美章网 精品范文 六年级数学教案范文

六年级数学教案范文

前言:我们精心挑选了数篇优质六年级数学教案文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。

六年级数学教案

第1篇

通过复习,使学生能够准确的找出题目中的等量关系.

教学难点

通过复习,使学生能够准确的找出题目中的等量关系.

教学过程

一、复习准备.

1.求未知数.

×=

-=

÷=1

-=

÷=1

-=

解方程求方程的解的格式是什么?

2.找出下列应用题的等量关系.

①男生人数是女生人数的2倍.

②梨树比苹果树的3倍少15棵.

③做8件大人衣服和10件儿童衣服共用布31.2米.

④把两根同样的铁丝分别围成长方形和正方形.

我们今天就复习运用题目中的等量关系解题.(板书:列方程解应用题)

二、复习探讨.

(一)教学例3.

一列火车以每小时90千米的速度从甲站开往乙站,同时有一列货车以每小时75千米的速度从乙站开往甲站,经过4小时相遇,甲乙两站的铁路长多少千米?

1.读题,学生试做.

2.学生汇报(可能情况)

(1)(90+75)×4

提问:90+75求得是什么问题?再乘4求的是什么?

(2)90×4+75×4

提问:90×4与75×4分别求的是什么问题?

(3)÷4=90+75

提问:等号左边表示什么?等号右边表示什么?对不对?为什么?

(4)÷4-75=90

提问:等号左边表示什么?等号右边表示什么?对不对?为什么?

(5)÷4-90=75

提问:等号左边表示什么?等号右边表示什么?对不对?为什么?

3.讨论思考.

(1)用方程解这道应用题,为什么你们认为这三种方法都正确?

(等号的左右表示含义相同)

(2)列方程解应用题的特点是什么?

两点:

变未知条件为已知条件,同时参加运算;

列出的式子为含有未知数的等式,并且左右表示的数量关系一致

(3)怎样判定用方程解一道应用题是否正确?(方程的左右是否为等量关系)

4.小结.

(1)小组讨论:用方程解应用题和用算术方法解应用题,有什么不同点?

(2)小组汇报:

①算术方法解应用题时,未知数为特殊地位,不参加运算;用方程解应用题时,未知数与已知数处于平等地位,可以参加列式.

②算术方法解应用题时,需要根据题意分析数量关系,列出用已知条件表示求未知数的量;用方程解应用题时,根据题目中的数量关系,列出的是含有未知数的等式.

(二)变式反馈:根据题意把方程补充完整.

1.甲乙两站之间的铁路长660千米.一列客车以每小时90千米的速度从甲站开往乙站,同时有一辆货车以每小时75千米的速度从乙站开往甲站.经过多少小时两车相遇?

2.甲乙两站之间的铁路长660千米.一列客车从甲站开往乙站,同时有一辆货车从乙站开往甲站.经过4小时两车相遇,客车每小时行90千米,货车每小时行多少千米?

教师提问:这两道题有什么联系?有什么区别?

三、巩固反馈.

1.根据题意把方程补充完整.

(1)张华借来一本116页的科幻小说,他每天看页,看了7天后,还剩53页没有看.

_____________=53

_____________=116

(2)妈妈买来3米花布,每米9.6元,又买来元毛线,每千克73.80元.一共用去139.5元.

_____________=139.5

_____________=9.6×3

(3)电工班架设一条全长米长的输电线路,上午3小时架设了全长的21,下午用同样的工效工作1小时,架设了280米.

_____________=280×3

2.解应用题.

东乡农业机械厂有39吨煤,已经烧了16天,平均每天烧煤1.2吨.剩下的煤如果每天烧1.1吨,还可以烧多少天?

小结:根据同学们的不同方法,我们需要具体问题具体分析,用哪种方法简便就用哪种方法.

3.思考题.

甲乙两个港相距480千米,上午10时一艘货船从甲港开往乙港,下午2时一艘客船从乙港开往甲港.客船开出12小时后与货船相遇.如果货船每小时行15千米.客船每小时行多少千米?

四、课堂总结.

通过今天的复习,你有什么收获?

五、课后作业.

1.师傅加工零件80个,比徒弟加工零件个数的2倍少10个.徒弟加工零件多少个?

2.徒弟加工零件45,比师傅加工零件个数的多5个.师傅加工零件多少个?

六、板书设计

列方程解应用题

第2篇

人教版六年级上册数学商不变的规律教案

教学目标

知识与技能

理解和掌握商不变的规律,并能运用这一规律口算有关除法;培养学生观察、概括以及提出问题、分析问题、解决问题的能力。

过程与方法

学生在参与观察、比较、猜想、概括、验证等学习活动过程中,体验成功。

情感态度价值观

积极参与数学学习活动,感受数学学习的挑战性和乐趣。

教学重点:使学生理解并归纳出商不变的规律。

教学难点:使学生会初步运用商不变的规律进行一些简便计算

教学课时:1课时

教学过程

一、激趣引课

今天老师给你们带来了一张明星照,想不想看看是谁?(点击课件)哇!王老师!大家看想我吗?如果拍照时,老师的眼睛变小了,嘴巴不变,嘴巴还变大了,那么拍出的照片还像我吗?不过,这张照片太小了,我想拍一张大一点的请同学们帮老师选择一家价格便宜的照相馆:

A照相馆:“30元可以照6张!”

B照相馆: “60元可以照12张!”

C照相馆:“90元可以照18张!”

D照相馆: “10元可以照2张!

照相馆: “15元可以照3张!”

二、探索规律

1、让学生自主看信息列出四个算式,指名板演四个算式。

① 30 ÷ 6 = 5

②60÷12=(30×2)÷(6×2)=5

③ 90÷18= (30×3)÷(6×3)=5

④10÷2= (30÷3)÷(6÷3) =5

2、师提出问题:“同学们,看到这四个算式你发现了什么?”

3、小组讨论:点击课件。

以 30 ÷ 6 = 5为标准,仔细观察其余算是中的被除数与除数的变化,你们会发现什么规律?引导学生举例说出:四个算式的商都相等,算式(2)、(3)、(4)式其实都是算式(1)变化出来的,如:算式(2)的被除数60是算式(1)的被除数30的2倍,算式(2)的除数12是算式(1)的除数6的2倍,被除数和除数都乘上2或扩大的倍数相同。我们一起来再来看看算式(3)、(4)是不是也有这规律。同桌结合算式(3)、(4)来说说被除数、除数和商的变化的情况。最后再请同学与全班交流。

师:谁能用完整的话说出上面发现的规律?学生总结以后,教师小结,今天我们发现的这个规律就是“商不变规律”(板书)

4、利用这个规律讨论

(18×0)÷(6×0)=?所以在商不变的规律中什么条件不适用?(零除外)

5、齐读商不变规律:

在除法里,被除数和除数同时乘或除以相同的数( 0除外 ),商不变。

三、反馈练习

1、抢答:在一道除法算式里,如果被除数除以5,除数也除以5,商( )

在一道除法算式里,如果被除数乘10,要使商不变,除数( )

在一道除法算式里,如果除数除以100,要使商不变,被除数( )

2、填空,看谁填得又对又快。

①(90×)÷(30×2)=90÷30

②(40×5)÷(20〇5)=2

③(1200×)÷(400〇5)=3

④(1200 〇 4)÷(400〇4)=3

⑤(1200 〇 )÷(400〇)=3

3、已知48÷12=4,判断下列各式是否正确。如果不对,怎样改一下就对了。

①(48×5)÷(12×5)=4……( )

②(48÷4)÷(12÷4)=4……( )

③(48×3)÷(12×4)=4……( )

④(48×3)÷(12÷3)=4……( )

⑤(48×6)÷(12×6)=4……( )

⑥(48 - 8)÷(12 - 8)=4……( )

4、根据31200÷2600=12很快说出下面的结果。

312÷26=

3120÷260=

312000÷26000=

15600÷1300=

5、教师讲故事:猴王 分 桃

花果山风景秀丽,气候宜人,那里住着一群猴子。有一天,猴王给小猴分桃子。猴王说:“给你4个桃子,平均分给2只小猴吧。”小猴听了,连连摇头说:“太少了,太少了。”猴王又说:“好吧,给你40个桃子,平均分给20只小猴,怎么样?”小猴子得寸进尺,挠挠头皮,试探地说:“大王,再多给点行不行啊?”猴王一拍桌子,显示出慷慨大度的样子:“那好吧,给你400个桃子,平均分给200只小猴,你总该满意了吧?”这时,小猴子笑了,猴王也笑了。

师:谁的笑是聪明的一笑

学生积极回答。

6、练习:P75 第1、2小题、观察与思考。

四、课堂总结:这节课我们一起研究了什么?你有什么收获?还有那些疑问?

五、作业:配套与练习

看了六年级上册数学商不变的规律教案的人还看:

1.六年级上册数学分数除以整数教案

2.六年级数学上册分数除法手抄报

3.六年级上册数学《比例》教案

4.六年级数学上学期教学反思

第3篇

单位名称

填写时间

2020.6

学科

数学

年级/册

六年级下册

教材版本

人教版

课题名称

负数的认识

难点名称

理解负数的意义

难点分析

从知识角度分析为什么难

本节课的知识是之前没有学过的内容,让学生学习一些负数知识,有助于他们理解生活中遇到的负数的具体含义,扩展对整数知识认识的范围。

从学生角度分析为什么难

是学生没有接触过的知识,生活中有许多具有相反意义的数量,但理解正负数的意义以及会用正负数表示生活中具有相反意义的量,学生不易掌握。

难点教学方法

1、通过一个微视频讲解正负数的意义。

2、通过练习让学生感受在生活中的相反的量。

教学环节

教学过程

导入

一、同学们,我们一起做一个说反话的游戏:

1、向前走两步

2、存钱,600元

3、电梯上升六层

二、今天我们来学习:负数的初步认识

知识讲解

(难点突破)

1、同学们,我们来仔细观察这幅图,想一想说一说图上的内容。

2、通过观察你能发现什么0°表示什么意思

3、负3℃和3℃各代表什么意思呢?

4、下面我们来观看一个有趣的微视频:

5、通过刚才的观看你是否明白什么是正数什么是负数呢?

6、0是正数还是负数呢?

7、下面我们通过练习来检查一下我们是否会了呢?