美章网 精品范文 相反数教案范文

相反数教案范文

前言:我们精心挑选了数篇优质相反数教案文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。

相反数教案

第1篇

年级:七年级

学科:数学

第一章;有理数

第2小节

第3课时

累计

课时

主备教师:

上课教师:

审批领导:

授课时间:

1.2.3

相反数

教学目标

1.借助数轴了解相反数的概念,知道表示互为相反数的两个点的位置关系;

2.会求一个已知数的相反数,会对含有多重符号的数进行化简。

重点难点

重点:理解相反数的意义,能熟练地求出一个已知数的相反数。

难点:理解和掌握多重符号的化简规律。

法制渗透

中考链接

在中考中常考填空题或选择题

一、激趣导入

提问

1、数轴的三要素是什么?

2、填空:数轴上与原点的距离是2的点有

个,这些点表示的数是

;与原点的距离是5的点有

个,这些点表示的数是

(小组讨论,交流合作,动手操作)

二、预习分享

采用教师抽查或小组互查的方法检查学生的预习情况:

1.什么叫做相反数?

2.5的相反数是

,-(-7)=

,-(+7)=

三、合作探究

探究1:

相反数的概念

观察下列各数:1和-1,2.5和-2.5,,并把它们在数轴上标出来。

学生讨论:

(1)上述各组数之间有什么特点?

(2)表示这三组数的点在数轴上的位置关系有什么特点?

(3)你还能写出具有上述特点的几组数吗?

教师点评:

只有符号不同的两个数,我们称它们互为相反数,零的相反数是零。

概念的理解:

(1)互为相反数的两个数分别在原点的两旁,且到原点的距离相等。

一般地,数a的相反数是,不一定是负数。

(2)在一个数的前面添上“-”号,就表示这个数的相反数,如:-3是3的相反数,-a是a的相反数,因此,当a是负数时,-a是一个正数

-(-3)是(-3)的相反数,所以-(-3)=3,于是

(3)互为相反数的两个数之和是0

即如果x与y互为相反数,那么x+y=0;反之,若x+y=0,

则x与y互为相反数

相反数是指两个数之间的一种特殊的关系,而不是指一个种类。如:“-3是一个相反数”这句话是不对的。

例1

求下列各数的相反数:

(1)-5

(2)

(3)0

(4)

(5)-2b

(6)

a-b

(7)

a+2

探究2:多重符号的化简

学生讨论:

若a表示一个数,-a一定是负数吗?

教师点评:

在正数前面添上一个“-”号,就得到这个正数的相反数,在任意一个数前面添上一个“-”号,新的数就表示原数的相反数,如:-(-5)=+5,那么你能借助数轴说明-(-5)=+5吗?

四、目标检测

[基础题]

1、判断:

(1)-2是相反数

(2)-3和+3都是相反数

(3)-3是3的相反数

(4)-3与+3互为相反数

(5)+3是-3的相反数

(6)一个数的相反数不可能是它本身

[能力提高题]

2、化简下列各数中的符号:

(1)

(2)-(+5)

(3)

(4)

[探索拓展题]

3、填空:

(1)若-(a-5)是负数,则a-5

0.

(2)

若是负数,则x+y

0.

五、小结

本节课你学到了什么?还有哪些疑惑?

1.相反数的概念

2.多重符号的化简

六、巩固目标

作业:课本P14

第4题

七、安排下节预习

预习课本P11至P13“1.2.4

绝对值”并回答:

1.绝对值的概念.

2.有理数的大小应怎样比较?

第2篇

1.理解并掌握互为反函数的函数图像间的关系定理,运用定理解决有关反函数的问题,深化对互为反函数本质的认识.

2.运用定理画互为反函数的图像,研究互为反函数的有关性质,提高解函数综合问题的能力.

3.提高学生的形象思维与抽象思维相结合的逻辑思维能力,培养学生数形结合的数学思想和转化的数学思想.

二、教学重点

互为反函数的函数图象间的关系和数形结合的数学思想

三、教学难点

互为反函数的函数图象间的关系

四、教学方法

启发式教学方法

五、教学手段

多媒体课件

六、教学过程

(一)复习:

1.求反函数的步骤(1解2换3注明)

2.求出下列函数的反函数

①y=2x+4(x∈R)(y=x/2-2x∈R)

②y=6-2x(x∈R)(y=3-x/2x∈R)

③y=x2(x≥0)(y=x1/2x≥0)

(二)新课导入

1.分别将上述三个函数与其反函数的图象做在同一个直角坐标系中

2.分析各图中互为反函数的函数图象间的关系

3.给出定理:函数y=f(x)的图象和它的反函数y=f–1(x)图象关于直线

y=x对称

4.讲解例一:

例1求函数y=x3(x∈R)反函数,并画出原来的函数和它的反函数

的图象。

解:由y=x3,得x=y1/3。因此,函数y=x3反函数是y=x1/3(x∈R)。函数y=x3(x∈R)和它的反函数y=x1/3(x∈R)的图象略。

5.讲解例二:

例2在直角坐标内,画出直线y=x,然后找出下面这些点关于直线y=x的对称点,并写出它们的坐标:

A(2,3)B(1,0)C(-2,-1)D(0,-1)

解:图略

点A的对称点为A’(3,2),点B的对称点为B’(0,1),

点C的对称点为C’(-1,-2),点D的对称点为D’(-1,0)。

6.给出推论:点(a,b)关于直线y=x的对称点为(b,a)

7.练习:函数f(x)=ax+b的图象经过(1,3),其反函数的图象经过(2,0),

求f(x)的解析式。

解:因为函数f(x)的反函数图象经过点(2,0),根据定理和推论,

函数f(x)的图象经过点(0,2)。

将点(0,2)(1,3)的横、纵坐标分别代入f(x)的解析式得:

0×a+b=2

解得:a=1b=2

a×1+b=3

所以,f(x)=x+2

七、教学小结

对这节课所学知识进行小结,互为反函数的函数图象是关于直线y=x对称的。

八、教学作业

思考题及教材64页2、3、5题

九、板书设计

互为反函数的函数图象间的关系

第3篇

教学目标:

1、理解反比例函数,并能从实际问题中抽象出反比例关系的函数解析式;

2、会画出反比例函数的图象,并结合图象分析总结出反比例函数的性质;

3、渗透数形结合的数学思想及普遍联系的辨证唯物主义思想;

4、体会数学从实践中来又到实际中去的研究、应用过程;

5、培养学生的观察能力,及数学地发现问题,解决问题的能力.

教学重点:

结合图象分析总结出反比例函数的性质;

教学难点:描点画出反比例函数的图象

教学用具:直尺

教学方法:小组合作、探究式

教学过程:

1、从实际引出反比例函数的概念

我们在小学学过反比例关系.例如:当路程S一定时,时间t与速度v成反比例

即vt=S(S是常数);

当矩形面积S一定时,长a与宽b成反比例,即ab=S(S是常数)

从函数的观点看,在运动变化的过程中,有两个变量可以分别看成自变量与函数,写成:

(S是常数)

(S是常数)

一般地,函数(k是常数,)叫做反比例函数.

如上例,当路程S是常数时,时间t就是v的反比例函数.当矩形面积S是常数时,长a是宽b的反比例函数.

在现实生活中,也有许多反比例关系的例子.可以组织学生进行讨论.下面的例子仅供

2、列表、描点画出反比例函数的图象

例1、画出反比例函数与的图象

解:列表

x

-6

-5

-4

-3

1

2

3

4

5

6

-1

-1.2

-1.5

-2

6

3

2

1.5

1.2

1

1

1.2

1.5

2

-6

-3

-2

-1.5

-1.2

1

说明:由于学生第一次接触反比例函数,无法推测出它的大致图象.取点的时候最好多取几个,正负可以对称着取分别画点描图

一般地反比例函数(k是常数,)的图象由两条曲线组成,叫做双曲线.

3、观察图象,归纳、总结出反比例函数的性质

前面学习了三类基本的初等函数,有了一定的基础,这里可视学生的程度或展开全面的讨论,或在老师的引导下完成知识的学习.

显示这两个函数的图象,提出问题:你能从图象上发现什么有关反比例函数的性质呢?并能从解析式或列表中得到论证.(下列答案仅供参考)

(1)的图象在第一、三象限.可以扩展到k>0时的情形,即k>0时,双曲线两支各在第一和第三象限.从解析式中,也可以得出这个结论:xy=k,即x与y同号,因此,图象在第一、三象限.

的讨论与此类似.

抓住机会,说明数与形的统一,也渗透了数形结合的数学思想方法.体现了由特殊到一般的研究过程.

(2)函数的图象,在每一个象限内,y随x的增大而减小;

从图象中可以看出,当x从左向右变化时,图象呈下坡趋势.从列表中也可以看出这样的变化趋势.有理数除法说明了同样的道理,被除数一定时,若除数大于零,除数越大,商越小;若除数小于零,同样是除数越大,商越小.由此可归纳出,当k>0时,函数的图象,在每一个象限内,y随x的增大而减小.

同样可以推出的图象的性质.

(3)函数的图象不经过原点,且不与x轴、y轴交.从解析式中也可以看出,.如果x取值越来越大时,y的值越来越小,趋近于零;如果x取负值且越来越小时,y的值也越来越趋近于零.因此,呈现的是双曲线的样子.同理,抽象出图象的性质.

函数的图象性质的讨论与次类似.

4、小结:

本节课我们学习了反比例函数的概念及其图象的性质.大家展开了充分的讨论,对函数的概念,函数的图象的性质有了进一步的认识.数学学习要求我们要深刻地理解,找出事物间的普遍联系和发展规律,能数学地发现问题,并能运用已有的数学知识,给以一定的解释.即数学是世界的一个部分,同时又隐藏在世界中.

5、布置作业习题13.81-4

教学设计示例2

反比例函数及其图像

一、素质教育目标

(一)知识教学点

1.使学生了解反比例函数的概念;

2.使学生能够根据问题中的条件确定反比例函数的解析式;

3.使学生理解反比例函数的性质,会画出它们的图像,以及根据图像指出函数值随自变量的增加或减小而变化的情况;

4.会用待定系数法确定反比例函数的解析式.

(二)能力训练点

1.培养学生的作图、观察、分析、总结的能力;

2.向学生渗透数形结合的教学思想方法.

(三)德育渗透点

1.向学生渗透数学来源于实践又反过来作用于实践的观点;

2.使学生体会事物是有规律地变化着的观点.

(四)美育渗透点

通过反比例函数图像的研究,渗透反映其性质的图像的直观形象美,激发学生的兴趣,也培养学生积极探求知识的能力.

二、学法引导

教师采用类比法、观察法、练习法

学生学习反比例函数要与学习其他函数一样,要善于数形结合,由解析式联想到图像的位置及其性质,由图像和性质联想比例系数k的符号.

三、重点·难点·疑点及解决办法

1.教学重点:反比例的概念、图像、性质以及用待定系数法确定反比例函数的解析式.因为要研究反比例函数就必须明确反比例函数的上述问题.

2.教学难点:画反比例函数的图像.因为反比例函数的图像有两个分支,而且这两个分支的变化趋势又不同,学生初次接触,一定会感到困难.

3.教学疑点:(1)反比例函数为何与x轴,y轴无交点;(2)反比例函数的图像只能说在第一、三象限或第二、四象限,而不能说经过第几象限,增减性也要说明在第几象限(或说在它的每一个象限内).

4.解决办法:(1)中隐含条件是或;(2)双曲线的两个分支是断开的,研究函数的增减性时,要将两个分支分别讨论,不能一概而论.

四、教学步骤

(一)教学过程

提问:小学是否学过反比例关系?是如何叙述的?

由学生先考虑及讨论一下.

答:小学学过:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做反比例的量,它们的关系叫做反比例关系.

看下面的实例:(出示幻灯)

1.当路程s一定时,时间t与速度v成反比例;

2.当矩形面积S一定时,长a与宽b成反比例;

它们分别可以写成(s是常数),(S是常数)写在黑板上,用以得出反比例函数的概念:(板书)

一般地,函数(k是常数,)叫做反比例函数.

即在上面的例子中,当路程s是常数时,时间t就是速度v的反比例函数,能否说:速度v是时间t的反比例函数呢?

通过这个问题,使学生进一步理解反比例函数的概念,只要满足(k是常数,)就可以.因此可以说速度v是时间t的反比例函数,因为(s是常量).对第2个实例也一样.

练习一:教材P129中1口答.P1301

根据前面学习特殊函数的经验,研究完函数的概念,跟着要研究的是什么?

答:图像和性质.

通过这个问题,使学生对课本上给出的知识的发生、发展过程有一个明确的认识,以后

学生要研究其他函数,也可以按照这种方式来研究.

下面,我们就来看一个例题:(出示幻灯)

例1画出反比例函数与的图像.

提问:1.画函数图像的关键问题是什么?

答:合理、正确地选值列表.

2.在选值时,你认为要注意什么问题?

答:(1)由于函数图像的特点还不清楚,多选几个点较好;

(2)不能选,因为时函数无意义;

(3)选整数较好计算和描点.

这个问题中最核心的一点是关于

的问题,提醒学生注意.

3.你能不能自己完成这道题呢?

学生在练习本上列表、描点、连线,教师在黑板上板演,到连线时可暂停,让学生先连完线之后,找一名同学上黑板连线,然后就这名同学的连线加以评价、总结:

注意:(1)一般地,反比例函数的图像由两条曲线组成,叫做双曲线;

(2)这两条曲线不相交;

(3)这两条曲线无限延伸,无限靠近x轴和y轴,但永不会与x轴和y轴相交.

关于注意(3)可问学生:为什么图像与x和y轴不相交?

通过这个问题既可加深学生对反比例函数图像的记忆,又可培养学生思维的灵活性和深刻性.

再让学生观察黑板上的图,提问:

1.当时,双曲线的两个分支各在哪个象限?在每个象限内,y随x的增大怎样变化?

2.当时,双曲线的两个分支各在哪个象限?在每个象限内,y随x的增大怎样变化?

这两个问题由学生讨论总结之后回答,教师板书:

对于双曲线(1)当:(1)当时,双曲线的两分支位于一、三象限,y随x的增大而减少;(2)当时,双曲线的两分支位于二、四象限,y随x的增大而增大.

3.反比例函数的这一性质与正比例函数的性质有何异同?

通过这个问题使学生能把学过的相关知识有机地串联起来,便于记忆和应用.

练:教材P129中2由学生在练习本上完成,教师巡回指导.P130中2、3填在书上

上面,我们讨论了反比例函数的概念、图像和性质,下面我们再来看一个不同类型的例题:(出示幻灯)

例2已知y与成反比例,并且当时,,求时,y的值.

用提问的方式对此题加以分析:

(1)y与成反比例是什么含义?

由学生讨论这一问题,最后归结为根据反比例函数的概念,这句话说明了:.

(2)根据这个式子,能否求出当时,y的值?

(3)要想求出y的值,必须先知道哪个量呢?

(4)怎样才能确定k的值?用什么条件?

答:用待定系数法,把时代入,求出k的值.

(5)你能否自己完成这道例题:

由一名同学板演,其他同学在练习本上完成.

例3已知:,与x成正比例,与x成反比例,当时,时,,求y与x的解析式.

分析:一定要先写出y与x的函数表达式,

要用x分别把,表示出来得,

要注意不能写成k,

解:设,

.

由题意得

.

(二)总结、扩展

教师提问,学生思考回答:

1.什么是反比例函数?

2.反比例函数的图像是什么样的?

3.反比例函数的性质是什么?

4.命题方向及题型设置,反比例函数也是中考命题的主要考点,其图像和性质,以及其函数解析式的确定,常以填空题、选择题出现,在低档题中,近两年各省、市的中考试卷中出现不少将反比例函数与一次函数、几何知识、三角知识等综合编拟的解答题,丰富了压轴题的形式和内容.

五、布置作业

1.教材P130中4,5,6

2.选做:P130中B1,2

六、板书设计

13.8反比例函数及其图像

引例:(1)例1:例2:例3:

(2)

1.反比例函数:

2.反比例函数的性质

探究活动

已知:如图,一次函数的图像经过第一、二、三象限,且与反比例函数的图像交于A、B两点,与y轴交于点C,与x轴交于点D。。

(1)求反比例函数的解析式;

(2)设点A的横坐标为m,的面积为S,求S与m的函数关系式,并写出自变量m的取值范围;

(3)当的面积等于时,试判断过A、B两点的抛物线在x轴上截得的线段长能否等于3。如果能,求此时抛物线的解析式;如果不能,请说明理由。

解:(1)过点B作轴于点H。

在Rt中,

由勾股定理,得

又,

点B(-3,-1)。

设反比例函数的解析式为

点B在反比例函数的图像上,

反比例函数的解析式为。

(2)设直线AB的解析式为。

由点A在第一象限,得。

又由点A在函数的图像上,可求得点A的纵坐标为。

点B(-3,-1),点,

解关于、的方程组,得

直线AB的解析式为。

令。

求得点D的横坐标为。

过点A作轴于点G

由已知,直线经过第一、二、三象限,

,即。

由此得

即。

(3)过A、B两点的抛物线在x轴上截得的线段长不能等于3。

证明如下:

由,

解得。

经检验,都是这个方程的根。

不合题意,舍去。

点A(1,3)。

设过A(1,3)、B(-3,-1)两点的抛物线的解析式为。

由此得

即。

设抛物线与x轴两交点的横坐标为。

则。

即。

整理,得。

第4篇

1.了解绝对值的概念,会求有理数的绝对值;

2.会利用绝对值比较两个负数的大小;

3.在绝对值概念形成过程中,渗透数形结合等思想方法,并注意培养学生的思维能力.

教学建议

一、重点、难点分析

绝对值概念既是本节的教学重点又是教学难点。关于绝对值的概念,需要明确的是无论是绝对值的几何定义,还是绝对值的代数定义,都揭示了绝对值的一个重要性质——非负性,也就是说,任何一个有理数的绝对值都是非负数,即无论a取任意有理数,都有。

教材上绝对值的定义是从几何角度给出的,也就是从数轴上表示数的点在数轴上的位置出发,得到的定义。这样,数轴的概念、画法、利用数轴比较有理数的大小、相反数,以及绝对值,通过数轴,这些知识都联系在一起了。此外,0的绝对值是0,从几何定义出发,就十分容易理解了。

二、知识结构

绝对值的定义绝对值的表示方法用绝对值比较有理数的大小

三、教法建议

用语言叙述绝对值的定义,用解析式的形式给出绝对值的定义,或利用数轴定义绝对值,从理论上讲都是可以的.初学绝对值用语言叙述的定义,好像更便于学生记忆和运用,以后逐步改用解析式表示绝对值的定义,即

在教学中,只能突出一种定义,否则容易引起混乱.可以把利用数轴给出的定义作为绝对值的一种直观解释.

此外,要反复提醒学生:一个有理数的绝对值不能是负数,但不能说一定是正数.“非负数”的概念视学生的情况,逐步渗透,逐步提出.

四、有关绝对值的一些内容

1.绝对值的代数定义

一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;零的绝对值是零.

2.绝对值的几何定义

在数轴上表示一个数的点离开原点的距离,叫做这个数的绝对值.

3.绝对值的主要性质

(2)一个实数的绝对值是一个非负数,即|a|≥0,因此,在实数范围内,绝对值最小的数是零.

(4)两个相反数的绝对值相等.

五、运用绝对值比较有理数的大小

1.两个负数大小的比较,因为两个负数在数轴上的位置关系是:绝对值较大的负数一定在绝对值较小的负数左边,所以,两个负数,绝对值大的反而小.

比较两个负数的方法步骤是:

(1)先分别求出两个负数的绝对值;

(2)比较这两个绝对值的大小;

(3)根据“两个负数,绝对值大的反而小”作出正确的判断.

2.两个正数大小的比较,与小学学习的方法一致,绝对值大的较大.

教学设计示例

绝对值(一)

一、素质教育目标

(一)知识教学点

1.能根据一个数的绝对值表示“距离”,初步理解绝对值的概念.

2.给出一个数,能求它的绝对值.

(二)能力训练点

在把绝对值的代数定义转化成数学式子的过程中,培养学生运用数学转化思想指导思维活动的能力.

(三)德育渗透点

1.通过解释绝对值的几何意义,渗透数形结合的思想.

2.从上节课学的相反数到本节的绝对值,使学生感知数学知识具有普遍的联系性.

(四)美育渗透点

通过数形结合理解绝对值的意义和相反数与绝对值的联系,使学生进一步领略数学的和谐美.

二、学法引导

1.教学方法:采用引导发现法,辅之以讲授,学生讨论,力求体现“教为主导,学为主体”的教学要求,注意创设问题情境,使学生自得知识,自觅规律.

2.学生学法:研究+6和-6的不同点和相同点绝对值概念巩固练习归纳小结(绝对值代数意义)

三、重点、难点、疑点及解决办法

1.重点:给出一个数会求出它的绝对值.

2.难点:绝对值的几何意义,代数定义的导出.

3.疑点:负数的绝对值是它的相反数.

四、课时安排

2课时

五、教具学具准备

投影仪(电脑)、三角板、自制胶片.

六、师生互动活动设计

教师提出+6和-6有何相同点和不同点,学生研究讨论得出绝对值概念;教师出示练习题,学生讨论解答归纳出绝对值代数意义.

七、教学步骤(

(一)创设情境,复习导入

师:以上我们学习了数轴、相反数.在练习本上画一个数轴,并标出表示-6,,0及它们的相反数的点.

学生活动:一个学生板演,其他学生在练习本上画.

【教法说明】绝对值的学习是以相反数为基础的,在学生动手画数轴的同时,把相反数的知识进行复习,同时也为绝对值概念的引入奠定了基础,这里老师不包办代替,让学生自己练习.

(二)探索新知,导入新课

师:同学们做得非常好!-6与6是相反数,它们只有符号不同,它们什么相同呢?

学生活动:思考讨论,很难得出答案.

师:在数轴上标出到原点距离是6个单位长度的点.

学生活动:一个学生板演,其他学生在练习本上做.

师:显然A点(表示6的点)到原点的距离是6,B点(表示-6的点)到原点距离是6个单位长吗?

学生活动:产生疑问,讨论.

师:+6与-6虽然符号不同,但表示这两个数的点到原点的距离都是6,是相同的.我们把这个距离叫+6与-6的绝对值.

[板书]2.4绝对值(1)

【教法说明】针对“互为相反数的两数只有符号不同”提出问题:“它们什么相同呢?”在学生头脑中产生疑问,激发了学生探索知识的欲望,但这时学生很难回答出此问题,这时教师注意引导再提出要求:“找到原点距离是6个单位长度的点”这时学生就有了一个攀登的台阶,自然而然地想到表示+6,-6的点到原点的距离相同,从而引出了绝对值的概念,这样一环紧扣一环,时而紧张时而轻松,不知不觉学生已获得了知识.

师:-6的绝对值是表示-6的点到原点的距离,-6的绝对值是6;

6的绝对值是表示6的点到原点的距离,6的绝对值是6.

提出问题:(1)-3的绝对值表示什么?

(2)的绝对值呢?

(3)的绝对值呢?

学生活动:(1)(2)题根据教师的引导学生口答,(3)题讨论后口答.

[板书]一个数a的绝对值是数轴上表示数a的点到原点的距离.

数a的绝对值是|a|

【教法说明】由-6,6,-3,这些特殊的数的绝对值引出数的绝对值,逐层铺垫,由学生得出绝对值的几何意义,既理解了一个数的绝对值的含义也训练了学生口头表达能力,突破了难点.

(三)尝试反馈,巩固练习

师:数可以表示任意数,若把换成,9,0,-1,-0.4观察数轴,它们的绝对值各是多少?

学生活动:口答:,,,,

师:你在自己画的数轴上标出五个数,让同桌指出它们的绝对值.

学生活动:按教师要求自己又当“小老师”又当“学生”.

教师找一组学生回答,并及时纠正出现的错误.

(出示投影1)

例求8,-8,,的绝对值.

师:观察数轴做出此题.

学生活动:口答

,,,.

师:由此题目你能想到什么规律?

学生活动:讨论得出—互为相反数的两数绝对值相同.

【教法说明】这一环节是对绝对值的几何定义的巩固.这里对于绝对值定义的理解不能空谈“5的绝对值、-7的绝对值是多少”?而是与数轴相结合,始终利用表示这数的点到原点的距离是这个数的绝对值这一概念.教师先阐明这个字母可表示任意数,再把换成一组数,学生自己又把换成了一些数,指出它们的绝对值,这样既理解了数所表示的广泛含义,又巩固了绝对值的定义.然后,通过例题总结出了互为相反数的两数的绝对值相等这一规律,既呼应了前面内容,又升华了绝对值的概念.

师:观察数轴,在原点右边的点表示的数(正数)的绝对值有什么特点?

在原点左边的点表示的数(负数)的绝对值呢?

生:思考,不能轻易回答出来.

师:再看前面我们所求的,,,,.你能得出什么规律吗?

学生活动:思考后一学生口答.

教师纠正并板书:

[板书]正数的绝对值是它本身.

负数的绝对值是它的相反数.

0的绝对值是0.

师:字母可表示任意的数,可以表示正数,也可以表示负数,也可以表示0.

教师引导学生用数学式子表示正数、负数、0,并再提问:这时的绝对值分别是多少?

学生活动:分组讨论,教师加入讨论,学生互相补充回答.

教师板书:

[板书]

若,则

若,则

若,则

师强调:这种表示方法就相当于前面三句话,比较起来后者更通俗易懂.

【教法说明】用字母表示规律是难点.这时教师放手,让学生有目的地考虑、分析,共同得出结论.

巩固练习:

(出示投影2)

1.化简:,,.

,,;

2.计算:①.

②.

③.

学生活动:1题口答,2题自己演算,三个学生板演.

【教法说明】1题的前四个旨在直接运用绝对值的性质,后两个略有加深,需要讨论后回答;2题(3)小题让学生区别绝对值符号和括号的不同含义.

(四)归纳小结

师:这节课我们学习了绝对值.

(1)一个数的绝对值是在数轴上表示这个数的点到原点的距离;

(2)求一个数的绝对值必须先判断是正数还是负数.

回顾反馈:

(出示投影3)

1.-3的绝对值是在_____________上表示-3的点到__________的距离,-3的绝对值是____________.

2.绝对值是3的数有____________个,各是___________;

绝对值是2.7的数有___________个,各是___________;

绝对值是0的数有____________个,是____________.

绝对值是-2的数有没有?

(总结:)

3.(1)若,则;

(2)若,则.

【教法说明】教师在总结完本节课的知识要点后,再回头对本节重点内容进行反馈练习,并且注意把知识进行升华.

八、随堂练习

1.判断题

(1)数的绝对值就是数轴上表示数的点与原点的距离()

(2)负数没有绝对值()

(3)绝对值最小的数是0()

(4)如果甲数的绝对值比乙数的绝对值大,那么甲数一定比乙数大()

(5)如果数的绝对值等于,那么一定是正数

2.填表

原数

3

相反数

绝对值

倒数

3.填空

(1);(2);(3);

(4);(5)若,则;(6).

九、布置作业

课本第66页2、4.

十、板书设计(

随堂练习答案

1.√×√××

2.略

3.(1),(2)7,(3)-7,(4)2,(5)3或-3,(6)

作业(答案

2.+7,-7,-0.35,

4.<,>,>,=

绝对值(二)

一、素质教育目标

(一)知识教学点

会利用绝对值比较两个负数的大小.

(二)能力训练点

利用绝对值概念比较有理数的大小,培养学生的逻辑思维能力.

(三)德育渗透点

不断加深对有理数比较大小方法的认识,渗透数形结合的思想.

(四)美育渗透点

通过本节课的学习,学生会发现利用绝对值比较两个负数大小与利用数轴比较任意两个数的大小是和谐统一的,学生会进一步感受到数学的和谐美.

二、学法引导

1.教学方法:采用引导发现法总结规律,并辅之以变式训练进行扎实巩固,以复习提问作为铺垫,突破难点.

2.学生学法:观察讨论归纳练习

三、重点、难点、疑点及解决办法

1.重点:利用绝对值比较两个负数的大小.

2.难点:利用绝对值比较两个异分母负分数的大小.

四、教具学具准备

投影仪(或电脑)、自制胶片.

五、师生互动活动设计

教师提出问题,学生讨论归纳;教师出示练习题,学生练习巩固.

六、教学步骤

(一)创设情境,复习提问

师:我们前面学习了绝对值,我相信大家学得都非常好.一定能做好下面这个题.

[板书]

比较大小

(1)与与

(2)4与-50.9与1.1

-10与0-9与-1

学生活动:(1)题在练习本上演算,两个学生板演,(2)题学生抢答.

【教法说明】(1)题是为了分散利用绝对值比较两个负分数的大小这一难点埋下了伏笔,在这个题目中用最简单的“,”的形式训练学生简单的推理能力.(2)题是复习利用数轴比较两个数的大小,让学生体会出这四个题中觉得难度较大的题目是最后小题两个负数比较大小,从而引出课题.

教师板书课题

[板书]2.4绝对值(2)

(二)探索新知,讲授新课

1.规律的发现

在比较-9与-1时,教师订正的同时要求学生说出比较-9与-1的根据(数轴上的两个数右边的总比左边的大),同时在黑板上(学生在练习本上)画出数轴.

提出问题:在数轴上任意取两个负数,比较大小,观察较小的数有什么特点?

学生活动:尝试举例,讨论得出结果—两个负数,绝对值大的反而小,或两个负数绝对值小的反而大.(师板书)

强调:今后比较两个负数的大小又多了一种方法,即两个负数,绝对值大的反而小.

【教法说明】教师注意“放”时要让学生带着针对性的问题去思考、分析,既给学生一片自己发挥想象的天地,又使学生不至于走偏.

巩固练习:

(出示投影1)

比较大小:

(1)-3与-8;(2)-0.1与-0.2;

(3)与;(4)与.

学生活动:讨论后抢答.

【教法说明】(1)题让学生讨论时注意写好比较大小的格式,运用“”、“”的格式初步训练学生逻辑推理能力.(2)(3)(4)题通过数的变化,巩固对规律的认识.

[板书]

解:

2.出示例题(出示投影2)

比较大小

(1)与.

提出问题:对于异分母的两个负分数怎样利用绝对值比较大小?

学生活动:讨论后自己尝试写.

师:我们在复习时已比较出了与的绝对值,可以在此基础上直接得出结论.

[板书]

解:

【教法说明】由于复习时学生对与已进行了比较,会非常轻松的完成此题目.教师设置了一级一级的台阶,让学生自己攀登,既发挥了学生的主体作用,又从题目的解决过程中训练了学生的推理能力.

巩固练习:(出示投影3)

比较大小:

(1)与,(2)与.

学生活动:两个学生板演,其他学生自己练习.

【教法说明】比较两个负分数的大小是这节的重点也是难点,利用这两个小题让学生从整体上把握一下方法,达到熟练掌握的程度.

(三)归纳小结

师:我们今天主要学习的是两个负数比较大小.

(1)两个负数,绝对值大的反而小.

(2)利用数轴可以比较任意两个数的大小,包括两个负数.

【教法说明】教师的小结必须把今天的所学纳入知识系统,明确说明利用数轴可以比较任意两数的大小,而利用绝对值比较大小只适用于两个负数.

七、随堂练习

1.判断题

(1)两个有理数比较大小,绝对值大的反而小

(2)

(3)有理数中没有最小的数

(4)若,则

(5)若,则

2.比较大小

(1)-2__________5,,-0.01__________-1

(2)和(要有过程)

3.写出绝对值不大于4的所有整数,并把它们表示在数轴上.

八、布置作业

(一)必做题:课本第67页A组7.

(二)选做题:课本第68页B组3.

九、板书设计

随堂练习答案

1.××√×√

2.(1)<,<>;(2)>.

3.±1,±2,±3,±4,0.

作业答案

(一)必做题:7.(1)(2)

(3)(4)

(二)选做

探究活动

填空:

(1)若|a|=6,则a=______;

(2)若|-b|=0.87,则b=______;

(4)若x+|x|=0,则x是______数.

分析:已知一个数的绝对值求这个数,则这个数有两个,它们是互为相反数.由

解:(1)|a|=6,a=±6;

(2)|-b|=0.87,b=±0.87;

(4)x+|x|=0,|x|=-x.

|x|≥0,-x≥0

x≤0,x是非正数.

点评:“绝对值”是代数中最重要的概念之一,应当从正、逆两个方面来理解这个概念.对绝对值的代数定义,至少要认识到以下四点:

(1)任何一个数的绝对值一定是正数或0,即|a|≥0;

(2)互为相反数的两个数的绝对值相等,|a|=|-a|;

(3)如果一个数的绝对值是它本身,那么这个数一定是正数或0;如果一个数的绝对值是它的相反数,那么这个数一定是负数或0;

第5篇

关键词:班主任;培养;育好

中图分类号:G632 文献标识码:B 文章编号:1002-7661(2015)01-094-01

教师设计教案的过程是教学艺术的创造过程,优化的教学程序是教师教学设计的能力体现与教学理念的展示过程,也是学生获得数学知识和科学方法、领略数学思想p探求真理的过程。教学过程中教学理念和课堂教学的结构层次分明,教学各个板块的时间分配得当。尤其是导入的设计,重p难点突破的设计,课堂教学结构的设计更应有详细的介绍。教学中应多设计一些有思维力度的问题来激活学生的思维,迅速调节课堂气氛,使学生随时处于一种饱满的热情中。本文以《有理数乘法法则》为例:我是这样设计的:

一、教学目标

1、知识技能目标

识记:有理数乘法法则。

理解:有理数乘法法则,两个有理数相乘,积的符号如何确定,建立初步的数感。

运用:能正确使用有理数乘法法则进行乘法运算。

2、过程性目标

经历实际问题抽象为代数问题的过程,经历对有理数乘法法则的探索过程,加深对法则的理解和正确使用。

3、自主学习

培养和发展学生的观察、归纳、猜测、验证的能力。学会与他人合作交流,感受成功的喜悦,建立自信。

二、教学重点和难点

重点:有理数乘法法则的运用。

难点:经历法则的探索过程,加深对法则的理解。

三、教学过程

1、创设情境,引入课题

(1)利用多媒体课件演示:秀丽的风景,一列火车飞驰而去,一只可爱的小甲虫,从路标牌出发,沿东西走向的铁轨爬行让学生观察图中看到的景物,进行联想回答。

问题1:小甲虫以3mMmin的速度向东爬行2min,那么它现在位于原来位置的哪个方向?相距多少米?

学生思考、讨论,列出算式:3×2=6 m

能用数轴来表示这一事实吗?动手画一画。

问题2:小甲虫以3mMmin的速度向西爬行2min,那么结果有何变化?

学生模仿问题1进行讨论和探究、交流,分析位置的方向、距离有何变化。

列出算式:(-3)×2=-6(m)

要求学生再用数轴表示该式的意义。

2、交流探讨

引导学生比较两个算式,左边的因数有什么不同,右边得到的积有什么不同。学生展开讨论。

由学生讨论概括出下面的一般规则:两数相乘,若把一个因数换成它的相反数,则所得的积是原来的积相反数。

【提示】引导学生通过观察、比较和尝试,并通过数轴来探求和发现规律:两数相乘,若把一个因数换成它的相反数,则所得的积也是原来的积的相反数。

(1)、试一试:用上面得到的规律计算.

①3×(-2)=?把它与3×2=6进行比较会有什么结果?

②(-3)×(-2)=?把它与(-3)×2=-6进行比较,结果如何?

③(-3)×0=?

④0×2=?

让学生经历动手尝试和探讨的过程,教学中应注意引导学生利用上面获得的规律来解释,并要求学生能模仿问题1和问题2设计这4个式子所能表示的实际意义,并得出后两个式子的结果,加深对有理数乘法的理解。

【提示】让学生经历动手尝试和探索的过程,为进一步探索和概括有理数乘法法则奠定基础。引导学生运用上面发现的规律,验证和解释两个数相乘的结果和符号以及对算式的实际意义展开讨论,培养学生合作能力、交流思维过程的能力,以及用数学来解决实际问题的意识和能力。

(2)、仔细观察上面的几个算式,你会发现什么规律?讨论:怎样确定两个有理数的积的符号?有一个因数是0时结果怎样?

【提示】用“发现法”开启学生的思维,运用共同讨论、观察、探究和发现规律,学习用推理的思维方法去思考问题,主动寻求事物的一般规律。发现和概括出如何确定两个有理数的积的符号,从中探求规律,理解并得出有理数乘法法则。

3、运用和巩固

(1)、学生接力赛

规则:每组先选一个代表进行扮演,做错时由本组同学改正,直至做对后再选另一个同学做第二题,又快有正确的组获胜,给予加分或扣分。

用多媒体出式练习题:教材第64页练习2中选8道题编成两组进行游戏。

(2)、抢答:用多媒体出示(教材第64页练习3)

①3×(-1) ②(-5)×(-1) ③×(-1) ④0×(-1)

⑤(-6)×1 ⑥0×1 ⑦2×1 ⑧1×(-1)

观察上述结论,启发学生归纳得出结论:一个数乘-1,得到的积是什么?一个数乘1呢?

【提示】从特殊到一般,再从一般到特殊,树立辩证思维的观点,观察练习3的特点,结合想一想的问题,从特殊情况出发,探讨寻求一般规律。课堂上这种辩证思想的渗透,其目的是使学生逐步感知研究数学问题的一些基本方法。

4、课堂小结和回顾

(1)通过本节课的学习你学会了什么知识?本节课的学习活动中你最大收获是什么?

引导学生把有理数乘法和加法法则进行比较,归纳异同,使知识系统化。

(2)请同学们评价一下,哪位同学在这结课中表现最优秀?

(3)通过本节课的学习活动,你还有什么疑虑和思考?

5、延伸与拓展

(1)、选择题

①两个有理数的和是负数,积是正数,则这两个有理数是

( )

A.两个正数 B.两个负数

C.一正一负 D.两个正数或两个负数

②两个有理数的和是0,积为负数,则这两有理数是( )

A.互为倒数 B.互为相反数 C. 有一个为0 D.两个负数

在数学教学中,不仅要求学生掌握基础知识和应用技能,而且要重视对学生的数学思维方法和创造思维能力的培养。学习从数学的角度提出问题、理解问题,体验问题解决的过程,使学生在学习中感受成功的喜悦,建立自信,从而积极参与数学学习活动,激发学生强烈的求知欲。

此外,开放式教学模式要求教师在教学中要从学生的认知水平和已有的经验出发,创设有助于学生学习的情境,引导学生通过思考、实践、交流,从而学会学习,学会思考,获得知识,掌握技能。

参考文献:

第6篇

教学建议

一、知识结构

二、重点、难点分析

本节教学的重点是掌握公式的结构特征及正确运用公式.难点是公式推导的理解及字母的广泛含义.平方差公式是进一步学习完全平方公式、进行相关代数运算与变形的重要知识基础.

1.平方差公式是由多项式乘法直接计算得出的:

与一般式多项式的乘法一样,积的项数是多项式项数的积,即四项.合并同类项后仅得两项.

2.这一公式的结构特征:左边是两个二项式相乘,这两个二项式中有一项完全相同,另一项互为相反数;右边是乘式中两项的平方差,即相同项的平方与相反项的平方差.公式中的字母可以表示具体的数(正数和负数),也可以表示单项式或多项式等代数式.

只要符合公式的结构特征,就可运用这一公式.例如

在运用公式的过程中,有时需要变形,例如,变形为,两个数就可以看清楚了.

3.关于平方差公式的特征,在学习时应注意:

(1)左边是两个二项式相乘,并且这两上二项式中有一项完全相同,另一项互为相反数.

(2)右边是乘式中两项的平方差(相同项的平方减去相反项的平方).

(3)公式中的和可以是具体数,也可以是单项式或多项式.

(4)对于形如两数和与这两数差相乘,就可以运用上述公式来计算.

三、教法建议

1.可以将“两个二项式相乘,积可能有几项”的问题作为课题引入,目的是激发学生的学习兴趣,使学生能在两个二项式相乘其积可能为四项、三项、两项中找出积为两项的特征,上升到一定的理论认识,加以实践检验,从而培养学生观察、概括的能力.

2.通过学生自己的试算、观察、发现、总结、归纳,得出为什么有的两个二项式相乘,其积为两项,因为其中两项是两个数的平方差,而另两项恰是互为相反数,合并同类项时为零,即

(a+b)(a-b)=a2+ab-ab-b2=a2-b2.

这样得出平方差公式,并且把这类乘法的实质讲清楚了.

3.通过例题、练习与小结,教会学生如何正确应用平方差公式.这里特别要求学生注意公式的结构,教师可以用对应思想来加强对公式结构的理解和训练,如计算(1+2x)(1-2x),

(1+2x)(1-2x)=12-(2x)2=1-4x2

(a+b)(a-b)=a2-b2.

这样,学生就能正确应用公式进行计算,不容易出差错.

另外,在计算中不一定用一种模式刻板地应用公式,可以结合以前学过的运算法则,经过变形后灵活应用公式,培养学生解题的灵活性.

教学目标

1.使学生理解和掌握平方差公式,并会用公式进行计算;

2.注意培养学生分析、综合和抽象、概括以及运算能力.

教学重点和难点

重点:平方差公式的应用.

难点:用公式的结构特征判断题目能否使用公式.

教学过程设计

一、师生共同研究平方差公式

我们已经学过了多项式的乘法,两个二项式相乘,在合并同类项前应该有几项?合并同类项以后,积可能会是三项吗?积可能是二项吗?请举出例子.

让学生动脑、动笔进行探讨,并发表自己的见解.教师根据学生的回答,引导学生进一步思考:

两个二项式相乘,乘式具备什么特征时,积才会是二项式?为什么具备这些特点的两个二项式相乘,积会是两项呢?而它们的积又有什么特征?

(当乘式是两个数之和以及这两个数之差相乘时,积是二项式.这是因为具备这样特点的两个二项式相乘,积的四项中,会出现互为相反数的两项,合并这两项的结果为零,于是就剩下两项了.而它们的积等于乘式中这两个数的平方差)

继而指出,在多项式的乘法中,对于某些特殊形式的多项式相乘,我们把它写成公式,并加以熟记,以便遇到类似形式的多项式相乘时就可以直接运用公式进行计算.以后经常遇到(a+b)(a-b)这种乘法,所以把(a+b)(a-b)=a2-b2作为公式,叫做乘法的平方差公式.

在此基础上,让学生用语言叙述公式.

二、运用举例变式练习

例1计算(1+2x)(1-2x).

解:(1+2x)(1-2x)

=12-(2x)2

=1-4x2.

教师引导学生分析题目条件是否符合平方差公式特征,并让学生说出本题中a,b分别表示什么.

例2计算(b2+2a3)(2a3-b2).

解:(b2+2a3)(2a3-b2)

=(2a3+b2)(2a3-b2)

=(2a3)2-(b2)2

=4a6-b4.

教师引导学生发现,只需将(b2+2a3)中的两项交换位置,就可用平方差公式进行计算.

课堂练习

运用平方差公式计算:

(l)(x+a)(x-a);(2)(m+n)(m-n);

(3)(a+3b)(a-3b);(4)(1-5y)(l+5y).

例3计算(-4a-1)(-4a+1).

让学生在练习本上计算,教师巡视学生解题情况,让采用不同解法的两个学生进行板演.

解法1:(-4a-1)(-4a+1)

=[-(4a+l)][-(4a-l)]

=(4a+1)(4a-l)

=(4a)2-l2

=16a2-1.

解法2:(-4a-l)(-4a+l)

=(-4a)2-l

=16a2-1.

根据学生板演,教师指出两种解法都很正确,解法1先用了提出负号的办法,使两乘式首项都变成正的,而后看出两数的和与这两数的差相乘的形式,应用平方差公式,写出结果.解法2把-4a看成一个数,把1看成另一个数,直接写出(-4a)2-l2后得出结果.采用解法2的同学比较注意平方差公式的特征,能看到问题的本质,运算简捷.因此,我们在计算中,先要分析题目的数字特征,然后正确应用平方差公式,就能比较简捷地得到答案.

课堂练习

1.口答下列各题:

(l)(-a+b)(a+b);(2)(a-b)(b+a);

(3)(-a-b)(-a+b);(4)(a-b)(-a-b).

2.计算下列各题:

(1)(4x-5y)(4x+5y);(2)(-2x2+5)(-2x2-5);

教师巡视学生练习情况,请不同解法的学生,或发生错误的学生板演,教师和学生一起分析解法.

三、小结

1.什么是平方差公式?

2.运用公式要注意什么?

(1)要符合公式特征才能运用平方差公式;

(2)有些式子表面不能应用公式,但实质能应用公式,要注意变形.

四、作业

1.运用平方差公式计算:

(l)(x+2y)(x-2y);(2)(2a-3b)(3b+2a);

(3)(-1+3x)(-1-3x);(4)(-2b-5)(2b-5);

(5)(2x3+15)(2x3-15);(6)(0.3x-0.l)(0.3x+l);

2.计算:

第7篇

关键词:集体备课;多媒体课件

一、多媒体课件,为集体备课搭建智慧碰撞的平台

在上“有理数的乘法”一课前,年级备课组长要求本年级的所有教师各自备课,然后在此基础上集中交流.由一人主讲,大家围绕主讲人教学设计的主题发表补充意见并开展讨论,再集体商定最终的集体教案.

首先,多媒体课件可以为集体备课搭建一个声色具备的展示平台.在传统形式中,探讨过程中的媒介一般是教科书和主讲人的教案,然而只有文本和语言的讲述显得比较抽象和单调.而课件使主讲人有本可依,主讲人借助课件,将说明“负负得正”的各种数学模型,从北师大的归纳模型,到苏科版的水位模型,浙教版的数轴模型、温度模型,通过生动活泼的页面一一呈现给听众,使主讲人更好的展现了个人对教学内容的理解和设计意图.多角度的观察,也使听者能更为迅速的理解其主题.而鼠标的点击操作代替了主讲人的书写方式,节约了大量的时间,大大提高了集体备课的效率.

其次,多媒体课件为集体备课提供了一个资源丰富的资源平台.在“有理数的乘法”一课的探讨中,就有教师提出,除各种不同版本的教科书之外,网络和杂志上也出现了各种较新颖的说明“负负得正”的数学模型,如相反数模型、分配律模型和好孩子模型等[1 ].丰富的内容对教材进行了更多的拓展,打破了教材作为唯一课程资源的神话[2 ].借助网络和多媒体的力量,教师对教材的探讨又将迈进一步.

再次,多媒体课件同样是集体备课过程中的探讨平台.多媒体课件使讨论有根有据,与会者可以对教学设计的每个环节、内容、细节都进行深入斟酌,提出富有成效的建议和意见.

最后,多媒体课件还是集体备课的检查平台,它“含蓄”地检查了各位教师的备课情况.通过主讲人的讲述以及对课件的熟练程度,可以很容易判断出其课件是有自己的研究思想,还是仅仅依靠网络盲目使用他人的教学资源.这种隐性的检查,也是非常有必要的,因为,集体备课也会增长教师的惰性,如果教师仅依靠集体备课,就会完全失去了自我,其教学“生命”将是没有阳光的.我们认真地钻研教材教法,形成教学设想,带着问题,就能保证为集体备课的“生命”.

二、多媒体课件,为二次独立备课打造展示个性的舞台

在集体交流后, 往往会形成一个较为完善的教学方案[3 ].但是“资源共享”不等于“案”.首先,教学必须是因人而异、以人为本的,教师需要根据各个班级间的差异性,对课件进行相应的调整.其次,由于教师的知识结构、教学经验、个人性格等多方面存在差异性,会形成具有个人特色的教学方法,对教学内容也有各自不同的理解.多媒体的丰富性和交互性使课件成为教师展现其职业个性的舞台.

多媒体课件的丰富性使教师能充分展示个性.集体备课组得出的课件中含有丰富的教学素材和内容,使教师减少了准备素材需花费的时间,使其有更多的时间进行教学设计并钻研教学方法.“有理数的乘法”一课中,单单如何说明“负负得正”这个问题,就有多种不同的模型.教师可以根据遇到的具体问题进行个性的选择,做到集体备课课件与教师个人最大限度的契合,充分展现教师教学的职业个性.

多媒体课件的交互性使教师能充分展示个性.“有理数的乘法”一课中,集体讨论过程中,主要讨论的是采用哪个模型说明“负负得正”更容易被学生接受,而引入、结尾和练习的设计都留下了一定的“空白”,为课件使用者提供了个人思考的空间,方便课件使用者作个性化的修改.在二次备课过程中,使用者可以将个人的新素材添加到课件中,对其不断完善、丰富并扩充.教师还可以通过调整字体类型、改变界面色彩、添加趣味图片、视频以及音频等媒体手段来呈现教师的情感个性[4 ].

三、多媒体课件,为课后反思建筑资源积累的高台

在课堂教学过程中,许多可变因素都会干扰“个性课堂”的具体实施,都会对原有的教学设计提出挑战.有的教师上课选择的是温度模型和水位上升下降模型,借助多媒体展示形象生动.但在实际的教学过程中,规则的复杂性影响到思维活动的有效展开,因为三个量的单位是不同的,必须确定三个基准,并约定三对相对的正、负,特别是关于时间的正负约定.在课堂实践中教师发现,学生转来转去,容易迷惑.同时,各位上课教师也发现,似乎没有一种模型真正说明‘负负得正’,那不如选择最容易让学生理解和接受的模型,而通过学生的反馈,发现相对而言,相反数模型被学生自发地使用得较多.像这些收获,在传统教学中,很容易在口口相传中被遗忘.

教学反思是一种教师积累教学经验并取得不断进步的有效途径.将集体教学的反思记录进行整理,才能更好的促使教学思想的成长,为完善教师教学理论水平提供了资源.多媒体恰是资源积累的最好平台,上课教师对自己的教学观念、教学行为、课堂应变能力进行衡量;对学生的表现、自己的教学成败进行理性分析[5 ].在备课小组讨论分析的基础上对原有课件进行修改整理,同时,指定教师对集体的归纳整理撰写“教学反思”,以文档的形式和课件存入电脑内的同一个文件夹,都作为下一次集体备课的重要参考资料.通过反思、总结、记录,各位教师在掌握现在课堂的知识体系的基础上,发展自身教学风格,提高自身教学水平.

总之,通过分析我们发现,以多媒体为平台的集体备课变得更加丰富精致;以课件为主题,集体备课更加连贯流畅.但其中最重要的还是教师的态度,只有教师充分认识到集体备课的作用,发挥每个人的主观能动性,才能使集体备课提高效率,使教育教学水平再上一个新台阶.

参考文献:

[1] 巩子坤.有理数运算的理解水平及其教与学的策略研究.西南大学,2006(5).

[2] 何芳.正确使用教材. 当代教育科学,2005,16.

[3] 王美君.以集体备课促教师专业化发展[J].现代教学.2008(7):106-107.

[4] 李金玲.有效的教师个性特征及其在网络教学中的实现.现代企业教育.2007.

第8篇

关键词:初中数学 教学质量 提升方法

在现代初中数学教学的过程中,教师要在传统的教学模式的基础上进行改革和创新,这是保证学生的学习质量的必然举措。然而改革不能够脱离实际,不能够凭空想象,而必须要在实践的基础上,结合教学经验进行探索,而后再将探索所得放在实践中进行检验。

1、面向整体进行教学设计

教材内容的设计和完善是教师在开展实践教学过程中应该始终探索和发现的课题内容,让学生可以在课堂教学中充分发挥自己的主导作用是十分关键的。尤其是在新课程改革背景下,数学教学更加注重对学生的学习能力的培养,而不是单纯的进行基础理论知识灌输,这样一来,教师就要面向整体学生设立一定的课堂教学模式,让学生充分明白自己的学习才能,从而可以有一个学习平面扩展到一个空间学习,自主进行预习和复习。比如说,在教授一些较新的数学概念时,可能有些晦涩的数学内容学生理解起来有一定的难度,教师这时候就要追求让学生去自主谈及的方法进行学习训练和练习。比如说可以让学生利用自己在课堂学习中收获的一些学习技巧和解题方法去解决一些应用型问题,然后再在这种应用型问题的解题过程中逐渐积累一定的学习经验,最终达到对数学概念有一个较为独特全面的学习感知,推动自己对数学概念的理解。

2、及时讲评作业

作业讲评是课堂教学反馈的重要手段,是提高课堂教学质量的重要一环。作业讲评是批改作业的延续,高质量的作业讲评,要求教师事先必须做好充分的准备:批改记录、讲评计划及注明详讲、略讲与不讲,善于捕捉典型的错误和代表性题目。

作业讲评要及时。俗话讲:趁热打铁。及时讲评,可使学生马上更正错误,在自己作业的基础上,再次思考,发现自己的失误和不良的思维习惯、方法,更好地把握知识的准确性,加深掌握深度,充分调动学生的积极性,不要只是机械地给出正确答案,而要注意教给学生解题的方法。有争议的问题,可以让学生一起讨论,各抒己见,再由教师归纳、总结

3、优化教学过程,培养学习兴趣

当前,在数学学科的教学中,“教学脱轨现象”较为严重。所谓“教学脱轨现象”,是指学生在教学过程中,偏离和违背教师正确的教学活动和要求,形成教与学两方面的不协调,这种现象直接影响着大面积提高教学质量。“教学脱轨现象”主要表现在课内不专心听讲,课外不做作业,不复习巩固。这种现象的直接后果是不少学生因为“不听、不做”到“听不懂,不会做”,从而形成积重难返的局面。在整个教学过程中,怎样消除学生的“教学脱轨现象”呢?我的体会是,必须根据教材的不同内容采用多种教法,激发培养学生的学习兴趣。例如,在讲解“有理数”一章的小结时,同学们总以为是复习课,心理上产生一种轻视的意识。鉴于此,我把这一章的内容分成“三类”,即“概念关”“法则关”“运算关”,在限定时间内通过讨论的方式,找出每个“关口”的知识点及每个“关口”应注意的地方。如“概念关”里的正、负数、相反数、数轴、绝对值意义,“法则关”里的结合律、分配律以及异号两数相加的法则,在“运算关”强调一步算错,全题皆错等等。讨论完毕选出学生代表,在全班进行讲解,最后教师总结。

4、建立和谐的课堂气氛

课堂是老师传授知识的第一阵地,数学知识有90%是在课堂获得。可是一节课只有45分钟,要出色地完成教学任务,教师除了课前要花好几个45分钟钻研教材,弄清知识的点和线,知识的结构和分析数学的难点与如何突破,解决难点外,更要善于创设愉快的教学情境,建立和谐的课堂气氛。同样的课,有的老师上起来轻松愉快,效果又佳,有的老师整堂讲得沉闷,为什么?因为他们关于和谐师生关系创设良好的课堂气氛,她们不单是演讲者、观察者,更是发现者,不断用心去感受,用眼去观察,上课有激情,用感情去点燃学生的智慧,激荡学生的情感波澜。后者老师也用心备课,教案无可挑剔,目的明确,内容完备,方法科学,上课有条理,但学生却没有反映,老师只是一个现场播音员,把教案中所写的从头到尾讲一遍,与学生无关,甚至似乎与学生有仇,整节板着脸,是为了上课而上课,然后上完课大叫“学生不配合,没办法教”,而事实上是教师本身没有努力去创设和谐的课堂气氛。而前者是带着强烈的感情走进教室,做到入课堂则情满课堂,登上讲台则情溢讲台,达到开人心智、启人思维的效果。对课堂偶发的不良现象不气恼,对待调皮的学生更是如此,不在课堂上大加批评,有问题的学生,而是留待课后先指出他们的不对之处,再耐心给予讲解,用行动与情感去改变他们,从不放弃他们。让学生在轻松愉快和谐的师生情感交流中,不知不觉地接受了数学知识,完成了学生任务。

5、消除“离教现象”

在整个教学过程中,怎样消除学生的“离教现象”呢?我的认为是,必须根据教材的不同内容采用多种教法,激发培养学生的学习兴趣。例如,在讲解“有理数”一章的小结时,同学们总以为是复习课,心理上产生一种轻视的意识。鉴于此,我把这一章的内容分成“三类”,即“概念关”“法则关”“运算关”,在限定时间内通过讨论的方式,找出每个“关口”的知识点及每个“关口”应注意的地方。如“概念关”里的正数、负数、相反数、数轴、绝对值的意义,“法则关”里的结合律、分配律以及异号两数相加的法则;在“运算关”强调一步算错,全题皆错等。讨论完后,选出学生代表在全班进行讲解,最后教师总结。通过这一活动,不仅使旧知识得以巩固,而且能使学生处于“听得懂、做得来”的状态。

在教学工作中,作为一名教师,我总认为要做个有心人,让数学真正成为学生愿学、乐学的学科,只有这样,才能檠生提供充裕的探索、实践的空间和时间,才能调动大多数同学的学习积极性;才能大面积提高数学教学质量。

参考文献:

第9篇

各县(市、区)交通运输局、市直交通各执法单位、局机关各相关处室:

为进一步推进交通运输行政执法规范化建设,市局决定在全市交通运输系统开展“严格规范公正执法”专项整治活动,现将《关于在全市交通运输系统开展“严格规范公正执法”专项整治的实施方案》印发给你们,请认真遵照执行。

XX市交通运输局

2020年8月3日

关于在全市交通运输系统开展“严格规范公正执法”专项整治的实施方案

7月20日,全市机关作风建设问题通报会对我市混凝土搅拌车超载无人监管问题进行了通报,这充分反映了我市交通运输系统存在执法不严不公、安全检查流于形式、执法保障不到位等问题。我局高度重视,对照通报会问题清单,第一时间剖析原因,研究整改措施,决定从8月至10月底,在全市交通运输系统开展“严格规范公正执法”专项整治活动,现制定实施方案如下:

一、整治目标

以打造忠诚干净担当的交通运输执法铁军为目标,认真查摆和纠正全系统各级行政执法机构及其工作人员在执法过程中存在的不公正、不规范、不严格、执法保障不到位等突出问题;结合交通运输综合行政执法改革,进一步修订、完善行政执法相关管理制度,严格落实行政执法责任追究制度,规范日常执法行为,着力构建把教育、预防、约束、惩治等活动贯穿行政执法全过程的执法长效管理机制,最大限度从源头上遏制交通运输执法领域违纪违法行为的发生,推动交通运输行政执法队伍健康发展,确保做到执法程序更加严格规范,执法过程更加透明公开,执法结果更加公平公正。

二、整治重点

涉企环保检查执法不严、执法不公。包括:执法不作为、不严格,不依法履行职责,监管不到位;执法不公正,选择性执法等;执法不规范,违反法定程序等。涉企安全检查执法流于形式,包括形式单一、明查暗访偏少、跟踪问效不够、有走过场现象;执法队伍保障不到位问题,包括执法人员不在执法岗位、执法装备不足、执法经费保障不到位等。

三、整治措施

1.抓紧推进交通运输综合行政执法改革。我局已经初步拟定了《交通运输领域综合行政执法体制改革实施方案》,并报市委编办,待方案审批后抓紧实施,尽快完成队伍组建及人员转隶工作,厘清执法清单和职责边界,按照新的执法体制做好综合执法监管工作。推动基层站所“四基四化”建设,积极向省市争取财政支持,提高执法装备配备率和执法信息化水平。

2.指导推进行政执法规范化建设。一是指导各单位“双随机、一公开”监管工作常态化开展,将“双随机、一公开”作为市场监管的基本手段和方式;二是督促各级执法机构全面推行行政执法公示、执法全过程记录、重大执法决定法制审核“三项制度”,提高执法质量和水平。三是完善行政执法裁量基准制度和动态调整机制,细化、量化行政执法裁量标准。

3.提升执法队伍素养。严格执法人员资格管理。落实执法人员岗前培训要求,坚持行政执法人员持证上岗制度。分行业分领域组织执法人员专题业务培训和技能比武。组织执法人员抽考,以考促学。各单位要加强执法人员管理,确保执法人员在岗在位在状态,明职责、亮身份、有作为,严格全面依法履职,加大各类执法监管力度。严格落实市委主要领导要求,严禁从执法队伍抽取人手,确保执法队伍的稳定性,确保执法工作的连续性。对随意抽借调执法人员离岗,造成执法监管职责得不到履行、执法监管空白、监管力度缺失等,引发各类监管失职渎职和安全监管事故的,按有关规定追责问责。

4. 加强安全生产行政执法工作。各单位要按照市委市政府要求,配备安全职能机构,配齐安全生产监管工作人员;按照年度安全生产监督检查计划和《贯彻落实安全生产行政执法专项整治行动重点任务清单》(盐市交法〔2020〕8号)要求,从明确执法清单,制定执法计划,规范执法行为、强化执法监督和创新执法手段五个方面加强安全生产行政执法工作,强化治超工作责任落实,加强超限超载联合监管;严厉打击各类非法营运行为,突出道路“两客一危”运输、水路危险货物运输安全监管等。

四、有关要求

(一)加强组织领导。我局成立专项整治工作领导小组,负责认真抓好本系统的专项整治工作督促落实。小组办公室设在局政策法规处,负责组织协调、阶段总结、督导检查等日常工作。各单位要对应成立专项整治工作领导小组,负责本地区、本行业专项整治工作。

(二)加强督促检查。专项整治工作领导小组要加强对全系统专项整治工作的督促检查,定期听取工作汇报,及时掌握工作进展情况,主动协调解决工作中遇到的困难和问题。各单位要根据工作进展情况,组织对相关行政执法机构开展专项督查,及时发现和解决问题。各单位在8月18日、9月18日、10月18日前各报送一次整改落实情况至市局政策法规处。市局将每月开展一次专项整治情况“四不两直”督查,对专项整治中发现的顶风违纪行为,发现一起、查处一起,绝不姑息。

(三)加强制度建设。各单位要以这次专项整治工作为契机,认真总结经验,分析存在的问题和不足,提出进一步解决问题的具体措施,不断完善规范行政执法的各项管理制度。要通过扎实有效的制度建设,进一步促进各级行政执法机构及其工作人员依法履职尽责、严格规范公正文明执法,不断提高人民群众的满意度和获得感。

第10篇

第3课整式(3)

教学目的

1、使学生了解单项式、多项式、整式之间的从属关系。

2、使学生能够把多项式按某字母作降幂排列或升幂排列。

教学分析

重点:整式的概念,把一个多项式按某字母作降幂排列或升幂排列。

难点:把一个多项式按某字母作降幂排列或升幂排列。

突破:弄清各项的次数。

教学过程

一、复习

1、单项式,的系数分别是,次数分别是。

2、在多项式x^2-x^3+2x-5中,次项的系数是-1,二次项的系数是,-5是它的项。

3、一个关于y的四次三项式不含有三次项与二次项,最高次项系数为,一次项系数为-1,常数项为2的3次幂的相反数,则这个多项式为。

二、新授

1、引入

在多项式y^3-y-2^3中的各项是根据y的指数什么特点排列的?

能不能把这个多项式按字母y指数从小到大重新排列?(能)这就是多项式的排列问题,多项式的排列是根据加法交换律和结合律变更项的位置,而没有改变多项式的值,排列是按某个字母的指数从大到小或从小到大的顺序进行的。

2、降幂排列或升幂排列

降幂排列:把一个多项式按某个字母的指数从大到小的顺序排列起来,叫做把多项式按某个字母降幂排列。

升幂排列:把一个多项式按某个字母的指数从小到大的顺序排列起来,叫做把多项式按某个字母升幂排列。

如多项式x^3-4x^2+5x-6是按字母x的降幂排列,-6+5x-4x^2+x^3

是按照字母x的升幂排列。

3、例题

把多项式3x^2y-4xy+x^3-5y^3重新排列

(1)按y的降幂排列;

(2)按y的升幂排列。

分析:①这个多项式的各项分别是什么?(符号)②每一项中含y字母的指数分别是多少?

(略,注意例后的思考题)

*强调符号,两个字母的项按其中一个字母排列。x3是y的0次项。

4、什么是整式?

三、练习

P146:1,2。

四、小结

单项式、多项式统称为整式。降、升幂排列。

五、作业

第11篇

关键词:数学教学 创造性思维 培养

中图分类号:G633.6 文献标识码:A 文章编号:1673-9795(2013)03(c)-0005-02

创造性思维是人类的高级心理活动。心理学认为:创造思维是指思维不仅能提示客观事物的本质及内在联系,而且能在此基础上产生新颖的、具有社会价值的前所未有的思维成果。创造性思维是在一般思维的基础上发展起来的,它是后天培养与训练的结果。卓别林为此说过一句耐人寻味的话:“和拉提琴或弹钢琴相似,思考也是需要每天练习的。”

数学教学中对学生创造性思维的培养也是很重要的。作为教育工作者,我从事数学教学实践证明:求异度高,求同性好,学生解决新问题,探索新规律的能力就越强,创造性思维的水平就越高,培养出来的学生就越具竞争力。对此,我浅谈数学教学中对学生创造性思维的培养几点体会和做法。

1 培养学生创造性思维的观察力

观察力是人类智力结构的重要组成部分,敏锐的观察力是创造性思维的开端。例如,有这样的一道例题:9+9+9+9+ 13+9+9+9+9+9=?

解这道题学生普遍的方法是直接算出来,我启发学生用简便运算,多数同学提出了9×9+13的方法。而有一位同学建议用9×10+4的解法,这位同学的思维就很有创造性,通过观察,他看到了实际不存在的“9”,他的这种解题方法不是照搬老师,不是死记硬背,可以说是一种高效率的创造性思维能力。数学教学过程中,教师就要经常注意培养学生突破常规固定的解题模式,通过观察寻求更优的解法,从而培养学生的创造性思维能力。

2 培养学生创造性思维的想象力

想象力是创造性思维的“设计师”。想象力是客观现实在人脑中的一种反应,数学教学中培养学生思维的想象力应先让学生掌握基础知识,再根据教材潜在的因素,创设想象情景,提供想象材料,诱发学生的创造想象,从而培养学生的创造性思维能力。

例如:教科书有这样一个问题:有一个圆柱,它的高等于12厘米,底面半径等于3厘米,在圆柱的底面A点有一只蚂蚁,它想吃到上底面与A点相对的B点处的食物,需要爬行的最短路程是多少?

直觉判断,不难发现,蚂蚁应该沿着侧面爬行。那么,在侧面上如何爬行,所走的路程最短呢?由于侧面是弯曲的,为此可以试图将弯曲的侧面展呈一个平面,如图1所示。

在课堂上,教师的引导,学生已经比较过多种爬行路径,如(1)AA′B;(2)AB′B;(3)ADB;(4)AB。当然也得出了沿着直线段AB爬行最近。

现在的问题是,对于任意的圆柱,上面的爬行路线是否都最短呢?

想象,在高为1,底面半径为4的圆柱形实木块的下底面的A点处有一只蚂蚁,它想吃到上底面与A相对的B点处的食物,如图2所示,这只蚂蚁需要爬行的最短路程是多少?

如果还是沿着侧面爬行,不难算出最短爬行距离是12.6(米),由于这个圆柱“矮而胖”,如果从上底面沿直径爬过去,可以省得绕侧面爬行那样绕过一段大肚子,可能反而行程可能会少一些,当然,这只是感觉想象,需要具体计算一下。不难算出从A点直接向上爬再沿着直径爬到B点的行程是1+4×2=9(米),确实比沿着侧面爬行短一些。

实际上,这和我们的直觉是一致的。不妨用一个最为极端的圆柱为例加以说明,如果这个圆柱特别矮,以致于接近一个硬币或者接近一个平面上的圆,显然沿着直径走比沿着侧面(圆周)走要近一些。

当然,研究不要局限于此,我们需要进一步思考:什么情况下蚂蚁沿着侧面爬行路程最近(姑且称为线路1),什么情况下蚂蚁先竖直爬到地面上再沿着直径爬行(姑且称为线路2)路程最近?

经验告诉我们,思维的想象与观察常常密不可分,深入观察,大胆想象,从观察中获取信息,储存信息,在外界的诱导,产生联想,刺激想象,从而培养学生的创造性思维能力。

3 培养学生创造性思维的发散性

在创造性思维过程中,发散思维起着主导作用,是创造性思维的核心。

在数学教学中,教师培养学生思维的发散,在引导学生吃透问题、把握问题实质的前提下,关键是要使学生能够打破思维定势,改变单一的思维方式,运用联想、想象、猜想、推想等尽量地拓展思路,从问题的各个角度、各个方面、各个层次进行或顺向、逆向、纵向、横向的灵活而敏捷的思考,从而获得众多的方案或假设。唯有“发散”,才能多角度、多层次地从不同方面去思考,才能深刻地理解、巩固并灵活运用知识,培养学生的创造性思维能力。

例如:正方形的边长为2,建立合适的直角坐标系,写出各个顶点的坐标。

在课堂中,教师引导学生:正方形的四个角都是直角,四条边相等,对角线相等且互相垂直平分。因此,本题的解法很多(图3所示)。

数学题目,由于其内在规律或思考的途径不同,可能会有许多不同的解法。在例题教学中,可叫学生先做例题,引导学生广开思路,探求多种解法,教师再给学生分析、比较各种解法的优劣,找出最佳的、新颖的或巧妙的解法,例题的讲解应该注意一题多解、一题多变,即条件发散、过程发散、结论发散,强调思维的发散,增强思维的灵活性。从而培养学生的创造性思维。

4 培养学生创造性思维的逆向性

在教学实践中,我体会到学生对于概念、定理、公式、法则,往往习惯于正面看、正面想、正面用,极易形成思维定势,而逆向思维相对薄弱。学生面对新问题,往往感到束手无策,寸步难行,所以,在重视正向思维的同时,养成经常逆向思维的习惯,“反其道而行之”,破除常规思维定势的束缚。

为了克服这种不良倾向,我在平时的教学中,有意识的进行逆向思维的培养。我在具体教学中是从以下三个方面培养:

(1)在教学中,重视学生从正、逆两个方面去理解概念;例如:“相反数”教学中,我提问学生“9的相反数是什么、什么的相反数是-0.5、两个数互为相反数有什么特点?”

(2)从正、逆两个方面去掌握公式、法则和定律。强调一些基本方法的逆用:从局部考虑不易,是否能整体处理;一般情况下不好办,考虑特殊情况;前进有困难,退一步如何;正面入手分类太多,对立面如何;“执果索因”与“由因导果”两方面寻找解题途径;直接证明不行,则考虑用间接证法等等。例如:已知:x+y=7,x-y=5,求代数式x2-y2-2y+2y的值?

(3)在解题中注意逆向思维的训练。当常规解法出现情况比较多,其对立面情况又较单一时,采用逆向思维来解决问题,则解题思路更清晰明了。如,当a是什么值时,对于两个关于x方程x2+4ax+3-4a=0,x2+(a-1)x+a=0至少一个有实根。如果从正面求解,会出现三种情况,计算量大且容易出错,而考虑其反面“两个方程都没有实根”,然后求得补集,解法很简洁。

创造性思维的逆向性,从问题的反面揭示本质,弥补了正向思维的不足,使学生突破传统的思维定势,是培养学生创造性思维的关键。

5 培养学生创造性思维的逻辑性

在数学教学过程中,教师不仅要有意识地培养学生的直觉思维,逐步学会猜测、想象等非逻辑思维,而且要加强对逻辑性思维的训练,以培养学生的创造性思维。

例如,在《平方差》的教学中,不必由教师直接给出结论,可设计学生自主活动,尝试发现,大胆猜测的规律。先让学生观察(x+2)(x-2),(1+3a)(1-3a)和(y+3x)(x-3x),后让学生计算其运算结果,再让学生探索发现其规律,最后教师给予严格的逻辑证明。如果直接给出公式结论,也能达到记忆的目的。但两种处理方法,看似一样,实际效果则大相径庭。因为在这个过程中,不仅调动了学生的逻辑思维,而且调动了学生的直觉思维,引导学生经历了由直觉发现到逻辑证明的解决过程,极大地培养了学生的创造性思维。

6 培养学生创造性思维的求同性与求异性

在创造性思维活动中,求异思维占主导地位,也有求同的成分,而且两者是密不可分的。在教学中,只有引导学生从同中求异与异中求同的反复结合,才能培养创造性思维的流畅性、变通性、新奇性。

例如,在证明“三角形内角和定理”时,因三个内角位置分散,大家一致认为必须添加适当的辅助线使角集中起来,这是思维的求同;至于如何添加适当的辅助线,这便是思维的求异点。学生们勇于探索,各抒己见。有同学提出:过一顶点作对边的平行线;也有同学认为:过一顶点作对边的平行线;也有同学认为:过一顶点作射线平行对边;还有同学想到:在一边上取一点后,分别作另两边的平行线。多种方法能够解决问题,学生的求异思维十分活跃。然后通过比较,异中选优,大家认为“过一顶点作射线平行对边”较为简洁!

7 结语

面对21世纪的挑战,培养具有创新型人才,是现代数学教学的主要目标。在数学教学中,培养学生的创造性思维是我们不断探讨的课题。我也将为此不懈努力,培养更多具有创造性思维的创新型人才。

参考文献

[1] 义务教育课程标准实验教科书七年级[M].北京:北京师范大学出版社,2005.

[2] 义务教育课程标准实验教科书九年级[M].北京:北京师范大学出版社,2008.

[3] 谢鼓平.初中教案与作业设计八年级[M].北京:北京师范大学出版社,2005.

[4] 张新天.创造性思维40法[M].上海:上海大学教育出版社,2005

第12篇

第3课整式(3)

教学目的

1、使学生了解单项式、多项式、整式之间的从属关系。

2、使学生能够把多项式按某字母作降幂排列或升幂排列。

教学分析

重点:整式的概念,把一个多项式按某字母作降幂排列或升幂排列。

难点:把一个多项式按某字母作降幂排列或升幂排列。

突破:弄清各项的次数。

教学过程

一、复习

1、单项式,的系数分别是,次数分别是。

2、在多项式x^2-x^3+2x-5中,次项的系数是-1,二次项的系数是,-5是它的项。

3、一个关于y的四次三项式不含有三次项与二次项,最高次项系数为,一次项系数为-1,常数项为2的3次幂的相反数,则这个多项式为。

二、新授

1、引入

在多项式y^3-y-2^3中的各项是根据y的指数什么特点排列的?

能不能把这个多项式按字母y指数从小到大重新排列?(能)这就是多项式的排列问题,多项式的排列是根据加法交换律和结合律变更项的位置,而没有改变多项式的值,排列是按某个字母的指数从大到小或从小到大的顺序进行的。

2、降幂排列或升幂排列

降幂排列:把一个多项式按某个字母的指数从大到小的顺序排列起来,叫做把多项式按某个字母降幂排列。

升幂排列:把一个多项式按某个字母的指数从小到大的顺序排列起来,叫做把多项式按某个字母升幂排列。

如多项式x^3-4x^2+5x-6是按字母x的降幂排列,-6+5x-4x^2+x^3

是按照字母x的升幂排列。

3、例题

把多项式3x^2y-4xy+x^3-5y^3重新排列

(1)按y的降幂排列;

(2)按y的升幂排列。

分析:①这个多项式的各项分别是什么?(符号)②每一项中含y字母的指数分别是多少?

(略,注意例后的思考题)

*强调符号,两个字母的项按其中一个字母排列。x3是y的0次项。

4、什么是整式?

三、练习

P146:1,2。

四、小结

单项式、多项式统称为整式。降、升幂排列。

五、作业

第13篇

然而,初中课改以来,由于传统观念的束缚和升学考试的压力,初中数学课堂中重知识轻实践、重讲解轻探索、重形式轻过程等弊端依然普遍存在。这些不良现象的存在,严重地制约了数学课堂教学有效性的提高。作为工作在一线的中学数学老师,如何促使自身在有效教学的同时提升自我?通过和一些同行的交流以及自身在教学中的不断探索,有以下几点切身体会和深刻认识。

1. 教学是一门艺术,备好课是搞好艺术的基本条件 不经武装的战士上战场,只能束手就擒;没有充分准备的教师上讲台,充其量是“信口开河”,绝谈不上有驾驭课堂的能力,重视精心备课是有效教学的重要前提。那么,真正做到哪些才算是备好了一节课?

1.1 要备起点。所谓起点,就是新知识在原有知识基础上的生长点。起点要合适,才有利于知识迁移,学生才能学,才肯学。起点过低,学生没兴趣,不愿学;起点过高,学生又听不懂,不能学。

1.2 要备重点。重点往往是新知识的起点和主体部分。备课时要突出重点。一节课内,首先要在时间上保证重点内容重点讲,要紧紧围绕重点,以它为中心,引导启发学生加强对重点内容的理解,做到心中有重点,讲中有重点,才能使整个一堂课有个灵魂。

1.3 要备难点。所谓难点,即数学中大多数学生不易理解和掌握的知识点。难点和重点有时是一致的。备课时要根据教材内容的广度、深度和学生的基础来确定,一定要注重分析,认真研究,抓住关键,突破难点。

1.4 要备交点。即新旧知识的连接点。数学知识本身系统性很强,章节、例题、习题中都有密切的联系,要真正搞懂新旧知识的交点,才能把知识融会贯通,沟通知识间的纵横联系,形成知识网络,学生才能举一反三,更有利于灵活的运用知识。

1.5 要备疑点。即学生易混、易错的知识点。备课时要结合学生的基础和实际能力,找准疑点,充分准备。

2. 备“教材”更要“备人” 教师应根据学生的特点,发挥学生本身的主动性、积极性和创造性,创造最佳的教育方式和方法,克服本身的缺点,教育学生向最优的方向发展,而不应当根据教师自己的喜好和固有的教育模式,去限制学生向好的方向发展。不要选择适合教育的学生,而要创造适合学生最优发展的教育。

有效的教学是引导学生的学习,激发学生自己去学习。要特别注意保护学生学习的主动性和积极性,因此,教师要实现从较为单一的知识传授者向课堂教学的设计者、组织者、引导者、合作者等多种角色转变。一节数学课好比一期“实话实说”节目,每一期都有一个总话题即课题,教师是导演和主持人。主持人提出一个个子话题,节目参与者对每一个话题充分阐述自己的观点,若观点发生冲突,大家可以辩论,主持人也可以参加辩论,但互不把自己的观点强加于人,完全是一种平等的关系,最终也能辩明是非曲直。“实话实说”的模式,能够使数学返璞归真,使学生感到自然亲切,并由思而悟,由感而发,由辩而明,以理服人,以乐促学。我们老师在教学中应适时进行调控,牢牢把握住教学目标,在这个前提下可以“跟着学生的感觉走”,让学生当“主演”,使学生真正成为学习的主人,单一的教案与计划经济如出一辙,不符合时代的要求,备课要充分,教学实践中也可能出现预料之外的情况,要有充分的心理准备,处乱不惊,也不必拘泥于教案,要从实际出发随机应变,勇于“现场直播”,积极鼓励学生“实话实说”。

3. 关注教学过程是有效教学的关键 数学教学是否有效关键在于教学的过程,其主阵地是课堂,一直以来,学生在课堂中知识得以获取、方法与技能得以学习、情感得以体验、能力得以培养被公认为是数学教学有效性的几大显著标志。然而,三维目标的有效实现归根结底要依赖于课堂,因此,作为教师,必须重视教学的整个过程。《全日制义务教育数学课程标准》在刻画数学知识与技能时,除了使用“了解、理解、掌握、灵活运用”等目标性动词外,还首次使用了“经历、体验、探索”等刻画数学活动的过程性动词,这也说明了数学教学重视过程的重要性和必要性。

3.1 重视数学知识的形成过程。重视知识的形成过程,即要求教师努力创设合适的教学情境,让学生经历数学概念等知识的形成于发展过程,在增强学生学习体验的同时,对所学新知识达到“知其然,知其所以然”的境界。

3.2 重视数学问题的解决过程。数学问题的解决过程实际上是知识的应用过程,是学生把课堂上所学的技能与方法用于训练和巩固的过程,也是学生的情感得以体验的过程,教学实践证明:重视问题的解决过程,即要求教师在教学中要精心设计问题,使问题有“跳一跳,摘得到葡萄”之感,而且要使问题有挑战性,要给学生留有做数学和思考数学的空间,让学生在课堂中有畅所欲言的机会。

案例:在教学“实数”一节时,我安排了一道思考题:两个无理数的和是否一定是无理数?我给学生两分钟时间,要求他们各自独立思考再发言,大多数学生列举了两个互为相反数的数来说明问题,如2与-2,π与-π等,也有学生列举了诸如2-2与2-2此类的相反数来解释。在我即将要为这个问题画上句号的时候,又见有一个学生举手了,在那一瞬间我犹豫了,要让这位学生发言吗?时间是很宝贵的啊!但最终还是让这位学生发言了:如果a=2.12112111211112……,b=1.21221222122221……,a和b都是无理数,但a+b=3.3333333……却是一个无限循环小数,是有理数,学生举出了一个成功的反例,巧妙地从另一个角度解释了这个问题。正是因为给了学生思考的空间和发言的机会,才使得学生有了种种解决问题的方法,而且一种比一种巧妙,最终使课堂教学得以有效生成。

3.注重情感培养是有效教学的内动力。教师的教学活动不同于企业生产产品的过程,而是有教师、学生等活生生的生命体参与的活动。高效、理想的数学课堂应该是蕴涵教师的艰辛与创造、对学生的殷切期盼与对事业执着追求的课堂;应该是蕴涵学生对知识的渴望、对教师的尊敬与热爱、敢于挑战困难和充满理想的课堂。基于以上认识,不难发现,数学教学的有效性还与一个重要的因素有关,那就是积极的师生情感。情感是人对客观对象所持的态度体验,是教师和学生之间的联系纽带;师生间和谐积极的情感是促进数学课堂教学顺利开展并取得良效的催化剂、一种有强大后劲的内动力。

第14篇

一堂生动的数学课,就犹如一股涌动的清泉,它时时掀起情感的波澜,使人心潮澎湃不已。与此相对,一堂较差的数学课,就如同一潭死水,它停滞不前,毫无起色,使人感到单调、乏味。出现这两种截然不同的结果,究其原因可以说是课堂气氛的发挥问题。生动运用一种新的交流工具――“数学日记”,也能发挥语文一样的功效。所谓的数学日记,就是让学生以日记的形式记录下自己对这次数学教学内容的理解、评价及意见,其中包括自己在数学活动中的真实心态和想法。有关研究表明"数学日记"不仅为数学教育中关于学生的心理、思维、非智力因素等方面的研究提供第一手资料,而且还为教师从学生的思维视角出发来设计教学方案提供了有价值的信息。

在数学教育中,关于非智力因素与教学效果之间关系的研究工作一直很薄弱,对"数学日记"的研究工作刚刚开始。

1970年,美国教育心理学家Flanders对教师主观选择课堂教学行为的做法提出了质疑。在对十个范畴的教师课堂行为进行了统计分析之后,Flanders发现其中仅有5%一15%的教师行为被学生接受。这个数字表明,不从学生的认知结构和思维视角出发而主观选择课堂教学行为的作法,事实上并不被学生接受,其实际效果也并不理想。

1989年,《美国学校课程评估标准》(《Curriculum and Evaluation Standards for SchoolM athematics)))中开始把"数学交流"规定为数学课程评估的基本标准之一。此后,从L inn, England Pow ell, lop ez, R ichards, D um n等人的大量研究工作中发现"数学日记"可作为师生间进行交流的有效媒介,它不仅能帮助教师发现、了解学生的个体差异,进而更好地从学生的数学思维视角设计教案,而且还能减轻学生的心理压力和精神忧虑,培养其数学自信心,使之在轻松愉快的环境中能动地掌握数学知识和数学方法,从而达到普遍提高学生数学能力的效果。

“数学日记”在教学过程中的实际效果,引起了国外数学教育研究者的极大兴趣。1991年美国数学教师全国委员会在制定的《Professpnal Standands for TeachingM athemat-ICS》,简称《教师规范》)中倡议利用"数学日记"作为加强数学教学的手段,这使得"数学日记"作为师生间数学流的工具在全美范围内得到了推广和普及,并慢慢地成为美国数学文化体系中的一股新生力量。

但国外目前的研究工作尚末能在更高的层次上揭示数学日记对认知水平及教学效果影响的规律,也末能透过数学日记对课堂的理解来挖掘教学规律的本质。因此,在进一步扩大数学日记的调查与深入研究方面还有许多工作要做。

那么"数学日记"的如何操作呢?

(1)对课堂上讲授的数学概念、计算方法以及推理程序的理解和运用情况。例如,在讲完有理数的减法之后,可以让学生在数学日记中表述一下自己对减去一个数等于加上这个数的相反数"这个运算的理解并举例说明等等。

(2)对教学过程和方式的评价及建议,即允许学生对课程内容、课堂讲授方式以及课外活动、作业、考试等各类问题发表息见。例如以"我最喜欢……数学活动,因为……"或者 "我认为……应当……"等类似形式的题材作为写作内容。

(3)自由发表意见。在这一项中,学生可以自由地表达自己关心或渴望倾诉的问题,其中包括自己的成就、失望以及生活或学习中存在的问题等等。

初次写作时,可由教师指定写作内容或由学生根据自己的情况选择其中一项作为写作内容。值得推荐和注息的是教师也应坚持记数学日记,即对学生数学日记中提供的信息进行整理,分析学生的数学理解能力和对数学命题的思维习惯,综合各类学生的学习兴趣、好奇心、成就动机、抱负水平、焦虑水平、息志水平,分门别类地制定学生非智力因素、学习风格等方面的档案,并对学生学习及教师教学中存在的问题加以总结。

第15篇

在数学教育中,关于非智力因素与教学效果之间关系的研究工作一直很薄弱,对"数学日记"的研究工作刚刚开始。

1970年,美国教育心理学家Flanders对教师主观选择课堂教学行为的做法提出了质疑。在对十个范畴的教师课堂行为进行了统计分析之后,Flanders发现其中仅有5%一15%的教师行为被学生接受。这个数字表明,不从学生的认知结构和思维视角出发而主观选择课堂教学行为的作法,事实上并不被学生接受,其实际效果也并不理想。

1989年,《美国学校课程评估标准》(《Curriculum and Evaluation Standards for SchoolM athematics)))中开始把"数学交流"规定为数学课程评估的基本标准之一。此后,从L inn, England Pow ell, lop ez, R ichards, D um n等人的大量研究工作中发现"数学日记"可作为师生间进行交流的有效媒介,它不仅能帮助教师发现、了解学生的个体差异,进而更好地从学生的数学思维视角设计教案,而且还能减轻学生的心理压力和精神忧虑,培养其数学自信心,使之在轻松愉快的环境中能动地掌握数学知识和数学方法,从而达到普遍提高学生数学能力的效果。

"数学日记"在教学过程中的实际效果,引起了国外数学教育研究者的极大兴趣。1991年美国数学教师全国委员会在制定的《Professpnal Standands for TeachingM athemat-ICS》,简称《教师规范》)中倡议利用"数学日记"作为加强数学教学的手段,这使得"数学日记"作为师生间数学流的工具在全美范围内得到了推广和普及,并慢慢地成为美国数学文化体系中的一股新生力量。

但国外目前的研究工作尚末能在更高的层次上揭示数学日记对认知水平及教学效果影响的规律,也末能透过数学日记对课堂的理解来挖掘教学规律的本质。因此,在进一步扩大数学日记的调查与深入研究方面还有许多工作要做

那么"数学日记"的如何操作呢?

1.对课堂上讲授的数学概念、计算方法以及推理程序的理解和运用情况

例如,在讲完有理数的减法之后,可以让学生在数学日记中表述一下自己对减去一个数等于加上这个数的相反数"这个运算的理解并举例说明等等。

2.对教学过程和方式的评价及建议

即允许学生对课程内容、课堂讲授方式以及课外活动、作业、考试等各类问题发表息见。例如以"我最喜欢……数学活动,因为……"或者 "我认为……应当……"等类似形式的题材作为写作内容。

3.自由发表意见

在这一项中,学生可以自由地表达自己关心或渴望倾诉的问题,其中包括自己的成就、失望以及生活或学习中存在的问题等等。

精品推荐