美章网 精品范文 六年级数学教案范文

六年级数学教案范文

前言:我们精心挑选了数篇优质六年级数学教案文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。

六年级数学教案

第1篇

通过复习,使学生能够准确的找出题目中的等量关系.

教学难点

通过复习,使学生能够准确的找出题目中的等量关系.

教学过程

一、复习准备.

1.求未知数.

×=

-=

÷=1

-=

÷=1

-=

解方程求方程的解的格式是什么?

2.找出下列应用题的等量关系.

①男生人数是女生人数的2倍.

②梨树比苹果树的3倍少15棵.

③做8件大人衣服和10件儿童衣服共用布31.2米.

④把两根同样的铁丝分别围成长方形和正方形.

我们今天就复习运用题目中的等量关系解题.(板书:列方程解应用题)

二、复习探讨.

(一)教学例3.

一列火车以每小时90千米的速度从甲站开往乙站,同时有一列货车以每小时75千米的速度从乙站开往甲站,经过4小时相遇,甲乙两站的铁路长多少千米?

1.读题,学生试做.

2.学生汇报(可能情况)

(1)(90+75)×4

提问:90+75求得是什么问题?再乘4求的是什么?

(2)90×4+75×4

提问:90×4与75×4分别求的是什么问题?

(3)÷4=90+75

提问:等号左边表示什么?等号右边表示什么?对不对?为什么?

(4)÷4-75=90

提问:等号左边表示什么?等号右边表示什么?对不对?为什么?

(5)÷4-90=75

提问:等号左边表示什么?等号右边表示什么?对不对?为什么?

3.讨论思考.

(1)用方程解这道应用题,为什么你们认为这三种方法都正确?

(等号的左右表示含义相同)

(2)列方程解应用题的特点是什么?

两点:

变未知条件为已知条件,同时参加运算;

列出的式子为含有未知数的等式,并且左右表示的数量关系一致

(3)怎样判定用方程解一道应用题是否正确?(方程的左右是否为等量关系)

4.小结.

(1)小组讨论:用方程解应用题和用算术方法解应用题,有什么不同点?

(2)小组汇报:

①算术方法解应用题时,未知数为特殊地位,不参加运算;用方程解应用题时,未知数与已知数处于平等地位,可以参加列式.

②算术方法解应用题时,需要根据题意分析数量关系,列出用已知条件表示求未知数的量;用方程解应用题时,根据题目中的数量关系,列出的是含有未知数的等式.

(二)变式反馈:根据题意把方程补充完整.

1.甲乙两站之间的铁路长660千米.一列客车以每小时90千米的速度从甲站开往乙站,同时有一辆货车以每小时75千米的速度从乙站开往甲站.经过多少小时两车相遇?

2.甲乙两站之间的铁路长660千米.一列客车从甲站开往乙站,同时有一辆货车从乙站开往甲站.经过4小时两车相遇,客车每小时行90千米,货车每小时行多少千米?

教师提问:这两道题有什么联系?有什么区别?

三、巩固反馈.

1.根据题意把方程补充完整.

(1)张华借来一本116页的科幻小说,他每天看页,看了7天后,还剩53页没有看.

_____________=53

_____________=116

(2)妈妈买来3米花布,每米9.6元,又买来元毛线,每千克73.80元.一共用去139.5元.

_____________=139.5

_____________=9.6×3

(3)电工班架设一条全长米长的输电线路,上午3小时架设了全长的21,下午用同样的工效工作1小时,架设了280米.

_____________=280×3

2.解应用题.

东乡农业机械厂有39吨煤,已经烧了16天,平均每天烧煤1.2吨.剩下的煤如果每天烧1.1吨,还可以烧多少天?

小结:根据同学们的不同方法,我们需要具体问题具体分析,用哪种方法简便就用哪种方法.

3.思考题.

甲乙两个港相距480千米,上午10时一艘货船从甲港开往乙港,下午2时一艘客船从乙港开往甲港.客船开出12小时后与货船相遇.如果货船每小时行15千米.客船每小时行多少千米?

四、课堂总结.

通过今天的复习,你有什么收获?

五、课后作业.

1.师傅加工零件80个,比徒弟加工零件个数的2倍少10个.徒弟加工零件多少个?

2.徒弟加工零件45,比师傅加工零件个数的多5个.师傅加工零件多少个?

六、板书设计

列方程解应用题

第2篇

人教版六年级上册数学商不变的规律教案

教学目标

知识与技能

理解和掌握商不变的规律,并能运用这一规律口算有关除法;培养学生观察、概括以及提出问题、分析问题、解决问题的能力。

过程与方法

学生在参与观察、比较、猜想、概括、验证等学习活动过程中,体验成功。

情感态度价值观

积极参与数学学习活动,感受数学学习的挑战性和乐趣。

教学重点:使学生理解并归纳出商不变的规律。

教学难点:使学生会初步运用商不变的规律进行一些简便计算

教学课时:1课时

教学过程

一、激趣引课

今天老师给你们带来了一张明星照,想不想看看是谁?(点击课件)哇!王老师!大家看想我吗?如果拍照时,老师的眼睛变小了,嘴巴不变,嘴巴还变大了,那么拍出的照片还像我吗?不过,这张照片太小了,我想拍一张大一点的请同学们帮老师选择一家价格便宜的照相馆:

A照相馆:“30元可以照6张!”

B照相馆: “60元可以照12张!”

C照相馆:“90元可以照18张!”

D照相馆: “10元可以照2张!

照相馆: “15元可以照3张!”

二、探索规律

1、让学生自主看信息列出四个算式,指名板演四个算式。

① 30 ÷ 6 = 5

②60÷12=(30×2)÷(6×2)=5

③ 90÷18= (30×3)÷(6×3)=5

④10÷2= (30÷3)÷(6÷3) =5

2、师提出问题:“同学们,看到这四个算式你发现了什么?”

3、小组讨论:点击课件。

以 30 ÷ 6 = 5为标准,仔细观察其余算是中的被除数与除数的变化,你们会发现什么规律?引导学生举例说出:四个算式的商都相等,算式(2)、(3)、(4)式其实都是算式(1)变化出来的,如:算式(2)的被除数60是算式(1)的被除数30的2倍,算式(2)的除数12是算式(1)的除数6的2倍,被除数和除数都乘上2或扩大的倍数相同。我们一起来再来看看算式(3)、(4)是不是也有这规律。同桌结合算式(3)、(4)来说说被除数、除数和商的变化的情况。最后再请同学与全班交流。

师:谁能用完整的话说出上面发现的规律?学生总结以后,教师小结,今天我们发现的这个规律就是“商不变规律”(板书)

4、利用这个规律讨论

(18×0)÷(6×0)=?所以在商不变的规律中什么条件不适用?(零除外)

5、齐读商不变规律:

在除法里,被除数和除数同时乘或除以相同的数( 0除外 ),商不变。

三、反馈练习

1、抢答:在一道除法算式里,如果被除数除以5,除数也除以5,商( )

在一道除法算式里,如果被除数乘10,要使商不变,除数( )

在一道除法算式里,如果除数除以100,要使商不变,被除数( )

2、填空,看谁填得又对又快。

①(90×)÷(30×2)=90÷30

②(40×5)÷(20〇5)=2

③(1200×)÷(400〇5)=3

④(1200 〇 4)÷(400〇4)=3

⑤(1200 〇 )÷(400〇)=3

3、已知48÷12=4,判断下列各式是否正确。如果不对,怎样改一下就对了。

①(48×5)÷(12×5)=4……( )

②(48÷4)÷(12÷4)=4……( )

③(48×3)÷(12×4)=4……( )

④(48×3)÷(12÷3)=4……( )

⑤(48×6)÷(12×6)=4……( )

⑥(48 - 8)÷(12 - 8)=4……( )

4、根据31200÷2600=12很快说出下面的结果。

312÷26=

3120÷260=

312000÷26000=

15600÷1300=

5、教师讲故事:猴王 分 桃

花果山风景秀丽,气候宜人,那里住着一群猴子。有一天,猴王给小猴分桃子。猴王说:“给你4个桃子,平均分给2只小猴吧。”小猴听了,连连摇头说:“太少了,太少了。”猴王又说:“好吧,给你40个桃子,平均分给20只小猴,怎么样?”小猴子得寸进尺,挠挠头皮,试探地说:“大王,再多给点行不行啊?”猴王一拍桌子,显示出慷慨大度的样子:“那好吧,给你400个桃子,平均分给200只小猴,你总该满意了吧?”这时,小猴子笑了,猴王也笑了。

师:谁的笑是聪明的一笑

学生积极回答。

6、练习:P75 第1、2小题、观察与思考。

四、课堂总结:这节课我们一起研究了什么?你有什么收获?还有那些疑问?

五、作业:配套与练习

看了六年级上册数学商不变的规律教案的人还看:

1.六年级上册数学分数除以整数教案

2.六年级数学上册分数除法手抄报

3.六年级上册数学《比例》教案

4.六年级数学上学期教学反思

第3篇

教学目标:

1.引导学生在熟悉的生活情境中初步认识负数,能正确地读、写正数和负数;知道0不是正数也不是负数。

2.使学生初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的联系。

3.结合负数的历史,对学生进行爱国主义教育;培养学生良好的数学情感和数学态度。[来源:Z+xx+k.Com]

教学重、难点:

负数的意义。

教学过程:

一、教学新知

1.表示相反意义的量。

(1)引入实例。

谈话:如果沿着刚才的话题继续“聊”下去的话,就很自然地走进数学,我们一起来看几个例子(课件出示)。[来源:学|科|网]

六年级上学期转来6人,本学期转走6人。

张阿姨做生意,二月份盈利1500元,三月份亏损200元。

与标准体重比,小明重了2.5千克,小华轻了

1.8千克。

一个蓄水池夏季水位上升米,冬季水位下降米。

指出:这些相反的词语和具体的数量结合起来,就成了一组组“相反意义的量”。(补充板书:相反意义的量。)

(2)尝试。

怎样用数学方式来表示这些相反意义的量呢?

请同学们选择一例,试着写出表示方法……

(3)展示交流。……

2.认识正、负数。

(1)引入正、负数。

谈话:刚才,有同学在6的前面写上“+”表示转来6人,添上“-”表示转走6人(板书:+6

-6),这种表示方法和数学上是完全一致的。

介绍:像“-6”这样的数叫负数(板书:负数);这个数读作:负六。

“-”,在这里有了新的意义和作用,叫“负号”。“+”是正号。

像“+6”是一个正数,读作:正六。我们可以在6的前面加上“+”,也可以省略不写(板书:6)。其实,过去我们认识的很多数都是正数。

(2)试一试。

请你用正、负数来表示出其它几组相反意义的量。

写完后,交流、检查。

3.联系实际,加深认识。

(1)说一说存折上的数各表示什么?(教学例2。)

(2)联系生活实际举出一组相反意义的量,并用正、负数来表示。

同桌交流。

全班交流。根据学生发言板书。[来源:学&科&网]

这样的正、负数能写完吗?(板书:…

…)

强调指出:像过去我们熟悉的这些整数、小数、分数等都是正数,也叫正整数、正小数、正分数;在它们的前面添上负号,就成了负整数、负小数、负分数,统称负数。

4.进一步认识“0”。

(1)看一看、读一读。

谈话:接下来,我们一起来看屏幕:这是去年12月份某天,部分城市的气温情况(课件出示)。

哈尔滨:

-15

℃~-3

北京:

-5

℃~5

深圳:

12

℃~23

温度中有正数也有负数,请把负数读出来。

(2)找一找、说一说。

我们来看首都北京当天的温度,“-5

℃”读作:“负五摄氏度”或“负五度”,表示零下5度;5

℃又表示什么?

你能在温度计上找出这两个温度所在的刻度吗?(课件出示温度计,没有刻度数)为什么?

现在你能很快找出来吗?(给出温度计的刻度数,生到前面指。)

说一说,你怎么这么快就找到了?

(课件配合演示:先找0℃,在它的下面找-5℃,在它的上面找5℃。)

你能很快找到12

℃、-3

℃吗?

(3)提升认识。

请学生观察温度计,说一说有什么发现?

在学生发言的基础上,强调:以0℃为分界点,零上温度都用正数来表示,零下温度都用负数来表示。(或负数都表示零下温度,正数都表示零上温度。)

“0”是正数,还是负数呢?

在学生发言的基础上,强调:“0”作为正数和负数的分界点,它既不是正数也不是负数。

(4)总结归纳。

如果过去我们所认识的数只分为正数和0的话,那么今天我们可以对“数”进行重新分类:

(完善板书。)

5.练一练。

读一读,填一填。(练习一第1题。)

三、练习应用

今天,负数在我们的生产和生活中依然有着广泛的用途。让我们就一起走进生活,感受数与生活的密切联系。

四、总结延伸[来源:学科网ZXXK]

1.学生交流收获。

第4篇

教学内容:人教版《义务教育教科书

数学》六年级上册75及76页练习十六。

教材分析:

本节课是人教版《义务教育教科书

数学》六年级上册75页的内容,本课“扇形”的教学,是在学生了解圆、掌握圆的周长和面积的计算的基础上进行的,目的在于通过教学引导学生把生活中随处可见的扇形、扇环的数学元素引入到数学学习中,通过学习引导学生初步认识扇形,为后续学的扇形统计图的学习提供知识基础,并培养学生从数学的角度观察生活的习惯,积累数学活动的经验。

学情分析:

学生在日常生活中随处可见扇形、扇环等物体,但对于扇形的具体特征还没有深入的了解,因此,在教学时首先组织认识扇形,通过折一折,画一画引导学生构建“扇形”这一数学模型,培养学生的空间观念。

教法:

教学时,重点引导学生通过找一找、说一说等方式激活了学生原有的“扇形”生活经验,结合活动帮助学生构建“扇形”这一数学模型,并在这过程中培养学生观察能力和发现问题的能力。

教学目标:

1.理解弧、圆心角、扇形等概念,能准确判断圆心角,会进行简单的扇形面积的计算。

2.体会扇形和圆的关系,感受扇形图与名称的联系,能在圆中画出扇形。

3.在观察、讨论、判断等活动中,经历初步认识扇形的过程,通过比一比、画一画等操作活动,培养学生动手操作的能力。

4.培养学生用数学的眼光去思考问题,体会数学的应用价值。

教学重点:认识弧、圆心角、扇形,能准确判断扇形,会求扇形的面积。

教学难点:如何按要求画扇形和求扇形的面积。

教具准备:课件

学具准备:圆规、直尺、量角器、搜集生活中的扇形。

教学过程:

一、猜谜引入,揭示课题

1.出示谜面:有风不动无风动,不动无风动有风。

(1)请学生猜。

(2)揭示谜底。

2.揭示课题。

师:近一段时间我们都在学习圆的有关知识,那么扇形跟圆有没有联系?有哪些联系呢?今天我们就一起来研究扇形。

教师板书课题:扇形。

二、自主探究,初步认识扇形。

1.认识弧。

(1)用课件出示一个圆,在圆上取A、B两点,再用黄色的线描出这两点间的圆的部分。

(2)学习弧的概念。

师指图:这段黄色的线叫做“弧”。因为这条弧的两个端点分别是A和B,所以称这条弧为“弧AB”,弧是圆上的一部分。

课件出示概念:圆上A、B两点之间的部分叫做弧,读作:“弧AB”。

指导学生学写弧AB,学生书空练习。

(3)教师指出“弧AB”的反弧,让学生知道这也是一条弧。

2.认识圆心角。

(1)课件显示:OA、OB两条半径,然后问:“两条半径所夹的角∠AOB,它的顶点在哪儿?”

师明确:像这样,顶点在圆心的角叫做圆心角。

师生共同总结:圆心角应该满足两个条件:一是角的顶点在圆心;二是角的两条边是圆的半径。

3.认识扇形。

(1)课件演示:先出现彩色的OA、OB两条半径,同时在弧AB与半径OA、OB所围成的图形中涂上颜色。

(2)扇形的概念。

师指图:弧AB和半径OA、半径OB围成的蓝色部分叫什么吗?

学生:扇形。

师:根据刚才的演示和讲解,大家能说说什么是扇形吗?

(生回答后,师小结)一条弧和经过这条弧两端的两条半径所围成的图形叫做“扇形”。

(3)教师指着屏幕上圆中扇形的另一边空白部分问学生,这个图形叫什么?

师明确:这个图形也是由一条弧和经过这条弧的两端的两条半径围成的图形,所以也是一个扇形。

(4)扇形在生活中的运用。

师:生活中有哪些东西是扇形的?

学生说一说。

欣赏美丽的扇形图片。

(5)画扇形

①出示画图要求:尝试画出一个半径是2厘米的圆,再在圆中画一个圆心角是100o的扇形。

②学生试画。

③说一说画法,然后师生共同总结画扇形时应注意些什么。

④师:扇形和三角形、平行四边形一样,都是平面图形,那么它是轴对称图形吗?

学生活动,通过折一折,知道扇形也是轴对称图形。

师说明扇形圆心角的角平分线所在的直线就是扇形的对称轴。

三、探究扇形大小与什么有关。

1.出示两个等圆。

(1)让学生说一说以半圆为弧的扇形圆心角是(

)度;以四分之一圆为弧的扇形圆心角是(

)度。

(2)学生小结出计算方法,同时让学生比较出以上两个扇形的大小。

2.猜一猜:扇形的大小和什么有关?(生:圆心角)

(1)圆心角的大小和扇形的大小有什么关系呢?

学生说一说。

看图小结:在同圆或等圆中,圆心角变大,扇形就变大;圆心角变小,扇形就变小。

(2)出示两个同圆心角但不同半径的扇形。

师:这两个扇形一样大吗?

生:不一样大。

师:扇形的大小还和什么有关系?

生观察得出半径不同。

师生小结:圆心角相等,半径越长,扇形越大;半径越短,扇形越小。

(3)总结影响扇形大小的因素:一、圆心角度数;二、半径。

四、扇形的面积

1.出示圆心角分别是180o、270o、60o、90o的扇形,说一说它们的面积分别占所在圆面积的几分之几?并说明理由。

2.问:圆心角是1o的扇形的面积是圆面积的几分之几?

圆心角是no的扇形的面积是圆面积的几分之几?

3.扇形面积公式

如果用字母S表示扇形的面积,n表示圆心角度数,r表示圆的半径,那么扇形的面积公式是:?

(1)教师引导学生总结扇形面积公式:S=r2

(2)师:已知这个公式,我们能干什么(算扇形面积),换句话说,要算扇形面积需要具备什么条件?(圆心角度数和半径)

五、巩固新知。

1.判断。

(1)圆的一部分就是扇形。

(2)顶点在圆内的角一定是圆心角。

(3)扇形只有一条对称轴。

(4)圆心角越大,扇形越大。

2.填一填。

(1)如果扇形的圆心角是60o,那么这个扇形的面积等于这个扇形所在圆的面积的————。

(2)扇形面积是它所在圆面积的,这个扇形的圆心角的度数是————。

3.求阴影部分面积。

4.

为了做实验滤纸,在半径为3厘米的圆中,

剪去一个圆心角为60°的扇形,求剩余部分

的图形面积?

第5篇

教学目标:

1.

学生通过自主探究,理解并掌握小数乘分数的方法,能根据数据的特点选择合适的方法进行计算。

2.

在探索计算方法的过程中,培养学生初步的推理能力以及抽象、概括能力。

3.

在学习中进一步体会数学知识之间的内在联系,感受数学探索活动本身的乐趣,增强学好数学的信心。

教学重点:

掌握分数乘小数的计算方法。

教学难点:

根据数据特点灵活选择合适的计算方法。

教学过程:

一、复习导入

计算下列各题。

设计意图:通过复习分数乘分数和分数乘整数的计算方法,唤醒学生已有认知,为本节课学习分数乘小数奠定基础。

二、探究新知

1.

松鼠欢欢的尾巴有多长?

师:同学们,你们知道松鼠的尾巴有多长吗?

师:松鼠尾巴的长度约占身体长度的,从这句话中你发现松鼠的尾巴长度和身体长度之间的关系是什么?

生:尾巴长度=身体长度×

师:松鼠欢欢尾巴有多长,你能列出算式吗?

生:2.1×

师:正确,用你自己的方法试着算一算吧。

学生独立完成,全班展示计算方法。

师:谁来说一说你是怎么算的?

生1:我是把2.1化成分数,按照分数乘分数的计算方法进行计算的。

生2:我是把化成小数,按照小数乘小数的计算方法计算的。

学生分享过程中,教师课件展示计算过程。

师:看来计算小数乘分数的时候,可以转化成分数乘分数计算,也可以转化成小数乘小数计算,也就是把两个因数转化为同一类数计算。

设计意图:根据“一个数的几分之几是多少”用乘法计算,对分数的意义再巩固,也找出了尾巴长度与身体长度之间的关系,为解决问题做准备。

2.

松鼠乐乐的尾巴有多长?

师:乐乐也想知道自己的尾巴长度,你能帮它解决这个问题吗?

生:2.4×

师:自己试着算一算。

学生独立计算,全班交流算法。

生1:计算2.4×,可以把化成小数0.75计算。

生2:计算2.4×,可以把2.4化成分数计算。

师:我们观察算式,2.4和分母4是可以约分的,所以我们还可以先直接约分,约分后是0.6,0.6×3=1.8。

师:谁来说一说0.6是怎么来的?为什么是0.6呢?

师:1.8是怎么计算出来的?

师:我们发现当小数和分母有倍数关系时,这样约分计算更简便。

师:通过刚才的探究,我们发现了很多计算分数乘小数的方法,看来在计算分数乘小数时,同学们要根据具体的数据来选择合适的算法。

设计意图:通过数据的变化,感受计算方法的多样性,让学生学会计算时要根据数据特点选择合适的方法。

三、巩固练习

1.

算一算。

2.

我国人均淡水资源量是多少万立方米?

3.

成年帝企鹅的身高是多少米?

4.

果糖和葡萄糖共有多少千克?

设计意图:通过习题的设置,引导学生进一步熟悉分数乘小数的计算方法。让学生学会观察数据特点,再选择合适的计算方法。

四、课堂小结

师:回顾刚才解决问题的过程,我们是怎样计算小数乘分数的呢?

生1:可以转化成分数乘分数计算。

第6篇

工作计划是,对一定时期的工作预先作出安排和打算时,工作中都制定工作计划,工作计划实际上有许多不同种类,它们不仅有时间长短之分,而且有范围大小之别。今天小编为大家带来的是小学六年级下册数学《数与代数》教案优质范文,供大家阅读参考。

更多关于教学工作计划的内容请点下方链接

幼儿园大班教学计划

小学五年级数学下册《折线统计图》教案

父亲节主题教育班会教案

高三上学期数学教学计划

四年级下册语文《诺曼底号遇难记》教案

小学六年级下册数学《数与代数》教案优质范文一【教学内容】

教材第109页第1题,练十五第1、2、3、6题。

【教学目标】

1.复习加、减法和乘、除法各部分间的关系。

2.复习四则运算的运算顺序,并能正确进行计算。

3.运用加法和乘法的运算定律和相关的性质,进行简便计算。

【重点难点】

重点:运用加、减法和乘、除法各部分间的关系验算,四则运算的计算,运用运算定律进行简便计算。

难点:运算定律的运用,能进行简便计算。

【教学过程】

一、情景导入

问题导入。

1.加、减法各部分间的关系是怎样的?乘、除法各部分间的关系呢?

2.你知道四则运算的运算顺序是怎样的?你会计算吗?

3.你知道哪些运算定律?你会运用这些运算定律进行简便计算吗?

学生讨论、汇报,师评价。

二、探究新知

1.复习四则运算。

出示教材第109页第1题。

(1)根据第①个式子,先说说加法与减法的关系,再分别写出一个加法算式和一个减法算式。

(2)根据第②个式子,先说说乘法与除法的关系,再分别写出一个乘法算式和一个除法算式。

(3)你会根据第①个和第②个算式列出一个综合算式吗?再根据第①个、第②个和第③个算式列出一个综合算式。

(4)问:你能用一句话来总结四则运算的顺序吗?

学生组内讨论、交流、汇报。

小结:没有括号时先算乘除后算加减,有括号的要先算括号里面的。

2.复习运算定律。

(1)说一说我们学过哪些运算定律。

学生自由讨论、汇报,师评价。

(2)整理汇总运算定律,用字母表示。

加法:加法交换律:a+b=b+a

加法结合律:a+b+c=a+(b+c)

乘法:乘法交换律:a×b=b×a

乘法结合律:a×b×c=a×(b×c)

乘法分配律:a×(b±c)=a×b±a×c

(3)想一想,说一说下面的计算运用了什么运算定律。(教材第109页第1题(4)题)

学生独立完成,组内交流,汇报发言,师评价。

三、基础巩固

完成教材练十五第1、2、3、6题。

四、课堂小结

问:这节课你有哪些收获?

小结:本节课我们复习了加、减法和乘、除法各部分间的关系,并利用它们之间的关系进行验算,又复习了四则运算的运算顺序、运算定律,巩固和加深了该知识,会运用运算定律进行简便计算。

五、同步训练

教学至此,敬请选用《新领程》相关习题。

小学六年级下册数学《数与代数》教案优质范文二教学目标:

通过复习练习,进一步掌握分数、百分数、小数的互化的方法。进一步掌握分数、小数等有关性质。

教学重点、难点:分数、百分数、小数的互化的方法。分数、小数等有关性质。

教学设计:

一、复习小数、分数、百分数、成数、折扣等互化

表格出示:给出其中一种,要求转化成另外几种数。学生独立完成后,指名交流,说明转化方法。

0.35

1/4 140% 六成五 八折

二、分数、小数有关性质及其关系

出示:12÷( )=3/4=( ):36=( )/12=( )%

学生独立填写。交流:你是怎样填写的?填写时从哪开始思考?运用了哪些知识?

三、巩固练习

1、第86页第12题

独立完成,说明填写方法。

引导学生发现:第1小题:后面的数总比前面大,越来越接近1.

第2小题:后面的数总比前面小,越来越接近0

2、第86页第13、14题

读题理解要求。再按要求完成。

四、补充练习

填空题

1.有一个小数,由8个自然数单位,5个十分之一和22个千分之一组成,这个数写作(

),读作( ),它的计数单位是( )。

2.六亿零六十万零六十写作(

),改写成用“万”作单位是( ),省略万后面的尾数是( ),精确到亿位是( )。

3.两个相邻的自然数,它们的差是(

)。一个自然数既不是质数又不是合数,与它相邻的两个自然数是( )和( )。

4.如果a+1=b,那么它们的最小公倍数是(

),最大公因数是( )。

5.把0.625的小数点向左移动两位是(

),它缩小了( )倍。

6、如果一个小数的小数点向右移动一位后比原来大了32.4,那么原来这个小数是(

)

7.五个连续自然数的和是200,这五个自然数分别是(

)、( )、( )、( )、( )。

8.最大的一位纯小数比最大的两位纯小数小(

);最小的两位纯小数比最小的三位纯小数大( )。

9.两个数的积是70,一个因数扩大100倍,另一个因数缩小10倍,积是(

)。

10.按从小到大的顺序排列下列各数:

0.329

1.024 1.6 0.705 1 0.333…… Π 0

______________________________________________________________ 选择题。

1.最大的小数单位与最小的质数相差(

)。

A.1.1 B.1.9 C.0.9 D.0.1

2.一个自然数的最小倍数是18,这个数的约数有(

)个。

A.2 B.4 C.6 D.8

3.小数点向右移动两位,原来的数就(

)。

A.增加100倍 B.减少100倍 C.扩大100倍 D.缩小100倍

六下数与代数整理复习课教学设计

六下数与代数整理复习课教学设计二

回顾与整理

——总复习

【教学内容】

义务教育课程标准实验教科书青岛版小学数学六年级下册84-118页

【教材简析】

本单元是对小学阶段所学的数学知识进行系统地回顾整理,不仅是本册教材的一个重点,也是小学生全套教材的一个重要组成部分。本单元教学质量的高低关系到小学阶段数学教学目标能否圆满地完成。为了更好地实现预定的教学目标,便于教师引导学生进行系统地整理和复习,本单元把整个小学阶段所学数学知识划分为“知识与技能”、“策略与方法”两大部分,依次进行整理和复习。本复习不仅回顾与整理小学阶段所学的知识,还对渗透的数学思想方法加以梳理,使之与所学知识融为一体,以提高学生的思维品质与数学能力,形成良好的数学素养,为后继学习打好坚实的基础。

本单元在内容编排及结构安排上打破了传统的教材总复习的框架结构,从整体上将总复习分为“知识与技能”、“策略与方法”两大部分;“知识与技能”部分又分为“数与代数”、“空间与图形”、“统计与可能性”三大领域,每个领域又细化为几个板块,如“空间与图形”领域分为“图形的认识与测量”、“图形的位置与变换”两个板块;在每个板块里又设置了“回顾与整理”、“讨论与交流”、“应用与反思”三个部分。

【教学目标】

1.复习巩固第一、二学期所学的数学知识,获得适应进一步学习所必需的数学基础和知识(包括数学事实、数学活动经验)以及必要的应用技能。

2.在对知识回顾与整理的过程中,掌握整理知识的方法,并使所学知识系统化、网络化,形成完整的认知结构。

3.在回顾整理的过程中,加深对数学思想方法的认识,能综合运用所学的知识与技能解决实际问题,形成一些解决问题的基本策略,发展应用意识。

4.学会与人合作,初步形成评价与反思意识。

5.体会数学与自然及人类社会的密切联系,感受数学的应用价值,能在数学学习活动中获得成功体验,锻炼克服困难的意志,加深对数学的理解,增强学好数学的信心,从而实现《课程标准》中所制订的各项教学指标。

【教学过程】

第一课时

(数的意义和数的读写法的整理与复习)

一、创设情境,引入复习内容

(出示课本85页第1题)谈话:同学们,细心观察上面信息中都出现了哪几种数?除此之外,回想一下你还学过了哪些数?举例说明一下好吗?学生回顾、举例,教师按顺序板书数的名称。

自然数如:0、1、2、3……;

负数如:-1、-2、-3……;

整数如:0、1、2、-1、-2……;

分数如:2/3、1/2、3/4、4/3……;

小数(包括:循环小数、无限不循环小数等)如:0.1,1.2,……

百分数如:30%、15%、25%……

谈话:我们为什么要学习整数、分数、小数……这些数呢?想一想,生活中如果缺少了数,将会怎样?(学生讨论,交流)

谈话:今天我们这节课先来复习数的意义和数的读写。

【设计意图】:通过这一教学环节,大大的调动了学生参与的积极性,在静与动的结合中起到了很好的复习效果,同时也为下一步的整理建构做好铺垫。

二、归网建构,主体内化

(一)复习数的意义

1、师:先在小组中说一说各种数的意义,再根据不同的数之间的相互联系以小组为单位进行整理。

学生分组讨论整理,教师巡视指导。

全班交流,展示最佳表示方式并板书。

小学六年级下册数学《数与代数》教案优质范文三知识点

1、认识整千数

(记忆:10个一千是一万)

2、读数和写数

(读数时写汉字 写数时写阿拉伯数字)

①一个数的末尾不管有一个0或几个0,这个0都不读。

②一个数的中间有一个0或连续的两个0,都只读一个0。

3、数的大小比较:

①位数不同的数比较大小,位数多的数大。

②位数相同的数比较大小,先比较这两个数的最高位上的数,如果最高位上的数相同,就比较下一位,以此类推。

4、求一个数的近似数:

记忆:看最位的后面一位,如果是0-4则用四舍法,如果是5-9就用五入法。

5、最大的几位数和最小的几位数

最大的一位数是9,

最小的一位数是0.

最大的二位数是99,

最小的二位数是10

最大的三位数是999,

最小的三位数是100

最大的四位数是9999,

最小的四位数是1000

最大的五位数是99999,

最小的五位数是10000

最大的三位数比最小的四位数小1。

6、被减数是三位数的连续退位减法的运算步骤:

① 列竖式时相同数位一定要对齐;

② 减法时,哪一位上的数不够减,从前一位退1,在本位上加上10再减;如果前一位是0,则再从前一位退1。

7、在做题时,我们要注意中间的0,因为是连续退位的,所以从百位退1到十位当10后,还要从十位退1当10,借给个位,那么十位只剩下9,而不是10。

(两个三位数相加的和:可能是三位数,也有可能是四位数。)

8、公式:

被减数=减数+差

和=加数+另一个加数

减数=被减数-差

加数=和-另一个加数

差=被减数-减数文

小学六年级下册数学《数与代数》教案优质范文四教学目标:

1.学生进一步理解和掌握整数、小数、分数、百分数的意义,以及十进制计数法,理解小数的性质与分数的基本性质之间的联系,体会整数、小数、分数、百分数等概念之间的联系与区别;

理解和掌握自然数和整数,因数与倍数、质数与合数、公因数与公倍数等概念的含义;增强用数表达信息的意思和能力,发展数感。

2.学生进一步理解四则运算的意义,理解和掌握整数、小数、分数等四则运算的算理、算法,能正确进行相关的口算、笔算和估算,以及用计算器计算;

掌握四则混合运算的运算顺序,能正确进行四则混合运算;理解和掌握加法和乘法的运算律,能正确运用运算律进行一些简便运算和解决一些简单实际问题;获得必要的运算技能和运算能力;理解常见的数量关系,掌握分析和解决实际问题的基本方法,加深对常用的解决问题策略的感悟和体验,提高应用所学知识解决问题的能力。

3.学生进一步掌握用含有字母的式子表示简单数量关系的方法,初步理解等式的性质,会用等式的性质解一些简单的方程,能列方程解答两、三步计算的实际问题,提高分析问题和解决问题的能力,增强符号意识。

4.学生进一步理解和掌握比的意义和基本性质,理解比与分数、除法的关系,理解和掌握比例的意义和基本性质,会解比例;

理解和掌握正比例和反比例的意义,能正确判断两种相关联的量是否成正比例或成反比例;会根据给出的有正比例关系的数据在方格纸上画图,能根据其中一个量的值估计另一个量的值;能运用比和比例等知识解决一些简单实际问题,积累解决问题的经验,增强应用意识。

5.学生进一步理解和掌握已经学过的平面图形和立体图形的特征,体会相关图形之间的联系和区别,了解有关平面图形周长、面积的计算方法,以及常见几何体表面积、体积的计算方法的推导过程,会解答有关平面图形的周长、面积,以及常见几何体表面积、体积计算的简单实际问题,发展空间观念。

6.学生进一步加深对轴对称、平移和旋转、放大与缩小等图形运动方式的认识,能正确描述图形的运动过程,能按要求再方格纸上画出运动后的图形;

掌握用数对或用方向和距离描述物置的方法,能按要求在平面图上确定物体的位置或描述简单的行走路线,增强利用几何直观进行思考的能力。

7.学生进一步掌握常用的收集、整理、表示、分析和解释数据的方法,理解平均数的意义,了解常见的统计表、统计图的不同特点;

能根据具体问题选择合适的统计表或统计图表示数据,能对统计表、统计图所呈现的数据进行一些简单的分析和思考,增强数感分析观念。

8.学生进一步了解简单随机现象的特点,体会事件发生的确定性和不确定性,知道事件发生的可能性是有大小的,能列举出简单随机事件发生的所有可能的结果,正确判断简单

随机事件发生的可能性的大小。

9.学生经历综合运用所学知识探索数学规律、解决实际问题的过程,进一步提高发现和提出问题、分析和解决问题的能力,感悟不同数学知识之间、数学与生活之间、数学与其他学科之间的联系,发展应用意识和创新意识。

10.学生经历观察与比较、分析与综合、抽象与概括、类比与归纳等思维活动过程,进一步发展合情推理和演绎推理能力,积累丰富的数学活动经验,获得关于分类、对应、转化、数形结合、方程、函数等数学思想方法的体验与感悟,提高数学素养。

11.学生在回顾学习内容、反思学习过程、完善认知结构的过程中,进一步养成良好的学习习惯,体验获取知识以及与同学合作交流的乐趣,增进对数学学习的积极情感,树立学好数学的信心。

教学重点:

复习一到六年级所学的所有内容。

教学难点:

能把所学知识灵活的综合运用。

课时安排:32课时

第1课时 整数、小数的认识整理与复习

教学内容:

苏教版六下P68~70“整理与反思”、“练习与实践”第1~9题

教学目标:

1.学生回顾整理整数与小数的相关知识,加深理解整数与小数的意义,沟通各种数之间的关系,进一步弄清相关概念间的联系与区别,构建整数、小数认识的知识网络。

2.学生通过复习,进一步了解整数、小数的相关知识,掌握数的知识之间的联系;

增强用数表达和交流信息的意识和能力,进一步发展数感。

3.学生进一步体会数在日常生活中的广泛应用;

感受认数的作用,产生对数的学习兴趣,提高学好数学的自觉性。

教学重点:

整数(自然数)和小数的意义、组成及读写。

教学难点:

理解数的相关知识间的联系。

教学过程:

一、揭示课题

谈话:小学阶段的数学内容我们已经全部学完了,从今天开始我们要对所学内容进行总复习。这节课我们进行整数和小数的整理与复习。(板书课题)

通过复习,进一步认识整数、小数的意义,掌握整数、小数的有关知识,提高数的应用能力。

二、回顾整理

1.讨论整理。

提问:首先请同学们回忆一下,你了解整数和小数的哪些知识?请你结合小面的问题先自已思考、整理,再与同学说一说。

出示问题:

(1)你能举例说说怎样的数是整数,怎样的数是负数,怎样的数是小数吗?小数的基本性质是什么?

(2)你能说出整数和小数的计数单位吗?相邻计数单位间的进率都是几?举例说一说。

(3)你能举例说说读、写整数和小数要注意什么吗?怎样比较整数和小数的大小?怎样求一个数的近似数?

让学生围绕上面三个问题思考,并在小组里讨论、交流。

2.组织交流。

(1)提问:你能举例说说怎样的数是整数,怎样的数是负数,怎样的数是小数吗?小数的基本性质是什么?

结合学生回答,相机板书。

(2)提问:你能说出整数和小数的计数单位吗?相邻计数单位间的进率都有是几?举例说一说。

根据学生回答呈现数位顺序表。

提问:整数部分计数单位排列有什么规律?每个数级上的数表示什么?小数部分的计数单位按怎样的顺序排列的?

一个数在不同数位上表示的意义有什么不同?请举个例子说一说。

(3)提问:你能举例说说读、写整数和小数要注意什么吗?怎样比较整数和小数的大小?怎样求一个数的近似数?

让学生依次交流不同内容的认识,举出例子说明。

交流数的读、写法。交流数的大小比较的方法。交流求近似数的方法。

三、应用练习

1.做“练习与实践”第1题

学生独立填写。全班交流,呈现结果。

提问:从直线上看,正数和负数有什么区别?

0右边的里为什么要写小数?0左边的里的数是怎样想的?

说明:正数和负数表示相反意义,在直线上都是从0开始按顺序排列,正数都大于0,负数都小于0。

2.做“练习与实践”第2题

(1)指名口答。

提问:你是怎样知道不同的数里的“2”表示多少的?

(2)提问:你能说出这里每个数的组成吗?

说明:一个数表示多少,可以看每个数位上各是由多少个计数单位组成的。

3.做“练习与实践”第3题。

学生读题后指名回答。

4.做“练习与实践”第5题。

学生独立填写在书上。

集体校对,有错的同学说说错误的原因,并订正。

5.做“练习与实践”第6题。

指名学生读一读。

提问:怎样读数,能很方便地读出来?

说明:读数时先分级,按数级读既方便又能读准确。

6.做“练习与实践”第7题。

学生先把语文、数学课本的单价填写在书上的表格中,再算出10本、100本、1000本的总价,然后交流结果并呈现。

提问:你是怎样算的?一个数乘10、100、1000,怎样很快写出得数?一个数除以10、100、1000,可以怎样写出得数?

7.做“练习与实践”第8题。

(1)学生各自读题,再指名读一读表中的各个数。提问:通过读表中的数,你有什么想法吗?

(2)提问:你能把四个省(自治区)的面积改写成用“万平方千米”作单位的数,把四个省(自治区)的人口数精确到万位吗?

学生独立完成后集体交流。

(3)提问:请你分别按面积大小和人口多少,排列四个省(自治区)的顺序。学生独立完成后集体交流,说说是怎样比较大小的。

四、课堂总结

谈话:这节课我们复习了哪些内容?你有什么收获?还有什么问题?五、课堂作业

完成“练习与实践”第4、9题。

第2课时因数与倍数整理与复习

教学内容:

苏教版六下P70 “练习与实践”第10~14题,思考题。

教学目标:

1.学生通过回忆和整理,进一步明确因数和倍数的相关知识,加深认识相关概念之间的联系与区别,能求两个数的公因数和公倍数,并能运用这些知识解决相关实际问题。

2.学生在应用相关知识进行判断和推理的过程中,能说明思考过程,进一步培养归纳概括和演绎推理等思维能力,进一步增强分析问题和解决问题的能力。

3.学生进一步体会数学知识之间的内在联系,感受数学思考的严谨性和数学结论的确定性,激发学习数学的兴趣和学好数学的自信心。

教学重点:

掌握倍数和因数等相关概念,以及应用概念判断、推理。

教学难点:

理解相关概念的联系和区别。

教学过程:

一、揭示课题

1.回顾知识。

提问:上节课,我们已经复习了整数和小数的有关知识。

在整数知识里,我们还学习了因数和倍数,谁能来说说你是怎样理解因数和倍数的?一个数的因数和倍数各有什么特点?

结合学生交流,板书。

2.揭示课题。

引入:这节课,我们复习因数和倍数的相关知识。

通过复习,能进一步了解关于因数和倍数的知识,理解它们之间的联系和区别,并能应用这些知识。

二、基本练习

1.知识梳理。

提高:回想一下,在学习因数和倍数时,我们还学习了哪些相关的知识?学生回顾,交流,教师适当引导回顾。

提问:2、5、3的倍数各有什么特征?什么叫奇数,什么叫偶像?什么叫质数,什么叫合数?什么叫公因数和最大公因数?什么叫公倍数和最小公倍数?

根据学生回答,板书整理。

2.做“练习与实践”第10题。

学生独立完成,指名板演。

集体交流,让学生说说找一个数的因数和倍数的方法。

3.做“练习与实践”第11题。

出示题目,学生直接口答。

提问:怎样判断一个数是不是2的倍数?判断是3和5的倍数呢?

追问:这里哪些是偶数,哪些是奇数?说说你是怎样想的。

4.做“练习与实践”第12题。

学生先独立写出质数和合数,再指名口答。追问:最小质数是几?最小的合数呢?提问:怎样判断一个数是质数还是合数?

指出:在判断一个是质数还是合数时,要看这个数有哪些因数,根据质数和合数的含义作出正确判断。

5.完成下面各题。

(1)写出12和18的公因数,说出最大是几。

(2)写出6和8的公倍数,说出最小是几。

(3)求出下面每组数的最大公因数和最小公倍数。

指名学生口答第(1)(2)题,教师板书找公因数、公倍数的过程。让学生说明怎样找两个数的公因数和最大公因数,公倍数和最小公倍数。让学生独立完成第(3)题,交流方法并板书结果。提问:每组数各是怎样找最大公因数和最小公倍数的?

6.把12分解质因数。

让学生独立完成。

交流结果和方法,板书分解过程和结果。

三、综合练习

1.做“练习与实践”第13题。

指名读第(1)题。

谈话:同学们可以按要求先试着写一写,有困难的同学可以用数字卡片摆一摆,再写出来。学生尝试练习后同桌交流。

集体校对,引导学生明白可以有序思考,逐一列举。学生自由读第(2)题后独立解答。

指名口答,集体评议,结合说说有公因数2的数、有公因数3或5的数各有什么特点。

2.做“练习与实践”第14题。

指出:根据条件,可以知道总棵树比6的倍数少1,比5和4的倍数也都少1.启发:如果添上1棵,总棵树与6、5和4有什么关系?、学生尝试解答。

集体交流,让学生说说思考的过程。

四、课堂总结

交流:这节课我们复习了哪些内容?把你的收获和大家分享一下。

第3课时 分数、百分数的认识整理与复习

教学内容:

苏教版六下P71~72“整理与反思”、“练习与实践”第1~10题。

教学目标:

1.学生加深对分数和百分数的认识,进一步理解分数的基本性质以及分数与除法的关系,进一步掌握小数、分数和百分数的互相改写,以及求百分数的方法。

2.学生经历知识整理和应用的过程,进一步了解分数、百分数相关知识之间的内在联系,提高观察比较、分析判断能力和解决问题的能力,进一步发展数感。

3.学生进一步体会分数和百分数在日常生活中的应用以及作用,增强数学应用意识;

感受数学学习的乐趣,树立学好数学的信心。

教学重点:

加深理解分数、百分数的意义。

教学难点:

分数、百分数在实际生活中的应用。

教学过程:

一、揭示课题

谈话:前几节课我们一起复习了整数和小数的相关知识,这节课我们要对分数和百分数的相关知识进行整理和复习。

通过复习,要进一步认识分数和百分数的意义,体会它们之间的联系与区别,并能运用分数和百分数的相关知识解决一些实际问题。

二、回顾整理

1.回顾讨论。

提问:你了解分数和百分数的哪些知识?请大家联系下面的问题自己回顾整理,并且在小组里交流。

呈现以下四个问题:

(1) 什么叫分数?什么叫百分数?

(2) 分数和除法有什么联系?请你举例说明。

(3) 分数的基本性质是什么?你能用它来说明小数的性质吗?(4) 小数、分数和百分数怎样互相改写?

让学生围绕上面四个问题先独立思考,再在小组里讨论、交流。

2.组织交流,回答上面四个问题。

三、基本练习

1.做“练习与实践”第1题。

学生独立填写后指名口答,说明理由。

强调:分数是看平均分成多少份,表示这样的几分;小数是看表示的十分之几、百分之几、

千分之几??百分数是看这个数量占整体的百分之几。

2.做“练习与实践”第2题。

学生填写在书上,然后集体校对,让学生说说思考过程。

追问:第(2)题把一根绳子平均分成8段,为什么两次填写的结果不同?

3.做“练习与实践”第3题。

学生独立填写。

集体交流,让学生说说是怎样想的,并说一说每个百分数表示的意义。4.做“练习与实践”第5题。学生先尝试填写,再集体交流。提问:这两组数分别会越来越接近几?

指出:这两组数按规律可以无限地填下去,这样填写第一组数会越来越接近1,第二组数会越来越接近0.

四、应用练习

1.做“练习与实践”第6题。

学生读题,理解题意,先独立估计。

提问:你估计哪块花圃种玫瑰的面积所占的百分比最大?说说理由。指出:估计时,可以先想出相应的分数,再估计大小。

学生写出相应的百分数,并交流是怎样想的,再和估计的比一比。2.做“练习与实践”第7、8题。学生读题后独立解答,再集体交流。

提问:你能说说种子发芽率的具体含义吗?折扣表示什么?发芽率和折扣各是怎样求的?

3.做“练习与实践”第9题。

学生读题后,提问:你能根据所给信息,在图中表示出李华家上个月的支出情况吗?先独立思考并在图中表示。

五、课堂总结

1.交流小结。

提问:这节课我们复习了哪些内容?你有什么收获或体会?

2.布置作业。

课堂作业:完成“练习与实践”第4题,第9题第(2)小题,第10题。

常见的量

第4课时 常见的量整理与复习

教学内容:

苏教版六下P73“整理与反思”、“练习与实践”第1~6题。

教学目标:

1.学生进一步掌握质量、时间和人民币的单位及相邻单位的进率,能够根据实际选择、应用合适的单位;

掌握单位之间的简单换算,以及量的简单计算。

2.学生在整理、应用常见的量及量的单位过程中,进一步体会各个量的具体意义;

能说明对常见的量选择、分析、判断的理由,提高分析、判断和推理等思维能力。

3.学生在复习过程中进一步体会常见的量在日常生活中的应用,培养有据思考、判断、分析等良好的学习品质。

教学重点:

常见的量的归纳整理和应用。

教学难点:

掌握时间单位间的关系。

教学过程:

一、导入课题

引入:在我们的日常生产、生活和科学研究中,经常要接触各种量,并且进行各种量的计量。在小学阶段,我们学习过质量、时间和人民币这些常见的量和相应的计量单位。今天我们就复习这些常见的量。(板书课题)

通过复习,进一步认识质量、时间和人民币及相应的单位,了解各类量相邻单位的进率,进一步掌握单位间的简单换算,并提高计量单位应用的能力。

二、回顾整理

1.小组整理。

提问:常用的质量单位有哪些?(板书:质量)相邻单位之间的进率各是多少?常用的时间单位、人民币单位各有哪些?(板书:时间人民币)你能说说这些单位,以及相邻单位间的关系吗?请先独立整理,再小组交流。

学生整理,小组交流,教师巡视、指导。

2.集体交流。

(1)提问:你知道质量单位的哪些知识?

(2)提问:我们学习过哪些时间单位?你知道这些单位间的关系吗?说说你的认识。

提问:闰年有什么规律?怎样判断某一年是闰年还是平年?

提问:我们认识了哪两种计时法,这两种计时法有什么区别和联系?

24时计时法 普通计时法

(3)提问:关于人民币的单位你有哪些认识?

生:元 角 分

1元=10角1角=10分

三、基本练习

1.做“练习与实践”第1题。

学生直接填空。

集体反馈,指名说说分别填写了哪个单位,怎样想的。

指出:填写单位时,要先根据实际明确填写哪种量的单位,再根据具体物体选择合适的单位。

2.做“练习与实践”第2题。

学生先填写在书上,再指名口答结果,选择2—3题说说怎样想的。

提问:通过这题的练习,你对单位换算有了怎样的认识?

3.做“练习与实践”第3题。

学生先完成填空,再集体校队。

追问:每年第一季度的天数怎样计算?

四、应用练习。

1.做“练习与实践”第4题。

指名读题,理解题意。

学生独立计算。

集体校对,让学生说说是怎样计算的。

2.做“练习与实践”第5题。

学生读题,理解题意。

指名口答,让学生说出计算过程。

引导学生完整说出飞船进入预定轨道的时间时2012年6月16日18时55分。

3.做“练习与实践”第6题。

指名读题,理解题意。

学生独立解答。

集体交流,展示学生的解答过程及结果,要求说明怎样想的。

说明:像这样计算载重量的问题,一般要按较大数量计算,求出物体最重可能有多少,和能承载的重量比较、判断。

五、课堂总结

提问:这节课复习了哪些内容?通过这节课的复习,你有哪些收获?

第5课时 四则运算整理与复习

教学内容:

苏教版六下P74~75“整理与反思”、“练习与实践”第1~10题。

教学目标:

1.学生进一步掌握整数、小数、分数四则运算的法则及计算法则之间的联系,能选择口算、笔算、估算以及计算器等不同方法进行计算,进一步认识常见的数量关系,并能解决一些简单的实际问题。

2.学生在整理与复习的过程中,进一步了解计算原理,感受知识之间的内在联系,进一步体会基本的数量关系,提高运算能力,以及分析问题和解决问题的能力。

3.学生进一步养成独立、认真计算等学习习惯,培养按规则计算的品质,增强学习数学的积极性,体会学习成功的乐趣。

教学重点:

理解四则运算的意义和法则。

教学难点:

正确进行四则运算。

教学过程:

一、揭示课题

谈话:前几节课,我们只要复习了数的认识,今天开始我们要复习数的运算。这节课先复习数的四则运算。(板书课题)通过复习,同学们要熟悉掌握四则运算的法则,能选择不同方法进行计算,并能解决一些简单的实际问题。

二、知识梳理

1.小组讨论。

引导:通常所说的四则运算是指加法、减法、乘法和除法。想一想,整数、小数、分数加、减法分别怎样计算?整数、小数和分数乘、除法呢?先独立思考,找一些例子想一想,再在小组里交流你的想法。

学生各自整理后在小组里讨论。

2.集体交流。

(1)提问:整数加、减法是怎样计算的?小数加、减法,分数加、减法呢?

追问:你能说说这些计算方法之间的联系吗?

生交流,汇报。

(2)提问:怎样计算整数、小数和分数的乘、除法?你能举出一些例子吗?

结合学生交流,用简单的例子说明,进一步明确法则。

提问:小数乘、除法计算和整数乘、除法有什么联系?要注意什么问题?

学生交流,总结。

提问:分数乘、除法计算有什么联系?

指出:分数乘法用分子相乘的积作分子,分母相乘的积作分母;分数除法用被除数乘除数的倒数,转化成分数乘法后按分数乘法的方法进行计算。

三、基本练习

1.做“练习与实践”第1题。

直接写出得数。

选择部分题目让学生说说计算的方法,进一步明确计算方法。

2.做“练习与实践”第2题。

独立计算,并指名板演。

提问:比较每组两题的计算方法,你有什么发现?

3.做“练习与实践”第4题。

学生自由读题,独立思考分别选择哪种算法。

提问:每小题各适合口算、笔算、估算,还是用计算器计算?

指名口答,并说出想法。

四、应用练习

1.做“练习与实践”第5题。

出示表格,提问:从这张表中你能知道些什么?

学生回答后独立计算、填表。

集体交流结果,说明算法并呈现表里的结果。

提问:这里应用的是哪一组常见的数量关系?你能说出单价、数量和总价这一组数量关系式吗?

2.做“练习与实践”第6题。

学生读题,理解题意。

学生各自解答,指名板演。

集体校对,说明按怎样的数量关系解答的。

提问:这里应用的是哪一组常见的数量关系?能说出这一组数量关系式吗?

3.做“练习与实践”第9题。

出示情景图,提问:从图中你能知道哪些数学信息?

引导学生明确信息。

出示问题(1),学生独立思考、解答。

集体交流,让学生说说思考过程,说明可以用笔算,也可以用估算得出结论。

出示问题(2),学生独立解答。

集体交流,让学生说说思考过程,并板书算式、得数。

提问:你还能提出什么问题?

4.做“练习与实践”第10题。

出示统计表,让学生说说表中的信息。

提问:怎样比较他们的成绩更合理?把你的想法在小组里交流。

小组讨论后集体交流,指名说出合理的想法及理由。

学生各自计算,求出各人助跑摸高的厘米数想法于身高的百分之几,再比较得到的百分之几。出示问题(2),学生独立解答,提示可以用计算器计算。

五、课题总结

1.总结交流。

提问:通过这节课的复习,你有哪些收获?这些知识之间有什么联系?

2.课堂作业。

完成“练习与实践”第3、7、8题。

第6课时 四则混合运算整理与复习(1)

教学内容:

苏教版六下P76“整理与反思”、“练习与实践”第1~5题。

教学目标:

1.学生进一步认识整数、小数、分数四则混合运算的运算顺序,能按运算顺序正确进行运算;

进一步理解和掌握学过的运算定律和一些规律,并能应用运算定律或规律进行简便运算。

2.学生进一步增强观察、辨析能力和合理、简捷运算的能力,进一步培养分析问题、解决问题的能力。

3.学生通过计算、观察、比较、交流等活动,体验与同学合作交流以及获取知识的乐趣,增进对数学学习的积极情感。

教学重点:

四则混合运算的运算顺序;理解和掌握运算律和一些规律。

教学难点:

灵活选择合理、简捷的算法。

教学过程:

一、谈话导入,揭示课题

谈话:上节课,我们一起回顾整理了加、减、乘、除四则运算的意义、关系,以及计算法则。今天这节课,我们在此基础上继续复习四则混合运算。(板书课题)

二、整理知识,沟通联系

1.复习运算顺序。

出示“练习与实践”第1题。

(1) 指名学生说说每题的运算顺序。

提问:能说说四则混合运算的运算顺序吗?请同桌相互说一说。

集体交流四则混合运算的运算顺序。

(2)学生独立计算,教师巡视、指导。

集体校队,做错的同学自己订正。

2.复习运算律。

(1)引导:在四则混合运算里,我们学习过运算律。回忆一下,我们学过哪些运算律?你能举例说明吗?小组讨论,按要求把课本上的表格填写完整。

小组讨论、填表。

集体交流,结合学生回答,板书呈现填表。

(2) 做“练习与实践”第2题。

学生独立计算,指名板演,教师巡视、知道。

集体校对,让学生说说每题是怎样想的,分别运用了什么运算律或规律。

说明:在计算时,如果应用运算律或运算规律,能先把其中的小数、分数计算凑成整数,或者能把一些计算凑成整十、整百的数使计算变得简单,就可以选择合理、简单的算法,使计算简便。追问:你觉得应用简便计算要注意些什么?

(3)下面各题,怎样算简便就怎样算。

学生计算,指名板演。

交流算法,要求说明计算方法和依据。三、实际应用,内化提升

1.做“练习与实践”第3、4题。

指名读题,理解题意。

学生独立列综合算式解答,指名板演,教师巡视、指导。

集体校对,让学生说说每题分别是怎样想的,先算什么,再算什么?2.做“练习与实践”第5题。

学生读题,让学生说说题中的条件和问题。学生各自列综合算式解答,教师巡视,指导。集体交流,让学生说说每一步算的是什么。四、回顾反思,总结全课

提问:同学们回顾一下,这节课我们复习了哪些内容?你有什么收获与体会?

第7课时 四则混合运算整理与复习(2)

教学内容:

苏教版六下P77 “练习与实践”第6~10题。

教学目标:

1.学生进一步理解和掌握稍复杂的分数、百分数实际问题的数量关系和解题思路,能正确解答稍复杂的分数、百分数实际问题。

2.学生进一步认识分数、百分数实际问题的特点和解题方法,进一步体会分数、百分数实际问题的内在联系;

能说明分析问题的过程,提高比较、分析、推理、判断等思维能力,增强分析问题和解决问题的能力。

3.学生加深体会分数、百分数在现实世界的实际应用,增强数学应用意识,提高学习数学的兴趣和学好数学的自信心;

培养独立思考、主动交流的学习习惯。

教学重点:

稍复杂的分数、百分数实际问题的数量关系和解题方法。

教学难点:

理解各类分数、百分数实际问题的数量关系和解题思路。

教学过程:

一、揭示课题

谈话:上节课,我们复习了四则混合运算和运算律。这节课我们要复习分数、百分数的实际问题。(板书课题)通过复习,要进一步理清分数、百分数实际问题的数量关系和解题思路,掌握解题方法,提高解决分数、百分数实际问题的能力。

二、基本练习

1.根据下列问题找出单位“1”的量,并说出数量关系式。

(1)桃树棵树是梨树的几分之几?

(2)桃树棵树比梨树少几分之几?

(3)实际产量超过了计划的百分之几?

(4)实际降价了百分之几?

指名学生口答,并说说单位“1”的量是怎样找的。

2.根据条件找出单位“1”的数量,说出数量关系式。

说明:根据上面这样的条件,可以确定单位“1”的量,用单位“1”的量乘几分之几或百分之几,等于几分之几或百分之几的对应数量。三、应用练习

1.解答下列各题。

(1)李大爷收白菜300千克,已经售出240千克,已经售出几分之几?

(2) (题略)(3)(题略)

出学生读题,思考每题应怎样解答。

提问:这三题里表示单位“1”的量是哪个数量?为什么解答这三题的计算方法不相同?

2.解答下面各题。

你能列出每题的算式吗?请你说一说。

追问:为什么第(1)题只有一步计算,第(2)题要两步计算?解答分数、百分数实际问题要注意什么?

3.做“练习与实践”第7题。

学生读题后独立解答,指名板演,教师巡视、指导。集体校对,让学生说出解题思路,再说说有没有不同解法。

4.对比练习。

出示:(1)某市修建一条12千米长的高架公路,已经修了全长的60%,还有多少千米没有修?

(2)某市修建一条高架公路,已经修了全长的60%,还有4.8千米没有修。这条高架公路长多少千米?

指名读题,说说两题中的条件和问题。提问:这两题有什么相同点和不同点?交流解法,教师板书算式和结果。

结合交流要求学生说说这两题分别是怎样想的。追问:这两题的解题方法为什么不同?

5.做“练习与实践”第8题。

(1)学生读题,说说已知什么条件,第(1)题要求什么。让学生列式解答,指名板演。

交流:求一、二等奖的奖券一共多少张可以怎样想?这里每一步求的什么?

(2)让学生提出不同的问题,选择板书。

选择一个球两种奖券相差多少张的问题让学生解答。交流:你是怎样列式的?这个算是里每一步求的是什么?

6.做“练习与实践”第9题。

学生读题后独立解答。集体交流,让学生说说每道题的解题思路,教师板书算式和结果。提问:比较这三个实际问题,在解法上有什么联系和区别?

四、全课总结

这节课复习了什么内容?通过这节课的复习,你又有哪些收获?还有什么问题呢?2.课题作业。“练习与实践”第6、10题。

第8课时 解决问题的策略整理与复习(1)

教学内容:

苏教版六下P78~79“整理与反思”、“练习与实践”第1~5题。

教学目标:

1.进一步明确解决问题的一般步骤,能按一般步骤解决实际问题;

了解小学阶段学习的解决问题的策略;能应用从条件或问题想起的策略分析数量关系并列式解决实际问题;能根据条件提出相应的问题。

2.能用从条件或问题想起的策略说明解决问题的思路,进一步体会实际问题数量之间的联系,培养学生分析、推理等思维能力和解决问题的能力。

3.进一步感受数学知识、方法在解决实际问题里的应用,体会解决问题策略的应用价值;

培养勤于思考、善于思考的学习品质。

教学重点:

用从条件或问题想起的策略分析数量关系。

教学难点:

正确分析数量关系。

教学过程:

一、引入课题

谈话:今天的复习内容,是我们小学阶段学过的解决实际问题。通过今天的复习,要进一步掌握解决问题的一般步骤,整理并掌握学习过的解决问题的策略。对策略的应用,今天着重复习从条件想起、从问题想起分析数量关系的策略,能掌握分析方法,正确说明解决问题的思路并且解答实际问题,提高分析和解决问题的能力。

二、整理与反思

1.回顾讨论。

引导:大家先回顾一下学过的解决问题知识,同桌互相讨论、交流:解决实际问题的一般步骤是怎样的?我们学习过解决问题的哪些策略?可以联系实际问题讨论一下,这些策略在解决什么问题时用过。

2.交流认识。

(1)交流解决问题的步骤。

提问:大家回顾了学过的解决问题的步骤和策略,能说说解决实际问题时的一般步骤是怎样的吗?

(2)交流解决问题的策略。

提问:我们学习过解决问题的哪些策略?可以结合举出一些例子来说一说。你认为学习解决问题的策略有什么作用?

指出:从条件或问题想起分析数量关系是基本策略,有些问题还要通过列表、画图或者列举、转化、假设的策略才能清楚地找到解决问题的方法。所以学习策略可以帮助我们更清楚地了解数量间的联系,找出解决问题的方法。

三、练习与实践

1.做“练习与实践”第1题。

(1)让学生独立阅读第(1)(2)题。

让学生分别说一说每题的条件和问题,说说两道题哪里不一样。

(2)引导:这两题你能怎样想的?自己先思考准备怎样想,再同桌互相说说你的想法,看看有没有不同的想法,要先求什么,再求什么。

提问:你能说说第(1)题可以怎样想吗?还能怎样想?指名几个学生从条件想起说一说是怎样想的。提问:第(2)题你是怎样想的?有不同的想法吗?指名几个学生从问题想起说一说是怎样想的。

(3)学生独立解答,指名板演。

检查列式过程,让学生说说各题的每一步求出的什么。

提问:两题的问题都是求长袖衬衫的单价,为什么解答过程不一样?(4)引导:通过上面两题的解答,你有哪些体会?

2.做“练习与实践”第2题。

(1)让学生独立读题,了解题意。

引导学生观察图形,结合图形说说第(1)题小芳走过的路线是怎样的,第(2)题两人是怎样行走的。

引导:先看看小芳和小军的速度各是多少,想想两人大致在哪里相遇,在图上用一个点表示出来。交流:你估计大致在哪里相遇,怎样想的?

(2)让学生列式解答两个问题,教师巡视、指导。

①交流:第(1)小题是怎样列式的?这样列式是怎样想的?有没有不同的列式?这样列式又是怎样想的?

说明:解答实际问题,有时有不同的解答方法,这是因为分析方法不同,解决问题的过程或方法就可能不一样。

②交流:第(2)题怎样列式?这是根据什么数量关系列式的?也有不同的解法吗?这又是根据什么数量关系列式的?追问:这两种解法有什么联系?

解答上面两题,都和哪个常见的数量关系有关?

3.做“练习与实践”第4题。

让学生读题,说说从表格里的对应数值能知道什么,要解决什么问题。

引导:你能解决这个问题吗?自己想办法解答。交流:你是怎样解答的?这是怎样想的?还有不同的解答方法吗?这又是怎样想的?

提问:这两种解法思路有什么不同?能说说两种解法分别是先求的什么、再求的什么吗?

4.做“练习与实践”第5题。

让学生独立读题,摘录整理条件和问题。交流:你是怎样整理的?提问:根据整理的条件和问题,这题可以怎样想?说一说你的想法。追问:你认为整理的条件和问题,对于解决问题有什么好处?

四、总结与作业

1.总结交流。

今天复习了解决问题的哪些内容?通过整理与练习,你有哪些收获?

2.布置作业。

完成“练习与实践”第3题和第5题。

第9课时 解决问题的策略整理与复习(2)

教学内容:

苏教版六下P79“练习与实践”第6~9题。

教学目标:

1.学生能应用画图、列表、转化等策略分析和解决实际问题,能根据问题特点选择不同策略分析数量关系、列式解答,并能解释和说明自己所用的策略。

2.学生能依据相应的策略说明分析实际问题数量关系的思考过程,提高灵活、综合应用策略的能力,培养思维的深刻性和灵活性,发展分析、推理等思维和几何直观,以及分析问题、解决问题的能力。

3.学生进一步感受现实生活存在各类数学问题,体会解决问题策略的实际应用,培养学生面对实际问题用数学方法分析、处理的意识。

教学重点:

用画图、列表、转化等策略解决实际问题。

教学难点:

灵活选择策略解决实际问题。

教学过程:

一、揭示课题

谈话:上一节课我们复习了解决问题的相关内容,并且重点应用了从条件或问题想起的策略解决实际问题。今天继续复习解决问题,主要应用画图、列表的策略解决问题,并且能自己选择策略灵活地解决实际问题。

二、练习与实践

1.做“练习与实践”第6题。

(1)让学生读题,利用图形理解条件和问题。

交流:你知道了题里有哪些条件,要解决什么问题?(出示图形,根据交流注明长、宽的条件) 这块长方形菜地分成的两个部分各是什么形状的?

引导:要计算这里三角形的面积和梯形的面积,你能根据题里的条件在图上画一画,找到解决问题的思路吗?想一想怎样画,自己画一画。交流:你是怎样画的?

为什么想到在三角形的顶点画宽的平行线段?

说明:通过交流,我们知道根据黄瓜的面积比番茄面积少180平方米这个条件,可以在梯形中画出一个和种黄瓜的三角形地完全一样的三角形地块,这样就能直接看出黄瓜比番茄少的面积是右边这个长方形地块。让画法不合理的订正自己的画法。

(2)引导:现在你能看图说一说,解决这个问题可以怎样想吗?在四人小组里互相讨论,找找可以怎样解答这个问题。

交流:哪些同学想到了解决这个问题的思路?和大家交流一下。

结合交流,帮助学生理解不同思路。

(3)让学生选择一种思路解答,指名不同解法的学生板演。

引导学生结合图形分别说说不同解法中每一步算的什么。

(4)提问:我们刚才画图对于解答问题有什么好处?

2.下面的问题用哪个策略解决比较合适?请你应用恰当的策略解答。

出示:一个长方形长8分米,宽6分米。如果把一条长缩短到原来的一半,或者把一条宽缩短到原来的一半,都能得到一个梯形。这两个梯形面积会相等吗?算一算、比一比。

提问:想想这个图形分别怎样变化的,能用什么策略解决,用你想到的策略算一算、比一比,解决问题。学生独立解答,教师巡视、指导。

交流:你用了什么策略?怎样画图的?这两个梯形面积相等吗?你是怎样计算的?

说明:用画图的策略能找到相应的条件,计算各自的面积。这里虽然长方形通过不同的变化得到的梯形不同,但面积是相等的。

3.做“练习与实践”第7题。

提问:你能说说题里告诉我们什么,要解决什么问题?

引导:大家想一想杨大爷步行的过程,思考解决问题还需要什么条件;再列表或画图表示行走过程,看看从表里或图中能知道什么新条件。学生列表或画图,教师巡视、指导。

交流:你是怎样列表的?画图的是怎样画图表示的?

引导:大家先观察列出的表格或画出的图形,思考能得出哪个条件,可以怎样解决问题,各人独立解答。交流:你是怎样解答的?

你结合列表或画图,说说这里的每一步是怎样想的吗?列表或画图在解题过程中有什么作用?

4.做“练习与实践”第8题。

(1)让学生先根据题意补充线段图,再同桌交流怎样补充的,讨论怎样解答,有没有不同解答方法,然后选择一种方法解答。

学生画图、交流并解答,教师巡视,指名不同算法的学生板演。

(2)交流:线段图是怎样补充完整的?

你能联系线段图理解这里的不同解法,说说每种解法是怎样想的吗?自己观察、思考,不明白的可以合同学交流。提问:你能说说这些解法各是怎样想的吗?

指名交流,引导学生结合图形理解不同解法。

比较:哪种解法更方便一些?这里应用了哪个策略?

5.做“练习与实践”第9题。

学生读题,要求交流条件和问题。

提问:下面的线段图表示了哪些条件?还有什么条件没有表示出来?引导:根据从第一筐取出2放入第二筐,两筐苹果就同样重这个条件,表示第二筐苹果多重的线9

段怎样画呢?先看表示第一筐的线段想一想,再画一画。学生画图,教师巡视、指导。

交流:根据条件,表示第二筐苹果有多重的线段怎样画的?说说你的想法。

引导:请你看线段图,想想这两筐苹果的千克数之间有什么关系,能怎样解答,然后用你想到的方法解答出来。如果与困难,可以讨论讨论。学生解答,教师巡视、指导。

交流:你是怎样解答的?用了什么策略?

结合交流板书算式,并引导学生理解不同解法。反思:通过解答这道题,你有哪些体会?

三、总结交流提问

回顾今天解决问题的内容和过程,都应用了哪些策略?你对画图、列表、假设和转化这些策略的应用,有哪些新的认识?还有哪些收获?

第10课时 解决问题的策略整理与复习(3)

教学内容:

苏教版六下P80 “练习与实践”第10~13题,思考题。

教学目标:

1.学生能应用假设、列举等策略分析和解决实际问题,能根据问题特点选择恰当的策略或综合运用策略解决实际问题,并能解释和说明选择的策略和思路。

2.学生能根据策略说明分析问题的思考过程,提高根据问题特点灵活选择、应用策略的能力,提高分析、推理等思维能力和解决问题的能力。

3.学生加深对数学和现实生活联系的体会,进一步体会数学策略、方法在解决实际问题中的应用价值,培养应用数学策略的意识。

教学重点:

用假设、列举等策略解决问题。

教学难点:

根据问题特点选择合适的策略解决问题。

教学过程:

一、揭示课题

谈话:前两节课我们复习了解决问题的相关内容和策略,主要复习了应用从条件或问题想起、画图、列表和转化等策略解决实际问题。今天继续复习解决问题,主要应用假设、列举等策略解决问题,了解一些实际问题特点和相应的策略,提高解决问题的能力。

二、练习与实践

1.做“练习与实践”第10题。

要求学生读题,看懂表格里的意思。

提问:能说说习题的意思吗?表格里已经填写的分别表示的是什么?

引导:请你在表格里填一填,看看是怎样变化的,经过几次白子和黑子枚数相等,然后根据填表的过程想想可以怎样列式解答,自己列式计算。

学生独立填表,列式解答。

交流:你是怎样填表的?用列表的方法,可以看出这样取放多少次后,白子与黑子正好相等?你是怎样列式的?能说说怎样想的吗?

追问:解答这道题时用的什么策略?

2.做“练习与实践”第11题。

让学生说说题里告诉哪些条件,要求什么问题。

提问:把长90米的绳子分成的三段长度有什么关系?

引导:你准备怎样理清三段绳长的关系,怎样解决问题?同桌讨论一下。

交流:你准备怎样理清绳长的关系?你想怎样解决问题呢?可以有哪些假设的方法?

引导:请你选择一种假设的方法,列式解答。

交流:你怎样假设的?说说你的算式。

用不同假设的同学来说说你的方法。

提问:解答这个问题用了哪些策略?

3.做“练习与实践”第12题。

让学生观察、阅读,把情境组织成实际问题。

引导:你想怎样解答?自己想一想可以用什么策略解决,然后列式求出结果。

学生解答,教师巡视、指导,指名学生板演。

交流:大家看看这里是怎样解答的,用了什么策略?

追问:你是怎样假设的?

提问:还可以怎样假设?哪位同学用了这样的假设策略的?说说你的解答过程。

追问:假设的方法虽然不同,但都是根据哪个条件假设的?

4.用恰当的策略解决下列问题。

出示:货场要运货50吨,用2辆大货车和6辆小货车正好运完。一辆大货车的载重量比一辆小货车多3吨,大货车的载重量是多少吨?小货车呢?

提问:这道题和上面的有什么不同?

引导:想想可以用什么策略解决,自己解答。有困难的可以讨论。

学生解答,教师巡视,指名不同假设方法的学生分别板演。

交流:解答这道题能用什么策略?可以怎样假设呢?

哪一种解法假设都是小货车的?怎样思考的?

假设都是大货车时要注意什么呢?这里每一步表示的什么意思?

提问:这里用假设策略时要注意什么?

5.做“练习与实践”第13题。

(1)指名学生读题。

引导:你能按要求先在表里假设两种门票的张数,再通过调整找出答案吗?那请你自己假设、调整找出答案。

学生假设完成,教师巡视。

交流:你是怎样假设的?这样假设后怎样调整的?

还有假设不同的张数再调整的吗?

提问:调整时,每张按多少元调整的?

(2)引导:你能用假设的策略列算式解答吗?自己列式解答。

学生列式解答,教师巡视,指名不同假设策略的同学板演。

引导:两种解法,你用了哪一种,怎样想的?;另一种呢?

三、拓展提高

解决思考题。学生说明条件和问题。

引导:想一想可以用怎样的策略解决问题,用你想到的策略解决,看看能不能得出结果。如果有困难,可以在四人小组里讨论方法。学生解答,教师巡视、交流指导。

交流:你得出的结果是几比几?你是怎样解答的?

四、总结交流

提问:这节课主要用到了哪些策略?能根据上面的练习说说哪些题适合用假设策略,哪些题适合用列举策略吗?

第11课时 式与方程整理与复习(1)

教学内容:

苏教版六下P81~82“整理与反思”、“练习与实践”第1~4题。

教学目标:

1.学生加深理解用字母表示数的意义及方法,进一步体会方程的意义及方程与等式的关系,会用等式的性质解方程,能列方程解答简单的实际问题。

2.学生进一步提高用字母的式子表示数量关系的能力,增强符号意识,体会方程思想;

进一步提高分析问题和解决问题的能力。

3.学生主动参与整理和练习等学习活动,进一步感受数学与日常生活的紧密联系,体验学习成功的乐趣,发展数学学习的积极情感。

教学重点:

掌握方程的意义及解方程的方法。

教学难点:

用含有字母的式子表示数量关系。

教学过程:

一、谈话导入

谈话:这节课,我们复习“式与方程”的有关知识。(板书课题)

今天主要复习其中的字母表示数、方程的意义和解方程,并且列方程解决一些简单的实际问题。通过复习进一步掌握用字母表示数,提高解方程和列方程解决简单实际问题的能力。

二、回顾整理

1.复习用字母表示数。

(1)回顾举例。

提问:你能举出一些用字母表示数的例子吗?先独立思考,再与同桌交流。

小组交流后组织汇报,教师相应板书:

①表示计算公式,如C=2(a+b)。

②表示运算律,如a+b=b+a.

③表示数量关系,如s=vt。

提问:用字母可以表示这么多的内容,那么在用字母表示数的乘法式子里,你觉得应该提醒大家注意些什么?

(2)做“练习与实践”第1题。

学生独立在书上完成,教师巡视、指导。

集体订正,选择几题让学生说说是怎样想的。

追问:第(3)题是怎样根据a=3求周长4a和面积a各是多少的?

提问:列含有字母的式子,是根据数量之间的联系,用字母表示数列出相应的式子。求含有字母式子的值,只要把字母的值直接代入式子计算结果。

2.复习方程与等式。

(1)复习方程的概念。

下面的式子中,哪些是方程,哪些不是方程?为什么?

3x=15 x-2 x-2420x= 921

18÷3=6 16+4x=40 a+4

提问:根据刚才的判断,你能说说什么是方程吗?一个式子是方程,必须具备什么条件?方程与等式有什么关系?请你说一说,并从上面式子中找出例子说明。

根据学生回答呈现集合体。

帮助学生进一步理解:方程是含义未知数的等式;方程是等式,等式不一定是方程。

(2)复习等式的性质及解方程。

①等式的性质。

提问:等式的性质有哪些?等式的性质有什么应用?

提问:怎样应用等式的性质解下面的方程?说说你的想法。

出示:x-3=15 0.5x=1 x÷1=2 2

根据学生说明板书解方程。

指出:根据方程里已知数和未知数的关系,应用等式的性质使方程左边只剩下x,就能求出方程的解。

②做“练习与实践”第2题。

学生观察第2题。

提问:你会解这些方程吗?请你独立解方程。

学生解方程,指名板演。

集体校对,让学生说说解方程的思路。

指名说说检验的方法,选择一题板演检验过程。

提问:解方程与方程的解有什么区别?请你选择一题说说它们的区别。

3.复习列方程解决实际问题。

(1)谈话:学习方程是为了用它解决生活中的实际问题,请同学们回忆一下,列方程解决实际问题的一般步骤有哪些?你认为最关键的是哪一步?

结合学生回答,教师板书:

第一步:弄清题意,用x表示未知数。

第二步:找出等量关系。

第三步:列出方程并解方程。

第四步:检验,写答句。

(2)说出下面各题中数量之间的相等关系。

①果园有桃树和柳树共1000棵。

②红花比黄花少25朵。

③学校航模组的人数是美术组的3倍。

④花金鱼比黑金鱼的1.2倍还多8条。

让学生独立思考,指名说出等量关系,明确要根据条件表示的意思确定数量间的相等关系。

三、巩固深化

1.做“练习与实践”第3题。

学生读题后独立解答。

集体交流,学生说出解题思路,教师板书等量关系和方程,并解方程。

说明:这题的关键是根据条件找出等量关系,再根据等量关系列出方程。

2.做“练习与实践”第4题。

学生读题,理解题意。

提问:鞋的码数与厘米数之间有怎样的关系?

学生独立完成,把书上的表填写完整。

集体交流,让学生说说是怎样思考的。

追问:求b的码数和求a的厘米数有什么不同?

四、课堂小结

这节课我们复习了哪些知识?你有什么收获?

第12课时 式与方程整理与复习(2)

教学内容:

苏教版六下P82“练习与实践”第5~9题。

教学目标:

1.学生进一步掌握列方程解决实际问题的步骤和思路,能根据题意说呢数量间的相等关系,正确地列方程解答相关实际问题。

2.学生在分析问题、解决问题的活动中,进一步提高分析数量关系和用方程表示数量关系的能力,体会,模型思想,积累解决问题的经验,发展数学思考。

3.学生进一步体会列方程解决实际问题的意义和价值,感受数学与现实生活的联系,培养应用意识;

在应用知识的过程中体验成功的乐趣,激发数学学习的兴趣。

教学重点:

列方程解决实际问题。

教学难点:

分析和理解实际问题的数量关系。

教学过程:

一、揭示课题

谈话:这节课,我们继续复习方程的相关知识,主要复习列方程解决实际问题。(板书课题) 通过复习,进一步掌握列方程解决实际问题的方法,提高用方程解决实际问题的能力。

二、基本练习

1.解答下列问题。

引导:上节课已经复习过列方程解决简单的实际问题,现在再看一道题,大家独立列方程解答,并想想按怎样的步骤解答的,关键是哪一步。

出示:甲、乙两地间的公路长240米,一辆汽车从甲地开往乙地,行驶了1.5小时后离乙地还有75千米。这辆汽车的速度是多少千米╱时?

学生独立读题并列方程解答,指名板演。

交流:这题是怎样解答的?说说是怎样想的。

方程是根据怎样的等量关系列出来的?

还能找出怎样的等量关系?根据这个等量关系可以怎样列方程?

2.把下列各题中数量间的相等关系填写完整,并列出方程。

(1)学校书法组有42人,比音乐组的2倍少4人。音乐组有多少人?

=书法组人数

=4人

(2)学校书法组和音乐组一共42人,书法组人数是音乐组的2倍。书法组和音乐组各有多少人?书法组和音乐组一共的人数

学生独立读题,完成数量关系式,设未知数并列出方程。

指名学生说出等量关系,设未知数为x,口头列出方程;根据交流呈现等量关系式和相应的方程。追问:方程是根据什么列出的?

三、应用练习

1.做“练习与实践”第5题。

学生读题,理解题意。

学生独立解答,教师巡视,指名列不同方程的学生板演。

集体交流,让学生说说这是哪一类实际问题,不同方程相应的等量关系各是怎样的,检查列方程解题过程。

2.做“练习与实践”第6题。

学生读题后独立解答。

集体交流,让学生说说解答这题的数量关系式和方程,教师板书。

3.出示:水果店运来苹果的千克数是橘子的3倍,一共480千克。

运来橘子多少千克?

引导:同桌相互说说数量之间的相等关系,应该怎样列方程。

提问:这里数量间有怎样的相等关系?方程怎样列的?

4.做“练习与实践”第7题。

学生读题后独立解答,指名板演。

集体交流、评议,让学生说说思考的过程,应该怎样找数量间的相等关系。

5.做“练习与实践”第8题。

指名学生读题,说说题中的条件和问题。

提问:你能说说“甲种衬衫按四折销售”和“乙种衬衣按五折销售”的意思吗?

学生独立解答,教师巡视、指导。

集体交流,提问:这题中单位“1”的量是什么?数量关系式应该怎样列?

引导:比较第7、8题,为什么都用方程解答?列方程时怎样表示题里两个未知数量的?

四、拓展练习

出示“练习与实践”第9题,引导学生了解题意。

(1)出示数表和3个方框。

①让学生按横框直接在书上的数表里框4个数,同桌相互说说自己框的4个数之间有什么关系。要求再框几次,验证自己发现的关系,看看能发现什么规律。

提问:这样每次框出的4个数之间有什么关系?

如果用a表示框里的第一个数,后面3个数分别怎样表示?自己想一想、填一填。

交流:你是怎样填的?说说你的想法和填的结果。

引导:这4个数的和可以怎样表示?

学生计算,教师巡视。

集体交流,教师相机板书:4a+6。

②引导:请每人分别用另两个长方形框连续框几次,看看又能发现什么规律,在下面每个相应的框里表示其余3个数,看看和可以怎样表示。如果有困难,可以同桌商量完成。

学生活动,教师巡视、指导。

集体交流,让学生说说填写的结果及思考的过程,呈现并板书交流的结果。

(2)框数、猜数游戏。

出示第(2)题,了解要求。

引导:框出4个数算出它们的和,能不能按刚才表示4个数和的式子,说出4个数各是多少呢?谁愿意来报出一组4个数的和,大家想一想这4个数分别是多少?

指名一人报出和,其余学生说出4个数,交流结果和思考方法,引导学生了解可以根据表示和的式子试着列方程,看能根据哪个式子列出方程求出结果。

要求:现在同桌两人一组,一人框4个数说出和,另一人说出这4个数;两人交换进行游戏。学生活动,教师巡视、指导。

提问:根据4个数的和说出4个数各是多少,其实是用到了什么知识?

五、课堂总结

提问:这节课复习了什么内容?你又有哪些新的认识和收获?还有什么不懂的问题?

第13课时 比和比例整理与复习

教学内容:

苏教版六下P83~84“整理与反思”、“练习与实践”第1~6题。

教学目标:

1.学生进一步巩固比和比例的意义、性质,加深认识比和分数、除法之间的联系;

进一步认识比例尺,巩固解比例的方法,能应用比和比例的知识解决有关实际问题。

2.学生在回顾整理与练习应用的过程中,进一步认识知识的内在联系,加深对数量比较的认识,提高分析、推理、判断等思维能力,增强运用比和比例知识解决实际问题的能力。

3.学生在复习过程中感受数学知识系统性的特点,体验数学与生活实际的密切联系,培养学生的数学应用意识,激发学生学习数学的自信心。

教学重点:

比和比例的意义、性质及应用。

教学难点:

正确解答有关比和比例的问题。

教学过程:

一、揭示课题

谈话:这节课我们要对比和比例的相关知识进行整理和复习。在整理与复习过程中,同学们要主动回顾、整理比和比例的知识,系统掌握比和比例的知识及应用,进一步增强运用比和比例知识解决实际问题的能力。

二、知识梳理

1.唤醒记忆。

提问:请同学们回忆一下,我们学过了比和比例的哪些内容?

学生自由回答,教师相应板书。

2.复习比的知识。

(1)出示问题:

①什么是比?什么是比的基本性质?用比的知识可以解决哪些实际问题?

②比和分数、除法有什么联系?

③什么叫求比值?什么叫化简比?请你举例说明。

学生在小组里交流,互相补充、修正,教师巡视、指导。

(2)全班交流。

①什么是比?什么是比的基本性质?用比的知识可以解决哪些实际问题?

结合交流,教师相应板书。

②引导:比和分数、除法有什么联系呢?请你填写课本上的式子,相互说一说它们之间的联系和区别。

集体交流,教师相应板书。

提问:能根据这个式子说说比和分数、除法之间的联系吗?它们有什么区别?

提问:比的基本性质是什么?比的基本性质与分数的基本性质、商不变的规律有什么联系? 交流小结比的基本性质,依据相互间的联系说明比的基本性质与商不变的规律、分数的基本性质本质上是相同的。

③什么叫求比值?什么叫化简比?求比值和化简比的依据和结果有什么不同?

结合交流,教师相应板书。

(3)做“练习与实践”第1题。

学生独立完成,填写在书上。

集体交流,让学生说说是怎样想的。

3.复习比例的知识。

(1)出示问题:

①什么是比例?什么是比例的基本性质?写出一个比例说说自己的认识。

②什么是解比例?怎样应用比例的基本性质解比例?举例说一说。

③什么是比例尺?根据比例尺求图上距离或实际距离的方法是怎样的?

小组讨论、交流。

(2)按出示的问题全班交流,结合学生回答,相应板书。

三、组织练习

1.做“练习与实践”第2题。

出示第(1)题,学生根据要求先量出每副图片的长和宽,并写出长和宽的比。

集体交流,有错的同学订正。

提问:估计哪两个比能组成比例?你是怎样估计的?

让学生算一算,写出比例。

交流写出的比例,说明能组成比例的理由,并与估计结果比较。

2.做“练习与实践”第4题。

(1)出示统计表。

引导:你理解表中每个百分数的含义吗?选择几个百分数,在小组里相互说说它的含义。 小组交流后指名汇报,选择2至3个百分数说说含义。

(2)出示问题(1)。

指名学生口答,并让学生说说思考的过程。

(3)提问:从表中还能获得哪些信息?你还能提出哪些问题?

学生小组讨论后集体交流。

3.做“练习与实践”第5题。

(1)学生读题,理解题意。

让学生自己写出比,并求出每种地砖的铺地面积。

交流:两种地砖面积的比是怎样的?说说你的方法。

(2)提问:求两种地砖铺地面积是怎样的问题?你是怎样解答的?

结合学生回答,教师板书算式、得数,并让学生说说每一步求的什么?

提问:按比例分配实际问题有什么特点?解答时通常应该怎样想?

4.做“练习与实践”第6题。

指名学生读题,了解题意。

要求学生独立操作、计算,教师巡视、指导。

集体交流,让学生说说是用怎样的方程计算的,注意理解不同的思路、方法。

追问:这里不同的解题方法各是怎样想的?

四、课堂总结

提问:今天这节课我们复习了哪些内容?在整理与复习的过程中,你又有了哪些收获和体会?

第14课时正比例和反比例整理与复习

教学内容:

苏教版六下P84~85 “练习与实践”第7~10题。

教学目标:

1.学生进一步认识成正比例和反比例的量,掌握两种量是否成正比例或反比例的思考方法,能正确判断两种量成不成比例,成什么比例。

2.学生通过判断两种相关联的量是否成正比例或反比例,加深理解成正比例和反比例关系的特点,体会数形结合和函数思想,提高分析、判断和初步演绎推理能力。

3.学生进一步体会生活中常见的相关联的变换关系,感受比和比例的应用价值,体会不同领域数学内容之间的联系,激发学习数学的积极性。

教学重点:

正确判断两种相关联量的正比例和反比例关系。

教学难点:

有条理地说明判断正、反比例的理由。

教学过程:

一、揭示课题

谈话:上节课我们复习了比和比例的相关知识,这节课我们一起复习正比例和反比例。(板书课题)

通过复习,进一步认识正比例和反比例的意义、正比例图像,了解正、反比例的区别和联系,掌握判断两种量是否成正比例或者反比例的方法,能正确地进行判断。

二、回顾梳理

1.提问:请同学们回忆一下,怎样的两种量是成正比例的量?怎样的两种量是成反比例的量?

根据学生回答板书。

提问:你能举一些生活中成正比例或反比例的例子吗?在小组里相互说一说。

全班交流,让学生举例说一说。

2.做“练习与实践”第7题。

提问:每张表里有哪两种量?每张表里的两种量是成正比例、反比例,还是不成比例?先独立分析每张表的数量变化过程,再把你的想法与同桌交流。

集体交流,引导学生判断并说明理由。

提问:我们是怎样判断两种量成不成比例,成比例的是成正比例还是反比例的?

3.做“练习与实践”第8题。

学生理解题意后独立思考,判断结论。

指名学生说说各题中两种量是否成比例,成比例的是成正比例还是成反比例,并说明理由,结合交流板书相应的关系式。

三、综合练习

1.做“练习与实践”第9题。

(1)学生练习。

出示第9题,让学生说说图中的信息。

要求学生独立思考和完成第(1)~(3)题,再和同桌相互说一说。

(2)学生交流。

①提问:这辆汽车在高速公路上行驶的路程和耗油量成正比例吗?为什么?

让学生判断并说出判断理由。

②让学生说说问题(2)判断的方法。

结合图像说明:可以先在横轴上找到表示75千米在图像上的对应点,再通过图像上的对应点找出和确定耗油升数。

③出示学生根据第(3)题画出的图像。

提问:怎样描出路程和耗油量对应的点画出图像的?

2.做“练习与实践”第10题。

出示表格,让学生说说表中的信息。

(1)出示问题(1),提出要求:

①画一画:根据表中数据描点连线。

②议一议:哪一杯中纯酒精与蒸馏水体积的比和其他几杯不一样?在小组里交流你的想法和理由。

学生独立操作后小组讨论。

集体交流,展示学生画出的图像,说说是怎样画的。

让学生判断结果,并说出理由。

(2)出示问题(2)(3),学生独立解答。

集体交流,让学生说说解答结果及思考方法。

四、课题总结

提问:通过这节课的复习,你有什么收获?还有什么困惑吗?

小学六年级下册数学《数与代数》教案优质范文五教学目标:

1、经历自主回顾和整理“数的认识”的过程。

2、能对学过的数进行较系统的整理,进一步掌握数的知识,发展数感。

3、积极参加自主整理的活动,获得成功的学习体验。

课前预习:

小组合作,交流整理:

回顾以前学过那些数,各举五例。分析不同类数之间有何关系。

教学过程:

一、结合实例,引导学生回忆数的认识

1、回顾数的意义。

师:你学过那些数?

(生回答)

师出示卡片,生齐读。师:举例说明这些数可表示什么?

(生回答)

2、数的分类。

完成问题(1)。

师:把上面的数填到合适的位置

(生回答)

师:每种类型的数,除了上面几种类型,你还能举出其它的吗?

(生回答)

3、数的互化

师出示问题(2)

呈现表格,完成数的互化,交流做法。

4、数的大小比较。

师出示问题(3)

学生自主完成。

5、适时小结。

师:通过刚才的练习,我们复习到数的哪些知识?

(生回答)

二、整理回顾有关倍数和因数的知识

1、引出问题。

师:小明的爸爸年龄数的十位上是最小的合数,个位上的数既不是质数也不是合数,且年龄是小明的五倍,同学们能猜出小明和他爸爸的年龄吗?

(生回答)

以上问题,我们运用了哪些数学知识呢?(倍数和因数)

明确:我们一起回顾和整理倍数和因数。

2、小组合作,梳理知识。

师:以小组为单位,将学过的“倍数和因数”知识整理下来。同学们认真讨论,由组长记录,一会儿我们要比一比,看一看哪一个小组整理的更加完整、科学合理。全班交流。

整理完善知识结构。

师:在这一部分中我们为什么先学因数和倍数?

组织学生讨论和交流

师:倍数和因数是基础,他们是相互依存的关系,今天整理出来的倍数和因数脉络图使这部分知识更加条理化和系统化。

三、复习正数和负数

师出示亮亮家4月份收支情况记录。

学生阅读题目内容。

出示问题(1)。

提醒学生估算时要注意的问题。(生回答)师:(生回答)师:(生回答)

出示问题(2)。

让学生举例说明什么是正数和负数。

学生自主完成问题(2)。

全班交流。

交流时重点关注怎样用正负号表示收支情况,以及怎样基数按每次结余。

四、人民币上的号码

1、让学生拿出自己身上的人民币。

2、提出兔博士的问题,鼓励学生根据自己你的经验大胆回答。

五、课堂小结

这节课我们复习了哪些内容?,你想提醒大家注意哪些问题?

六、课堂作业

第二课时

教学目标

1、经历自主回顾和整理整数、小数、分数四则运算的过程。

2、能对四则运算及它们之间的关系和运算定律进行归纳和整理,能选择合适的估算方法。

3、体验自主整理数学知识的乐趣,提高计算能力。

课前回顾:

我们学过那些计算?分别写出整数、小数、分数的加、减、乘、除的算式各一道,并计算出结果。小组内交流计算的结果。

教学过程:

一、引导学生回顾和整理四则运算

1、师:回想一下我们学过哪些计算?

生回答。

小组长汇报 本组在课前练习中出现的问题。

2、议一议

出示问题(1)生归纳整理。

出示问题(2)生举例说明0和1在四则运算中的一些特殊情况。

生整理汇报。(注意提示0不能做除数)

3、各部分间的关系。

师:加法各部分间有什么关系?

生回答。

引导学生自己总结减法各部分间的关系。

师归纳出加减法互为逆运算。

同样的方法总结乘除法的关系。

说一说

师:上述关系在计算中有哪些应用?

启发学生回答,(进行验算、解方程等)

二、复习四则运算和运算律

1、师:我们学过的运算律有哪些?

小组讨论,自主总结,并写出字母表达式。

2、出示问题(2)

先说出运算顺序再计算。计算后交流做法,注意能简算的要简算。

3、估算。

(1) 出示问题(1)

先让生独立思考并判断,再回答是如何判断的。

(2) 出示问题(2)

师生共同讨论怎样想,需要几个步骤。

计算问题(2)时可用竞赛的方式,看谁算得又对又快。

三、课堂总结

第7篇

关键词农村;小学;六年级;数学教学方案;探讨

中图分类号:G622文献标识码:A文章编号:1002-7661(2018)01-0223-01

一、农村小学六年级数学教学方案存在的问题

1.教学方案过于固定和统一

在很多农村地区小学六年级的数学教学方案中,并没有结合农村地区的实际情况进行教学方案的设定,单纯对城市的教学方案进行照搬,容易导致教学方案和学生的实际需求不符合,教学方案的实用性和效果也不够理想。这种情况的存在,在农村地区当中比较普遍。实际上,农村地区的学生和城市的学生在具体的学情上存在着差别,如果教师不能针对农村地区孩子的实际情况来进行教学方案的设定,就容易导致教学方案和学生的实际需求不匹配,最终导致教学没有办法有效地推动学生的成长。

2.教學方案的科学性比较薄弱

随着新课程改革的不断推进,在教学实施的过程当中,提倡对传统灌输式教学模式进行,并且更多地从学生的实际需求角度来进行教学的实施和开展,然而在农村地区的小学数学教学方案中,它的科学性比较差,并没有能够重新课程改革的背景来进行教学方案的设定,传统灌输式的教学模式依然占据了主导的位置,在这样的情况下,就容易导致教学无法更好地在学生的综合成长中发挥着作用,也无法让学生更好地投入到学习的过程当中,享受数学学习的乐趣。

3.教学方案中缺乏对学生学习兴趣的关注

在北师大版的小学六年级数学教材中,对学生学习兴趣的关注程度比较高,一方面在教材内容的编排上,会通过具体的合理化设置和选题,增加一些趣味性比较强的内容,从而使学生在这个过程当中能够有效地培养自己的学习兴趣。但是在很多农村地区,教师在进行数学教学方案设计的时候,往往对这些趣味性的内容采取了忽略的态度,认为这些内容的开展耗时、耗力,学生只需要学好考试应该考的知识点就可以了。在这样的背景下,就容易导致学生的学习兴趣没有办法得到有效的培养,最终在学习的过程当中也处在一个被动的状态下。

二、农村小学六年级数学教学方案的探讨

1.结合学生实际情况制定教学方案

教师在进行数学教学方案设计的时候,需要充分的对学生的学情进行考虑,在结合他们的知识背景及性格特点的情况下,来进行教学方案的合理设置。为了能够更好地开展小学数学的教学,教师需要在教学方案的合理设定上下功夫,必须要确保教学方案符合学生的实际需求,同时也能够对农村地区小学生的特点进行有效的把握。在教学方案设定的过程当中,就可以从三个维度来进行思考。第一个维度是北师大版的数学教材在编写方面的特点以及和其他版本教材的不同特点;第二个维度是农村地区,小学六年级的学生有着什么样的知识背景和家庭生活背景,自身的性格特点怎么样;第三个维度是教育教学改革发展背景下以及课程标准,对小学六年级的数学教学提出了什么样的要求。如果教师能够做到从这三个方面进行思考,那么所制定出来的教学方案在实施过程中的效果就会更加明显。

2.提升教学方案的科学性

教学方案是教学实施的有效依据,教师在进行教学方案设定的过程中,必须要注重方案的科学性。一个科学的教学方案不仅体现在对学生学情到充分考虑方面,同时还体现在其中所采取的教学理论和教学方法的科学性,这在一定程度上对推动农村小学六年级数学教学是有决定性作用。教师在进行教学方案设计的过程中,要注重方案的动态性。没有任何一个教学方案在任何一个时期当中都是固定使用的,教师需要确保它处在一个动态的调整过程当中,从而能够更好地在学生的成长当中发挥着积极的作用。在有必要的情况之下,教师还可以使用一些科学的量表来对教学方案的科学性开展评价,以此来提升教学方案的效果。

3.注重学生学习兴趣的培养

教师在进行教学方案设计的时候,要注重对学生的学习兴趣进行培养,首先教师应该创设合适的教学情境。针对小学生贪玩以及大脑经常走神的缺点,教师在教学的过程中要注重创设一个合适的情境,促进学生学习动机的呈现,从而使他们的学习兴趣得到有效的激发。教师要结合学生的实际情况,创设有助于教学实施和学生学习兴趣提高的问题情境,更好地推动学生的成长。其次,教师应该进行疑问教学的实施。疑问可以引发学生更好地对知识进行探讨,从而帮助他们进行良好的学习兴趣培养。教师在小学数学的教学过程中,通过给学生进行疑问的设置,让他们带着疑问进行思考,可以更好地对问题进行解决,从而激发自己学习的兴趣。在疑问式的教学模式当中,学生可以发现疑问是进行数学知识大门打开的金钥匙,因此可以在后续的学习过程当中呈现出更加主动和积极的学习态度。再者,教师应该让学生充满好奇心。在小学数学的教学过程当中,让学生充满好奇心,对学生学习兴趣的培养来说非常关键。教师通过让学生亲自对问题进行探究,可以促进学生丰富联想能力的培养,从而让学生的好奇心得到充分的活跃,促进对知识的更好把握,产生更好的学习效果。

三、结语

第8篇

一、单选题(共1题;共2分)

1.如果顺时针转30°,记作+30°,那么逆时针转60°,记作(

)°.

A. +60                                              B. -60

【答案】

B

【考点】正、负数的意义与应用

【解析】【解答】解:根据正负数的意义可知,逆时针转60°记作-60°.

故答案为:B

【分析】正负数表示一组相反意义的量,顺时针和逆时针就是一组相反意义的量,顺时针记作正,逆时针就记作负.

二、填空题(共6题;共17分)

2.写出直线上的点A、B、C、D、E所表示的数.(从左到右填写)

________

【答案】

-5,-2,-1,1,4

【考点】正、负数的意义与应用

【解析】【解答】解:如图:

故答案为:-5、-2、-1、1、4

【分析】正数都比0大,都在0的右边,负数都比0小,都在0的左边,由此根据数轴上的单位确定每个字母所在的位置表示的数即可.

3.在1.5,

,+3,-3,0,

,32,-1.2这些数中,自然数有________,小数有________,正数有________,负数有________,分数有________.其中最小的数是________,最大的数是________.

【答案】

+3,0,32;1.5,-1.2;1.5,,

+3,32;-3,

,-1.2;,

;-3;32

【考点】自然数的认识,正、负数的意义与应用

【解析】【解答】解:根据自然数的意义可知,自然数有+3、0、32;

根据小数的特征可知,小数有:1.5、-1.2;

根据正负数的知识可知,正数有:1.5、、+3、32;负数有:-3、、-1.2;

根据分数的意义可知,分数有:、;

根据负数大小的比较方法可知,-3最小,最大的数是32.

故答案为:+3、0、32;1.5、-1.2;1.5、、+3、32;-3、、-1.2;、;-3;32

【分析】自然数是表示物体个数的数,最小的自然数是0;小数是由整数部分、小数点和小数部分组成的;分数是由分子和分母、分数线组成的,小数和分数都不分正负;负数都比正数小,从负数中找出最小的数,从正数中找出最大的数即可.

4.用正数或负数表示下面的海拔高度.

(1)五岳之首泰山的最高峰玉皇顶高于海平面1545米.________

(2)青藏高原平均高度比海平面高出4500米.________

(3)世界上最深的淡水湖是贝加尔湖,最深处比海平面低1620米.________

【答案】

(1)1545米

(2)4500米

(3)-1620米

【考点】正、负数的意义与应用

【解析】【解答】解:根据正负数的意义可知:

(1)五岳之首泰山的最高峰玉皇顶高于海平面1545米,记作:1545米;

(2)青藏高原平均高度比海平面高出4500米,记作:4500米;

(3)世界上最深的淡水湖是贝加尔湖,最深处比海平面低1620米,记作:-1620米.

故答案为:1545;4500;-1620

【分析】正负数表示一组相反意义的量,以海平面为标准,高于海平面的高度就记作正,低于海平面的高度记作负;注意正号可以省略不写.

5.读一读下面的温度,并用正数或负数表示出来.

非洲利比亚的加里延地区是世界上最热的地方,曾经出现过五十七点八摄氏度的高温.________

世界上最冷的地方在南极.1967年,挪威科学家在南极点附近曾测得零下九十四点五摄氏度的低温.________

【答案】

57.8℃;-94.5℃

【考点】正、负数的意义与应用

【解析】【解答】解:根据正负数的意义可知:五十七点八摄氏度记作:57.8℃;

零下九十四点五摄氏度记作:-94.5℃

故答案为:57.8℃;-94.5℃

【分析】正负数表示一组相反意义的量,以0℃为标准,高于0℃的记作正,低于0℃的就记作负,注意正号可以省略不写.

6.如果飞机高出海平面80m,记作+80m,那么潜水艇低于海平面50m,记作________,飞机与潜水艇的高度相差________.

【答案】

-50m;130m

【考点】正、负数的意义与应用

【解析】【解答】解:根据正负数的意义可知,潜水艇低于海平面50m,记作-50m,飞机与潜水艇的高度差:80+50=130(m)

故答案为:-50m;130m

【分析】正负数表示一组相反意义的量,高于海平面为正,那么低于海平面就是负;用高于海平面的高度加上低于海平面的高度即可求出两个高度之间的差.

7.比较下列各数的大小.

0________-1

-9________2

【答案】

>;

【考点】正、负数大小的比较

【解析】【解答】解:根据正负数大小的比较方法可知:0>-1,-9<2

故答案为:>;<

【分析】正数都大于0,负数都小于0,正数都大于负数;两个负数比较大小,先把负号去掉,去掉负号后大的数比较小,去掉负号后小的数比较大.

三、解答题(共3题;共16分)

8.下表是我国几个城市某年元旦的平均温度.

(1)把这些气温从低到高排列为:

________

(2)从中国地图上找出这几个城市的位置,看看它们的气温和所处的地理位置有何关系?

【答案】

(1)-16℃,-8℃,-1℃,4℃,9℃,20℃.

(2)解:越往北温度越低,越往南温度越高.

【考点】正、负数大小的比较

【解析】【解答】解:(1)这些气温从低到高排列为:-16℃,-8℃,-1℃,4℃,9℃,20℃;

(2)越往北温度越低,越往南温度越高.

故答案为:-16℃,-8℃,-1℃,4℃,9℃,20℃;越往北温度越低,越往南温度越高.

【分析】正数都大于0,负数都小于0;都是正数就按照整数大小的比较方法比较大小;都是负数,把负号去掉后大的数小,去掉负号后小的数大.

9.我们把李明从家出发,向西走了500米记作走了-500米,那么李明又接着走了+800米是什么意思?这时李明离家的距离有多远?

【答案】

解:800-500=300(米)

答:+800米表示向东走800米,离家有300米.

【考点】正、负数的意义与应用

【解析】【分析】正负数表示一组相反意义的量,以家为界线,小东走记作正,向西走记作负,根据正负数的意义解答即可.

10.下面的数轴,我们认识的数能用数轴上的点表示,在相应的点上写出相应的数.

【答案】

解:

第9篇

一、单选题(共2题;共4分)

1.利息与本金的比值叫做(

)。

A. 利息                                         B. 利率                                         C. 税率

【答案】

B

【考点】百分数的应用--利率

【解析】【解答】解:利息与本金的比值叫做利率。

故答案为:B。

【分析】单位时间内,利息与本金的比值叫做利率。

2.某种商品降价20%出售,也就是对商品打了

)折.

A. 二                                           B. 八                                           C. 八五

【答案】

B

【考点】百分数的应用--折扣

【解析】【解答】解:1-20%=80%=八折。

故答案为:B。

【分析】以原价为单位“1”,用1减去20%即可求出现价是原价的百分之几,根据百分数确定折扣数即可。

二、填空题(共3题;共3分)

3.爷爷把30000元存入银行定期2年,年利率是2.14%,到期能获得利息________ 元.

【答案】

1284

【考点】百分数的应用--利率

【解析】【解答】解:30000×2.14%×2

=642×2

=1284(元)

故答案为:1284。

【分析】利息=本金×利率×存期,根据公式计算利息即可。

4.李爷爷把5000元钱存入银行,整存整取2年,年利率按2.25%计算。到期时李爷爷可以取回本金和利息一共________元。

【答案】

5225

【考点】百分数的应用--利率

【解析】【解答】解:5000×2.25%×2+5000

=112.5×2+5000

=225+5000

=5225(元)。

故答案为:5225。

【分析】到期时李爷爷可以取回本金和利息的总钱数=本金+利息,其中利息=本金×利率×时间。

5.一部手机打八折后的价格是960元,那这手机原价是________元。

【答案】

1200

【考点】百分数的应用--折扣

【解析】【解答】解:960÷80%=1200(元)

故答案为:1200。

【分析】八折的意思就是现价是原价的80%,根据分数除法的意义,用八折后的价格除以80%即可求出原价。

三、解答题(共5题;共25分)

6.某种自行车每辆原价230元,现在商店按8折出售,这种自行车比原价便宜了多少钱?

【答案】

解:230×(1-80%)

=230×0.2

=46(元)

答:这种自行车比原价便宜了46元。

【考点】百分数的应用--折扣

【解析】【分析】把这种自行车的原价看作单位“1”,便宜了1-80%=20%,原价×20%=

这种自行车比原价便宜的钱数。

7.张叔叔2010年12月28日存入银行8000元钱,定期3年,年利率为3.85%,到期时张叔叔一共可以取回多少钱?

【答案】

解:8000×3.85%×3+8000

=308×3+8000

=924+8000

=8924(元)

答:到期时张叔叔一共可以取回8924元钱。

【考点】百分数的应用--利率

【解析】【分析】到期时张叔叔一共可以取回的钱数=本金+利息,其中利息=本金×利率×时间。

8.请帮刘小徽的妈妈算一下到期能从银行取到利息多少钱?

某某银行定期存单

存入金额(元)

利率

起息日

到期日

100000

2.94%

2019.3.11

2021.3.11

【答案】

解:100000×2.94%×2

=2940×2

=5880(元)

答:妈妈到期能从银行取到利息5880元。

【考点】百分数的应用--利率

【解析】【分析】到期能从银行取到的利息=存入的钱数×年利率×存的年份数,据此代入数据作答即可。

9.为了节约能源,国家鼓励大家购买新能源电动汽车和小排量汽车,特对车辆购置税作如下规定:

①新能源汽车免10%的车辆购置税;

②汽车排量1.6L以上的按汽车成交价格的10%征收;

③汽车排量1.6L及以下的按汽车成交价格的5%征收;

某汽车专卖店规定,购买汽车时如果分期付款需要加价7%,如果用现金一次性付款可享受九折优惠。小明爸爸看中一辆原价

20万元的1.8L排量汽车,准备一次性付款。请你帮小明爸爸算一算:购买这辆汽车一共要花多少万元?

【答案】

解:20×90%+20×90%×10%

=18+1.8

=19.8(万元)

答:购买这辆汽车一共要花19.8万元。

【考点】百分数的应用--折扣,百分数的应用--税率

【解析】【分析】由于是一次性付款,所以可以享受九折优惠,用原价乘90%求出成交价;1.8L超过1.6L,所以按成交价的10%加收购置税,由此用成交价乘10%求出购置税钱;用成交价加上购置税钱数就是一共要花的钱数。

10.乘坐飞机的每位旅客,携带行李超过20千克的部分,每千克要按飞机票原价的1.5%购买行李票。张红从贵阳乘飞机到上海,飞机票打五五折后是770元。贵阳到上海飞机票的原价是多少元?她带了32千克行李,应付行李费多少元?

【答案】

解:770÷55%=1400(元)

1400×(32-20)×1.5%

=1400×12×1.5%

=16800×1.5%

=252(元)

答:贵阳到上海飞机票的原价是1400元,应付行李费252元。

【考点】百分数的应用--折扣

第10篇

一、单选题(共3题;共6分)

1.周老师要买60个小足球,三个店的小足球单价都是25元,你认为王老师到哪个店去买比较合算?(

A. 甲店                                    B. 乙店                                    C. 丙店                                    D. 都一样

【答案】

B

【考点】百分数的应用--折扣

【解析】【解答】解:甲店:60÷(10+2)=5,5×10=50(个),50×25=1250(元);

乙店:60×25×80%=1200(元);

丙店:60×25=1500(元),1500÷200≈7,1500-30×7=1500-210=1290(元);

1200<1250<1290,所以到乙店去买比较合算。

故答案为:B。

【分析】甲店:每(10+2)个足球里面有2个是送的,10个是需要付款的。用60除以(10+2),再乘10即可求出需要付款的个数,用需要付款的个数乘单价即可求出总价;

乙店:用单价乘数量求出总价,再乘80%即可求出应付款钱数;

丙店:先求出总价,然后看总价里面有几个200元,返的现金就是几个30元,这样用总价减去返现金的钱数即可求出应付款数;

这样分别计算出三个店应付款数,比较后确定哪个店便宜即可。

2.小丽把2000元压岁钱存入银行,整存整取两年。如果年利率按3.25%计算,到期的利息算式是(

)。

A. 2000×3.25%         B. 2000×3.25%×2         C. 2000×3.25%+2000         D. 2000×3.25%×2+2000

【答案】

B

【考点】百分数的应用--利率

【解析】【解答】解:到期的利息算式是2000×3.25%×2。

故答案为:B。

【分析】利息=本金×利率×存期,据此列式作答即可。

3.一套科技读物原价90元,书店庆“六一”搞促销打七五折。算式(

)表示求现价。

A. 90×75%                               B. 90×(1-75%)                               C. 90÷75%

【答案】

A

【考点】百分数的应用--折扣

【解析】【解答】解:90×75%

表示求现价。

故答案为:A。

【分析】原价×折扣=现价,据此解答。

二、判断题(共1题;共2分)

4.五成表示一个数是另一个数的百分之五。(

【答案】

错误

【考点】百分数的应用--成数

【解析】【解答】解:五成表示一个数是另一个数的百分之五十。

故答案为:错误。

【分析】五成是50%,所以它表示一个数是另一个数的百分之五十。

三、填空题(共4题;共5分)

5.一套衣服,打八折后比原价便宜了300元,这套衣服原价是________元。

【答案】

1500

【考点】百分数的应用--折扣

【解析】【解答】解:300÷(1-80%)=300÷20%=1500(元)

故答案为:1500。

【分析】八折的意思就是相加是原价的80%,现价比原价便宜了(1-80%),根据分数除法的意义,用比原价便宜的钱数除以便宜的百分率即可求出原价。

6.原价是1200元的商品,打九折出售,售价是________元,比原价便宜________元。

【答案】

1080;120

【考点】百分数的应用--折扣

【解析】【解答】解:现价=1200×90%

=1200×0.9

=1080(元)

1200-1080=120(元)

所以现在售价是1080元,比原价便宜120元。

故答案为:1080;120。

【分析】现价=原价×折扣,现价比原价便宜的钱数=原价-现价,代入数值计算即可。

7.王叔叔把2万元钱存入银行,存期3年,年利率是2.75%。到期后,王叔叔可以取回利息________元钱。

【答案】

1650

【考点】百分数的应用--利率

【解析】【解答】解:20000×2.75%×3

=550×3

=1650(元)

故答案为:1650.

【分析】利息=本金×利率×存期,据此解答。

8.小红在2011年4月份将2000元钱存人银行,定期3年,当时年利率为4.75%,三年后小红可取回________元的利息。

【答案】

285

【考点】百分数的应用--利率

【解析】【解答】解:2000×4.75%×3

=95×3

=285(元)

故答案为:285。

【分析】利息=本金×利率×存期,根据公式计算可以取回的利息即可。

四、解答题(共2题;共10分)

9.妈妈把10000元存入银行,存期为3年定期,年利率为3.57%,到期时妈妈能够拿到本金和利息一共多少元?

【答案】

解:10000×3.57%×3+10000=11071(元)

答:到期时妈妈能够拿到本金和利息一共多少11071元。

【考点】百分数的应用--利率

【解析】【分析】到期时妈妈能够拿到本金和利息一共的钱数=本金+利息,其中利息=本金×存期×年利率。

10.红星家电商城,举办优惠销售额活动,一种电视机打九折后每台售价是3600元。这种电视机原来每台多少元?

【答案】

解:3600÷90%=4000(元)

答:这种电视机原来每台4000元。

第11篇

教学目标:

1.

使学生掌握分数混合运算的运算顺序,并能根据这一顺序进行正确计算。

2.

培养观察、操作,分析、比较、抽象概括的能力。

3.

渗透类比、推理、转化等的数学思想,培养良好的计算习惯。

教学重点:

掌握分数混合运算的运算顺序,正确地计算分数混合运算。

教学难点:

掌握分数混合运算的运算顺序。

教学过程:

一、复习导入

计算下列各题。

设计意图:通过复习分数除法的计算方法,唤醒学生已有认知,为本节课学习分数混合运算奠定基础。

二、探究新知

课件出示图片和题目

师:想一想,可以怎样列出算式?

给予学生一定的独立思考时间。

生1:我先算出每天吃多少片:(片),之后计算可以吃多少天:(天)。

师:这种方法还可以列综合算式表示以上过程,你会列吗?

生:。

师:自己试着计算一下。

学生完成,全班核对,课件展示计算过程。

师:需要注意的是有小括号的分数乘、除混合运算,要先算小括号里面的。

设计意图:当学生列出分步算式解决问题后,引导学生列出综合算式,计算时强调小括号的作用,使学生感受分数混合运算中小括号的作用与整数混合运算中小括号的作用相同。

师:还有其他方法吗?

生2:我先算这两盒药可以吃几次:(次),之后计算可以吃多少天:(天)。

师:这种方法也可以列综合算式表示以上过程,你会列吗?

生:。

师:自己试着计算一下。

学生独立完成,全班核对,课件展示两种计算方法。

师:说一说你是怎样计算的?

生:我是按照从左往右的顺序计算的:

设计意图:本环节使学生利用知识的迁移,运用整数乘、除混合运算的运算顺序来计算分数乘、除混合运算,即按照从左往右的顺序依次计算。

师:非常正确,这种算式还可以这样计算:

将算式转化成连乘后直接约分计算。观察的两种计算方法,说一说你更喜欢哪种?

生:我更喜欢第二种,因为这样计算更简便。

设计意图:本环节在教师的引导下,将算式转化为连乘后直接约分计算,并把两种方法进行比较,以培养学生掌握灵活的计算策略。

三、巩固练习

1.

计算下面各题。

设计意图:本题包括多种混合运算形式,有利于巩固混合运算的顺序,提高分数运算能力。

2.

老爷爷每天慢跑要用多少时间?

设计意图:本题利用混合运算解决实际问题,这样的问题相当于过去的“归一问题”,解决问题的方法非常多样化,可以先求出6圈里有多少个半圈,也可以先求出跑1圈用的时间。

3.

这块玻璃的面积是多少?

设计意图:本题使学生在新的情境中进一步巩固分数混合运算的计算方法,培养了学生分析问题、解决问题的能力。

四、课堂小结

师:说一说怎样计算分数混合运算?

1.

带小括号的分数乘、除混合运算,要先算小括号里面的。

2.

第12篇

教学目标:

1.

通过观察、交流等活动认识倒数,理解倒数的意义及“互为倒数”的含义。

2.

经历找一个数的倒数的方法,会求一个数的倒数。

3.

在交流的活动中,培养观察、归纳、概括的能力,发展数学思维。

教学重点:

理解倒数的意义,会求一个数的倒数。

教学难点:

理解1、0的倒数,理解“互为倒数”的含义。

教学过程:

一、复习导入

口算下列各题。

设计意图:通过复习积为1的分数乘法,学生利用知识间的迁移,为本节课学习倒数奠定基础。

二、探究新知

1.

认识倒数。

师:观察这些算式,看看有什么规律。

生1:两个数的乘积都是1。

生2:相乘的两个数的分子、分母正好颠倒了位置。

师:乘积是1的两个数互为倒数。和互为倒数,就是指:的倒数是,的倒数是。

师:你能像这样说说其它几组数字吗?

生1:,和互为倒数,的倒数是,的倒数是。

生2:,和互为倒数,的倒数是,的倒数是。

生3:,和互为倒数,的倒数是,的倒数是。

师:非常正确,想一想,互为倒数的两个数有什么特点?

生1:如果两个数都是分数,那么这两个数的分子、分母交换位置。

生2:如果一个是整数,那么另一个分数的分子是1,分母就是该整数。

设计意图:本环节通过计算、观察、交流等活动,归纳出它们的共同规律,引出倒数的定义,在学生发言中进一步理解“互为倒数”的含义,进而引导学生思考互为倒数的两个数的特点。

2.

认识1和0的倒数。

师:下面哪两个数互为倒数?

生1:和互为倒数。

师:为什么呢?

生1:乘积是1的两个数互为倒数,,所以和互为倒数。

师:没错,这就是交换了分子、分母的位置来找倒数的方法。

生2:,所以和互为倒数。

生3:,所以和互为倒数。

师:我们找到了三组互为倒数关系的数,那么1和0有倒数吗?

师:1的倒数是多少?

生1:1×1=1,所以1的倒数还是1。

师:完全正确,1的倒数就是1,也可以说1的倒数是它本身。

师:0的倒数是多少?

生2:0没有倒数。因为0乘任何数都得0,不会等于1,所以0没有倒数。

师:没错,0没有倒数。

设计意图:本环节在找倒数的活动中,初步体验找倒数的方法:调换分子、分母的位置。总结在求倒数时的三种情况:求分数的倒数;求整数的倒数;1和0的倒数问题,使学生理解1的倒数是1,0没有倒数,突破本节课的难点。

三、巩固练习

1.

写出下面各数的倒数。

设计意图:本题巩固求倒数的方法,即交换分子和分母的位置。

2.

先计算出每组算式的结果,再在里填上“>”“<”或“=”。

设计意图:本题通过几组乘、除法算式的对比,让学生初步感知除以一个数等于乘这个数的倒数,为后面学习分数除法奠定基础。

3.

下面的说法对不对?为什么?

设计意图:本题巩固倒数的意义,其中第(2)使学生明白倒数是两个数之间的关系,而不是一个数或多个数之间的关系。

4.

小红和小亮谁说得对?

设计意图:本题是对倒数意义的进一步认识,使学生认识到只要两个数的乘积是1,那么这两个数就互为倒数,与这两个数是整数、分数还是小数无关。

四、课堂小结

第13篇

教学内容:冀教版小学数学六年级下册第四单元第一课时

教学目标:

1.知识技能:使学生认识圆柱的特征,知道圆柱各部分的名称,认识圆柱的侧面展开图,会计算圆柱的侧面积。

2.过程方法:通过观察、想象、操作、讨论等活动,培养学生自主探究、动手实践、合作创新的能力;渗透转化的思想方法。

3.情感态度价值观:运用课件提供的教学情景,激发学生主动参与学习的热情,动态演示结合实物情景的设置,使学生能直观感受圆柱的侧面展开图,初步渗透事物发展、变化规律的辩证观点。

教学重难点:

重点:知道圆柱的各部分名称以及圆柱侧面展开图的形状,会计算圆柱的侧面积。

难点:经历认识圆柱和圆柱侧面积展开图的过程。

教具准备:圆柱实物

自制教具

学具准备:圆柱实物

教学过程:

一、课前三分钟

1.导入:同学们,学好数学需要有空间想象力,看,老师把一张长方形的硬纸粘在了小棍儿上,如果转动小棍儿,想象长方形纸转动的轨迹会演变成什么图形?同学们,电脑朋友帮忙把旋转过程的轨迹留了下来,请睁大眼睛仔细看。同学们,一个平面图形,通过旋转,神奇般的演化出了立体图形,数学真是个充满着奇妙的世界啊!有请今天课前三分钟的主持人。

2.主持人:

(1)判断哪些是圆柱?哪些不是圆柱?

(2)除了这些,生活中哪些物体的形状是圆柱?说说看。

(3)我们小组搜集到了生活中的圆柱,并配了文字,边看边读文字,我们一起来感受。

(4)圆柱已经融入到我们生活的方方面面,生活因有了圆柱而精彩。

二、小组互学

1.导入:带着这种亲切感,我们继续走进圆柱。

2.出示前置小研究的要求:

(1)利用圆柱实物,自学课本内容,探究:圆柱有几个面?各有什么特点?

(2)给圆柱实物做一个侧面,自主研究圆柱的侧面积公式,用自己喜欢的方式记录研究过程。

3.组内交流,教师巡视。

三、全班共学

预设:

(一)探究圆柱体的特征。

1.

认识圆柱体的面。

圆柱体有3个面,上下两个面是圆形,并且相等,侧面是个曲面。

质疑:你是怎样知道两个底面相等的,用哪种方法验证最简单?

(预设:观察、画剪、量直径计算、画在纸上倒过来是否重合)

师:你们的办法可真多啊!现在通过课件演示,咱们一起来验证一下大家的发现好吗?(课件演示:圆柱体上下底面重合图。)

2.认识圆柱的高。

(1)出示圆柱:这些圆柱有什么不同?

那么圆柱的高矮是由圆柱的什么决定的?用两个圆进行演示。揭示高的概念:圆柱两底之间的距离叫做高。

圆柱的高藏在哪里呢?能小组合作给有包装纸的圆柱画一条高吗?

想一想,只能画一条吗?圆柱的高都在圆柱的侧面上吗?内部有没有呢?

通过找高,揭示圆柱的高有无数条,并且都相等。

(2)高的拓展

在日常生活中,圆柱的高还有其它的说法,比如:

一口水井是圆柱形的,这个圆柱的高还可以说是“深”,一个1元硬币是圆柱形的,这个圆柱的高还可以说是“厚”,水管也是圆柱形的,它的高还可以叫“长”。

(二)探究圆柱的侧面积公式。

1.小组汇报。

2.补充质疑。

四、自我检测

(一)判断。

1.一个圆柱两个底面的直径相等。(

2.上下两个底面完全相同的物体一定是圆柱体。(

3.有两张相同的长方形纸,分别卷成两个圆柱筒,(接缝处忽略不计)并装上两个底面,那么制成的两个圆柱的高一定相等,侧面积一定相等。(二)右图是一个生日蛋糕,底盘是塑料板。(单位:厘米)

1.为生日蛋糕选择一个合适的蛋糕盒。选哪个合适?说明理由。

10

15

2.这种蛋糕盒上面是透明塑料,周围是硬纸板。算一算,每个蛋糕盒需要多少硬纸板?(得数保留整数)

五、总结

第14篇

学情分析:

根据六年级的教学情况来看,班中绝大部分同学都能跟上现有的进度,通过本节课教学要使灵活运用圆柱体积的计算方法解决生活中一些简单的问题,通过想象、操作等活动,理解圆柱体体积公式的推导过程,掌握计算公式;会运用公式计算圆柱的体积。

教学目标:

1.通过切割圆柱体,拼成近似的长方体,从而推导出圆柱的体积公式这一教学过程,向学生渗透转化思想。

2.通过圆柱体体积公式的推导,培养学生的分析推理能力。

3.理解圆柱体体积公式的推导过程,掌握计算公式;会运用公式计算圆柱的体积。

教学重点:

圆柱体体积的计算

教学难点:

圆柱体体积公式的推导

教学用具:

圆柱体学具、课件

教学过程:

一、复习引新

1.求下面各圆的面积(回答)。

(1)r=1厘米;

(2)d=4分米;

(3)C=6.28米。

要求说出解题思路。

2.提问:什么叫体积?常用的体积单位有哪些?

3.已知长方体的底面积s和高h,怎样计算长方体的体积?(板书:长方体的体积=底面积×高)

二、探索新知

1、根据学过的体积概念,说说什么是圆柱的体积。(板书课题)

2、公式推导。(有条件的可分小组进行)

(1)请同学指出圆柱体的底面积和高。

(2)回顾圆面积公式的推导。(切拼转化)

3、回顾了圆的面积公式推导,你有什么启发?

生答:把圆柱转化成长方体计算体积。

4、动手操作。

请2位同学上台用教具来演示,边演示边讲解。

把圆柱的底面平均分成16份,切开后把它拼成一个近似地长方体。

多请几组同学上台讲解,完善语言。

提问:为什么用“近似”这个词?

5、教师演示课件。

把圆柱拼成了一个近似的长方体。

6、如果把圆柱的底面平均分成32份、64份……切开后拼成的物体会有什么变化?

生答:拼成的物体越来越接近长方体。

追问:为什么?

生答:平均分的份数越多,每份就越小,弧就越短,拼起来的长方体的长就越近似于一条线段,这样整个形体就越近似于长方体。

7、刚才我们通过动手操作,把圆柱切拼成一个近似的长方体。

师:拼成的长方体和原来的圆柱有什么联系?请与同学们进行交流?出示讨论题。

(1)、拼成的长方体的底面积与原来圆柱的底面积有什么关系?为什么是相等的?

(2)、拼成的长方体的高与原来圆柱的高有什么关系?为什么是相等的?

(3)、拼成的长方体的体积与原来圆柱的体积有什么关系?为什么?

板书:

长方体体积

底面积

圆柱体积

底面积

8、根据上面的实验和讨论,想一想,可以怎样求圆柱的体积?

生答:把圆柱切拼成一个近似的长方体,拼成的长方体的底面积等于圆柱的底面积,拼成长方体的高等于圆柱的高,因为长方体体积=底面积×高,所以圆柱体积=底面积×高。

9、用字母如何表示。

V=sh

10、小结。

圆柱的体积是怎样推导出来的?计算圆柱的体积必须知道哪些条件?

11、教学算一算,审题。

提问:你能独立完成这题吗?指名一同学板演,其余学生做在练习本上。集体订正:列式依据是什么?应注意哪些问题?最后结果用体积单位)

12、教学“试一试”

小结:求圆柱的体积,必须知道底面积和高。如果不知道底面积,只知道半径r,通过什么途径求出圆柱的体积?如果知道d呢?知道C呢?知道r、d、C,都要先求出底面积再求体积。

三、巩固练习

课后“练一练”里的练习题。

四、课堂小结

第15篇

教学目标:

1.

使学生联系商不变的规律和分数的基本性质,进行知识的类比迁移,理解比的基本性质。

2.

使学生在理解比的基本性质的基础上,尝试化简比,并掌握化简比的方法。

3.

培养学生自主探究、归纳总结的能力,掌握转化的数学思想。

教学重点:

联系商不变的规律和分数基本性质,理解比的基本性质。

教学难点:

在理解比的基本性质的基础上,掌握化简比的方法。

教学过程:

一、复习导入

师:在上课前,谁来说一说我们学过的商不变的规律和分数的基本性质分别是什么?

生1:商不变的规律是被除数和除数同时乘或除以相同的数(0除外),商不变。

生2:分数的基本性质是分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。

设计意图:通过复习商不变的规律和分数基本性质,唤醒学生已有认知,为本节课学习比的基本性质奠定基础。

二、探究新知

1.

推导比的基本性质。

师:联系比和除法的关系,会不会存在像商不变这样的规律呢?

学生独立思考后小组讨论,得出结论:比中存在像商不变这样的规律。

师:谁来说一说你们组的思考过程。

生:

6∶8=(6×2)∶(8×2)=12∶16

6÷8=(6×2)÷(8×2)=12÷16

6÷8=(6÷2)÷(8÷2)=3÷4

6∶8=(6÷2)∶(8÷2)=

3∶4

师:联系比和分数的关系,想一想:会不会存在像分数基本性质这样的规律呢?

学生独立思考后小组讨论,得出结论:比中存在像分数基本性质这样的规律。

师:谁来说一说你们组的思考过程。

生:

6∶8=(6×2)∶(8×2)=12∶16

6∶8=(6÷2)∶(8÷2)=

3∶4

师:想一想:在比中有什么样的规律?你能概括成一句话吗?

生:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

师:没错,这就叫做比的基本性质。根据比的基本性质,可以把比化成最简单的整数比。

设计意图:本环节学生利用比和除法、分数的关系,把除法和分数转化成比的形式,根据商不变的规律和分数的基本性质自主探究,并在此基础上,概括出比的基本性质。

2.

运用比的基本性质化简比。

师:“神舟”五号搭载了两面联合国旗,一面长15

cm,宽10

cm,另一面长180

cm,宽120

cm。这两面联合国旗长和宽的最简单的整数比分别是多少?我们先来看第一面旗。

师:15∶10=(15÷5)∶(10÷5)=

3∶2。思考在这里5是15和10的什么数?

生:5是15和10的最大公因数。

师:为什么要除以5?

生:除以最大公因数后,前项和后项互质,就是最简单的整数比。

师:是的,那怎样化简第二面联合国旗长和宽的最简整数比?180和120同时除以几?

生:180和120同时除以60,

就是180∶120=(180÷60)∶(120÷60)=

3∶2。

师:为什么?

生:因为180和120的最大公因数是60。

师:我们接着往下看,当前、后项出现分数,例如∶的情况,可以怎样化简比呢?

生:可以把前、后项同时乘18,就是∶=(×18)∶(×18)。

师:为什么要乘18?

生:因为18是分母6和9的最小公倍数,这样就可以将分数转化为整数了。

师:最简单的整数比是多少?

生:∶=(×18)∶(×18)=3∶4。

师:当前、后项出现小数,例如0.75∶2的情况,可以怎样化简比呢?

生:可以把前、后项同时乘100,

就是0.75∶2=(0.75×100)∶(2×100)。

师:为什么要乘100?

生:因为乘100后可以把小数变为整数。

师:那接下来怎么做呢?

生:按照前、后项是整数的情况进行化简:

0.75∶2=(0.75×100)∶(2×100)=

75∶200

3∶8。

师:想一想,当一个比的前项或后项不是整数时,怎样把它化成最简单的整数比?

生:当前、后项出现分数或小数时,可以先把前、后项化为整数,再根据前、后项是整数的情况化简为最简单的整数比。

设计意图:本环节通过化简前、后项是整数的比和前、后项不是整数的比,掌握了化简为最简整数比的方法。在化简的过程中使学生感受到化简的必要性,即使量与量之间的关系更加清晰、简明。

三、巩固练习

1.

把下面各比化成后项是100的比。

设计意图:本题是比的基本性质的具体应用,使学生初步感受比例的思想。

2.

把下面各比化成最简单的整数比。

设计意图:本题使学生练习各种类型的简化比,掌握灵活的化简比的方法,加深对比的基本性质的理解。

3.

小亮的说法对吗?

设计意图:本题出示不同单位的两个数量,使学生明确,在表示同类量的比时,应统一单位名称。

四、课堂小结

师:通过这节课的学习,说一说比的基本性质是什么?

比的前项和后项同时乘或除以相同的数(0除外),比值不变。

师:怎样把比化成最简单的整数比?