美章网 精品范文 数控机床故障诊断论文范文

数控机床故障诊断论文范文

前言:我们精心挑选了数篇优质数控机床故障诊断论文文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。

数控机床故障诊断论文

第1篇

关键词:?数控机床?PLC故障诊断;故障维修

一、数控机床故障诊断的基本方法

数控设备是一种自动化程度较高,结构较复杂的先进加工设备,是企业的重点、关键设备。要发挥数控设备的高效益,就必须正确的操作和精心的维护,才能保证设备的利用率。正确的操作使用能够防止机床非正常磨损,避免突发故障;做好日常维护保养,可使设备保持良好的技术状态,延缓劣化进程,及时发现和消灭故障隐患,从而保证安全运行,故障诊断是进行数控机床维修的第一步,它不仅可以迅速查明故障原因,排除故障,也可以起到预防故障的发生与扩大的作用。

二、故障的调查与分析

这是排故的第一阶段,是非常关键的阶段,主要应作好下列工作:

①询问调查?在接到机床现场出现故障要求排除的信息时,首先应要求操作者尽量保持现场故障状态,不做任何处理,这样有利于迅速精确地分析故障原因。同时仔细询问故障指示情况、故障表象及故障产生的背景情况,依此做出初步判断,以便确定现场排故所应携带的工具、仪表、图纸资料、备件等,减少往返时间。

②现场检查?到达现场后,首先要验证操作者提供的各种情况的准确性、完整性,从而核实初步判断的准确度。由于操作者的水平,对故障状况描述不清甚至完全 不准确的情况不乏其例,因此到现场后仍然不要急于动手处理,重新仔细调查各种情况,以免破坏了现场,使排故增加难度。

③故障分析?根据已知的故障状况按上节所述故障分类办法分析故障类型,从而确定排故原则。由于大多数故障是有指示的,所以一般情况下,对照机床配套的数控系统诊断手册和使用说明书,可以列出产生该故障的多种可能的原因。

④确定原因?对多种可能的原因进行排查从中找出本次故障的真正原因,这时对维修人员是一种对该机床熟悉程度、知识水平、实践经验和分析判断能力的综合考验。

⑤排故准备?有的故障的排除方法可能很简单,有些故障则往往较复杂,需要做一系列的准备工作,例如工具仪表的准备、局部的拆卸、零部件的修理,元器件的采购甚至排故计划步骤的制定等等。

三、电气维修与故障的排除

这是排故的第二阶段,是实施阶段。??如前所述,电气故障的分析过程也就是故障的排除过程,因此电气故障的一些常用排除方法在上一节的分析方法中已综合介绍过了,本节则列举几个常见电气故障做一简要介绍,供维修者参考。

(1)电源?电源是维修系统乃至整个机床正常工作的能量来源,它的失效或者故障轻者会丢失数据、造成停机。重者会毁坏系统局部甚至全部。西方国家由于电力充足,电网质量高,因此其电气系统的电源设计考虑较少,这对于我国有较大波动和高次谐波的电力供电网来说就略显不足,再加上某些人为的因素,难免出现由电源而引起的故障。

四、维修排故后的总结提高工作

对数控机床电气故障进行维修和分析排除后的总结与提高工作是排故的第三阶段,也是十分重要的阶段,应引起足够重视。?? 总结提高工作的主要内容包括:

①详细记录从故障的发生、分析判断到排除全过程中出现的各种问题,采取的各种措施,涉及到的相关电路图、相关参数和相关软件,其间错误分析和排故方法也应记录并记录其无效的原因。除填入维修档案外,内容较多者还要另文详细书写。

②有条件的维修人员应该从较典型的故障排除实践中找出常有普遍意义的内容作为研究课题进行理论性探讨,写出论文,从而达到提高的目的。特别是在有些故障的排除中并未经由认真系统地分析判断而是带有一定地偶然性排除了故障,这种情况下的事后总结研究就更加必要。

③总结故障排除过程中所需要的各类图样、文字资料,若有不足应事后想办法补济,而且在随后的日子里研读,以备将来之需。

④从排故过程中发现自己欠缺的知识,制定学习计划,力争尽快补课。

⑤找出工具、仪表、备件之不足,条件允许时补齐。

总结提高工作的好处是:

①迅速提高维修者的理论水平和维修能力。

②提高重复性故障的维修速度。

③利于分析设备的故障率及可维修性,改进操作规程,提高机床寿命和利用率。

④可改进机床电气原设计之不足。

⑤资源共享。总结资料可作为其他维修人员的参数资料、学习培训教材。

第2篇

①数控系统自诊断。开机自诊断数控系统在通电开机后,都要运行开机自诊断程序,对系统中关键的硬件和控制软件进行检测,并将检测结果在CRT上显示出来。运行自诊断运行自诊断是数控系统正常工作时,运行内部诊断程序,对系统本身、PLC、位置伺服单元以及与数控装置相连的其他外部装置进行自动测试、检查,并显示有关状态信息和故障信息。

②在线诊断和离线诊断。在线诊断是指通过数控系统的控制程序,在系统处于正常运行状态下,实时自动地对数控装置、PLC控制器、伺服系统、PLC的输入输出和其他外部装置进行自检,并显示状态信息、故障信息。脱机诊断当数控系统出现故障时,需要停机进行检查,这就是脱机诊断。脱机诊断的目的是修复系统的错误和定位故障,将故障定位在最小的范围。

远程诊断实现远程诊断的数控系统,必须具备计算机网络功能。因此,远程诊断是近几年发展起来的一种新型的诊断技术。数控机床利用数控系统的网络功能通过互联网连接到机床制造厂家,数控机床出现故障后,通过机床厂家的专业人员远程诊断,快速确诊故障。

2数控机床故障的实用诊断方法

①诊断常用的仪器、仪表及工具万用表-可测电阻、交、直流电压、电流。

相序表-可检测直流驱动装置输入电流的相序。转速表-可测量伺服电动机的转速,是检查伺服调速系统的重要依据。钳形电流表-可不断线检测电流。测振仪-是振动检测中最常用、最基本的仪器。短路追踪仪-可检测电气维修中经常碰到的短路故障现象。逻辑测试笔-可测量数字电路的脉冲、电平。IC测试仪-用于数控系统集成电路元件的检测和筛选。工具-弹头钩形扳手、拉锥度平键工具、弹性手锤、拉卸工具等。

②诊断用技术资料主要有:数控机床电气说明书,电气控制原理图,电气连接图,参数表,PLC程序,编程手册,数控系统安装与维修手册,伺服驱动系统使用说明书等。数控机床的技术资料非常重要,必须参照机床实物认真仔细地阅读。一旦机床发生故障,在进行分析的同时查阅相关资料。

③故障处理。故障软故障-由调整、参数设置或操作不当引起硬故障-由数控机床(控制、检测、驱动、液气、机械装置)的硬件失效引起。

故障处理对策除非出现影响设备或人身安全的紧急情况,不要立即切断机床的电源,应保持故障现场。从机床外观、CRT显示的内容、主板或驱动装置报警灯等方面进行检查。可按系统复位键,观察系统的变化,报警是否消失。如消失,说明是随机性故障或是由操作错误引起的。如不能消失,把可能引起该故障的原因罗列出来,进行综合分析、判断,必要时进行一些检测或试验,达到确诊故障的目的。

④数控系统故障诊断方法。直观法(望闻问切):问-机床的故障现象、加工状况等看-CRT报警信息、报警指示灯、电容器等元件变形烟熏烧焦、保护器脱扣等听-异常声响闻-电气元件焦糊味及其它异味摸-发热、振动、接触不良等。参数检查法:参数通常是存放在RAM中,有时电池电压不足、系统长期不通电或外部干扰都会使参数丢失或混乱,应根据故障特征,检查和校对有关参数。隔离法:一些故障,难以区分是数控部分,还是伺服系统或机械部分造成的,常采用隔离法。同类对调法用同功能的备用板替换被怀疑有故障的模板,或将功能相同的模板或单元相互交换。功能程序测试法:将G、M、S、T、功能的全部指令编写一些小程序,在诊断故障时运行这些程序,即可判断功能的缺失。

摘要:数控机床是机电一体化紧密结合的典范,是一个庞大的系统,涉及机、电、液、气、电子、光等各项技术,在运行使用中不可避免地要产生各种故障,关键的问题是如何迅速诊断,确定故障部位,并及时排除解决,保证正常使用,提高生产效率。

关键词:数控机床;故障诊断;检测

1数控机床的故障诊断技术

①数控系统自诊断。开机自诊断数控系统在通电开机后,都要运行开机自诊断程序,对系统中关键的硬件和控制软件进行检测,并将检测结果在CRT上显示出来。运行自诊断运行自诊断是数控系统正常工作时,运行内部诊断程序,对系统本身、PLC、位置伺服单元以及与数控装置相连的其他外部装置进行自动测试、检查,并显示有关状态信息和故障信息。

②在线诊断和离线诊断。在线诊断是指通过数控系统的控制程序,在系统处于正常运行状态下,实时自动地对数控装置、PLC控制器、伺服系统、PLC的输入输出和其他外部装置进行自检,并显示状态信息、故障信息。脱机诊断当数控系统出现故障时,需要停机进行检查,这就是脱机诊断。脱机诊断的目的是修复系统的错误和定位故障,将故障定位在最小的范围。

远程诊断实现远程诊断的数控系统,必须具备计算机网络功能。因此,远程诊断是近几年发展起来的一种新型的诊断技术。数控机床利用数控系统的网络功能通过互联网连接到机床制造厂家,数控机床出现故障后,通过机床厂家的专业人员远程诊断,快速确诊故障。

2数控机床故障的实用诊断方法

①诊断常用的仪器、仪表及工具万用表-可测电阻、交、直流电压、电流。

相序表-可检测直流驱动装置输入电流的相序。转速表-可测量伺服电动机的转速,是检查伺服调速系统的重要依据。钳形电流表-可不断线检测电流。测振仪-是振动检测中最常用、最基本的仪器。短路追踪仪-可检测电气维修中经常碰到的短路故障现象。逻辑测试笔-可测量数字电路的脉冲、电平。IC测试仪-用于数控系统集成电路元件的检测和筛选。工具-弹头钩形扳手、拉锥度平键工具、弹性手锤、拉卸工具等。

②诊断用技术资料主要有:数控机床电气说明书,电气控制原理图,电气连接图,参数表,PLC程序,编程手册,数控系统安装与维修手册,伺服驱动系统使用说明书等。数控机床的技术资料非常重要,必须参照机床实物认真仔细地阅读。一旦机床发生故障,在进行分析的同时查阅相关资料。

③故障处理。故障软故障-由调整、参数设置或操作不当引起硬故障-由数控机床(控制、检测、驱动、液气、机械装置)的硬件失效引起。

故障处理对策除非出现影响设备或人身安全的紧急情况,不要立即切断机床的电源,应保持故障现场。从机床外观、CRT显示的内容、主板或驱动装置报警灯等方面进行检查。可按系统复位键,观察系统的变化,报警是否消失。如消失,说明是随机性故障或是由操作错误引起的。如不能消失,把可能引起该故障的原因罗列出来,进行综合分析、判断,必要时进行一些检测或试验,达到确诊故障的目的。

④数控系统故障诊断方法。直观法(望闻问切):问-机床的故障现象、加工状况等看-CRT报警信息、报警指示灯、电容器等元件变形烟熏烧焦、保护器脱扣等听-异常声响闻-电气元件焦糊味及其它异味摸-发热、振动、接触不良等。参数检查法:参数通常是存放在RAM中,有时电池电压不足、系统长期不通电或外部干扰都会使参数丢失或混乱,应根据故障特征,检查和校对有关参数。隔离法:一些故障,难以区分是数控部分,还是伺服系统或机械部分造成的,常采用隔离法。同类对调法用同功能的备用板替换被怀疑有故障的模板,或将功能相同的模板或单元相互交换。功能程序测试法:将G、M、S、T、功能的全部指令编写一些小程序,在诊断故障时运行这些程序,即可判断功能的缺失。

第3篇

①数控系统自诊断。开机自诊断数控系统在通电开机后,都要运行开机自诊断程序,对系统中关键的硬件和控制软件进行检测,并将检测结果在CRT上显示出来。运行自诊断运行自诊断是数控系统正常工作时,运行内部诊断程序,对系统本身、PLC、位置伺服单元以及与数控装置相连的其他外部装置进行自动测试、检查,并显示有关状态信息和故障信息。

②在线诊断和离线诊断。在线诊断是指通过数控系统的控制程序,在系统处于正常运行状态下,实时自动地对数控装置、PLC控制器、伺服系统、PLC的输入输出和其他外部装置进行自检,并显示状态信息、故障信息。脱机诊断当数控系统出现故障时,需要停机进行检查,这就是脱机诊断。脱机诊断的目的是修复系统的错误和定位故障,将故障定位在最小的范围。

远程诊断实现远程诊断的数控系统,必须具备计算机网络功能。因此,远程诊断是近几年发展起来的一种新型的诊断技术。数控机床利用数控系统的网络功能通过互联网连接到机床制造厂家,数控机床出现故障后,通过机床厂家的专业人员远程诊断,快速确诊故障。

2数控机床故障的实用诊断方法

①诊断常用的仪器、仪表及工具万用表-可测电阻、交、直流电压、电流。

相序表-可检测直流驱动装置输入电流的相序。转速表-可测量伺服电动机的转速,是检查伺服调速系统的重要依据。钳形电流表-可不断线检测电流。测振仪-是振动检测中最常用、最基本的仪器。短路追踪仪-可检测电气维修中经常碰到的短路故障现象。逻辑测试笔-可测量数字电路的脉冲、电平。IC测试仪-用于数控系统集成电路元件的检测和筛选。工具-弹头钩形扳手、拉锥度平键工具、弹性手锤、拉卸工具等。

②诊断用技术资料主要有:数控机床电气说明书,电气控制原理图,电气连接图,参数表,PLC程序,编程手册,数控系统安装与维修手册,伺服驱动系统使用说明书等。数控机床的技术资料非常重要,必须参照机床实物认真仔细地阅读。一旦机床发生故障,在进行分析的同时查阅相关资料。

③故障处理。故障软故障-由调整、参数设置或操作不当引起硬故障-由数控机床(控制、检测、驱动、液气、机械装置)的硬件失效引起。

故障处理对策除非出现影响设备或人身安全的紧急情况,不要立即切断机床的电源,应保持故障现场。从机床外观、CRT显示的内容、主板或驱动装置报警灯等方面进行检查。可按系统复位键,观察系统的变化,报警是否消失。如消失,说明是随机性故障或是由操作错误引起的。如不能消失,把可能引起该故障的原因罗列出来,进行综合分析、判断,必要时进行一些检测或试验,达到确诊故障的目的。

④数控系统故障诊断方法。直观法(望闻问切):问-机床的故障现象、加工状况等看-CRT报警信息、报警指示灯、电容器等元件变形烟熏烧焦、保护器脱扣等听-异常声响闻-电气元件焦糊味及其它异味摸-发热、振动、接触不良等。参数检查法:参数通常是存放在RAM中,有时电池电压不足、系统长期不通电或外部干扰都会使参数丢失或混乱,应根据故障特征,检查和校对有关参数。隔离法:一些故障,难以区分是数控部分,还是伺服系统或机械部分造成的,常采用隔离法。同类对调法用同功能的备用板替换被怀疑有故障的模板,或将功能相同的模板或单元相互交换。功能程序测试法:将G、M、S、T、功能的全部指令编写一些小程序,在诊断故障时运行这些程序,即可判断功能的缺失。

⑤故障诊断应遵循的原则。第一,先外部后内部数控机床的检修要求维修人员掌握先外部后内部的原则,由外向内逐一进行检查排除。第二,先机械后电气首先检查机械是否正常,行程开关是否灵活,气动液压部分是否正常等,在故障检修之前,首先注意排除机械的故障。第三,先静后动维修人员本身要做到先静后动。首先询问机床操作人员故障发生的过程及状态,查阅机床说明书、图纸资料,进行分析后,才可动手查找和处理故障。

数控机床是现代化企业进行生产的一种重要物质基础,是完成生产过程的重要技术手段,强化管理是关键,“防”与“治”的结合是解决数控机床“使用难、维修难”的唯一途径。

参考文献:

第4篇

对于数控机床来说,合理的日常维护措施,可以有效的预防和降低数控机床的故障发生几率。

首先,针对每一台机床的具体性能和加工对象制定操作规程建立工作、故障、维修档案是很重要的。包括保养内容以及功能器件和元件的保养周期。

其次,在一般的工作车间的空气中都含有油雾、灰尘甚至金属粉末之类的污染物,一旦他们落在数控系统内的印制线路或电子器件上,很容易引起元器件之间绝缘电阻下降,甚至倒是元器件及印制线路受到损坏。所以除非是需要进行必要的调整及维修,一般情况下不允许随便开启柜门,更不允许在使用过程中敞开柜门。

另外,对数控系统的电网电压要实行时时监控,一旦发现超出正常的工作电压,就会造成系统不能正常工作,甚至会引起数控系统内部电子部件的损坏。所以配电系统在设备不具备自动检测保护的情况下要有专人负责监视,以及尽量的改善配电系统的稳定作业。

当然很重要的一点是数控机床采用直流进给伺服驱动和直流主轴伺服驱动的,要注意将电刷从直流电动机中取出来,以免由于化学腐蚀作用,是换向器表面腐蚀,造成换向性能受损,致使整台电动机损坏。这是非常严重也容易引起的故障。

2.数控机床一般的故障诊断分析

2.1检查

在设备无法正常工作的情况下,首先要判断故障出现的具置和产生的原因,我们可以目测故障板,仔细检查有无由于电流过大造成的保险丝熔断,元器件的烧焦烟熏,有无杂物断路现象,造成板子的过流、过压、短路。观察阻容、半导体器件的管脚有无断脚、虚焊等,以此可发现一些较为明显的故障,缩小检修范围,判断故障产生的原因。

2.2系统自诊断

数控系统的自诊断功能随时监视数控系统的工作状态。一旦发生异常情况,立即在CRT上显示报警信息或用发光二级管指示故障的大致起因,这是维修中最有效的一种方法。近年来随着技术的发展,兴起了新的接口诊断技术,JTAG边界扫描,该规范提供了有效地检测引线间隔致密的电路板上零件的能力,进一步完善了系统的自我诊断能力。

2.3功能程序测试法

功能程序测试法就是将数控系统的常用功能和特殊功能用手工编程或自动变成的方法,编制成一个功能测试程序,送人数控系统,然后让数控系统运行这个测试程序,借以检查机床执行这些功能的准确定和可靠性,进而判断出故障发生的可能原因。

2.4接口信号检查

通过用可编程序控制器在线检查机床控制系统的接回信号,并与接口手册正确信号相对比,也可以查出相应的故障点。

2.5诊断备件替换法

随着现代技术的发展,电路的集成规模越来越大技术也越来越复杂,按常规方法,很难把故障定位到一个很小的区域,而一旦系统发生故障,为了缩短停机时间,在没有诊断备件的情况下可以采用相同或相容的模块对故障模块进行替换检查,对于现代数控的维修,越来越多的情况采用这种方法进行诊断,然后用备件替换损坏模块,使系统正常工作,尽最大可能缩短故障停机时间。

上述诊断方法,在实际应用时并无严格的界限,可能用一种方法就能排除故障,也可能需要多种方法同时进行。最主要的是根据诊断的结果间接或直接的找到问题的关键,或维修或替换尽快的恢复生产。3数控机床故障诊断实例

由于数控机床的驱动部分是强弱电一体的,是最容易发生问题的。因此将驱动部分作简单介绍:驱动部分包括主轴驱动器和伺服驱动器,有电源模块和驱动模块两部分组成,电源模块是将三相交流电有变压器升压为高压直流,而驱动部分实际上是个逆变换,将高压支流转换为三相交流,并驱动伺服电机,完成个伺服轴的运动和主轴的运转。因此这部分最容易出故障。以CJK6136数控机床和802S数控系统的故障现象为例,主要分析一下控制电路与机械传动接口的故障维修。

如在数控机床在加工过程中,主轴有时能回参考点有时不能。在数控操作面板上,主轴转速显示时有时无,主轴运转正常。分析出现的故障原因得该机床采用变频调速,其转速信号是有编码器提供,所以可排除编码器损坏的可能,否则根本就无法传递转速信号了。只能是编码器与其连接单元出现问题。两方面考虑,一是可能和数控系统连接的ECU连接松动,二是可能可和主轴的机械连接出现问题。由此可以着手解决问题了。首先检查编码器与ECU的连接。若不存在问题,就卸下编码器检查主传动与编码器的连接键是否脱离键槽,结果发现就是这个问题。修复并重新安装就解决了问题。

数控机床故障产生的原因是多种多样的,有机械问题、数控系统的问题、传感元件的问题、驱动元件的问题、强电部分的问题、线路连接的问题等。在检修过程中,要分析故障产生的可能原因和范围,然后逐步排除,直到找出故障点,切勿盲目的乱动,否则,不但不能解决问题。还可能使故障范围进一步扩大。总之,在面对数控机床故障和维修问题时,首先要防患于未燃,不能在数控机床出现问题后才去解决问题,要做好日常的维护工作和了解机床本身的结构和工作原理,这样才能做到有的放矢。

参考文献

[1]陈蕾、谈峰,浅析数控机床维护维修的一般方法[J],机修用造,2004(10)

[2]邱先念,数控机床故障诊断及维修[J],设备管理与维修,2003(01)

[3]王超,数控机床的电器故障诊断及维修[J],芜湖职业技术学院学报,2003(02)

[4]王刚,数控机床维修几例[J],机械工人冷加工,2005(03)

[5]李宏慧、谢小正、沙成梅,浅谈数控机床故障排除的一般方法[J],甘肃科技,2004(09)

[6]万宏强、姚敏茹,基于网络的数控机床设备远程故障诊断技术的框架研究[J],精密制造与自动化,2004(04)

第5篇

【论文摘要】:数控技术是用数字信心对机械运动和工作过程控制的技术。数控技术的应用不但给传统制造业带来了革命性的变化,更使制造业成为工业化的象征。

数控机床是集高、精、尖技术于一体,集机、电、光、液于一身的高技术产物。具有加工精度高、加工质量稳定可靠、生产效率高、适应性强、灵活性好等众多优点,在各个行业受到广泛欢迎,在使用方面,也是越来越受到重视。但由于它是集强、弱电于一体,数字技术控制机械制造的一体化设备,一旦系统的某些部分出现故障,就势必使机床停机,影响生产,所以如何正确维护设备和出现故障时能及时抢修就是保障生产正常进行的关键。

1.数控机床的维护

对于数控机床来说,合理的日常维护措施,可以有效的预防和降低数控机床的故障发生几率。

首先,针对每一台机床的具体性能和加工对象制定操作规程建立工作、故障、维修档案是很重要的。包括保养内容以及功能器件和元件的保养周期。

其次,在一般的工作车间的空气中都含有油雾、灰尘甚至金属粉末之类的污染物,一旦他们落在数控系统内的印制线路或电子器件上,很容易引起元器件之间绝缘电阻下降,甚至倒是元器件及印制线路受到损坏。所以除非是需要进行必要的调整及维修,一般情况下不允许随便开启柜门,更不允许在使用过程中敞开柜门。

另外,对数控系统的电网电压要实行时时监控,一旦发现超出正常的工作电压,就会造成系统不能正常工作,甚至会引起数控系统内部电子部件的损坏。所以配电系统在设备不具备自动检测保护的情况下要有专人负责监视,以及尽量的改善配电系统的稳定作业。

当然很重要的一点是数控机床采用直流进给伺服驱动和直流主轴伺服驱动的,要注意将电刷从直流电动机中取出来,以免由于化学腐蚀作用,是换向器表面腐蚀,造成换向性能受损,致使整台电动机损坏。这是非常严重也容易引起的故障。

2.数控机床一般的故障诊断分析

2.1检查

在设备无法正常工作的情况下,首先要判断故障出现的具置和产生的原因,我们可以目测故障板,仔细检查有无由于电流过大造成的保险丝熔断,元器件的烧焦烟熏,有无杂物断路现象,造成板子的过流、过压、短路。观察阻容、半导体器件的管脚有无断脚、虚焊等,以此可发现一些较为明显的故障,缩小检修范围,判断故障产生的原因。

2.2系统自诊断

数控系统的自诊断功能随时监视数控系统的工作状态。一旦发生异常情况,立即在CRT上显示报警信息或用发光二级管指示故障的大致起因,这是维修中最有效的一种方法。近年来随着技术的发展,兴起了新的接口诊断技术,JTAG边界扫描,该规范提供了有效地检测引线间隔致密的电路板上零件的能力,进一步完善了系统的自我诊断能力。

2.3功能程序测试法

功能程序测试法就是将数控系统的常用功能和特殊功能用手工编程或自动变成的方法,编制成一个功能测试程序,送人数控系统,然后让数控系统运行这个测试程序,借以检查机床执行这些功能的准确定和可靠性,进而判断出故障发生的可能原因。

2.4接口信号检查

通过用可编程序控制器在线检查机床控制系统的接回信号,并与接口手册正确信号相对比,也可以查出相应的故障点。

2.5诊断备件替换法

随着现代技术的发展,电路的集成规模越来越大技术也越来越复杂,按常规方法,很难把故障定位到一个很小的区域,而一旦系统发生故障,为了缩短停机时间,在没有诊断备件的情况下可以采用相同或相容的模块对故障模块进行替换检查,对于现代数控的维修,越来越多的情况采用这种方法进行诊断,然后用备件替换损坏模块,使系统正常工作,尽最大可能缩短故障停机时间。

上述诊断方法,在实际应用时并无严格的界限,可能用一种方法就能排除故障,也可能需要多种方法同时进行。最主要的是根据诊断的结果间接或直接的找到问题的关键,或维修或替换尽快的恢复生产。3数控机床故障诊断实例

由于数控机床的驱动部分是强弱电一体的,是最容易发生问题的。因此将驱动部分作简单介绍:驱动部分包括主轴驱动器和伺服驱动器,有电源模块和驱动模块两部分组成,电源模块是将三相交流电有变压器升压为高压直流,而驱动部分实际上是个逆变换,将高压支流转换为三相交流,并驱动伺服电机,完成个伺服轴的运动和主轴的运转。因此这部分最容易出故障。以CJK6136数控机床和802S数控系统的故障现象为例,主要分析一下控制电路与机械传动接口的故障维修。

如在数控机床在加工过程中,主轴有时能回参考点有时不能。在数控操作面板上,主轴转速显示时有时无,主轴运转正常。分析出现的故障原因得该机床采用变频调速,其转速信号是有编码器提供,所以可排除编码器损坏的可能,否则根本就无法传递转速信号了。只能是编码器与其连接单元出现问题。两方面考虑,一是可能和数控系统连接的ECU连接松动,二是可能可和主轴的机械连接出现问题。由此可以着手解决问题了。首先检查编码器与ECU的连接。若不存在问题,就卸下编码器检查主传动与编码器的连接键是否脱离键槽,结果发现就是这个问题。修复并重新安装就解决了问题。

数控机床故障产生的原因是多种多样的,有机械问题、数控系统的问题、传感元件的问题、驱动元件的问题、强电部分的问题、线路连接的问题等。在检修过程中,要分析故障产生的可能原因和范围,然后逐步排除,直到找出故障点,切勿盲目的乱动,否则,不但不能解决问题。还可能使故障范围进一步扩大。总之,在面对数控机床故障和维修问题时,首先要防患于未燃,不能在数控机床出现问题后才去解决问题,要做好日常的维护工作和了解机床本身的结构和工作原理,这样才能做到有的放矢。

参考文献

[1]陈蕾、谈峰,浅析数控机床维护维修的一般方法[J],机修用造,2004(10)

[2]邱先念,数控机床故障诊断及维修[J],设备管理与维修,2003(01)

[3]王超,数控机床的电器故障诊断及维修[J],芜湖职业技术学院学报,2003(02)

[4]王刚,数控机床维修几例[J],机械工人冷加工,2005(03)

第6篇

关键词:数控机床 维修技术 分析研究

中图分类号:TG 文献标识码:A 文章编号:1007-0745(2013)06-0189-01

数控机床是现代工业机械自动化发展的重要机械设备,关系整个国家的工业发展和生产现代化的建设。数控设备是计算机技术和机械工业技术的结合,是数字化在工业生产中的应用。数控技术体现的是工业产品更加的精细和准确。数控机床从操作到维修都要按照机械操作和护理的程序进行,操作不当或维修不及时必然影响数控机床的正常生产。

1数控机床存在的故障

数控机床的故障一般分为机械故障和电气故障两类。在机床维修之前,应该诊断机床故障是属于机械故障还是电气故障,然后检查电气系统的程序能否正常运行,运动现象是否异常,根据检查结果来判断故障产生的原因。

2数控机床维修所必须的条件

2.1物质条件。在物质条件中要备齐必要的维修工具、检查仪器表等,如装有数控机床维修软件的笔记本电脑;每台数控机床应该有完整的技术图纸和操作说明书;配备数控机床专用的电气配件;准备好数控机床使用和维修的说明书。

2.2人员条件。数控机床维修的好坏取决于技术人员的知识、技能水平和工作经验等条件。维修人员知识面要广,要掌握有关数控机床操作和维修的各种知识,特别在计算机技术、电路技术和机械自动化技术能够灵活应用。维修人员还要加强数控技术的理论知识学习,参加机床技术的培训班,学习丰富的操作维修经验,要把理论知识和实际操作维修相结合,在实际工作中不断的消化理论知识点,是理论指导实践,在实践操作中解决维修的难题,不断的提高自身的动手能力和问题分析能力。由于数控机床软件程序以英文为主,增加了一些不懂英文的技术员的维修机床的难度,因此,机床维修人员还应该掌加强英文知识的学习,能够正确的识别机床软件上的英文单词的意思,避免因为语言的原因造成机床维修中出现的障碍。

2.3数控机床的预防性维护。数控机床的日常护理非常重要,通过日常护理可以减少数控机床的机械故障。日常护理包括检查主轴、各项温度控制、磨损情况和接触器触头清洁等状况,同时要明确数控机床的各功能部件和元气件的保养周期。每台数控机床都应该分配专门的工艺人员、操作人员及维修人员,要求这些人员要不断提升自己的业务技术水平,以适应数控技术不断发展的需要。数控机床如果长时间闲置,当再次使用时,可能会出现一些新的机械故障题,或许是因为尘土、油脂凝固等原因影响到机床的动态传动性能,而机床的精确度降低和油路系统被堵塞。在 1a 之内基本上处于所谓的“磨合”阶段,在这一阶段机床的故障率会呈下降趋势,这期间可以不断的开动机床,此外在充分发挥机床设备的功效同时,也要合理的使用,注重日常的维护和保养。一台数控机床的寿命一般在8~10a左右,因此,更应做好机床的维修工作。

3数控机床的故障诊断及排除措施

3.1 采用常规检查法。当机床的数控系统无法正常工作,且系统无法报警而影响正常工作时,就需要根据故障发生前后的系统状态信息,结合已经掌握的应用理论基础,进行科学分析,最后做出正确的判断。当数控系统发生故障时,通常会在操作面板上显示出故障信息和信号,对于发生频率较高的故障,在数控系统的操作手册和调整手册上都有详细的处理办法和解决方案。还可以利用编程器或操作面板根据电路图,遵循逻辑关系找出故障,并查出相应的信号状态,从而找到解决办法。

3.2 参数修正法。数控机床的维修过程中,有时也要利用一些参数来调整机床,但必须是在机床的正常运行状态下进行修正的,这是一种十分有效的方法。在经过多次的调节机械能力的基础上,尝试着改变参数,并将伺服系统的位置系数逐渐修调。在保证生产顺利进行的前提下,维修人员还要查阅更多的关于机床参数的更改方法,以此来提高加工的精度。

3.3初始化法。通常情况下,由瞬时故障引起的系统报警,可以用开关系统电源或者硬件复位来依次清除故障。一旦数控系统的存储区因电池欠佳或线路板等问题造成混乱的局面,就要对系统进行初始化清除。

4 对数控机床维修的总结

数控机床的维修人员应该在实践中去找值得研究的项目课题,结合实践所得出的结果来进行探讨,最后写出论文。在故障的排除过程中,必须要认真的分析判断,由此可见事后总结十分有必要。总结数控机床的维修过程中所需要的相关数据、文字资料等,如文件资料有不足之处,需要事后补充,以便在今后的日子中来研读和应用。维修人员应该记录好从故障的产生到解决这一过程中所出现的每一个问题,并采取有关措施,结合电路图、相关软件及参数等因素来进行。如在处理过程中发现自身知识的欠缺之处,应及时的学习补充。

5结论

虽然数控机床的型号和种类比较多,但日常的护理和维修技术都基本上一样的。数控机床的保养与维修技术随着数控机床的改进而发生变化,因此维修人员要不断的学习数控机床的最新理论知识和发放,不断的投身于实际的维修工作当中去,把理论知识和实际相结合,在理论知识的指导下在维修中不断的探索和发现问题,在维修技术上不断的创新,及时解决数控机床出现的各种故障,减少维修费用,节约成本,使数控机床能够安全的运行,提高企业的经济效益。

参考文献:

[1]何亚飞,娄斌超,钱锐,等. “数控机床故障分析与维修”课程建设与实践[J].中国职业技术教育,2005(24):21-22.

[2]胡彦文,吴美玉.我国的数控机床的状况及发展研究[J].机床与液压,2005(23):34-35.

[3]张超,罗玉婷,李海洋.论数控机床的故障诊断及维修技术[J].机电新产品导报,2001(13):12-13.

第7篇

论文摘要:文章对数控机床的爬行与振动故障原因作了简单分析,指出一些诊断排故的方法和策略

数控机床是集机、电、液、气、光等为一体的自动化机床,经各部分的执行功能,最后共同完成机械执行机构的移动、转动、夹紧、松开、变速和换刀等各种动作,实现切削加工任务。工作时,各项功能相互结合,发生故障时也混在一起,故障现象和原因并非简单一一对应。一种故障现象可能有几种不同的原因,大部分故障以综合形式出现,数控机床的爬行与振动就是一个明显的例子。

数控机床进给伺服系统所驱动的移动部件在低速运行时,出现移动部件开始不能启动,启动后又突然作加速运动,而后又停顿,继而又作加速运动,如此周而复始,这种移动部件忽停忽跳,忽快忽慢的运动现象,称为爬行;而当其高速运行时,移动部件又出现明显的振动。这一故障现象就是典型的进给系统的爬行与振动故障。

造成这类故障的原因有多种可能,可能是因为机械部分出现了故障所导致,也可能是进给系统电气部分出现了问题,还可能是机械部分与电气部分的综合故障所造成,甚至可能因编程有误也会产生爬行故障。

一、分析机械部分原因与对策

因为数控机床低速运行时的爬行现象往往取决于机械传动部分的特性,高速时的振动又通常与进给传动链中运动副的预紧力有关,由此数控机床的爬行与振动故障可能会在机械部分。

如果在机械部分,首先应该检查导轨副。因为移动部件所受的摩擦阻力主要是来自导轨副,如果导轨副的动、静摩擦系数大,且其差值也大,将容易造成爬行。尽管数控机床的导轨副广泛采用了滚动导轨、静压导轨或塑料导轨,如果导轨间隙调整不好,仍会造成爬行或振动。对于静压导轨副应着重检查静压是否到位,对于塑料导轨可检查有否杂质或异物阻碍导轨副运动,对于滚动导轨则应检查预紧措施是否良好。关注导轨副的也有助于分析爬行问题,导轨副状态不好,导轨的油不足够,致使溜板爬行。这时,添加油,且采用具有防爬作用的导轨油是一种非常有效的措施。这种导轨油中有极性添加剂,能在导轨表面形成一层不易破裂的油膜,从而改善导轨的摩擦特性防止爬行。

其次,要检查进给传动链。因为在进给系统中,伺服驱动装置到移动部件之间必定要经过由齿轮、丝杠螺母副或其他传动副所组成的传动链。定位精度下降、反向间隙增大也会使工作台在进给运动中出现爬行。通过调整轴承、丝杠螺母副和丝杠本身的预紧力,调整松动环节,调整补偿环节,都可有效地提高这一传动链的扭转和拉压刚度(即提高其传动刚度),对于提高运动精度,消除爬行非常有益;另外传动链太长,传动轴直径偏小,支承座的刚度不够也是引起爬行的因素。因此,在检查时也要考虑这些方面是否有缺陷,逐个排查。

二、分析进给伺服系统原因与对策

如果故障原因在进给伺服系统,则需分别检查伺服系统中各有关环节。数控机床的爬行与振动问题属于速度问题,与进给速度密切相关,所以也就离不开分析进给伺服系统的速度环,检查速度调节器故障一是给定信号,二是反馈信号,三是速度调节器自身故障。根据故障特点(如振动周期与进给速度是否成比例变化)检查电动机或测速发电机表面是否光整;还可检查系统插补精度是否太差,检查速度环增益是否太高;与位置控制有关的系统参数设定有无错误;伺服单元的短路棒或电位器设定是否正确;增益电位器调整有无偏差以及速度控制单元的线路是否良好,应对这些环节逐项检查、分类排除。

三、其它因素

有时故障既不是机械部分的原因,又不是进给伺服系统的原因,有可能是其它原因如编程误差。如FANUC 6M系统数控机床在一次切削加工时出现过载爬行。经过仔细核查,发现电动机故障引起过载,更换电动机过载消除,可爬行还是存在。先从机床着手寻找故障原因,结果核实传动链没问题,又查进给伺服系统确认无故障,随后对加工程序进行检查,发现工件曲线的加工,采用细微分段圆弧逼近来实现,而在编程中用了G61指令,也即每加工一段就要进行一次到位停止检查,从而使机床出现爬行现象,将G61改为G64指令连续切削,爬行消除。

如果故障既有机械部分的原因,又有进给伺服系统的原因,很难分辨出引起这一故障的主要矛盾,这是制约我们迅速查出故障原因的重要因素。面对这种情况,要进行多方面的检测,运用机械、电气、液压等方面的综合知识,采取综合分析判断,排除故障。

数控机床是技术密集和知识密集的设备,故障现象是多样的,其表现形式也没有简单的规律可遵循,这就要求维修的技术人员要有电子技术、计算机技术、电气自动化技术、检测技术、机械理论与实践技术、液压与气动等较全面的综合技术知识,还要求具有综合分析和解决问题的能力。

参考文献:

第8篇

论文摘要:文章对数控机床的爬行与振动故障原因作了简单分析,指出一些诊断排故的方法和策略

数控机床是集机、电、液、气、光等为一体的自动化机床,经各部分的执行功能,最后共同完成机械执行机构的移动、转动、夹紧、松开、变速和换刀等各种动作,实现切削加工任务。工作时,各项功能相互结合,发生故障时也混在一起,故障现象和原因并非简单一一对应。一种故障现象可能有几种不同的原因,大部分故障以综合形式出现,数控机床的爬行与振动就是一个明显的例子。

数控机床进给伺服系统所驱动的移动部件在低速运行时,出现移动部件开始不能启动,启动后又突然作加速运动,而后又停顿,继而又作加速运动,如此周而复始,这种移动部件忽停忽跳,忽快忽慢的运动现象,称为爬行;而当其高速运行时,移动部件又出现明显的振动。这一故障现象就是典型的进给系统的爬行与振动故障。

造成这类故障的原因有多种可能,可能是因为机械部分出现了故障所导致,也可能是进给系统电气部分出现了问题,还可能是机械部分与电气部分的综合故障所造成,甚至可能因编程有误也会产生爬行故障。

一、分析机械部分原因与对策

因为数控机床低速运行时的爬行现象往往取决于机械传动部分的特性,高速时的振动又通常与进给传动链中运动副的预紧力有关,由此数控机床的爬行与振动故障可能会在机械部分。

如果在机械部分,首先应该检查导轨副。因为移动部件所受的摩擦阻力主要是来自导轨副,如果导轨副的动、静摩擦系数大,且其差值也大,将容易造成爬行。尽管数控机床的导轨副广泛采用了滚动导轨、静压导轨或塑料导轨,如果导轨间隙调整不好,仍会造成爬行或振动。对于静压导轨副应着重检查静压是否到位,对于塑料导轨可检查有否杂质或异物阻碍导轨副运动,对于滚动导轨则应检查预紧措施是否良好。关注导轨副的也有助于分析爬行问题,导轨副状态不好,导轨的油不足够,致使溜板爬行。这时,添加油,且采用具有防爬作用的导轨油是一种非常有效的措施。这种导轨油中有极性添加剂,能在导轨表面形成一层不易破裂的油膜,从而改善导轨的摩擦特性防止爬行。

其次,要检查进给传动链。因为在进给系统中,伺服驱动装置到移动部件之间必定要经过由齿轮、丝杠螺母副或其他传动副所组成的传动链。定位精度下降、反向间隙增大也会使工作台在进给运动中出现爬行。通过调整轴承、丝杠螺母副和丝杠本身的预紧力,调整松动环节,调整补偿环节,都可有效地提高这一传动链的扭转和拉压刚度(即提高其传动刚度),对于提高运动精度,消除爬行非常有益;另外传动链太长,传动轴直径偏小,支承座的刚度不够也是引起爬行的因素。因此,在检查时也要考虑这些方面是否有缺陷,逐个排查。

二、分析进给伺服系统原因与对策

如果故障原因在进给伺服系统,则需分别检查伺服系统中各有关环节。数控机床的爬行与振动问题属于速度问题,与进给速度密切相关,所以也就离不开分析进给伺服系统的速度环,检查速度调节器故障一是给定信号,二是反馈信号,三是速度调节器自身故障。根据故障特点(如振动周期与进给速度是否成比例变化)检查电动机或测速发电机表面是否光整;还可检查系统插补精度是否太差,检查速度环增益是否太高;与位置控制有关的系统参数设定有无错误;伺服单元的短路棒或电位器设定是否正确;增益电位器调整有无偏差以及速度控制单元的线路是否良好,应对这些环节逐项检查、分类排除。

三、其它因素

有时故障既不是机械部分的原因,又不是进给伺服系统的原因,有可能是其它原因如编程误差。如FANUC6M系统数控机床在一次切削加工时出现过载爬行。经过仔细核查,发现电动机故障引起过载,更换电动机过载消除,可爬行还是存在。先从机床着手寻找故障原因,结果核实传动链没问题,又查进给伺服系统确认无故障,随后对加工程序进行检查,发现工件曲线的加工,采用细微分段圆弧逼近来实现,而在编程中用了G61指令,也即每加工一段就要进行一次到位停止检查,从而使机床出现爬行现象,将G61改为G64指令连续切削,爬行消除。

如果故障既有机械部分的原因,又有进给伺服系统的原因,很难分辨出引起这一故障的主要矛盾,这是制约我们迅速查出故障原因的重要因素。面对这种情况,要进行多方面的检测,运用机械、电气、液压等方面的综合知识,采取综合分析判断,排除故障。

数控机床是技术密集和知识密集的设备,故障现象是多样的,其表现形式也没有简单的规律可遵循,这就要求维修的技术人员要有电子技术、计算机技术、电气自动化技术、检测技术、机械理论与实践技术、液压与气动等较全面的综合技术知识,还要求具有综合分析和解决问题的能力。

参考文献:

第9篇

论文摘要:文章对数控机床的爬行与振动故障原因作了简单分析,指出一些诊断排故的方法和策略

数控机床是集机、电、液、气、光等为一体的自动化机床,经各部分的执行功能,最后共同完成机械执行机构的移动、转动、夹紧、松开、变速和换刀等各种动作,实现切削加工任务。工作时,各项功能相互结合,发生故障时也混在一起,故障现象和原因并非简单一一对应。一种故障现象可能有几种不同的原因,大部分故障以综合形式出现,数控机床的爬行与振动就是一个明显的例子。

数控机床进给伺服系统所驱动的移动部件在低速运行时,出现移动部件开始不能启动,启动后又突然作加速运动,而后又停顿,继而又作加速运动,如此周而复始,这种移动部件忽停忽跳,忽快忽慢的运动现象,称为爬行;而当其高速运行时,移动部件又出现明显的振动。这一故障现象就是典型的进给系统的爬行与振动故障。

造成这类故障的原因有多种可能,可能是因为机械部分出现了故障所导致,也可能是进给系统电气部分出现了问题,还可能是机械部分与电气部分的综合故障所造成,甚至可能因编程有误也会产生爬行故障。

一、分析机械部分原因与对策

因为数控机床低速运行时的爬行现象往往取决于机械传动部分的特性,高速时的振动又通常与进给传动链中运动副的预紧力有关,由此数控机床的爬行与振动故障可能会在机械部分。

如果在机械部分,首先应该检查导轨副。因为移动部件所受的摩擦阻力主要是来自导轨副,如果导轨副的动、静摩擦系数大,且其差值也大,将容易造成爬行。尽管数控机床的导轨副广泛采用了滚动导轨、静压导轨或塑料导轨,如果导轨间隙调整不好,仍会造成爬行或振动。对于静压导轨副应着重检查静压是否到位,对于塑料导轨可检查有否杂质或异物阻碍导轨副运动,对于滚动导轨则应检查预紧措施是否良好。关注导轨副的也有助于分析爬行问题,导轨副状态不好,导轨的油不足够,致使溜板爬行。这时,添加油,且采用具有防爬作用的导轨油是一种非常有效的措施。这种导轨油中有极性添加剂,能在导轨表面形成一层不易破裂的油膜,从而改善导轨的摩擦特性防止爬行。

其次,要检查进给传动链。因为在进给系统中,伺服驱动装置到移动部件之间必定要经过由齿轮、丝杠螺母副或其他传动副所组成的传动链。定位精度下降、反向间隙增大也会使工作台在进给运动中出现爬行。通过调整轴承、丝杠螺母副和丝杠本身的预紧力,调整松动环节,调整补偿环节,都可有效地提高这一传动链的扭转和拉压刚度(即提高其传动刚度),对于提高运动精度,消除爬行非常有益;另外传动链太长,传动轴直径偏小,支承座的刚度不够也是引起爬行的因素。因此,在检查时也要考虑这些方面是否有缺陷,逐个排查。

二、分析进给伺服系统原因与对策

如果故障原因在进给伺服系统,则需分别检查伺服系统中各有关环节。数控机床的爬行与振动问题属于速度问题,与进给速度密切相关,所以也就离不开分析进给伺服系统的速度环,检查速度调节器故障一是给定信号,二是反馈信号,三是速度调节器自身故障。根据故障特点(如振动周期与进给速度是否成比例变化)检查电动机或测速发电机表面是否光整;还可检查系统插补精度是否太差,检查速度环增益是否太高;与位置控制有关的系统参数设定有无错误;伺服单元的短路棒或电位器设定是否正确;增益电位器调整有无偏差以及速度控制单元的线路是否良好,应对这些环节逐项检查、分类排除。

三、其它因素

有时故障既不是机械部分的原因,又不是进给伺服系统的原因,有可能是其它原因如编程误差。如FANUC6M系统数控机床在一次切削加工时出现过载爬行。经过仔细核查,发现电动机故障引起过载,更换电动机过载消除,可爬行还是存在。先从机床着手寻找故障原因,结果核实传动链没问题,又查进给伺服系统确认无故障,随后对加工程序进行检查,发现工件曲线的加工,采用细微分段圆弧逼近来实现,而在编程中用了G61指令,也即每加工一段就要进行一次到位停止检查,从而使机床出现爬行现象,将G61改为G64指令连续切削,爬行消除。

如果故障既有机械部分的原因,又有进给伺服系统的原因,很难分辨出引起这一故障的主要矛盾,这是制约我们迅速查出故障原因的重要因素。面对这种情况,要进行多方面的检测,运用机械、电气、液压等方面的综合知识,采取综合分析判断,排除故障。

数控机床是技术密集和知识密集的设备,故障现象是多样的,其表现形式也没有简单的规律可遵循,这就要求维修的技术人员要有电子技术、计算机技术、电气自动化技术、检测技术、机械理论与实践技术、液压与气动等较全面的综合技术知识,还要求具有综合分析和解决问题的能力。

参考文献:

第10篇

    论文摘要:数控机床FANUC系统是目前应用最广泛的系统之一,虽然FANUC系统具有很好的可靠性和先进性,但是对于比较复杂的数控系统总会遇到这样或那样的问题出现,而这些问题又都通过数控系统界面显现出来,怎样灵活、快速、高效、准确的解决这些问题,成为每个维修人员必须面对的现实。主要就日常机床工作中遇到的一些输入电源故障问题进行了探讨和分析。  

    1. 前言 

    FANUC数控系统输入电源故障是数控机床常见的故障之一,根据曾多次参与多种FANUC数控系统的机床维修,就自己浅薄的经验来看,提高维修人员的综合判断能力,将数控机床电气、机械各部分有机的综合起来整体考虑,是准确判断数控系统电源问题的一个较好方法,有利于快速解决维修过程中的难题。以下是电源常见故障分析。 

    2. 接通总电源开关后,电源指示灯不亮 

    外部电源开关未接通;电源进线熔断器熔芯断或机床总熔断器熔芯断;机床电源进线断;机床总电源开关坏;控制变压器输入端熔断器熔芯断(或断路器跳);指示灯控制电路中熔断器熔芯断或断线;电源指示灯灯泡坏。 

    机床设计时选择的空气开关容量过小,或空气,开关的电流选择拨码开关选择了一个较小的电流;机床上使用了较大功率的变频器或伺服驱动。 

    3. FANUC输入电源故障 

    FANUC的数控系统,一般采用FANUC公司生产的“输入单元”模块,通过相应的外部控制信号,进行数控系统伺服驱动的电源的通、断控制。电源接通条件 

    (1)电柜门互锁触电闭合。 

    (2)外部电源切换触电闭合。 

    (3)MDI/CRT单元的电源切断OFF按钮触电闭合。 

    (4)系统电源模块无报警,报警触点断开。 

    不符合以上条件之任何一条,则会出现电源断电故障:维修要点:FANUC6/11等系统的电源输入单元的元器件,除熔断器外,其他元器件损坏的几率非常小,维修时切勿轻易更换元器件。在某些机床上,由于机床互锁的需要,使用了外部电源切断信号,这时应根据机床电气原理图,综合分析故障原因,排除外部电源切断的因素,才能启动。 

    4. CNC电源单元不能通电 

    4.1 当电源单元不能接通时,如果电源指示灯(绿色)不亮 

    (1)电源单元的保险熔断输入高电压,元器件损坏,造成短路或过流。 

    (2)输入电压低,检查输入电压,电压的允许值为AC200V±10%,50HZ±1HZ。 

    (3)电源单元不良,元器件损坏。 

    4.2 电源指示等亮,报警灯也消失,但电源不能接通 

    电源接通条件 

    (1)电源ON按钮闭合。 

    (2)电源OFF按钮闭合。 

    (3)外部报警接点打开。 

    4.3 电源单元报警灯亮 

    24V输出电压的保险丝熔断:显示器屏幕使用+24v电压,+24v与地短路,显示器/手动数据输入板不良,或短路。 

    5. CNC电源单元不能通电 

    5.1 当电源单元不能接通时,如果电源指示灯(绿色)不亮 

    (1)电源单元的保险熔断:输入高电压,元器件损坏,造成短路或过流。 

    (2)输入电压低:检查输入电压,电压的允许值为AC200V±10%,50HZ±1HZ。 

    (3)电源单元不良,元器件损坏。 

    5.2 电源指示等亮。报警灯也消失,但电源不能接通电源接通条件 

    (1)电源ON按钮闭合。 

    (2)电源OFF按钮闭合。 

    (3)外部报警接点打开。 

    5.3 电源单元报警灯亮 

    (1)24V输出电压的保险丝熔断显示器屏幕使用+24v电压,+24v与地短路。显示器/手动数据输入板不良或短路。 

    (2)电源单元不良,检查步骤: 

    a.把电源单元的所有输出插头拔掉,只留下电源输入线和开关控制线。 

    b.把机床所有电源关掉,把电源控制部分整体拔掉。 

    c.再开电源,此时如果电源报警灯熄灭,那么可以认为电源单元正常,而如果电源报警灯仍然亮,那么电源单元坏。注意事项:16/18系统电源拔下的时间不要超过半小时,因为SRAM的后备电源在电源单元上。 

    (3)24V的保险熔断 a.+24V是提供外部输入/输出信号用的,参照下图检查外部输入,输出回路是否短路。 

    b.外部输入/输出开关引起+24V短路或补充I/O板不良。 

    (4)5V电源负荷短路,检查方法: 

    a.把+5V电源所带负荷一个一个地拔掉,每拔一次,必须关电源再开电源。 

    b.在拔掉任何一个+5V电源负荷后,电源报警灯熄灭,那么可以证明该负荷及其连接电缆出现故障,注意事项:当拔掉电机编码器的插头时,如果是绝对位置编码器,还需要重新回零,机床才能恢复正常。 

    (5)系统的印刷电流板上有短路。检查:用完用表测量+5V,+15V,+24D与OV之间的电阻必须在电源关的状态下测量。 

    a.把系统各印刷板一个一个的往下拔,再开电源,确认报警灯是否再亮。 

    b.如果当某一印刷板拔下后,电源报警灯不亮,那就证明该板有问题,需更换该板或维修。 

    c.对于O系统,如果+24D与OV短路,更换时一定要把输入/输出板与主板同时更换。 

    d.当计算机与CNC系统进行通信作业,如果CNC通信接口烧坏,有时也会使系统电源不能接通。 

    6. 电源开关与机床开关后,电源不能接通 

    (1)电源输入端熔断器熔芯熔断或爆断(或自动开关跳闸)。 

    (2)机床电源进线断。 

    (3)机床总电源开关或电源开关坏。 

    (4)电气控制柜门未关好,开门断电保护开关动作。 

    (5)电气控制柜上的开门断电保护开关损坏或关门后与碰块接触不良。 

    7. 控制电源故障 

    控制变压器无输入电压(输入端保险烧断或断路器跳)原因:变压器内部短路、过载线短路,电流过大无DC电流输出原因:因直流侧短路、过流、过压、过热等造成整流模块或直流电源损坏;整流电路有断线或接触不良电源连接线接触不良或断线控制变压器输入电源电压过高过低(超过±10%)或电压浪涌控制变压器损坏原因:熔断器,断路器的电流过大,没有起到保护作用:电源短路,串接:负荷过大,内部绕组短路,短路等。控制变压器副边熔断器熔断或爆断。 

    8. I/0无输入信号,+24V电源报警 

    +24V电源保险烧坏:I/O输入短路,检查输入+24V电源是否对地短路,排除故障;更换保险。I/O无输入信号维修:更换输入/输出板在机床运行中,控制系统偶尔出现突然掉电现象原因:电源供应系统故障维修:更换系统电源,更换电源输入单元。系统工作半个月或一个月左右,必须更换电池,不然参数有可能丢失:原因:电池是为了保障系统在不通电的情况下,不会丢失NC数据维修:检查确认电池连接电缆是否有破损存储板上的电池保持回路不良,请更换存储板。电池质量不好,更换质量较好的电池。 

    9. 结语 

    从以上常见FANUC数控电源维修事例中。不难看出,对于较为复杂的数控机床来说,往往对维修人员的综合分析能力有较高要求,如果我们拘泥一格、就事而论,往往会舍本逐末,找不到问题的根源所在,数控系统的任何报警和故障都有可能是几个方面因素的相互作用造成的,我们必须善于透过表面现象,抓住问题的本质,快速、高效的解决这些故障,只有这样才能更好的保障数控机床的正常使用,为生产服务。 

    参考文献: 

    [1]郑小年,杨克,中,数控机床故障诊断与维护[M],华中科技大学出版社,2005:76-78. 

第11篇

论文摘要:数控机床fanuc系统是目前应用最广泛的系统之一,虽然fanuc系统具有很好的可靠性和先进性,但是对于比较复杂的数控系统总会遇到这样或那样的问题出现,而这些问题又都通过数控系统界面显现出来,怎样灵活、快速、高效、准确的解决这些问题,成为每个维修人员必须面对的现实。主要就日常机床工作中遇到的一些输入电源故障问题进行了探讨和分析。  

 

1. 前言 

 

fanuc数控系统输入电源故障是数控机床常见的故障之一,根据曾多次参与多种fanuc数控系统的机床维修,就自己浅薄的经验来看,提高维修人员的综合判断能力,将数控机床电气、机械各部分有机的综合起来整体考虑,是准确判断数控系统电源问题的一个较好方法,有利于快速解决维修过程中的难题。以下是电源常见故障分析。 

 

2. 接通总电源开关后,电源指示灯不亮 

 

外部电源开关未接通;电源进线熔断器熔芯断或机床总熔断器熔芯断;机床电源进线断;机床总电源开关坏;控制变压器输入端熔断器熔芯断(或断路器跳);指示灯控制电路中熔断器熔芯断或断线;电源指示灯灯泡坏。 

机床设计时选择的空气开关容量过小,或空气,开关的电流选择拨码开关选择了一个较小的电流;机床上使用了较大功率的变频器或伺服驱动。 

 

3. fanuc输入电源故障 

 

fanuc的数控系统,一般采用fanuc公司生产的“输入单元”模块,通过相应的外部控制信号,进行数控系统伺服驱动的电源的通、断控制。电源接通条件如下: 

 

(1)电柜门互锁触电闭合。 

 

(2)外部电源切换触电闭合。 

 

(3)mdi/crt单元的电源切断off按钮触电闭合。 

 

(4)系统电源模块无报警,报警触点断开。 

不符合以上条件之任何一条,则会出现电源断电故障:维修要点:fanuc6/11等系统的电源输入单元的元器件,除熔断器外,其他元器件损坏的几率非常小,维修时切勿轻易更换元器件。在某些机床上,由于机床互锁的需要,使用了外部电源切断信号,这时应根据机床电气原理图,综合分析故障原因,排除外部电源切断的因素,才能启动。 

 

4. cnc电源单元不能通电 

 

4.1 当电源单元不能接通时,如果电源指示灯(绿色)不亮 

(1)电源单元的保险熔断输入高电压,元器件损坏,造成短路或过流。 

(2)输入电压低,检查输入电压,电压的允许值为ac200v±10%,50hz±1hz。 

(3)电源单元不良,元器件损坏。 

 

4.2 电源指示等亮,报警灯也消失,但电源不能接通 

电源接通条件如下: 

(1)电源on按钮闭合。 

(2)电源off按钮闭合。 

(3)外部报警接点打开。 

 

4.3 电源单元报警灯亮 

24v输出电压的保险丝熔断:显示器屏幕使用+24v电压,+24v与地短路,显示器/手动数据输入板不良,或短路。 

 

5. cnc电源单元不能通电 

 

5.1 当电源单元不能接通时,如果电源指示灯(绿色)不亮 

(1)电源单元的保险熔断:输入高电压,元器件损坏,造成短路或过流。 

(2)输入电压低:检查输入电压,电压的允许值为ac200v±10%,50hz±1hz。 

(3)电源单元不良,元器件损坏。 

 

5.2 电源指示等亮。报警灯也消失,但电源不能接通电源接通条件如下: 

(1)电源on按钮闭合。 

(2)电源off按钮闭合。 

(3)外部报警接点打开。 

5.3 电源单元报警灯亮 

(1)24v输出电压的保险丝熔断显示器屏幕使用+24v电压,+24v与地短路。显示器/手动数据输入板不良或短路。 

(2)电源单元不良,检查步骤: 

a.把电源单元的所有输出插头拔掉,只留下电源输入线和开关控制线。 

b.把机床所有电源关掉,把电源控制部分整体拔掉。 

c.再开电源,此时如果电源报警灯熄灭,那么可以认为电源单元正常,而如果电源报警灯仍然亮,那么电源单元坏。注意事项:16/18系统电源拔下的时间不要超过半小时,因为sram的后备电源在电源单元上。 

(3)24v的保险熔断 

a.+24v是提供外部输入/输出信号用的,参照下图检查外部输入,输出回路是否短路。 

b.外部输入/输出开关引起+24v短路或补充i/o板不良。 

(4)5v电源负荷短路,检查方法: 

a.把+5v电源所带负荷一个一个地拔掉,每拔一次,必须关电源再开电源。 

b.在拔掉任何一个+5v电源负荷后,电源报警灯熄灭,那么可以证明该负荷及其连接电缆出现故障,注意事项:当拔掉电机编码器的插头时,如果是绝对位置编码器,还需要重新回零,机床才能恢复正常。 

(5)系统的印刷电流板上有短路。检查:用完用表测量+5v,+15v,+24d与ov之间的电阻必须在电源关的状态下测量。 

a.把系统各印刷板一个一个的往下拔,再开电源,确认报警灯是否再亮。 

b.如果当某一印刷板拔下后,电源报警灯不亮,那就证明该板有问题,需更换该板或维修。 

c.对于o系统,如果+24d与ov短路,更换时一定要把输入/输出板与主板同时更换。 

d.当计算机与cnc系统进行通信作业,如果cnc通信接口烧坏,有时也会使系统电源不能接通。 

 

6. 电源开关与机床开关后,电源不能接通 

 

(1)电源输入端熔断器熔芯熔断或爆断(或自动开关跳闸)。 

(2)机床电源进线断。 

(3)机床总电源开关或电源开关坏。 

(4)电气控制柜门未关好,开门断电保护开关动作。 

(5)电气控制柜上的开门断电保护开关损坏或关门后与碰块接触不良。 

 

7. 控制电源故障 

 

控制变压器无输入电压(输入端保险烧断或断路器跳)原因:变压器内部短路、过载线短路,电流过大无dc电流输出原因:因直流侧短路、过流、过压、过热等造成整流模块或直流电源损坏;整流电路有断线或接触不良电源连接线接触不良或断线控制变压器输入电源电压过高过低(超过±10%)或电压浪涌控制变压器损坏原因:熔断器,断路器的电流过大,没有起到保护作用:电源短路,串接:负荷过大,内部绕组短路,短路等。控制变压器副边熔断器熔断或爆断。 

 

8. i/0无输入信号,+24v电源报警 

 

+24v电源保险烧坏:i/o输入短路,检查输入+24v电源是否对地短路,排除故障;更换保险。i/o无输入信号维修:更换输入/输出板在机床运行中,控制系统偶尔出现突然掉电现象原因:电源供应系统故障维修:更换系统电源,更换电源输入单元。系统工作半个月或一个月左右,必须更换电池,不然参数有可能丢失:原因:电池是为了保障系统在不通电的情况下,不会丢失nc数据维修:检查确认电池连接电缆是否有破损存储板上的电池保持回路不良,请更换存储板。电池质量不好,更换质量较好的电池。 

 

9. 结语 

 

从以上常见fanuc数控电源维修事例中。不难看出,对于较为复杂的数控机床来说,往往对维修人员的综合分析能力有较高要求,如果我们拘泥一格、就事而论,往往会舍本逐末,找不到问题的根源所在,数控系统的任何报警和故障都有可能是几个方面因素的相互作用造成的,我们必须善于透过表面现象,抓住问题的本质,快速、高效的解决这些故障,只有这样才能更好的保障数控机床的正常使用,为生产服务。 

 

参考文献: 

[1]郑小年,杨克,中,数控机床故障诊断与维护[m],华中科技大学出版社,2005:76-78. 

第12篇

论文摘要:数控机床FANUC系统是目前应用最广泛的系统之一,虽然FANUC系统具有很好的可靠性和先进性,但是对于比较复杂的数控系统总会遇到这样或那样的问题出现,而这些问题又都通过数控系统界面显现出来,怎样灵活、快速、高效、准确的解决这些问题,成为每个维修人员必须面对的现实。主要就日常机床工作中遇到的一些输入电源故障问题进行了探讨和分析。

1. 前言

FANUC数控系统输入电源故障是数控机床常见的故障之一,根据曾多次参与多种FANUC数控系统的机床维修,就自己浅薄的经验来看,提高维修人员的综合判断能力,将数控机床电气、机械各部分有机的综合起来整体考虑,是准确判断数控系统电源问题的一个较好方法,有利于快速解决维修过程中的难题。以下是电源常见故障分析。

2. 接通总电源开关后,电源指示灯不亮

外部电源开关未接通;电源进线熔断器熔芯断或机床总熔断器熔芯断;机床电源进线断;机床总电源开关坏;控制变压器输入端熔断器熔芯断(或断路器跳);指示灯控制电路中熔断器熔芯断或断线;电源指示灯灯泡坏。

机床设计时选择的空气开关容量过小,或空气,开关的电流选择拨码开关选择了一个较小的电流;机床上使用了较大功率的变频器或伺服驱动。

3. FANUC输入电源故障

FANUC的数控系统,一般采用FANUC公司生产的“输入单元”模块,通过相应的外部控制信号,进行数控系统伺服驱动的电源的通、断控制。电源接通条件如下:

(1)电柜门互锁触电闭合。

(2)外部电源切换触电闭合。

(3)MDI/CRT单元的电源切断OFF按钮触电闭合。

(4)系统电源模块无报警,报警触点断开。

不符合以上条件之任何一条,则会出现电源断电故障:维修要点:FANUC6/11等系统的电源输入单元的元器件,除熔断器外,其他元器件损坏的几率非常小,维修时切勿轻易更换元器件。在某些机床上,由于机床互锁的需要,使用了外部电源切断信号,这时应根据机床电气原理图,综合分析故障原因,排除外部电源切断的因素,才能启动。

4. CNC电源单元不能通电

4.1 当电源单元不能接通时,如果电源指示灯(绿色)不亮

(1)电源单元的保险熔断输入高电压,元器件损坏,造成短路或过流。

(2)输入电压低,检查输入电压,电压的允许值为AC200V±10%,50HZ±1HZ。

(3)电源单元不良,元器件损坏。

4.2 电源指示等亮,报警灯也消失,但电源不能接通

电源接通条件如下:

(1)电源ON按钮闭合。

(2)电源OFF按钮闭合。

(3)外部报警接点打开。

4.3 电源单元报警灯亮

24V输出电压的保险丝熔断:显示器屏幕使用+24v电压,+24v与地短路,显示器/手动数据输入板不良,或短路。

5. CNC电源单元不能通电

5.1 当电源单元不能接通时,如果电源指示灯(绿色)不亮

(1)电源单元的保险熔断:输入高电压,元器件损坏,造成短路或过流。

(2)输入电压低:检查输入电压,电压的允许值为AC200V±10%,50HZ±1HZ。

(3)电源单元不良,元器件损坏。

5.2 电源指示等亮。报警灯也消失,但电源不能接通电源接通条件如下:

(1)电源ON按钮闭合。

(2)电源OFF按钮闭合。

(3)外部报警接点打开。

5.3 电源单元报警灯亮

(1)24V输出电压的保险丝熔断显示器屏幕使用+24v电压,+24v与地短路。显示器/手动数据输入板不良或短路。

(2)电源单元不良,检查步骤:

a.把电源单元的所有输出插头拔掉,只留下电源输入线和开关控制线。

b.把机床所有电源关掉,把电源控制部分整体拔掉。

c.再开电源,此时如果电源报警灯熄灭,那么可以认为电源单元正常,而如果电源报警灯仍然亮,那么电源单元坏。注意事项:16/18系统电源拔下的时间不要超过半小时,因为SRAM的后备电源在电源单元上。

(3)24V的保险熔断

a.+24V是提供外部输入/输出信号用的,参照下图检查外部输入,输出回路是否短路。

b.外部输入/输出开关引起+24V短路或补充I/O板不良。

(4)5V电源负荷短路,检查方法:

a.把+5V电源所带负荷一个一个地拔掉,每拔一次,必须关电源再开电源。

b.在拔掉任何一个+5V电源负荷后,电源报警灯熄灭,那么可以证明该负荷及其连接电缆出现故障,注意事项:当拔掉电机编码器的插头时,如果是绝对位置编码器,还需要重新回零,机床才能恢复正常。

(5)系统的印刷电流板上有短路。检查:用完用表测量+5V,+15V,+24D与OV之间的电阻必须在电源关的状态下测量。

a.把系统各印刷板一个一个的往下拔,再开电源,确认报警灯是否再亮。

b.如果当某一印刷板拔下后,电源报警灯不亮,那就证明该板有问题,需更换该板或维修。

c.对于O系统,如果+24D与OV短路,更换时一定要把输入/输出板与主板同时更换。

d.当计算机与CNC系统进行通信作业,如果CNC通信接口烧坏,有时也会使系统电源不能接通。

6. 电源开关与机床开关后,电源不能接通

(1)电源输入端熔断器熔芯熔断或爆断(或自动开关跳闸)。

(2)机床电源进线断。

(3)机床总电源开关或电源开关坏。

(4)电气控制柜门未关好,开门断电保护开关动作。

(5)电气控制柜上的开门断电保护开关损坏或关门后与碰块接触不良。

7. 控制电源故障

控制变压器无输入电压(输入端保险烧断或断路器跳)原因:变压器内部短路、过载线短路,电流过大无DC电流输出原因:因直流侧短路、过流、过压、过热等造成整流模块或直流电源损坏;整流电路有断线或接触不良电源连接线接触不良或断线控制变压器输入电源电压过高过低(超过±10%)或电压浪涌控制变压器损坏原因:熔断器,断路器的电流过大,没有起到保护作用:电源短路,串接:负荷过大,内部绕组短路,短路等。控制变压器副边熔断器熔断或爆断。

8. I/0无输入信号,+24V电源报警

+24V电源保险烧坏:I/O输入短路,检查输入+24V电源是否对地短路,排除故障;更换保险。I/O无输入信号维修:更换输入/输出板在机床运行中,控制系统偶尔出现突然掉电现象原因:电源供应系统故障维修:更换系统电源,更换电源输入单元。系统工作半个月或一个月左右,必须更换电池,不然参数有可能丢失:原因:电池是为了保障系统在不通电的情况下,不会丢失NC数据维修:检查确认电池连接电缆是否有破损存储板上的电池保持回路不良,请更换存储板。电池质量不好,更换质量较好的电池。

9. 结语

从以上常见FANUC数控电源维修事例中。不难看出,对于较为复杂的数控机床来说,往往对维修人员的综合分析能力有较高要求,如果我们拘泥一格、就事而论,往往会舍本逐末,找不到问题的根源所在,数控系统的任何报警和故障都有可能是几个方面因素的相互作用造成的,我们必须善于透过表面现象,抓住问题的本质,快速、高效的解决这些故障,只有这样才能更好的保障数控机床的正常使用,为生产服务。

参考文献

[1]郑小年,杨克,中,数控机床故障诊断与维护[M],华中科技大学出版社,2005:76-78.

第13篇

论文摘要:本文介绍了“项目积分”教学法在课程数控PMC编程与调试中的应用。该方法可以使学生快速地掌握数控PMC控制技术,满足企业实际岗位需求,提升就业竞争力。

0 引言

目前,着力发展以数控技术为核心的先进制造业已成为我国经济发展的重要战略,而数控PMC控制技术又是数控技术的关键技术之一,所以熟悉和掌握PMC控制技术,可以更好地进行数控机床的故障诊断与维修,解决实际应用中出现的问题和故障。

近几年,随着制造业的快速发展,企业对数控高技能复合型人才和数控维修人才的需求正逐年增加。为此很多学校都开设了课程数控PMC编程与调试。为了使学生更好地学习PMC控制技术,掌握经过调试验证的真实工程实例,在课程数控PMC编程与调试教学中实践“项目积分”教学法具有重要的意义。

1 PMC 的概念和功能

PMC(Programmable Machine Controller),就是内置于CNC、用来执行数控机床顺序控制操作的可编程机床控制器。

PMC的功能是对数控机床进行顺序控制。即按照事先确定的顺序或逻辑,对控制的每一个阶段依次进行的控制。对数控机床来说,“顺序控制”是以CNC内部和机床各行程开关、传感器、按钮、继电器等的开关量信号状态为条件,并按照预先规定的逻辑顺序对诸如主轴的起停与换向、刀具的更换、工件的夹紧与松开、液压、冷却、系统的运行等进行的控制。“顺序控制”的信息主要是开关量信号。

PMC在数控机床上实现的功能主要包括工作方式控制、速度倍率控制、自动运行控制、手动运行控制、主轴控制、机床锁住控制、程序校验控制、硬件超程和急停控制、辅助电机控制、外部报警和操作信息控制等。

2 PMC 的信号和程序执行

常把数控机床分为“NC侧”和“MT侧”两大部分。“NC侧”包括CNC系统的硬件和软件,与CNC系统连接的设备如显示器,MDI面板等。“MT侧”则包括机床机械部分及其液压、气压、冷却、、排屑等辅助装置、机床操作面板、继电器线路、机床强电线路等。PMC的信息交换是以PMC为中心,在CNC、PMC和MT三者之间进行信息交换。

PMC程序主要由两部分构成:第一级程序和第二级程序。第一级程序每隔8ms执行一次,主要编写急停、进给暂停等紧急动作控制程序。第一级程序必须以END1指令结束。即使不使用第一级程序,也必须编写END1指令,否则PMC程序无法正常执行。第二级程序每隔8?? ms执行一次,n为第二级程序的分割数。主要编写工作方式控制、速度倍率控制、自动运行控制、手动运行控制、主轴控制、机床锁住控制、程序校验控制、辅助电机控制、外部报警和操作信息控制等程序,其程序步数较多,PMC程序执行时间也较长。第二级程序必须以END2指令结束。

3 “项目积分”教学法简介

“项目积分”教学法是把庞大、复杂的项目按工作过程层层细分成一个个简单的子项目,在学习过程中,又层层组合成整个完整的项目。该方法先由繁化简,再由简积繁,符合学生学习的一般规律,便于短时间内掌握学习内容。(下转第208页)(上接第179页)

4 “项目积分”教学法在课程数控PMC编程与调试中的应用

课程数控PMC编程与调试中的项目内容全部为经过调试验证的真实工程实例,便于学习者更好地掌握实践技能,满足企业实际需要。但是由于完整的数控PMC控制项目庞大且复杂,老师教学和学生学习若采用常规方法都非常麻烦,效果也不理想。为了便于老师教学,使学生更好地掌握PMC控制技术,在课程数控PMC编程与调试教学中应用“项目积分”教学法具有重要的意义。

在课程数控PMC编程与调试进行“项目积分”教学法的应用中,是以配置有FANUC 0i Mate-MD系统和标准机床操作面板的KX-MK-001型多功能数控综合实训系统为平台,将其整个庞大、复杂的PMC控制项目按其实现功能分解成各个一级子项目,安排在各章中;再在每章中把一级子项目分解成多个二级子项目,融合在项目案例、拓展实训和课后实训题当中;然后在项目案例和拓展实训中,把较复杂的二级子项目按控制流程分解成多个三级子项目;最后在三级子项目的分析中,把较复杂的三级子项目再细分成多个四级子项目。这样经过项目的多次分解,一个庞大、复杂的项目变成了一个个简单的四级子项目。当学生按照每章的内容学习时,先逐个学习各个简单的四级子项目,学完之后,自然地完成三级子项目的积分,依次类推,当各一级子项目都学完了,又完成整个完整的控制项目的积分。

在课程数控PMC编程与调试进行“项目积分”教学法的具体实践中,首先按其实现功能分解为工作方式PMC控制、速度倍率PMC控制、自动运行PMC控制、主轴PMC控制、机床锁住PMC控制、程序校验PMC控制、硬件超程和急停PMC控制、辅助电机PMC控制、外部报警和操作信息PMC控制共十个一级子项目;以一级子项目主轴PMC控制为例,其再分解为主轴M指令PMC控制、主轴手动操作PMC控制、主轴M00和M01指令PMC控制、主轴S指令PMC控制共四个二级子项目;以二级子项目主轴M指令PMC控制为例,其又分解成准备就绪PMC控制、主轴停止解除PMC控制、M指令译码PMC控制、主轴正反转M指令PMC控制、主轴停止M05指令PMC控制和主轴M指令执行结束PMC控制共六个三级子项目;以三级子项目主轴正反转M指令PMC控制为例,其又分解为主轴启动条件满足PMC控制、主轴正转M03指令PMC控制和主轴反转M04指令PMC控制共三个四级子项目。这样经过项目的多次分解,整个数控PMC控制项目变成了一个个简单的四级子项目。

在课程数控PMC编程与调试的学习过程中,学生先逐个学习简单的四级子项目主轴启动条件满足PMC控制、主轴正转M03指令PMC控制和主轴反转M04指令PMC控制,学完之后,自然地完成三级子项目主轴正反转M指令PMC控制的积分;当三级子项目准备就绪PMC控制、主轴停止解除PMC控制、M指令译码PMC控制、主轴正反转M指令PMC控制、主轴停止M05指令PMC控制和主轴M指令执行结束PMC控制都学完了,自然地完成二级子项目主轴M指令PMC控制的积分;当二级子项目主轴M指令PMC控制、主轴手动操作PMC控制、主轴M00和M01指令PMC控制和主轴S指令PMC控制都学完了,自然地完成一级子项目主轴PMC控制的积分;当一级子项目工作方式PMC控制、速度倍率PMC控制、自动运行PMC控制、主轴PMC控制、机床锁住PMC控制、程序校验PMC控制、硬件超程和急停PMC控制、辅助电机PMC控制、外部报警和操作信息PMC控制都学完了,又完成整个数控PMC控制项目的积分。

5 结束语

本文介绍的“项目积分”教学法经过在课程数控PMC编程与调试教学中多年的实践,取得了明显的学习效果。学生通过该课程的学习,可以快速地掌握数控PMC控制技术,满足企业实际岗位需求,提升就业竞争力。

第14篇

    论文摘要:本文介绍了“项目积分”教学法在课程数控pmc编程与调试中的应用。该方法可以使学生快速地掌握数控pmc控制技术,满足企业实际岗位需求,提升就业竞争力。 

 

0 引言 

目前,着力发展以数控技术为核心的先进制造业已成为我国经济发展的重要战略,而数控pmc控制技术又是数控技术的关键技术之一,所以熟悉和掌握pmc控制技术,可以更好地进行数控机床的故障诊断与维修,解决实际应用中出现的问题和故障。 

近几年,随着制造业的快速发展,企业对数控高技能复合型人才和数控维修人才的需求正逐年增加。为此很多学校都开设了课程数控pmc编程与调试。为了使学生更好地学习pmc控制技术,掌握经过调试验证的真实工程实例,在课程数控pmc编程与调试教学中实践“项目积分”教学法具有重要的意义。 

1 pmc 的概念和功能 

pmc(programmable machine controller),就是内置于cnc、用来执行数控机床顺序控制操作的可编程机床控制器。 

pmc的功能是对数控机床进行顺序控制。即按照事先确定的顺序或逻辑,对控制的每一个阶段依次进行的控制。对数控机床来说,“顺序控制”是以cnc内部和机床各行程开关、传感器、按钮、继电器等的开关量信号状态为条件,并按照预先规定的逻辑顺序对诸如主轴的起停与换向、刀具的更换、工件的夹紧与松开、液压、冷却、系统的运行等进行的控制。“顺序控制”的信息主要是开关量信号。 

pmc在数控机床上实现的功能主要包括工作方式控制、速度倍率控制、自动运行控制、手动运行控制、主轴控制、机床锁住控制、程序校验控制、硬件超程和急停控制、辅助电机控制、外部报警和操作信息控制等。 

2 pmc 的信号和程序执行 

常把数控机床分为“nc侧”和“mt侧”两大部分。“nc侧”包括cnc系统的硬件和软件,与cnc系统连接的外围设备如显示器,mdi面板等。“mt侧”则包括机床机械部分及其液压、气压、冷却、、排屑等辅助装置、机床操作面板、继电器线路、机床强电线路等。pmc的信息交换是以pmc为中心,在cnc、pmc和mt三者之间进行信息交换。 

pmc程序主要由两部分构成:第一级程序和第二级程序。第一级程序每隔8ms执行一次,主要编写急停、进给暂停等紧急动作控制程序。第一级程序必须以end1指令结束。即使不使用第一级程序,也必须编写end1指令,否则pmc程序无法正常执行。第二级程序每隔8€譶 ms执行一次,n为第二级程序的分割数。主要编写工作方式控制、速度倍率控制、自动运行控制、手动运行控制、主轴控制、机床锁住控制、程序校验控制、辅助电机控制、外部报警和操作信息控制等程序,其程序步数较多,pmc程序执行时间也较长。第二级程序必须以end2指令结束。 

3 “项目积分”教学法简介 

“项目积分”教学法是把庞大、复杂的项目按工作过程层层细分成一个个简单的子项目,在学习过程中,又层层组合成整个完整的项目。该方法先由繁化简,再由简积繁,符合学生学习的一般规律,便于短时间内掌握学习内容。(下转第208页)(上接第179页) 

4 “项目积分”教学法在课程数控pmc编程与调试中的应用 

课程数控pmc编程与调试中的项目内容全部为经过调试验证的真实工程实例,便于学习者更好地掌握实践技能,满足企业实际需要。但是由于完整的数控pmc控制项目庞大且复杂,老师教学和学生学习若采用常规方法都非常麻烦,效果也不理想。为了便于老师教学,使学生更好地掌握pmc控制技术,在课程数控pmc编程与调试教学中应用“项目积分”教学法具有重要的意义。 

在课程数控pmc编程与调试进行“项目积分”教学法的应用中,是以配置有fanuc 0i mate-md系统和标准机床操作面板的kx-mk-001型多功能数控综合实训系统为平台,将其整个庞大、复杂的pmc控制项目按其实现功能分解成各个一级子项目,安排在各章中;再在每章中把一级子项目分解成多个二级子项目,融合在项目案例、拓展实训和课后实训题当中;然后在项目案例和拓展实训中,把较复杂的二级子项目按控制流程分解成多个三级子项目;最后在三级子项目的分析中,把较复杂的三级子项目再细分成多个四级子项目。这样经过项目的多次分解,一个庞大、复杂的项目变成了一个个简单的四级子项目。当学生按照每章的内容学习时,先逐个学习各个简单的四级子项目,学完之后,自然地完成三级子项目的积分,依次类推,当各一级子项目都学完了,又完成整个完整的控制项目的积分。 

在课程数控pmc编程与调试进行“项目积分”教学法的具体实践中,首先按其实现功能分解为工作方式pmc控制、速度倍率pmc控制、自动运行pmc控制、主轴pmc控制、机床锁住pmc控制、程序校验pmc控制、硬件超程和急停pmc控制、辅助电机pmc控制、外部报警和操作信息pmc控制共十个一级子项目;以一级子项目主轴pmc控制为例,其再分解为主轴m指令pmc控制、主轴手动操作pmc控制、主轴m00和m01指令pmc控制、主轴s指令pmc控制共四个二级子项目;以二级子项目主轴m指令pmc控制为例,其又分解成准备就绪pmc控制、主轴停止解除pmc控制、m指令译码pmc控制、主轴正反转m指令pmc控制、主轴停止m05指令pmc控制和主轴m指令执行结束pmc控制共六个三级子项目;以三级子项目主轴正反转m指令pmc控制为例,其又分解为主轴启动条件满足pmc控制、主轴正转m03指令pmc控制和主轴反转m04指令pmc控制共三个四级子项目。这样经过项目的多次分解,整个数控pmc控制项目变成了一个个简单的四级子项目。 

在课程数控pmc编程与调试的学习过程中,学生先逐个学习简单的四级子项目主轴启动条件满足pmc控制、主轴正转m03指令pmc控制和主轴反转m04指令pmc控制,学完之后,自然地完成三级子项目主轴正反转m指令pmc控制的积分;当三级子项目准备就绪pmc控制、主轴停止解除pmc控制、m指令译码pmc控制、主轴正反转m指令pmc控制、主轴停止m05指令pmc控制和主轴m指令执行结束pmc控制都学完了,自然地完成二级子项目主轴m指令pmc控制的积分;当二级子项目主轴m指令pmc控制、主轴手动操作pmc控制、主轴m00和m01指令pmc控制和主轴s指令pmc控制都学完了,自然地完成一级子项目主轴pmc控制的积分;当一级子项目工作方式pmc控制、速度倍率pmc控制、自动运行pmc控制、主轴pmc控制、机床锁住pmc控制、程序校验pmc控制、硬件超程和急停pmc控制、辅助电机pmc控制、外部报警和操作信息pmc控制都学完了,又完成整个数控pmc控制项目的积分。 

5 结束语 

本文介绍的“项目积分”教学法经过在课程数控pmc编程与调试教学中多年的实践,取得了明显的学习效果。学生通过该课程的学习,可以快速地掌握数控pmc控制技术,满足企业实际岗位需求,提升就业竞争力。 

 

第15篇

关键词:数控 故障诊断 变压器 特征气体

数控机床的故障诊断是一个非常复杂的过程,如何将一些辅助部件的故障快速的诊断出来,是提高数控设备故障诊断效率的有效方法,数控设备变压器故障与特征气体间关系的分析就是方法之一。

1过热故障与特征气体之间的关系

化学反应就是在一定能量的作用下,反应物的旧化学键断裂和生成物新化学键形成的过程,绝缘油的裂解也是如此,碳氢化合物分子的碳键断裂和脱氢过程,都需要一定的能量,即活化能。绝缘油的活化能平均为50kal/mol,而且与温度有关[1],不同温度下绝缘油活化能的数值如表1所示。

温度、浓度和催化剂都能影响化学反应的快慢,其中温度最为重要,它与反应速度呈指数关系,服从阿累尼乌斯公式:

式中,K为化学反应速度系数;R为理想气体常数;T为绝对温度;A为经验常数;E为活化能。

正常情况下,变压器的热能或电能不足以使绝缘材料的化学键发生断裂,绝缘油的正常裂化只产生少量的氢气、甲烷和乙烷等气体。但是当温度足够高时,绝缘材料的化学键就会加快断裂速度,产生多种小分子气体,变压器油热解时,产物的顺序大致为:烷烃烯烃炔烃焦炭。

英国中央电气研究所哈斯特(Halstead)根据热动力学理论,对绝缘油在故障温度作用下的裂解产气规律进行了模拟研究,假设每种生成的气体与其它产物处于平衡状态,在系统总压力为1标准大气压的情况下,用热动力学模拟计算出了气体组分的平衡分压与温度之间的函数关系[2],如图1所示。

由图1可见,氢气的产量较多,但其与温度的相关性不明显,每种气体都有各自唯一的依赖温度,例如C2H2在接近1000℃时才产生。哈斯特的研究结果有助于人们利用特征的气体组分和含量判断故障性质。

过热故障是绝缘材料在热应力的作用下发生的绝缘加速劣化的现象,能量密度处于中等水平,当故障点温度较低时,变压器油中溶解的特征气体主要是CH4和C2H6,随着热点温度的升高,低分子烃类气体产气速率出现最大值的顺序依次为CH4、C2H6、C2H4、C2H2。

根据上述分析,过热类故障产生特征气体的情况为:

(1)当故障只使绝缘油产生分解,而不涉及固体绝缘时,变压器油中溶解的特征气体主要是CH4和C2H4,二者之和占总烃的80%以上。故障点温度低时,CH4的比例较大;随着温度的升高,当达到500℃以上时,C2H4和H2的含量开始剧烈增加,所占比例增大;当温度大于800℃时,会有微量C2H2出现,其含量占总烃的6%以下。

(2)当故障涉及固体绝缘时,纤维素会发生热分解,除了产生低分子烃类气体外,还有CO和CO2,并且随着热点温度的升高,CO和CO2的比例不断增大。纤维素在470℃时热分解的产物如表2所示。

从表2中可见,纤维素热分解的产物中,低分子烃类气体所占比例较少,气体产物主要是CO和CO2,明显与变压器油的分解产物不同。

2放电故障与特征气体之间的关系

放电故障是绝缘材料在高电应力的作用下发生的绝缘劣化现象,不同能量密度的放电故障所产生的特征气体的组分和含量差别也比较大[3]。

(1)局部放电时,总烃含量不高,特征气体的主要成份是H2和CH4,一般H2占氢烃的90%以上,CH4占总烃的90%以上,偶尔会出现极小量的C2H2。

(2)低能放电时,特征气体主要是C2H2和H2,因为放电故障能量小,通常总烃含量不高,但油中溶解的C2H2在总烃中可达到25%~90%的比例,H2占氢烃的30%以上,C2H4的含量在总烃中比例小于20%。

(3)高能放电故障发生突然,产气迅速,特征气体的主要成分也是C2H2和H2,其次是CH4、C2H4等,并且通常情况下,C2H4比CH4要多。一般H2占氢烃的30%~90%,C2H2占总烃的20%~70%。

和过热类故障类似,放电类故障涉及到固体绝缘时也都会产生CO和CO2。

通过统计得出变压器的故障类型及产生的主、次要气体如表3所示。

3 结论

通过对产生的气体类型的判断,能有效的判断出变压器的故障,能有效提高数控设备中变压器的故障判断效率。

参考文献

[1]孙才新,陈伟根,李俭,等. 电气设备油中气体在线监测与故障诊断技术[M].北京:科学出版社,2003.

[2] 王晓霞.变压器故障诊断综合诊断专家系统的研究与实现[D].西安:西安电子科技大学硕士学位论文,2010.

[3] 孙才新,廖瑞金,陈伟根. 变压器油中溶解气体的在线监测研究[J]. 电工技术学报,1996, 11(2):11-15.

基金项目:四川省教育厅自然科学项目 ;项目名称: FMS中的三维视觉识别系统研究 ;项目编号:13ZB0354

作者简介:魏弦,1980年5月出生,四川南充人,讲师,硕士研究生,2008年7月毕业于电子科技大学,机械设计制造及自动化专业,研究方向:先进制造、软件工程。 联系电话:18982355000 e-mail: