前言:我们精心挑选了数篇优质不等式教案文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。
现行的中学数学教材,要求学生不论是几何学习还是代数知识的掌握,都要积极培养证明的思考习惯,发挥证明能力,可以说,从初中到高中每个年级都需要重点进行证明教学。教授和学习证明大多以逻辑证明为主,从概念到定理,再从彼定理到此定理,注重形式化,过分要求逻辑的严谨性,代数证明中关键点――非形式化证明中所具有的数学创造性却被忽视了。概括地说,对于高中数学教学目标来说,现今的高中代数证明的教学是不合格的。
课题:不等式证明
课型:新授课
教学目标
1.知识方法目标:会用多种方法进行代数证明。
2.能力目标:代数证明能力的提高。
教学重点难点
1.重点:不等式证明分析法的运用
2.难点:分析法实质的理解
教法与学法
通过具体问题演练,掌握不等式证明的方法。
教学过程
一、课题引入(创设情景)
1.复习引入
提出问题一:我们已经学习了哪几种不等式的证明方法?什么是比较法?什么是综合法?
问题二:能否用比较法或综合法证明不等式:■+■
2.教师点评
在证明不等式时,若用比较法或综合法难以下手时,可采用另一种证明方法:分析法。复习已学证明不等式的方法,指出用比较法和综合法证明不等式的不足之处,激发学生学习新的证明不等式知识的积极性,导入本节课学习内容:用分析法证明不等式。
二、新课讲授
1.尝试探索、建立新知
教师讲解综合法证明不等式的逻辑关系,然后提出问题供学生研究,并点评。帮助学生建立分析法证明不等式的知识体系,投影分析法证明不等式的概念。综合法证明不等式的逻辑关系:以已知条件中的不等式或基本不等式作为结论,逐步寻找它成立的必要条件,直到必要条件就是要证明的不等式。
(学生与教师一道分析综合法的逻辑关系,在教师启发、引导下尝试探索,构建新知)
[问题1]我们能不能用同样的思考问题的方式,把要证明的不等式作为结论,逐步去寻找它成立的充分条件呢?
[问题2]当我们寻找的充分条件已经是成立的不等式时,说明了什么呢?
[问题3]说明要证明的不等式成立的理由是什么呢?
(学生积极思考问题)
[点评]从要证明的结论入手,逆求使它成立的充分条件,直到充分条件显然成立为止,从而得出要证明的结论成立,就是分析法的逻辑关系。
(学生自学课本上分析法证明不等式的概念)
设计意图:对比综合法的逻辑关系,教师层层设置问题,激发学生积极思考、研究.建立新的知识;分析法证明不等式,培养学习创新意识。
2.例题分析
已知:0
(学生分析哪种证法正确而哪种错误)
教师点评:证法一错误。错误的原因是:虽然是从结论出发,但不是逐步逆战结论成立的充分条件,事实上找到明显成立的不等式是结论的必要条件,所以不符合分析法的逻辑原理,犯了逻辑上的错误。
三、课后思考
(1)理解证明不等式的三种方法:比较法、综合法和分析法的意义;
(2)掌握用比较法、综合法和分析法来证简单的不等式;
(3)能灵活根据题目选择适当地证明方法来证不等式;
(4)能用不等式证明的方法解决一些实际问题,培养学生分析问题、解决问题的能力;
(6)通过不等式证明,培养学生逻辑推理论证的能力和抽象思维能力;
(7)通过组织学生对不等式证明方法的意义和应用的参与,培养学生勤于思考、善于思考的良好学习习惯.
教学建议
(一)教材分析
1.知识结构
2.重点、难点分析
重点:不等式证明的主要方法的意义和应用;
难点:①理解分析法与综合法在推理方向上是相反的;
②综合性问题选择适当的证明方法.
(1)不等式证明的意义
不等式的证明是要证明对于满足条件的所有数都成立(或都不成立),而并非是带入具体的数值去验证式子是否成立.
(2)比较法证明不等式的分析
①在证明不等式的各种方法中,比较法是最基本、最重要的方法.
②证明不等式的比较法,有求差比较法和求商比较法两种途径.
由于,因此,证明,可转化为证明与之等价的.这种证法就是求差比较法.
由于当时,,因此,证明可以转化为证明与之等价的.这种证法就是求商比较法,使用求商比较法证明不等式时,一定要注意的前提条件.
③求差比较法的基本步骤是:“作差——变形——断号”.
其中,作差是依据,变形是手段,判断符号才是目的.
变形的目的全在于判断差的符号,而不必考虑差值是多少.
变形的方法一般有配方法、通分的方法和因式分解的方法等,为此,有时把差变形为一个常数,或者变形为一个常数与一个或几个数的平方和的形式.或者变形为一个分式,或者变形为几个因式的积的形式等.总之.能够判断出差的符号是正或负即可.
④作商比较法的基本步骤是:“作商——变形——判断商式与1的大小关系”,需要注意的是,作商比较法一般用于不等号两侧的式子同号的不等式的证明.
(3)综合法证明不等式的分析
①利用某些已经证明过的不等式和不等式的性质推倒出所要证明的不等式成立,这种证明方法通常叫做综合法.
②综合法的思路是“由因导果”:从已知的不等式出发,通过一系列的推出变换,推倒出求证的不等式.
③综合法证明不等式的逻辑关系是:
….
(已知)(逐步推演不等式成立的必要条件)(结论)
④利用综合法由因导果证明不等式,就要揭示出条件与结论之间的因果关系,为此要着力分析已知与求证之间的差异和联系、不等式左右两端的差异和联系,在分析所证不等式左右两端的差异后,合理应用已知条件,进行有效的变换是证明不等式的关键.
(4)分析法证明不等式的分析
①从求证的不等式出发,逐步寻求使不等式成立的充分条件,直至所需条件被确认成立,就断定求证的不等式成立,这种证明方法就是分析法.
有时,我们也可以首先假定所要证明的不等式成立,逐步推出一个已知成立的不等式,只要这个推出过程中的每一步都是可以逆推的,那么就可以断定所给的不等式成立.这也是用分析法,注意应强调“以上每一步都可逆”,并说出可逆的根据.
②分析法的思路是“执果导因”:从求证的不等式出发,探索使结论成立的充分条件直至已成立的不等式.它与综合法是对立统一的两种方法.
③用分析法证明不等式的逻辑关系是:
….
(已知)(逐步推演不等式成立的必要条件)(结论)
④分析法是教学中的一个难点,一是难在初学时不易理解它的本质是从结论分析出使结论成立的“充分”条件,二是不易正确使用连接有关(分析推理)步骤的关键词.如“为了证明”“只需证明”“即”以及“假定……成立”等.
⑤分析法是证明不等式时一种常用的基本方法.当证明不知从何入手时,有时可以运用分析法而获得解决.特别对于条件简单而结论复杂的题目往往更是行之有效.
(5)关于分析法与综合法
①分析法与综合法是思维方向相反的两种思考方法.
②在数学解题中,分析法是从数学题的待证结论或需求问题出发,一步一步地探索下去,最后达到题设的已知条件.即推理方向是:结论已知.
综合法则是从数学题的已知条件出发,经过逐步的逻辑推理,最后达到待证结论或需求问题.即:已知结论.
③分析法的特点是:从“结论”探求“需知”,逐步靠拢“已知”,其逐步推理实际上是要寻找结论的充分条件.
综合法的特点是:从“已知”推出“可知”,逐步推向“未知”,其逐步推理实际上是要寻找已知的必要条件.
④各有其优缺点:
从寻求解题思路来看:分析法是执果索因,利于思考,方向明确,思路自然,有希望成功;综合法由因导果,往往枝节横生,不容易达到所要证明的结论.
从书写表达过程而论:分析法叙述繁锁,文辞冗长;综合法形式简洁,条理清晰.
也就是说,分析法利于思考,综合法宜于表达.
⑤一般来说,对于较复杂的不等式,直接运用综合法往往不易入手,用分析法来书写又比较麻烦.因此,通常用分析法探索证题途径,然后用综合法加以证明,所以分析法和综合法经常是结合在一起使用的.
(二)教法建议
①选择例题和习题要注意层次性.
不等式证明的三种方法主要是通过例题来说明的.教师在教学中要注意例题安排要由易到难,由简单到综合,层层深入,启发学生理解各种证法的意义和逻辑关系.教师选择的训练题也要与所讲解的例题的难易程度的层次相当.
要坚持精讲精练的原则.通过一题多法和多变挖掘各种方法的内在联系,对知识进行拓展、延伸,使学生沟通知识,有效地提高解题能力.
②在教学过程中,应通过精心设置的一个个问题,激发学生的求知欲,调动学生在课堂活动中积极参与.
通过学生参与教学活动,理解不等式证明方法的实质和几种证明方法的意义,通过训练积累经验,能够总结出比较法的实质是把实数的大小顺序通过实数运算变成一个数与0(或1)比较大小;复杂的习题能够利用综合法发展条件向结论方向转化,利用分析法能够把结论向条件靠拢,最终达到结合点,从而解决问题.
③学生素质较好的,教师可在教学中适当增加反证法和用函数单调性来证明不等式的内容,但内容不易过多过难.
第一课时
教学目标
1.掌握证明不等式的方法——比较法;
2.熟悉并掌握比较法证明不等式的意义及基本步骤.
教学重点比较法的意义和基本步骤.
教学难点常见的变形技巧.
教学方法启发引导式.
教学过程
(-)导入新课
(教师活动)教师提问:根据前一节学过的知识,我们如何用实数运算来比较两个实数与的大小?.
(学生活动)学生思考问题,找学生甲口答问题.
(学生甲回答:,,,)
[点评](待学生回答问题后)要比较两个实数与的大小,只要考察与的差值的符号就可以了,这种证明不等式的方法称为比较法.现在我们就来学习:用比较法证明不等式.(板书课题)
设计意图:通过教师设置问题,引导学生回忆所学的知识,引出用比较法证明不等式,导入本节课学习的知识.
(二)新课讲授
【尝试探索,建立新知】
(教师活动)教师板书问题(证明不等式),写出一道例题的题目
[问题]求证
教师引导学生分析、思考,研究不等式的证明.
(学生活动)学生研究证明不等式,尝试完成问题.
(得出证明过程后)
[点评]
①通过确定差的符号,证明不等式的成立.这一方法,在前面比较两个实数的大小、比较式子的大小、证明不等式性质就已经用过.
②通过求差将不等问题转化为恒等问题,将两个一般式子大小比较转化为一个一般式子与0的大小比较,使问题简化.
③理论依据是:
④由,,知:要证明只要证;要证明这种证明不等式的方法通常叫做比较法.
设计意图:帮助学生构建用比较法证明不等式的知识体系,培养学生化归的数学思想.
【例题示范,学会应用】
(教师活动)教师板书例题,引导学生研究问题,构思证题方法,学会解题过程中的一些常用技巧,并点评.
例1求证
(学生活动)学生在教师引导下,研究问题.与教师一道完成问题的论证.
[分析]由比较法证题的方法,先将不等式两边作差,得,将此式看作关于的二次函数,由配方法易知函数的最小值大干零,从而使问题获证.
证明:
=
=,
.
[点评]
①作差后是通过配方法对差式进行恒等变形,确定差的符号.
②作差后,式于符号不易确定,配方后变形为一个完全平方式子与一个常数和的形式,使差式的符号易于确定.
③不等式两边的差的符号是正是负,一般需要利用不等式的性质经过变形后,才能判断.
变形的目的全在于判断差的符号,而不必考虑差的值是多少.至于怎样变形,要灵活处理,例1介绍了变形的一种常用方法——配方法.
例2已知都是正数,并且,求证:
[分析]这是分式不等式的证明题,依比较法证题将其作差,确定差的符号,应通分,由分子、分母的值的符号推出差值的符合,从而得证.
证明:
=
=.
因为都是正数,且,所以
.
.
即:
[点评]
①作差后是通过通分法对差式进行恒等变形,由分子、分母的值的符号推出差的符号.
②本例题介绍了对差变形,确定差值的符号的一种常用方法——通分法.
③例2的结论反映了分式的一个性质(若都是正数.
1.当时,
2.当时,.以后要记住.
设计意图:巩固用比较法证明不等式的知识,学会在用比较法证明不等式中,对差式变形的常用方法——配方法、通分法.
【课堂练习】
(教师活动)打出字幕(练习),要求学生独立思考.完成练习;请甲、乙两学生板演;巡视学生的解题情况,对正确的证法给予肯定和鼓励,对偏差点拨和纠正;点评练习中存在的问题.
[字幕]
练习:1.求证
2.已知,,,d都是正数,且,求证
(学生活动)在笔记本上完成练习,甲、乙两位同学板演.
设计意图,掌握用比较法证明不等式,并会灵活运用配方法和通分法变形差式,确定差式符号.反馈课堂教学效果,调节课堂教学.
【分析归纳、小结解法】
(教学活动)分析归纳例题和练习的解题过程,小结用比较法证明不等式的解题方法.
(学生活动)与教师一道分析归纳,小结解题方法,并记录笔记.
比较法是证明不等式的一种最基本、重要的方法.用比较法证明不等式的步骤是:作差、变形、判断符号.要灵活掌握配方法和通分法对差式进行恒等变形.
设计意图:培养学生分析归纳问题的能力,掌握用比较法证明不等式的方法.
(三)小结
(教师活动)教师小结本节课所学的知识.
(学生活动)与教师一道小结,并记录笔记.
本节课学习了用比较法证明不等式,用比较法证明不等式的步骤中,作差是依据,变形是手段,判断符号才是目的.掌握求差后对差式变形的常用方法:配方法和通分法.并在下节课继续学习对差式变形的常用方法.
设计意图:培养学生对所学知识进行概括归纳的能力,巩固所学知识.
(四)布置作业
1.课本作业:P16.1,2,3.
2.思考题:已知,求证:
3.研究性题:设,,都是正数,且,求证:
设计意图,课本作业供学生巩固基础知识;思考题供学有余力的学生完成,培养其灵活掌握用比较法证明不等式的能力;研究性题是为培养学生创新意识.
(五)课后点评
1.本节课是用比较法证明不等式的第一节课,在导入新课时,教师提出问题,让学生回忆所学知识中,是如何比较两个实数大小的,从而引入用比较法证明不等式.这样处理合情合理,顺理成章.
2.在建立新知过程中,教师引导学生分析研究证明不等式,使学生在尝试探索过程中形成用比较法证明不等式的感性认识.
3.例1,例2两道题主要目的在于让学生归纲、总结,求差后对差式变形、并判断符号的方法,以及求差比较法的步骤.在这里如何对差式变形是难点,应着重解决.首先让学生明确变形目的,减少变形的盲目性;其次是总结变形时常用方法,有利于难点的突破.
4.本节课采用启发引导,讲练结合的授课方式,发挥教师主导作用,体现学生主体地位,学生获取知识必须通过学生自己一系列思维活动完成.教师通过启发诱导学生深入思考问题,培养学生思维灵活、严谨、深刻等良好思维品质.
作业答实
思考题:,又,获证.
研究性题:
二、重点、难点分析
本节教学的重点是不等式的三条基本性质.难点是不等式的基本性质3.掌握不等式的三条基本性质是进一步学习一元一次不等式(组)的解法等后续知识的基础.
1.不等式的概念
用不等号(“<”、“>”或“≠”表示不等关系的式子,叫做不等式.
另外,(“≥”是把“>”、“=”)结合起来,读作“大于或等于”,或记作“≮”,亦即“不小于”)、(“≤”是把“<”、“=”结合起来,读作“小于或等于”,或记作“≯”,也就是“不大于”)等等,也都是不等式.
2.当不等式的两边都加上或乘以同一个正数或负数时,所得结果仍是不等式.但变形所得的不等式中不等号的方向,有的与原不等式中不等号的方向相同,有的则不相同.因而叙述时不能笼统说成“……仍是不等式”,而应明确变形所得的不等式中不等号的方向.
3.不等式成立与不等式不成立的意义
例如:在不等式中,字母表示未知数.当取某一数值时,的值小于2,我们就说当时,不等式成立;当取另外某一个数值时,的值不小于2,我们就说当时,不等式不成立.
4.不等式的三条基本性质是不等式变形的重要依据,性质1、2类似等式性质,不等号的方向不改变,性质3不等号的方向改变,这是不等式独有的性质,也是初学者易错的地方,因此要特别注意.
一、素质教育目标
(-)知识教学点
1.了解不等式的意义.
2.理解什么是不等式成立,掌握不等式是否成立的判定方法.
3.能依题意准确迅速地列出相应的不等式.
(二)能力训练点
1.培养学生运用类比方法研究相关内容的能力.
2.训练学生运用所学知识解决实际问题的能力.
(三)德育渗透点
通过引导学生分析问题、解决问题,培养他们积极的参与意识,竞争意识.
(四)美育渗透点
通过不等式的学习,渗透具有不等量关系的数学美.
二、学法引导
1.教学方法:观察法、引导发现法、讨论法.
2.学生学法:只有准确理解不等号的几种形式的意义,才能在实际中进行灵活的运用.
三、重点·难点·疑点及解决办法
(一)重点
掌握不等式是否成立的判定方法;依题意列出正确的不等式.
(二)难点
依题意列出正确的不等式
(三)疑点
如何把题目中表示不等关系的词语准确地翻译成相应的数学符号.
(四)解决方法
在正确理解不等号的意义后,通过抓住体现不等量的关系的词语就能准确列出相应的不等式.
四、课时安排
一课时.
五、教具学具准备
投影仪或电脑、自制胶片.
六、师生互动活动设计
1.创设情境,通过复习有关等式的知识,自然导入新课的学习,激发学生的学习热情.
2.从演示的有关实验中,探究相应的不等量关系,从学生的讨论、分析中探究代数式的不等关系的几种常见形式.
3.从师生的互动讲解练习中掌握不等式的有关知识,并培养学生具有一定的灵活应用能力.
七、教学步骤
(一)明确目标
本节课主要学习依题意正确迅速地列出不等式.
(二)整体感知
通过复习等式创设情境,自然过渡到不等式的学习过程中,又通过细心的分析、审题寻找出正确的不等量关系,从而列出正确的不等式.
(三)教学过程
1.创设情境,复习导入
我们已经学过等式和它的基本性质,请同学们观察下面习题,思考并回答:
(1)什么是等式?等式中“=”两侧的代数式能否交换?“=”是否具有方向性?
(2)已知数值:-5,,3,0,2,7,判断:上述数值哪些使等式成立?哪些使等式不成立?
学生活动:首先自己思考,然后指名回答.
教师释疑:①“=”表示相等关系,它没有方向性,等号两例可以相互交换,有时不交换只是因为书写习惯,例如方程的解.
②判断数取何值,等式成立和不成立实质上是在判断给定的数值是否为方程的解,因为等式为一元一次方程,它只有惟一解,所以等式只有在时成立,此外,均不成立.
【教法说明】设置上述习题,目的是使学生温故而知新,为学习本节内容提供必要的知识准备.
2.探索新知,讲授新课
不等式和等式既有联系,又有区别,大家在学习时要自觉进行对比,请观察演示实验并回答:演示说明什么问题?
师生活动:教师演示课本第54页天平称物重的两个实例(同时指出演示中物重为克,每个砝码重量均为1克),学生观察实验,思考后回答:演示中天平若不平衡说明天平两边所放物体的重量不相等.
【教法说明】结合实际生活中同类量之间具有一种不相等关系的实例引入不等式的知识,能激发学生的学习兴趣.
在实际生活中,像演示这样同类量之间具有不相等关系的例子是大量的、普遍的,这种关系需用不等式来表示.那么什么是不等式呢?请看:
,,
,,
提问:(l)上述式子中有哪些表示数量关系的符号?(2)这些符号表示什么关系?(3)这些符号两侧的代数式可以随意交换位置吗?(4)什么叫不等式?
学生活动:观察式予,思考并回答问题.
答案:(1)分别使用“<”“>”“≠”.(2)表示不等关系.(3)不可以随意互换位置.(4)用不等号表示不等关系的式子叫不等式.
不等号除了“<”“>”“≠”之外,还有无其他形式?
学生活动:同桌讨论,尝试得到结论.
教师释疑:①不等号除“<”“>”“≠”外,还有“≥”“≤”两种形式(“≥”是指“>”与“=”结合起来,读作“大于或等于”,也可理解成“不小于”;同理“≤”读作“小于或等于”,也可理解成“不大于”.)现在,我们来研究用“>”“<”表示的不等式.
②不等号“>”“<”表示不等关系,它们具有方向性,因而不等号两侧不可互交换,例如,不能写成.
【教法说明】①通过学生自己观察思考,进而猜测出不等式的意义,这种教法充分发挥了学生的主体作用.
②通过教师释疑,学生对不等号的种类及其使用有了进一步的了解.
3.尝试反馈,巩固知识
同类量之间的大小关系常用“>”“<”来表示,请同学们根据自己对不等式的理解,解答习题.
(1)用“<”或“>”境空.(抢答)
①4___-6;②-1____0③-8___-3;④-4.5___-4.
(2)用不等式表示:
①是正数;②是负数;③与3的和小于6;④与2的差大于-1;⑤的4倍大于等于7;⑥的一半小于3.
(3)学生独立完成课本第55页例1.
注意:不是所有同类量都可以比较大小,例如不在同一直线上的两个力,它们只有等与不等关系,而无大小关系,这一点无需向学生说明.
学生活动:第(l)题抢答;第(2)题在练习本上完成,由两个学生板演,完成之后,由学生
判断板演是否正确
教师活动:巡视辅导,统计做题正确的人数,同时给予肯定或鼓励.
【教法说明】①第(1)题是为了调动积极性,强化竞争意识;第(2)题则是为了训练学生书面表述能力.
②教学时要注意引导学生将题目中表示不等关系的词语翻译成相应的不等号,例如“小于”用“<”表示,“大于等于”用“≥”表示.
下面研究什么使不等式成立,请同学们尝试解答习题:
已知数值;-5,,3,0,2,-2.5,5.2;
(1)判断:上述数值哪些使不等式成立?哪些使不成立?
(2)说出几个使不等式成立的的数值;说出几个使不成立的数值.
学生活动:同桌研究讨论,尝试得到答案.
教师活动:引导学生回答,使未知数的取值不仅有正整数,还有负数、零、小数.
师生总结:判定不等式是否成立的方法就是:如果不等号两侧数值的大小关系与不等另一致,称不等式成立;否则不成立.例如对于;当时,的值小于6,就说时不等式成立;当时,的值不小于6,就说时,不成立.
【教法说明】通过学生自己举例,培养他们运用已有的知识探索新知识的意识,同时也活跃了课堂气氛.
4.变式训练,培养能力
(1)当取下列数值时,不等式是否成立?
-7,0,0.5,1,,10
(2)①用不等式表示:与3的和小于等于(不大于)6;
②写出使上述不等式成立的几个的数值;
③取何值时,不等式总成立?取何值时不成立?
学生在练习本上完成1题,2题,同桌订正;教师抽查,强调注意事项.
【教法说明】
①使学生进一步了解使不等式成立的未知数的值可以有多个,为6.2讲解不等式的解集做准备.
②强化思维能力和归纳总结能力.
(四)总结、扩展
学生小结,师生共同完善:
本节课的重点内容:1.掌握不等式是否成立的判断方法;2.依题意列出正确的不等式.
注意:列不等式时,要注意把表示不等关系的词语用相庆的不等号来表示.例如“不大于”用“≤”表示,而不用“<”表示,这一点学生容易出现错误.
八、布置作业
(一)必做题:P61A组1,2,3.
(二)选做题:
1.单项选择
(1)绝对值小于3的非负整数有()
A.1,2B.0,1C.0,1,2D.0,1,3
(2)下列选项中,正确的是()
A.不是负数,则
B.是大于0的数,则
C.不小于-1,则
D.是负数,则
2.依题意列不等式
(1)的3倍与7的差是非正数
(2)与6的和大于9且小于12
(3)A市某天的最低气温是-5℃,最高气温是10℃,设这天气温为℃,则满足的条件是____________________.
【设计说明】1.再现本节重点,巩固所学知识.
2.有层次性地布置作业,可以调动全体学生的学习积极性,这也是实施素质教育的具体体现.
参考答案
1.<,<,>,>,<,<
2.5.2,6,8.3,11是的解,-10,-7,-4.5,0,3不是解
3.(1)(2)(3)(4)
(二)1.(1)C(2)D
2.(1)(2)(3)
九、板书设计
6.1不等式和它的基本性质(一)
一、什么叫不等式?
用:“>”“<”“≠”“≥”“≤”表示不等关系的式子叫不等式.
重点研究“>”“<”
二、依题意列不等式
“大于”“>”;“小于”“<”;“不大于”“≤”;“不小于”“≥”;
三、不等式能否成立
时,(√);时,(×);
时,(×)
四、归纳总结重点
(一)依题意列不等式.
(二)会判断不等式是否成立.
十、背景知识与课外阅读
费马数
费马(P.deFermat)是17世纪法国著名数学家,是法国南部土鲁斯议会的议员,他在数论、解析几何、概率论三个方面都有重要贡献.他无意发表自己的著作,平生没有完整的著作问世.去世后,人们才把他写在书页空白处和给朋友的书信中,以及一些陈旧手稿中的论述收集汇编成书.费马特别爱好数论,在这方面有好几项成就,如费马数、费马小定理、费马大定理等.
费马于1640年前后,在验算了形如
的数当的值分别为
3,5,17,257,65537
后(请注意这些数均为质数)便宣称:对于为任何自然数,是质数.
大约过了100年,1732年数学家欧拉(L.Euler)指出
.
从而否定了费马的上述结论(猜想).