前言:我们精心挑选了数篇优质永磁传动技术论文文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。
【关键词】永磁同步 电动机 低速大扭矩 高效节能
1 引言
随着经济的发展,人类社会对能源的需求也日益增加,石油、煤炭等不可再生资源也日益枯竭,能源紧张也成为了全球共同关注的话题,党的十六届五中全会强调,要加快建设资源节约型,环境友好型社会。同时,国家也提出了推广变频永磁电动机技术的要求,在这种背景下,低速永磁同步电动机技术也日益成熟,广泛运用到了各个行业中。
2 低速永磁同步电动机的特点
永磁同步电动机与传统感应电动机工作原理基本相同,都是由定子产生磁场带动转子,其不同之处在于低速永磁同步电动机由永磁体励磁替代了传统感应电动机的电励磁。永磁同步电动机具有低速大扭矩、结构简单、功率因数高、效率高、体积小、噪声低、可靠性高等显著优点。
低速大扭矩、结构简单。与传统电动机相比,低速永磁电动机的气隙磁场是有永磁体产生的,加上永磁体形状及磁路设计的多样性,这样就可以简化电动机结构,根据需要灵活设计电动机的外形尺寸。传统感应电动机在起动时存在最小转矩,通常来说其最小转矩倍数小于1,而低速永磁同步电动机是变频起动,在起动时无最小转矩倍数的限制,只要负载所需起动扭矩小于最大转矩,都可以顺利起动。在某些领域,传统感应电动机低起动转矩的特性,使其在选型时不得不提高电动机功率来增大起动转矩,以永磁同步电动机设计转速100rpm为例,由公式
可知,相同功率的低速永磁同步电动机与传统4P电动机相比,其起动扭矩是传统电动机的15倍。
效率、功率因数高。传统感应电动机因存在定子电阻和定子电流损耗,稳定运行时风磨耗也占据一定比例,这些因素限制了功率因数的提高;低速永磁同步电动机在运行时不产生无功励磁电流,且风磨耗、杂耗、机械耗等损耗都低于传统感应电动机,这些因素都使永磁同步电动机的效率、功率因素高于传统感应电动机。大量统计表明,就效率而言,同规格永磁电动机比传统感应电动机提高了2~8%。图1是低速永磁同步电动机和传统感应电动机不同负载下的效率、功率因数曲线,从图中可以看出,低速永磁同步电动机在25%~120%额定负载范围内均可以保持较高的功率因数和效率,而传统感应电动机在低负载率或者高负载率时效率、功率因数同额定负载率相比下降很多,在低负载率时下降尤为明显。低速永磁同步电动机这种高效率、高功率因数的优点是传统感应电动机所不具备的。
体积小。对于传统驱动系统,尤其是末级传动需要较低速度时,一般需要异步电动机加减速机或者是异步电动机加2~3级皮带轮减速来实现,这种机构体积庞大且笨重,不仅增加了设计成本,在设备安装方面也占据了大量的空间。而低速永磁同步电动机直驱系统的体积和重量通常不到传统驱动系统的一半,加上可以灵活设计永磁电动机的结构,在设备的安装、调试等方面要求大大降低。
噪声低,运行平稳。应用低速永磁同步电动机的直驱系统取消了减速机、皮带轮等机械减速装置,消除了齿轮啮合或皮带轮传动时的噪声,系统高速运转时由于各个部件中间不平衡带来的噪声、震动大大降低。
可靠性高。机械减速传动装置的取消,消除了中间传动环节的机械故障,同时,由于设备磨损、机械变形、零部件松动等带来的油泄露问题也不复存在,大大提高了传动系统的稳定性,如图1所示。
3 低速永磁同步电动机应用现状
自1831年科学家巴洛发明世界上第一台永磁电动机以来,各国的科技工作者一直在探索永磁同步电动机的发展,但由于永磁材料性能的限制,一直停滞不前。二十世纪三十年代以来,随着铝镍钴和铁氧体材料的先后出现,永磁材料的性能得到了很大的提升,用永磁体做成的电动机也不断的出现在军事装备、工业生产设备、日常家电等领域。但是,由于铝镍钴和铁氧体材料矫顽力偏低、剩磁密度不高等缺陷,永磁电动机性能并没有达到预期效果,加上当时永磁电动机成本较高,在一定程度上限制了永磁电动机的发展。1983年,铷铁硼(NdFeB)永磁材料的出现,极大的提高了永磁材料的各项性能,且加上价格相对便宜,加快了国内外对永磁电动机研究的步伐,研究的重点也逐渐的转移到了工业装备自动化和日常生活领域。随着科学工作者对永磁材料研究的不断深入,永磁材料的电磁性能、耐高温性能也在不断的提升。同时,伴随着电力电子控制技术的发展,与传统电励磁电动机相比,永磁电动机高效节能的优势更加明显,低速永磁同步电动机也朝着大功率化、高转矩化、微型化、智能化等多个方向发展。
目前,由于低速永磁同步电动机低速大扭矩、体积小、输出平稳、高效节能等优点,已经在很多方面作为驱动装置得到应用,如电动车辆、煤炭开采、石油开采、冶金、电梯等领域。在电动车辆方面,日本已将其用于低地板式电动车、独立车轮式电动车上;德国、法国也将永磁同步电动机用于高速列车组和低地板车;在煤炭、石油、冶金、港口起重等工业装备自动化领域,低速永磁同步电动机在保证高性能、高效率、高精度需求的同时,省去了传统传动系统中的机械减速装置,已经成功得到应用;在电梯曳引机上,由于低速永磁同步电动机可以实现无需机械减速装置的直驱运行,日本三菱公司首先采用了永磁同步电动机作为动力源,美国奥迪斯公司研发的GEN2系统也广泛采用了永磁无齿轮曳引机技术。
4 低速永磁同步电动机的发展趋势
目前来看,去除减速机、多级皮带轮等机械减速装置,采用低速永磁直驱系统,更能够充分发挥低速永磁同步电动机的优势。低速永磁同步电动机作为驱动系统动力提供者,正向着专用化、高性能化、轻型化、机电一体化等等方向发展。
4.1 专用化发展
在工业生产领域,有很多设备需要减速机等机械减速装置来减速进而驱动负载,这就需要电动机行业技术人员仔细分析其负载特性,专门设计一种性能优良、运行可靠且价格合理的低速永磁同步电动机,来替代传统传动装置。据统计,有些专用低速永磁同步电动机节电率可以达到20%左右,如油田用到的抽油机电机、泥浆泵电机,陶瓷行业用到了陶瓷球磨机电机等。
4.2 高性能方向发展
S着工业的发展,对电动机的要求不仅仅是简单的提供动力,而是提出了各种各样的性能要求。如航空航天领域要求具备高性能同时,还要具备高可靠性;化纤行业、数控机床、智能加工中心等设备要求电动机具有高调速精度。
4.3 轻型化方向发展
由于安装空间、携带等方面的因素,都对永磁同步电动机提出了重量轻、体积小的要求。如地下煤矿开采、数控机床、医疗器械、船舶推进、便携式机电一体化产品等都有这方面的要求。
4.4 机电一体化方向发展
高性能的永磁电动机是实现机电一体化的基础,电力电子技术、微电子控制技术和永磁同步电动机技术的结合催化出了一批新型且性能优异的机电一体化产品。
5 结语
我国具有丰富的稀土矿产资源,且对以稀土作为原材料的永磁材料和永磁电动机技术研究都已位列世界先进水平,充分发挥这种优势,加快低速永磁同步电动机技术的研究和推广,对加快我国经济建设具有十分重要的意义。低速永磁同步电动机较传统电励磁电动机在性能上有很大优势,但目前在我国工业领域并没有得到广泛应用,其市场还正处在推广阶段。相信随着永磁材料技术的发展、电力电子和驱动装置技术的进步,以及人类社会环境保护意识、能源问题社会意识的提高,在不久的将来,低速永磁同步电动机作为动力的驱动装置会慢慢渗透到工业和日常生活的各个方面,低速永磁同步电动机也将得到广泛应用。
参考文献
[1]杨萌.起重用低速大扭矩永磁同步电动机研究与设计[D].华中科技大学(硕士学位论文),2013.
[2]唐任远.现代永磁电机理论与设计[M].北京:机械工业出版社,1997.
[3]王秀和.永磁电机[M],北京:中国电力出版社,2007.
[4]闫萍,吴梦艳.现代永磁电机技术的研究[J].防爆电机.2014.
[5]王帅.抽油机直驱用低速大转矩永磁电机及其控制系统研究[D].沈阳工业大学(硕士学位论文),2010
作者简介
王锦涵(2000-),女,河南省南阳市人。现为南阳第一高级中学在读学生。
[关键词]超环面;机电传动;参数选择;结构分析
中图分类号:TH132.44 文献标识码:A 文章编号:1009-914X(2015)44-0093-03
在机械工程领域,机械传动技术是机械工程技术的重要组成部分,在一定程度上标志着机械工程技术的水平。为适应这一趋势,人们一般从以下方面对齿轮及蜗杆传动展开新的研究工作。一、应用现代材料科学技术,研究开发齿轮及蜗轮新材料;二、采用先进制造技术,不断完善高性能齿轮及蜗轮蜗杆齿廓成型技术,提高加工精度;三、运用计算机辅助设计技术,对齿轮及蜗轮蜗杆传动进行齿廓优化、参数优化及机构优化。
随着电子、信息和控制等技术向机械工程领域的不断渗透,传统的机械传动系统也发生了很大变化,跨越旧的机构组成概念,实现机电和控制有机结合的新型复合传动机构已成为机械科学领域的国际性前沿课题。机电集成超环面传动是一种集电、机、控制于一体的新型传动机构。
超环面机电传动系统机构由行星轮、环面蜗杆、环面定子和行星架组成。由于在结构上它具有蜗杆上一个外环面和定子上一个内环面两个环面,所以称其为超环面。同时,由于它是由电磁力替代了超环面行星蜗杆传动机构中的接触啮合力,所以称其为超环面机电传动机构。蜗杆环面上均匀分布螺旋槽,槽内安放电磁线圈,行星轮圆周上均匀安放弧形永磁体,环面定子内环面上均匀安置螺旋形永磁体。
与现有的超环面行星传动相比,它不仅具有环面蜗杆传动震动小、啮合齿数多、结构紧凑、体积小、重量轻、承载力高、传动功率及传动比范围广和传动效率高的优点,它在工作时,是用磁场力替代啮合力,具有无啮合、无和效率高等优点。超环面行星蜗杆传动机构在工作时需要配带电动机,而超环面机电传动机构不需要配带电动机。
在超环面行星蜗杆传动的加工制造方面,国内外的专家、学者一直在进行着不停的研究和探索。我国武汉水运工程学院陈定方教授、哈尔滨工业大学姚立纲博士都对该种传动的制造加工进行了深入的研究。燕山大学许立忠教授于1999年制成国内首台滚锥齿超环面传动试验样机,进行了台架实验,并取得良好的试验效果[6],之后又对滚锥齿超环面行星蜗杆传动进行了优化设计,有效的减小了样机的体积和质量[7]。
实践证明, 超环面机电传动机构有着其他机构所不具备的很多优点。随着永磁传动技术的快速发展,用磁力线啮合代替机械啮合成为解决摩擦损耗的一个新思路。在实际的加工生产过程中,电动机可以有效的将电能转化为机械能,通常也作为驱动的目的使用,磁性是电动机工作的基础。
电动机是工业中的重负荷机器,有很多类型的电动机,每种类型的电动机都有自己各自的特征和优点。有些电动机是以恒定速度运行的,还有一些电动机会随着负载的增加,在速度上有一定的滑落,而另一些则会由于负载的原因使其速度大幅度降低。
如图1所示为超环面传动机构简图,该机构由定子0、行星轮1、中心蜗杆2和行星架3组成。也正是由于在结构上它具有蜗杆2上一个外环面和定子0上一个内环面两个环面的原因才称之为超环面传动。
中心蜗杆2环面上均匀分布螺旋槽,槽内安放电磁线圈,行星轮1圆周上均匀安置弧形永磁体,环形定子0内环面上均匀安置螺旋形永磁体。由电机学和永磁理论可知在工作的时候,中心蜗杆2由硅钢片叠加而成,外表缠有电磁线圈,接通三相交流电产生空间旋转电磁场,驱动行星轮自转和公转,定子处也有磁场力驱动行星轮公转。
永磁行星轮齿N、S极相间、均匀地嵌在行星轮的圆周上。螺旋定子由若干个钢材或者永磁体制成的空间螺旋梁组成。螺旋梁均匀的嵌在定子支架上,用于吸引行星轮齿沿轨迹运动。
由于该系统是传统意义上的驱动系统和减速增矩系统的集成,因此该传动机构结构紧凑,可以在很小的空间内传递很大的扭矩,特别适合于航空和航天等尖端技术领域以及坦克潜艇等重要军事领域。
超环面机电传动机构传动部分,如图2所示,主要包括电枢蜗杆、永磁行星轮、永磁定子及行星架等部件。超环面机电传动蜗杆由铁心和电枢组成,蜗杆结构为由开口的硅钢片叠加而成,以便于减少涡流损耗,硅钢片中间由一根芯轴固定,外面呈现超环面的内环面部分。开口按一定的规律在内环面上加工出电枢槽,用以安放电枢导线。
超环面机电传动系统是在超环面行星蜗杆传动的基础上,对各个组成零件进行机电组合而得到。行星轮仍然是该传动的中心构件,根据行星轮的结构及运动特点,行星轮结构采用永磁励磁方式,永磁励磁与电流励磁相比,不需要励磁电流,不设电枢导线,结构简单,使用方便,可靠性高,在一定范围内,可以具有比电磁式更小的体积和重量,从而减小整个传动机构的重量和体积。
超环面机电传动机构在行星轮圆周上安置永磁体,N、S极由隔磁材料隔开,齿数为偶数,形成永磁行星轮;为了能更好地控制输入转矩,蜗杆采用电流励磁方式,三相交流电枢均匀地嵌于蜗杆表面,通过控制三相交流电的频率和强弱,进而控制整个机构的转速和力矩,电枢的缠绕方式取决于需要的磁极数目和行星轮齿数,在整体结构上类似于电动机的定子结构;为了获得较大的输出力矩,定子也采用稀土永磁励磁,结构简单, 便于加工, 解决了超环面行星蜗杆传动定子加工难的问题。
在超环面机电传动机构中, 分别存在两个磁回路, 对应于蜗杆与行星轮啮合和定子与行星轮啮合, 从原理上来说蜗杆与行星轮啮合相当于电动机, 蜗杆线圈通电产生旋转磁场带动行星轮转动, 这样行星轮上磁极的磁力线通过气隙到达蜗杆旋转磁场磁极, 蜗杆由硅钢片叠加而成, 磁力线通过硅钢片到达蜗杆的另一磁极,经过气隙回到行星轮磁极, 经过行星轮体完成磁力线的闭合。
超环面机电传动系统的主要优点就是能实现系统的内部减速,可以实现较大的传动比。我们把系统的传动比定义为:输入的旋转电磁场的转速与输出轴转速之比[1]。超环面机电传动的传动比计算分成两种情况:环面定子固定和行星架固定。
磁齿轮的啮合与普通齿轮的啮合有根本的不同,普通齿轮啮合时,靠接触线或接触点,通过接触处材料的弹力传递机械力, 实现传动;而磁齿轮啮合实际上是两个磁极的正对面相互对齐,靠彼此之间的磁力作用传递运动。根据电磁理论,电枢合力方向为齿槽面的法线方向,可分解为三个相互垂直方向的作用力,使行星轮发生自转和公转,带动行星架转动, 实现运动的输出。
行星轮受力分析如图3示,中心蜗杆表面上均匀排布N 极、S 极间隔的稀土永磁体, 定子的内环面上也均匀排布N 极、S极间隔的螺旋形稀土永磁体。当中心蜗杆的电枢接通三相交流电时, 在其周围将产生旋转磁场,行星轮在蜗杆和环面定子两处将受到磁场力的共同作用,在这两处磁场力的共同作用之下, 行星轮将在自转的同时还绕中心蜗杆轴线公转,支撑行星轮的行星架将在行星轮的驱动之下作自转运动, 行星架的自转运动就是该机构的输出运动。
设行星轮轮齿在任一转角ψi处与中心蜗杆啮合, 即行星轮上一个永磁体与蜗杆旋转磁场在这个位置有磁场力作用。Fni表示此刻行星轮受到的磁场力,即法向力。Fai和Fti分别表示其轴向分力和切向分力。在超环面机电传动机构中, 行星轮上永磁体与蜗杆间气隙非常小,如果把行星轮上均匀分布的永磁体当量为一段通电导体, 这个当量通电导体可以近似认为与中心蜗杆电磁场平行。那么可以得到中心蜗杆与行星轮之间的磁力作用, 如图3所示的法向力Fni,即:
(1)
式中: Fni――中心蜗杆与行星轮之间的法向力N;
B――中心蜗杆旋转磁场与行星轮永磁体磁场的合磁场强度, T;
L――行星轮上均匀分布永磁体的有效长度,mm;
Id――行星轮永磁体磁场当量电流强度, A 。
切向分力Fti提供行星轮自转驱动力矩Ti, 轴向分力Fai驱动行星轮公转, 行星轮自转的同时要与定子啮合。定子上螺旋分布的永磁体与行星轮上均匀分布的永磁体产生磁力, 这个磁力与在蜗杆处受到的磁力一样, 可以分解为一个轴向分力F’ai和一个切向分力F’ti。F’ti施加行星轮自转阻力矩T’1。T1与T’1大小相等。
超环面机电传动机构中,行星架与所有行星轮中心轴连在一起,所有行星轮的公转力矩共同形成行星架的输出力矩。对于每一个行星轮,它的公转力矩分为两个部分,一部分是蜗杆处的轴向力对蜗杆中心轴形成的力矩,另外一部分是定子处的轴向力形成的力矩。这两部分力矩共同形成一个行星轮的公转力矩Tni。即:
(2)
式中,φ1――蜗杆啮合点处的位置角,rad;
ψ1 ――定子啮合点处的位置角,rad;
a――蜗杆与行星轮的中心距,mm。
超环面机电传动机构输出力矩具有以下特征:
1、输出力矩与行星轮个数m,合磁场强度B,永磁体当量电流强度Id,行星轮永磁体的有效长度L,行星轮半径R等因素成正比的关系。
2、当其他因素相同,改变行星轮齿数将改变啮合时中心蜗杆对行星轮包围的齿数,以及包围齿数突变点的位置。但是,输出力矩并不是随着行星轮齿数的增加而增加的,因为行星轮齿数的增加并不一定能增加行星轮与中心蜗杆的啮合。
杆上齿槽分布情况确定以后,线圈具体的缠绕方式可以参考电机绕组的缠绕方式。由于蜗杆布线槽形状比较复杂,为提高齿槽的利用率,使绕线嵌线方便, 蜗杆绕组一般采用单层型式、链式绕组。
根据环面蜗杆与行星轮的啮合情况,电枢分布有两种形式:行星轮齿完全啮合,和蜗杆齿完全啮合两种情况。无论采取何种啮合方式最终产生的电磁齿与行星轮的齿都存在一定的啮合关系。随着a/R的增加,蜗杆电枢和定子梁的螺旋角减小,行星轮与蜗杆之间的啮合齿数增加;随着极对数的增加,蜗杆电枢和定子梁的螺旋角增加,极对数越多啮合点也越多。
n=0时,表示行星轮和蜗杆全部完全啮合。螺旋角的表达式可以统一,根据超环面机电传动系统的正确啮合条件方程式,可知超环面机电传动必须满足以下表达式:
(3)
中心蜗杆的极对数是成对出现的,有一个N极就必然有一个S极与其对应。所以中心蜗杆的齿数可以用极对数p表示,即Z2=2p,p取自然数。所以当中心蜗杆每增加一对极,通过行星轮与之啮合的定子齿数就应增加两个。用Z0表示定子齿数,可得定子齿数与极对数存在如下关系:
(4)
其中,p为环面蜗杆极对数,λ0为环面定子的螺旋角,λ2为蜗杆齿槽螺旋角,N为包含0的正整数。
综上所述,可以得出tanλ2,tanλ0,p和Z1四者之间的关系,在实际计算过程中由于行星轮转角Φ1一直在变化,所以定子梁螺旋角和电枢螺旋角也一定随之变化,但是变化幅度很小,因此螺旋角通常取平均值代替。
机械传动在机械工程领域中占有重要的地位,随着机械工业的发展,越来越需要集成化的传动机构。本论文提出了一种新型复合传动机构―超环面机电传动机构,并对该机构从驱动机理、啮合分析、传动比分析及结构参数选择与设计等方面进行了研究,不仅具有重要的理论意义,而且具有重要的实用价值。
参考文献
[1] 孙志礼,冷兴聚,魏严刚等主编 机械设计.沈阳:东北大学出版社2000.
【关键词】伺服系统;永磁同步电机;直流无刷电机
一、概述
从70年代后期到80年代初期,随着微处理技术,大功率高性能半导体功率器件技术和电机永磁材料制造工艺的发展,其性能价格比的日益提高,交流伺服技术-交流伺服电机和交流伺服控制系统逐渐成为主导产品。目前,高性能的伺服系统大多采用永磁同步型交流伺服电机,永磁同步电机交流伺服系统在技术上已趋于完全成熟,具备了十分优良的低速性能并可实现弱磁高速控制,能快速、准确定位的控制驱动器组成的全数字位置伺服系统。并且随着永磁材料性能的大幅度提高和价格的降低,特别是钕铁硼永磁的热稳定性和耐腐蚀性的改善和价格的逐步降低以及电力电子器件的进一步发展,加上永磁电机研究开发经验的逐步成熟,经大力推广和应用已有研究成果,其在工业生产领域中的领域也越来越广泛,正向大功率化(高转速、高转矩)、高功能化和微型化方面发展。
二、永磁同步电机伺服系统的基本结构
永磁同步电机伺服系统除电机外,系统主要包括驱动单元、位置控制系统、速度控制器、转矩和电流控制器、位置反馈单元、电流反馈单元、通讯接口单元等。
1.永磁式交流同步伺服电机。永磁同步电机永磁式同步电机具有结构简单、体积小、重量轻、损耗小、效率高的特点。和直流电机相比,它没有直流电机的换向器和电刷等需要更多维护给应用带来不便的缺点。相对异步电动机而言则比较简单,定子电流和定子电阻损耗减小,且转子参数可测、控制性能好,但存在最大转矩受永磁体去磁约束,抗震能力差,高转速受限制,功率较小,成本高和起动困难等缺点。与普通同步电动机相比,它省去了励磁装置,简化了结构,提高了效率。永磁同步电机矢量控制系统能够实现高精度、高动态性能、大范围的调速或定位控制,因此永磁同步电机矢量控制系统引起了国内外学者的广泛关注。
2.驱动单元。驱动单元采用三相全桥自控整流,三相正弦PWM电压型逆变器变频的AC-DC-AC结构。设有软启动电路和能耗泄放电路可避免上电时出现过大的瞬时电流以及电机制动时产生很高的泵升电压。逆变部分采用集驱动电路,保护电路和功率开关于一体的智能功率模块(IPM)。
3.控制单元。控制单元是整个交流伺服系统的核心, 实现系统位置控制、速度控制、转矩和电流控制器。具有快速的数据处理能力的数字信号处理器(DSP)被广泛应用于交流伺服系统,集成了丰富的用于电机控制的专用集成电路,如A/D转换器、PWM发生器、定时计数器电路、异步通讯电路、CAN总线收发器以及高速的可编程静态RAM和大容量的程序存储器等。
4.位置控制系统。对于不同的信号,位置控制系统所表现出的特性是不同的。典型的输入信号有三种形式:位置输入(位置阶跃输入)、速度输入(斜坡输入)以及加速度输入(抛物线输入)。位置传感器一般采用高分辨率的旋转变压器、光电编码器、磁编码器等元件。旋转变压器输出两相正交波形,能输出转子的绝对位置,但其解码电路复杂,价格昂贵。磁编码器是实现数字反馈控制性价比较高的器件,还可以依靠磁极变化检测位置,目前正处于研究阶段,其分辨率较低。
5.接口通讯单元。接口包括键盘/显示、控制I/O接口、串行通信等。伺服单元内部及对外的I/O接口电路中,有许多数字信号需要隔离。这些数字信号代表的信息不同,更新速度也不同。
三、对当前两种不同的永磁同步电机伺服系统的分析
由于转子磁钢的几何形状不同,当转子旋转时,在定子上产生的反电动势波形就有两种:一种为正弦波;另一种为梯形波。这样就造成同步电动机在原理、模型及控制方法上有所不同,为了区别由它们组成的永磁同步电动机交流调速系统,习惯上又把正弦波永磁同步电动机组成的调速系统称为正弦型永磁同步电动机(PMSM)调速系统;而由梯形波(方波)永磁同步电动机组成的调速系统,在原理和控制方法上与直流电动机系统类似,故称这种系统为无刷直流电动机(BLDCM)调速系统。
PMSM不需要励磁电流,在逆变器供电的情况下不需要阻尼绕组,效率和功率因素都比较高,体积也较同容量的异步机小。PMSM通常采用矢量控制和直接转矩两种控制方式。矢量控制借助与坐标变换,将实际的三相电流变换成等效的力矩电流分量和励磁电流分量,以实现电机的解耦控制,控制概念明确;而直接转矩控制技术采用定子磁场定向,借助于离散的两点是调节,直接对逆变器的开关状态进行最佳控制,以获得转矩的高动态性能,其控制简单,转矩响应迅速。PMSM的矢量控制系统能够实现高精度、高动态性能、大范围的速度和位置控制,但是它的传感器则给调速系统带来了诸如成本较高、抗干扰性和可靠性不强、电动机的轴向尺寸较长等缺陷。另外,PMSM转子磁路结构不同,则电动机的运行特性、控制系统等也不同。根据永磁体在转子上的位置的不同,永磁同步电动机主要可分为:表面式和内置式。在表面式永磁同步电动机中,永磁体通常呈瓦片形,并位于转子铁心的外表面上,这种电机的重要特点是直、交轴的主电感相等;而内置式永磁同步电机的永磁于转子内部,永磁体外表面与定子铁心内圆之间有铁磁物质制成的极靴,可以保护永磁体。这种永磁电机的重要特点是直、交轴的主电感不相等。
转贴于
BLDCM组成的伺服系统具有转速平滑,响应快,易于控制等特点,但若按照常规的控制方法,其转速直接与电压相关,易受电源波动和负载波动的影响。BLDCM类似于PMSM转子上也有永磁磁极,定子电枢需要交变电流以产生恒定转矩,其主要区别是前者的反电势为梯形波,而后者的反电势为正弦波。但由于电磁惯性,BLDCM的定子电流实际上为梯形波,而无法产生方波电流,并由集中绕组供电,所以BLDCM较PMSM脉动力矩大。在高精度伺服驱动中,PMSM有较大竞争力。另一方面,PMSM单位电流产生的力矩较BLDCM单位电流产生的力矩小。在驱动同容量的电动机时,PMSM所需逆变器容量大并且需要控制电流为正弦波,开关损耗也大很多。
PMSM的交轴电抗和直轴电抗随电机磁路饱和等因素而变化,从而影响输出力矩的磁阻力矩分量。PMSM对参数的变化较BLDCM敏感,但当PMSM工作于电流控制方式时,磁阻转矩很小,其矢量控制系统对参数变化的敏感性与BLDCM基本相同。当电机转速较高,无刷直流电机反电势与直流母线电压相同时,反电势限制了定子电流。而永磁同步电机能够采用弱磁控制,因此具有较大的调速范围。
四、永磁同步电机伺服系统的国内外发展现状
早期对永磁同步电机的研究主要为固定频率供电的永磁同步电机运行特性的研究,特别是稳态特性和直接起动性能的研究。V.B.Honsinger和M.A.Rahman等人对永磁同步电机的直接起动方面做了大量的研究工作。在上个世纪八十年代国外开始对逆变器供电的永磁同步电机进行了深入的研究,其供电的永磁同步电机与直接起动的永磁同步电机的结构基本相同,但多数情况下无阻尼绕组。并在该时期发表了大量的有关永磁同步电机数学模型、稳态特性、动态特性的研究论文。A.V.Gumaste等研究了电压型逆变器供电的永磁同步电动机稳态特性及电流型逆变器供电的永磁同步电动机稳态特性。
随着对永磁同步电机调速系统性能要求的不断提高,G.R.Slemon等人针对调速系统快速动态性能和高效率的要求,提出了现代永磁同步电机的设计方法。可设计出高效率、高力矩惯量比、高能量密度的永磁同步电机。
近年来微型计算机技术的发展,永磁同步电动机矢量控制系统的全数字控制也取得了很大的发展。D.Naunin等研制了一种永磁同步电动机矢量控制系统,采用了十六位单片机8097作为控制计算机,实现了高精度、高动态响应的全数字控制。八十年代末,九十年代初B.K.Bose等发表了大量关于永磁同步电动机矢量控制系统全数字控制的论文。
九十年代初期,R.B.Sepe首次在转速控制器中采用自校正控制。早期自适应控制主要应用于直流电机调速系统。刘天华等也将鲁棒控制理论应用于永磁同步电机伺服驱动。自适应控制技术能够改善控制对象和运行条件发生变化时控制系统的性能,N.Matsui,J.H.Lang等人将自适应控制技术应用于永磁同步电机调速系统。仿真和实验结果表明,自适应控制技术能够使调速系统在电机参数发生变化时保持良好的性能。滑模变结构控制 由于其特殊的“切换”控制方式与电机调速系统中逆变器的“开关”模式相似,并且具有良好的鲁棒控制特性,因此,在电机控制领域有广阔的应用前景。
随着人工智能技术的发展,智能控制已成为现代控制领域中的一个重要分支,电气传动控制系统中运用智能控制技术也已成为目前电气传动控制的主要发展方向,并且将带来电气传动技术的新纪元。目前,实现智能控制的有效途径有三条:基于人工智能的专家系统(ExpertSystem);基于模糊集合理论(FuzzyLogic)的模糊控制;基于人工神经网络(ArtificialNeuralNetwork)的神经控制。B.K.Bose等人从八十年代后期一直致力于人工智能技术在电气传动领域的应用,并取得了可喜的研究成果。
参考文献
[1]林正,钟德刚,陈永校,等.同步型永磁交流伺服系统控制技术评述[J].微电机,2005,(38).
[2]高性能交流永磁同步电机伺服系统现状[J].自动化控制系统,2007.
[3]刘嘉亮.交流永磁同步电动机伺服系统[J].