开洞等设计方案根本做不到上述要求,所以凹凸不规则和楼板局部不连续应理解为大部分楼层不规则,局部楼层可不受该条文限制,但应采取有效加强措施。论文写作,结构设计。。
四、 结语
以上所述问题仅为作者的个人见解,把它写出来与同行们一起讨论、共同提高。
关键词:高层建筑;存在问题;结构设计;应对措施
近几年来,随着高层建筑物在我国城市建设中所占比重的日益增大,从而使得高层建筑在结构设计方面发生了很大的变化,同时也出现了许多新兴的设计方案。总之,我们社会中高层建筑的结构体系变得越来越多,类型和功能变得越来越复杂,高层建筑的结构设计逐渐成为我们结构设计的重点与难点。在这样的形势之下,为了更好的加快我国城市发展,我们不得不重视高层建筑结构设计问题的研究。
1 高层建筑结构设计的现状分析
在目前的高层设计之中,我们往往会选用钢筋混凝土和钢材这两种材料。钢筋混凝土材料来源广,造价低,具有良好的耐火性、耐久性、可塑性以及较高的承载能力,对其进行合理的设计之后,还可以得到不错的抗震能力;但是它的自重较大,构件的断面也比较大。而钢材不仅自重轻,断面小,韧性好,强度大,易于加工,施工比较方便,而且还具有很好的抗震性;但是钢材的造价高,耐火性也不好,如果使用大量的防火涂料,还会额外增加造价和工期。
目前的世界上,发达国家中的高层建筑大多数是钢结构的,而我国也有一些采用钢结构的高层建筑。但考虑到钢结构和钢筋混凝土两者之间能够取长补短,因此,我们认为高层建筑的结构设计采用钢筋混凝土和钢的组合结构才是更加合理的。
2 高层建筑结构设计过程中的主要存在问题
我们进行高层建筑的结构设计时需要注意的要点涉及到了许多方面:必须考虑当遇到地震或者是超大强风时,高层建筑会因此产生的水平侧向力;为了保障高层建筑的稳定性,必须严格控制好其高和宽的比例问题;尽量使高层建筑的体型、刚度及其立面的质量等各方面保持对称,减少建筑结构的薄弱环节;全面考虑由于温度、风力以及基础沉降等方面可能对建筑物产生的影响,合理设置变形缝,妥善处理好变形节点处的构造;特别考虑当遇到基础比较深、重量比较大等比较特殊的地质条件时,怎样才能安全可靠的保证其设计和施工的问题。
根据上述的主要设计要点,可以总结出,我们在高层建筑的结构设计过程之中遇到的主要问题为抗震和抗风结构、消防设计以及扭转问题。
(1)抗震结构:一直以来,抗震结构都是我们进行高层建筑结构设计时的重点及难点。但由于高层建筑的结构比较复杂,设计人员灵活性不够,计算的抗震结果不够精确,无法设计出完善的抗震结构,从而使得高层建筑很容易受到地震的强烈破坏。
(2)抗风结构:高层建筑高度太高,很容易使风在建筑表层的流动性以及空气的动力效应发生改变,从而使高层建筑的较软部位产生震动,严重影响了高层建筑的装饰和支撑等结构,因此,为了降低高层建筑受到的破坏,我们必须要进行高层建筑物的抗风设计。
(3)消防设计:我国建筑规范中明确规定,高层建筑必须要有科学的消防设计。但消防设计中遇到的难点比较多,例如,在高层建筑中,使用的材料具有较高的易燃性、排烟比较难、居住人口较多、不易疏散等。
(4)扭转问题:在高层建筑结构设计之中,我们要求三心合一,也就是说,建筑结构的三心(即结构中心、几何形心和刚度中心)尽量交在一点上。如果我们没有在结构的设计中做到这一点,那么建筑物就很可能出现扭转问题,使得建筑结构遭受到水平力从而发生破坏。
3 高层建筑结构设计的应对措施
3.1 不断完善抗震结构的设计方案
解决高层建筑抗震的难题,完善抗震结构的设计方案,首先需要我们对高层建筑的抗侧力结构进行合理的设置,提高建筑结构的稳定性和连续性;再增设高性能的剪力墙,使其在地震时能更好地吸收结构的内力;然后加大桩基础的埋置深度,提高基础的抗震能力;还可以对高层建筑的结构进行简化,使其对称,另外,再对其进行一体化的设计,加大结构的整体连续性,进而提高高层建筑的抗震能力。
3.2 不断完善抗风结构的设计方案
对高层建筑抗风结构的设计方案进行优化,首先要保证其基础的牢固性,然后利用增设耗能结构来减小风力对建筑的不利影响,另外还得减小高层建筑由于风力叠加及水平荷载而产生的影响,最后还需要加大高层建筑的抗风能力和结构承载力,从而进一步提高结构的抗风能力。
3.3 不断加强、改善高层结构的消防设计
在对高层建筑物进行消防设计时,我们必须严格控制防火结构之间的距离。为了能够更好的防火,我们可以适当加大耐火材料的使用,减少易燃材料的用量。除此之外,还要把疏散系统设置好,让其呈垂直状态,保证疏散的效率,而且在设计消防结构的时候,我们还可以增设避难层、耐火区等,用来提高其消防能力。与此同时,我们还可以在高层建筑中设立独特的隔离结构,用来控制火力的蔓延。
3.4 合理的进行平面布局
为避免出现三心未合一引起的扭转问题,在进行高层设计时,对高层建筑应该较多的选用比较规则的图形,例如矩形、正方形、正多边形、圆形等分布比较均衡、简单的平面图形。避免十字形、T型、L型等比较复杂的平面图形的使用。在特殊情况下,我们应该根据现有的有关规范对其进行合理的设计,尽可能的让结构保持对称,避免出现某一结构过分突出的情况。
4 结语
在最近的几年中,我国高层建筑有了十分迅速的发展,但是如果从高层建筑的质量上来看,结果就并不是那么理想了。所以,在今后的高层建筑结构设计工作中,结构设计人员不仅要加强对结构设计准确性的重视,还得了解结构方案的实际情况,不断积累工作的经验,从而做出科学合理的方案选择,使得高层建筑更加舒适、安全。
参考文献
[1] 钟国华.高层建筑结构设计及某工程结构选型探讨[D].重庆大学硕士学位论文,2006.
[2] 王鲲鹏,田亚珍.高层建筑结构设计研究[J].建筑知识:学术刊,2013 (B01):53-53.
论文摘要:结构设计简而言之就是用结构语言来表达建筑师及其它专业工程师所要实现的东西。
1结构设计的概念及内容
结构设计简而言之就是用结构语言来表达建筑师及其它专业工程师所要实现的东西。结构语言就是结构师从建筑及其它专业图纸中所提炼简化出来的结构元素。包括基础,墙,柱,梁,板,楼梯,大样细部等等。然后用这些结构元素来构成建筑物或构筑物的结构体系。把各种情况产生的荷载以最简洁的方式传递至基础。结构设计的内容可分为:基础的设计,上部结构的设计和细部设计。
2结构设计的阶段
结构设计的阶段大体可以分为三个阶段,结构方案阶段,结构计算阶段和施工图设计阶段。方案阶段的内容为:根据建筑的重要性,建筑所在地的抗震设防烈度,工程地质勘查报告,建筑场地的类别及建筑的高度和层数来确定建筑的结构形式(例如,砖混结构,框架结构,框剪结构,剪力墙结构,筒体结构,混合结构等等以及由这些结构来组合而成的结构形式)。确定了结构的形式之后就要根据不同结构形式的特点和要求来布置结构的承重体系和受力构件。
结构计算阶段的内容为:2.1荷载的计算。荷载包括外部荷载(例如,风荷载,雪荷载,施工荷载,地下水的荷载,地震荷载,人防荷载等等)和内部荷载(例如,结构的自重荷载,使用荷载,装修荷载等等)上述荷载的计算要根据荷载规范的要求和规定采用不同的组合值系数和准永久值系数等来进行不同工况下的组合计算。2.2构件的试算。根据计算出的荷载值,构造措施要求,使用要求及各种计算手册上推荐的试算方法来初步确定构件的截面。2.3内力的计算。根据确定的构件截面和荷载值来进行内力的计算,包括弯矩,剪力,扭矩,轴心压力及拉力等等。2.4构件的计算。根据计算出的结构内力及规范对构件的要求和限制(比如,轴压比,剪跨比,跨高比,裂缝和挠度等等)来复核结构试算的构件是否符合规范规定和要求。如不满足要求则要调整构件的截面或布置直到满足要求为止。
施工图设计阶段的内容为:根据上述计算结果,来最终确定构件布置和构件配筋以及根据规范的要求来确定结构构件的构造措施。
3各设计阶段的基本方法
根据方案阶段的主要内容,其基本方法就是根据各种结构形式的适用范围和特点来确定结构应该使用的最佳结构形式,这要看规范中对于各种结构形式的界定和工程的具体情况而定,关键是清楚各种结构形式的极限适用范围。还要考虑合理性和经济性。
在结构计算阶段,就是根据方案阶段确定的结构形式和体系,依据规范上规定的具体的计算方法来进行详细的结构计算,规范上的方法有多种,关键是结合工程的实际情况来选择合适的计算方法,以楼板为例,就有弹性计算法,塑性计算法及弹塑性计算法。所以选择符合工程实际的计算方法是合理的结构设计的前提,是十分重要的。
在施工图设计阶段,就是根据结构计算的结果来用结构语言表达在图纸上。首先表达的东西要符合结构计算的要求,同时还要符合规范中的构造要求,最后还要考虑施工的可操作性。这就要求结构设计人员对规范要很好的理解和把握。另外还要对施工的工艺和流程有一定的了解。这样设计出的结构,才会是合理的结构。
4规范、手册及标准图集和计算机在具体工作中的应用
结构设计的准则和依据就是各种规范和标准图集。在进行不同结构形式的设计时必须要紧扣不同的规范,但这些规范又都是相互联系密不可分的。在不同的工程中往往会使用多种规范,在一个工程确定了结构形式后,首先要根据《建筑结构可靠度设计统一标准》来确定建筑的可靠度和重要性;然后再根据《中国地震动参数区划图》,《建筑抗震设防分类标准》《建筑抗震设计规范》确定建筑在抗震设防方面的规定和要求,在荷载的取值时要按照《建筑结构荷载规范》来确定,这是建筑总体需要运用的规范。在工程的具体设计方面,涉及到砌体部分的要遵循《砌体结构设计规范》的规定;涉及到混凝土部分的要遵循《混凝土结构设计规范》的规定;涉及到钢筋部分的要遵循《钢筋焊接及验收规程》和《钢筋机械连接通用技术规程》的规定;在基础部分的设计时需要遵循的是《建筑地基基础设计规范》的规定。最后在结构绘图时则要符合《建筑结构制图标准》的要求。
在各种结构设计手册中,给出了该结构形式设计的原理,方法,一般规定和计算的算例以及用来直接选用的各种表格。这对于深刻理解和具体设计各种结构形式具有良好的指导作用。推荐最好能参照设计手册来手算典型的结构形式。
标准图集是依据规范来制定的国家和省市地方统一的设计标准和施工做法构造。不同的结构形式有不同的标准图集。设计中常用的有,结构绘图时采用:平法制图(03G101-1),砌体中的钢筋混凝土过梁采用:过梁(L03G303),砖混结构抗震构造详图采用:L03G313,钢筋混凝土结构抗震构造详图采用:L03G323,地沟及盖板采用:02J331。需要说明的是,在选用标准图集时一定要根据具体工程的实际情况来酌情选用,必要时应说明选用的页号和图集号,不可盲目采用。