前言:我们精心挑选了数篇优质人教版数学上册教案文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。
一、选择题(单项选择,每小题3分,共21分).
1.﹣2的相反数是(
)
A.2 B.﹣2 C.±2 D.
2.下列有理数的大小比较,正确的是(
)
A.﹣2.9>3.1 B.﹣10>﹣9 C.﹣4.3<﹣3.4 D.0<﹣20
3.下列各式中运算正确的是(
)
A.6a﹣5a=1 B.a2+a2=a4
C.3a2+2a3=5a5 D.3a2b﹣4ba2=﹣a2b
4.下面简单几何体的主视图是(
)
A. B. C. D.
5.修建高速公路时,经常将弯曲的道路改直,从而缩短路程,这样做的数学根据是(
)
A.两点确定一条直线 B.两点之间,线段最短
C.垂线段最短 D.同位角相等,两直线平行
6.如图所示,射线OP表示的方向是(
)
A.南偏西25° B.南偏东25° C.南偏西65° D.南偏东65°
7.定义新运算:对任意有理数a、b,都有 ,例如, ,那么3⊕(﹣4)的值是(
)
A. B. C. D.
二、填空题(每小题4分,共40分).
8.|﹣3|=
.
9.地球绕太阳每小时转动经过的路程约为110000千米,将110000用科学记数法表示为
.
10.在有理数 、﹣5、3.14中,属于分数的个数共有
个.
11.把3.1415取近似数(精确到0.01)为
.
12.单项式﹣ 的次数是
.
13.若∠A=50°30′,则∠A的余角为
.
14.把多项式5x2﹣2x3+3x﹣1按x的降幂排列
.
15.如图,是一个正方体的表面展开图,原正方体中“新”面的对面上的字是
.
16.如图,已知AB⊥CD,垂足为B,EF是经过B点的一条直线,∠EBD=145°,则∠ABF的度数为
.
17.有理数a、b、c在数轴上的位置如图所示,试化简:
(1)|a|=
;
(2)|a+c|+|a+b|﹣|b﹣c|=
.
三、解答题.
18.计算下列各题
(1)4×(﹣3)﹣8÷(﹣2)
(2)(﹣ + ﹣ )×24
(3)﹣42+(7﹣9)3÷ .
19.化简:(x2+9x﹣5)﹣(4﹣7x2+x).
20.先化简,再求值:(7x2﹣6xy+1)﹣2(3x2﹣4xy)﹣5,其中x=﹣1, .
21.如图,点B是线段AC上一点,且AC=12,BC=4.
(1)求线段AB的长;
(2)如果点O是线段AC的中点,求线段OB的长.
22.根据要求画图或作答:如图所示,已知A、B、C三点.
(1)连结线段AB;
(2)画直线AC和射线BC;
(3)过点B画直线AC的垂线,垂足为点D,则点B到直线AC的距离是哪条线段的长度?
23.如图已知AD∥BC,∠1=∠2,要说明∠3+∠4=180°.
请完善说明过程,并在括号内填上相应依据
解:AD∥BC
∴∠1=∠3 (
),
∠1=∠2(已知)
∴∠2=∠3 (
),
∴
∥
(
),
∴∠3+∠4=180°(
)
24.张大爷对自己生产的土特产进行试验加工后,分为甲、乙、丙三种不同包装推向市场进行销售,其相关信息如下表:
重量(克/袋) 销售价(元/袋) 成本(元/袋)
甲 200 2.5 1.9
乙 300 m 2.9
丙 400 n 3.8
这三种不同包装的土特产每一种都销售了120千克.
(1)张大爷销售甲种包装的土特产赚了多少钱?
(2)销售乙、丙这两种包装的土特产总共赚了多少钱?(用含m、n的代数式表示)
(3)当m=2.8,n=3.7时,求第(2)题中的代数式的值;并说明该值所表示的实际意义.
25.如图①所示,四边形ABCD中,∠ADC的角平分线DE与∠BCD的角平分线CA相交于E点,已知∠ACD=32°,∠CDE=58°.
(1)∠DEC的度数为
°;
(2)试说明直线AD∥BC;
(3)延长DE交BC于点F,连结AF,如图②,当AC=8,DF=6时,求四边形ADCF的面积.
26.如图①所示是一个长方体盒子,四边形ABCD是边长为a的正方形,DD′的长为b.
(1)写出与棱AB平行的所有的棱:
;
(2)求出该长方体的表面积(用含a、b的代数式表示);
(3)当a=40cm,b=20cm时,工人师傅用边长为c的正方形纸片(如图②)裁剪成六块,作为长方体的六个面,粘合成如图①所示的长方体.
①求出c的值;
②在图②中画出裁剪线的示意图,并标注相关的数据.
人教版初一上册数学期末考试题参考答案
一、选择题(单项选择,每小题3分,共21分).
1.﹣2的相反数是(
)
A.2 B.﹣2 C.±2 D.
【考点】相反数.
【分析】根据相反数的定义进行解答即可.
【解答】解:由相反数的定义可知,﹣2的相反数是﹣(﹣2)=2.
故选A.
【点评】本题考查的是相反数的定义,即只有符号不同的两个数叫做互为相反数.
2.下列有理数的大小比较,正确的是(
)
A.﹣2.9>3.1 B.﹣10>﹣9 C.﹣4.3<﹣3.4 D.0<﹣20
【考点】有理数大小比较.
【专题】推理填空题;实数.
【分析】A:正数大于一切负数,据此判断即可.
B:两个负数,绝对值大的其值反而小,据此判断即可.
C:两个负数,绝对值大的其值反而小,据此判断即可.
D:负数都小于0,据此判断即可.
【解答】解:﹣2.9<3.1,
∴选项A不正确;
|﹣10|=10,|﹣9|=9,10>9,
∴﹣10<﹣9,
∴选项B不正确;
|﹣4.3|=4.3,|﹣3.4|=3.4,4.3>3.4,
∴﹣4.3<﹣3.4,
∴选项C正确;
0>﹣20,
∴选项D不正确.
故选:C.
【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.
3.下列各式中运算正确的是(
)
A.6a﹣5a=1 B.a2+a2=a4
C.3a2+2a3=5a5 D.3a2b﹣4ba2=﹣a2b
【考点】合并同类项.
【专题】计算题.
【分析】根据同类项的定义及合并同类项法则解答.
【解答】解:A、6a﹣5a=a,故A错误;
B、a2+a2=2a2,故B错误;
C、3a2+2a3=3a2+2a3,故C错误;
D、3a2b﹣4ba2=﹣a2b,故D正确.
故选:D.
【点评】合并同类项的方法是:字母和字母的指数不变,只把系数相加减.注意不是同类项的一定不能合并.
4.下面简单几何体的主视图是(
)
A. B. C. D.
【考点】简单组合体的三视图.
【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.
【解答】解:从正面看易得第一层有1个正方形在左侧,第二层有2个正方形.
故选B.
【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.
5.修建高速公路时,经常将弯曲的道路改直,从而缩短路程,这样做的数学根据是(
)
A.两点确定一条直线 B.两点之间,线段最短
C.垂线段最短 D.同位角相等,两直线平行
【考点】线段的性质:两点之间线段最短.
【分析】根据线段的性质解答即可.
【解答】解:将弯曲的道路改直,从而缩短路程,主要利用了两点之间,线段最短.
故选B.
【点评】本题考查了线段的性质,为数学知识的应用,考查知识点两点之间线段最短.
6.如图所示,射线OP表示的方向是(
)
A.南偏西25° B.南偏东25° C.南偏西65° D.南偏东65°
【考点】方向角.
【分析】求得OP与正南方向的夹角即可判断.
【解答】解:90°﹣25°=65°,
则P在O的南偏西65°.
故选C.
【点评】本题考查了方向角的定义,正确理解定义是解决本题的关键.
7.定义新运算:对任意有理数a、b,都有 ,例如, ,那么3⊕(﹣4)的值是(
)
A. B. C. D.
【考点】有理数的加法.
【专题】新定义.
【分析】根据新定义 ,求3⊕(﹣4)的值,也相当于a=3,b=﹣4时,代入 + 求值.
【解答】解: ,
∴3⊕(﹣4)= ﹣ = .
故选:C.
【点评】此题主要考查了有理数的混合运算,解题的关键是根据题意掌握新运算的规律.
二、填空题(每小题4分,共40分).
8.|﹣3|= 3 .
【考点】绝对值.
【分析】根据负数的绝对值等于这个数的相反数,即可得出答案.
【解答】解:|﹣3|=3.
故答案为:3.
【点评】此题主要考查了绝对值的性质,正确记忆绝对值的性质是解决问题的关键.
9.地球绕太阳每小时转动经过的路程约为110000千米,将110000用科学记数法表示为 1.1×105 .
【考点】科学记数法—表示较大的数.
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【解答】解:110000=1.1×105,
故答案为:1.1×105.
【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
10.在有理数 、﹣5、3.14中,属于分数的个数共有 2 个.
【考点】有理数.
【分析】利用分数的意义直接填空即可.
【解答】解:有理数 是分数、3.14是分数,故有2个;
故答案为:2.
【点评】此题主要考查了有理数的有关定义,熟练掌握相关的定义是解题关键.
11.把3.1415取近似数(精确到0.01)为 3.14 .
【考点】近似数和有效数字.
【分析】把千分位上的数字1进行四舍五入即可.
【解答】解:3.1415≈3.14(精确到0.01).
故答案为3.14.
【点评】本题考查了近似数和有效数字:经过四舍五入得到的数叫近似数;从一个近似数左边第一个不为0的数数起到这个数完为止,所有数字都叫这个数的有效数字.
12.单项式﹣ 的次数是 3 .
【考点】单项式.
【分析】根据单项式次数的定义来确定单项式﹣ 的次数即可.
【解答】解:单项式﹣ 的次数是3,
故答案为:3.
【点评】本题考查了单项式次数的定义,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.
13.若∠A=50°30′,则∠A的余角为 39°30′ .
【考点】余角和补角.
【分析】根据互余的两个角的和等于90°列式计算即可得解.
【解答】解:∠A=50°30′,
∴∠A的余角=90°﹣50°30′=39°30′.
故答案为:39°30′.
【点评】本题考查了余角的定义,熟记互余的两个角的和等于90°是解题的关键.
14.把多项式5x2﹣2x3+3x﹣1按x的降幂排列 ﹣2x3+5x2+3x﹣1 .
【考点】多项式.
【分析】先分清各项,然后按降幂排列的定义解答.
【解答】解:多项式5x2﹣2x3+3x﹣1按x的降幂排列:﹣2x3+5x2+3x﹣1.
故答案为:﹣2x3+5x2+3x﹣1.
【点评】此题主要考查了多项式幂的排列.我们把一个多项式的各项按照某个字母的指数从大到小或从小到大的顺序排列,称为按这个字母的降幂或升幂排列.
要注意,在排列多项式各项时,要保持其原有的符号.
15.如图,是一个正方体的表面展开图,原正方体中“新”面的对面上的字是 乐 .
【考点】专题:正方体相对两个面上的文字.
【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.
【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,
“你”与“年”是相对面,
“新”与“乐”是相对面,
“祝”与“快”是相对面.
故答案为:乐.
【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.
16.如图,已知AB⊥CD,垂足为B,EF是经过B点的一条直线,∠EBD=145°,则∠ABF的度数为 55° .
【考点】垂线;对顶角、邻补角.
【分析】根据已知条件,利用互补关系,互余关系及对顶角相等的性质解题.
【解答】解:∠CBE+∠EBD=180°,∠EBD=145°,
∴∠CBE=180°﹣∠EBD=35°,
∠CBE与∠DBF是对顶角,
∴∠DBF=∠CBE=35°,
AB⊥CD,
∴∠ABF=90°﹣∠DBF=55°.
故答案为:55°.
【点评】此题主要考查了角与角的关系,即余角、补角、对顶角的关系,利用互余,互补的定义得出角的度数是解答此题的关键.
17.有理数a、b、c在数轴上的位置如图所示,试化简:
(1)|a|= ﹣a ;
(2)|a+c|+|a+b|﹣|b﹣c|= 0 .
【考点】绝对值;数轴.
【专题】推理填空题;数形结合.
【分析】(1)首先根据有理数a、b、c在数轴上的位置,判断出a<0;然后根据负数的绝对值是它的相反数,可得|a|=﹣a,据此解答即可.
(2)首先根据有理数a、b、c在数轴上的位置,判断出b
【解答】解:(1)a<0
∴|a|=﹣a;
(2)根据图示,可得b
∴a+c>0,a+b<0,b﹣c<0,
∴|a+c|+|a+b|﹣|b﹣c|
=a+c﹣(a+b)﹣(c﹣b)
=a+c﹣a﹣b﹣c+b
=0.
故答案为:﹣a、0.
【点评】(1)此题主要考查了绝对值的含义和应用,要熟练掌握,解答此题的关键是要明确:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.
(2)此题还考查了在数轴上表示数的方法,以及数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,要熟练掌握.
三、解答题.
18.计算下列各题
(1)4×(﹣3)﹣8÷(﹣2)
(2)(﹣ + ﹣ )×24
(3)﹣42+(7﹣9)3÷ .
【考点】有理数的混合运算.
【专题】计算题;实数.
【分析】(1)原式先计算乘除运算,再计算加减运算即可得到结果;
(2)原式利用乘法分配律计算即可得到结果;
(3)原式先计算乘方运算,再计算除法运算,最后算加减运算即可得到结果.
【解答】解:(1)原式=﹣12+4=﹣8;
(2)原式=﹣4+10﹣21=﹣25+10=﹣15;
(3)原式=﹣16﹣8× =﹣16﹣6=﹣22.
【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.
19.化简:(x2+9x﹣5)﹣(4﹣7x2+x).
【考点】整式的加减.
【分析】首先去括号,进而合并同类项即可得出答案.
【解答】解:原式=x2+9x﹣5﹣4+7x2﹣x
=8x2+8x﹣9.
【点评】此题主要考查了整式的加减运算,正确去括号是解题关键.
20.先化简,再求值:(7x2﹣6xy+1)﹣2(3x2﹣4xy)﹣5,其中x=﹣1, .
【考点】整式的加减—化简求值.
【专题】计算题.
【分析】原式去括号合并得到最简结果,将x与y的值代入计算即可求出值.
【解答】解:原式=7x2﹣6xy+1﹣6x2+8xy﹣5=x2+2xy﹣4,
当x=﹣1,y=﹣ 时,原式=(﹣1)2+2×(﹣1)×(﹣ )﹣4=﹣2.
【点评】此题考查了整式的加减﹣化简求值,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.
21.如图,点B是线段AC上一点,且AC=12,BC=4.
(1)求线段AB的长;
(2)如果点O是线段AC的中点,求线段OB的长.
【考点】两点间的距离.
【分析】(1)根据线段的和差,可得答案;
(2)根据线段中点的性质,可得OC的长,再根据线段的和差,可得答案.
【解答】解:(1)由线段的和差,得
AB=AC﹣BC=12﹣4=8;
(2)由点O是线段AC的中点,得OC= AC= ×12=6,
由线段的和差,得
OB=OC﹣BC=6﹣4=2.
【点评】本题考查了两点间的距离,利用了线段中点的性质,线段的和差.
22.根据要求画图或作答:如图所示,已知A、B、C三点.
(1)连结线段AB;
(2)画直线AC和射线BC;
(3)过点B画直线AC的垂线,垂足为点D,则点B到直线AC的距离是哪条线段的长度?
【考点】作图—复杂作图.
【分析】(1)连接AB即可得线段AB;
(2)根据直线是向两方无限延长的画直线AC即可,连接BC并延长BC即可得射线BC;
(2)用直角三角板两条直角边,一边与AC重合,并使沿另一边所画的直线经过点B即可作出.
【解答】解:(1)(2)画图如下:
;
(3)如图所示:点B到直线AC的距离是线段BD的长度.
【点评】此题主要考查了基本作图,只要掌握线段、射线、直线的特点,点到直线的距离的定义:过直线外一点作直线的垂线,垂线段的长叫这个点到这条直线的距离.
23.如图已知AD∥BC,∠1=∠2,要说明∠3+∠4=180°.
请完善说明过程,并在括号内填上相应依据
解:AD∥BC (已知)
∴∠1=∠3 (
),
∠1=∠2(已知)
∴∠2=∠3 (
),
∴ BE ∥ DF (
),
∴∠3+∠4=180°(
)
【考点】平行线的判定与性质.
【专题】推理填空题.
【分析】根据平行线的性质推出∠1=∠3=∠2,根据平行线的判定推出BE∥DF,根据平行线的性质推出即可.
【解答】解:AD∥BC(已知),
∴∠1=∠3(两直线平行,内错角相等),
∠1=∠2,
∴∠2=∠3(等量代换),
∴BE∥DF(同位角相等,两直线平行),
∴∠3+∠4=180°(两直线平行,同旁内角互补),
故答案为:(已知),BE,DF.
【点评】本题考查了对平行线的性质和判定的应用,主要考查学生的推理能力.
24.张大爷对自己生产的土特产进行试验加工后,分为甲、乙、丙三种不同包装推向市场进行销售,其相关信息如下表:
重量(克/袋) 销售价(元/袋) 成本(元/袋)
甲 200 2.5 1.9
乙 300 m 2.9
丙 400 n 3.8
这三种不同包装的土特产每一种都销售了120千克.
(1)张大爷销售甲种包装的土特产赚了多少钱?
(2)销售乙、丙这两种包装的土特产总共赚了多少钱?(用含m、n的代数式表示)
(3)当m=2.8,n=3.7时,求第(2)题中的代数式的值;并说明该值所表示的实际意义.
【考点】一元一次方程的应用;列代数式;代数式求值.
【专题】应用题;图表型;整式.
【分析】(1)根据:“销售甲种包装的土特产赚的钱=销售袋数×(销售价﹣成本)”列式计算即可;
(2)根据:“两种包装的土特产总利润=乙种包装的土特产总利润+丙种包装的土特产总利润”可列代数式;
(3)把m=2.8,n=3.7代入(2)中代数式计算便可,表示乙、丙这两种包装的土特产总利润.
【解答】(1)解:设张大爷销售甲种包装的土特产赚了x元,
根据题意得:x= ×(2.5﹣1.9),
即x=360,
答:张大爷销售甲种包装的土特产赚了360元;
(2)解:根据题意得 (m﹣2.9)+ (n﹣3.8),
整理得:400(m﹣2.9)+300(n﹣3.8),即400m+300n﹣2300,
答:销售乙、丙这两种包装的土特产总共赚了(400m+300n﹣2300)元;
(3)解:当m=2.8,n=3.7时,
400m+300n﹣2300=400×2.8+300×3.7﹣2300=﹣70,
∴销售乙、丙这两种包装的土特产总共亏了70元.
【点评】此题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.
25.如图①所示,四边形ABCD中,∠ADC的角平分线DE与∠BCD的角平分线CA相交于E点,已知∠ACD=32°,∠CDE=58°.
(1)∠DEC的度数为 90 °;
(2)试说明直线AD∥BC;
(3)延长DE交BC于点F,连结AF,如图②,当AC=8,DF=6时,求四边形ADCF的面积.
【考点】平行线的判定与性质;三角形的面积.
【分析】(1)根据三角形内角和定理即可求解;
(2)首先求得∠ADC的度数和∠DCB的度数,根据同旁内角互补,两直线平行即可证得;
(3)根据S四边形ADCF=SACD+SACF,利用三角形的面积公式求解即可.
【解答】解:(1)∠DEC=180°﹣∠ACD﹣∠CDE=180°﹣32°﹣58°=90°;
(2)DE平分∠ADC,CA平分∠BCD
∴∠ADC=2∠CDE=116°,∠BCD=2∠ACD=64°
∠ADC+∠BCD=116°+64°=180°
∴AD∥BC
(3)由(1)知∠DEC=90°,
∴DE⊥AC
∴SACD= AC•DE= ×8•DE=4DE,
SACF= AC•EF= ×8•EF=4EF,
∴S四边形ADCF=SACD+SACF=4DE+4EF=4(DE+EF)=4DF=4×6=24.
【点评】本题考查了平行线的判定与性质,正确理解S四边形ADCF=SACD+SACF是解题的关键.
26.如图①所示是一个长方体盒子,四边形ABCD是边长为a的正方形,DD′的长为b.
(1)写出与棱AB平行的所有的棱: A′B′,D′C′,DC ;
(2)求出该长方体的表面积(用含a、b的代数式表示);
(3)当a=40cm,b=20cm时,工人师傅用边长为c的正方形纸片(如图②)裁剪成六块,作为长方体的六个面,粘合成如图①所示的长方体.
①求出c的值;
②在图②中画出裁剪线的示意图,并标注相关的数据.
【考点】几何体的展开图;认识立体图形;几何体的表面积.
【分析】(1)根据长方体的特征填写即可;
(2)根据长方体的表面积公式即可求解;
(3)①根据长方体的表面积公式和正方形的面积公式即可求解;
②分成2个边长40cm的正方形,4个长40cm,宽20cm的长方形即可求解.
【解答】解:(1)与棱AB平行的所有的棱:A′B′,D′C′,DC.
故答案为:A′B′,D′C′,DC;
(2)长方体的表面积=2a2+4ab;
(3)①当a=40cm,b=20cm时,
2a2+4ab
=2×402+4×40×20
=3200+3200
=6400(cm2)
c2=2a2+4ab=6400,
∴c=80( cm );
②如下图所示:(注:答案不唯一,只要符合题意画一种即可)
【点评】考查了几何体的展开图,认识立体图形和几何体的表面积,本题考法较新颖,需要对长方体有充分的理解.
看了“人教版初一上册数学期末考试题”的人还看了:
1.人教版七年级数学上册期末试卷及答案
2.人教版七年级数学上册期末试卷带答案
3.人教版七年级上册数学期末试卷及答案
人教版七年级数学上册期末试卷
(时间:120分钟,满分:120分)
一、选择题(每小题3分,共36分)
1.下列方程中,是一元一次方程的是(
)
A.x2-2x=4
B.x=0
C.x+3y=7
D.x-1=
2.下列计算正确的是(
)
A.4x-9x+6x=-x
B.a-a=0
C.x3-x2=x
D.xy-2xy=3xy
3.数据1 460 000 000用科学记数法表示应是(
)
A.1.46×107
B.1.46×109
C.1.46×1010
D.0.146×1010
4.用科学计算器求35的值,按键顺序是( )
A.3,x■,5,= B.3,5,x■
C.5,3,x■ D.5,x■,3,=
5.
在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,则∠AOB的大小为(
)
A.69° B.111°
C.159° D.141°
6.一件衣服按原价的九折销售,现价为a元,则原价为(
)
A.a B.a
C.a D.a
7.下列各式中,与x2y是同类项的是(
)
A.xy2 B.2xy
C.-x2y D.3x2y2
8.若长方形的周长为6m,一边长为m+n,则另一边长为(
)
A.3m+n
B.2m+2n
C.2m-n
D.m+3n
9.已知∠A=37°,则∠A的余角等于(
)
A.37° B.53°
C.63° D.143°
10.将下边正方体的平面展开图重新折成正方体后,“董”字对面的字是(
)
A.孝 B.感
C.动 D.天
11.若规定:[a]表示小于a的最大整数,例如:[5]=4,[-6.7]=-7,则方程3[-π]-2x=5的解是(
)
A.7 B.-7
C.- D.
12.同一条直线上有若干个点,若构成的射线共有20条,则构成的线段共有(
)
A.10条 B.20条
C.45条 D.90条
二、填空题(每小题4分,共20分)
13.已知多项式2mxm+2+4x-7是关于x的三次多项式,则m=
.
14.在我国明代数学家吴敬所著的《九章算术比类大全》中,有一道数学名题叫“宝塔装灯”,内容为“远望巍巍塔七层,红灯点点倍加增;共灯三百八十一,请问顶层几盏灯?”(倍加增指从塔的顶层到底层).则塔的顶层有
盏灯.
15.如图,点B,C在线段AD上,M是AB的中点,N是CD的中点.若MN=a,BC=b,则AD的长是
.
16.瑞士中学教师巴尔末成功地从光谱数据,…中得到巴尔末公式,从而打开了光谱奥妙的大门.请你按这种规律写出第七个数据是
.
17.如图,现用一个矩形在数表中任意框出a b
c d4个数,则
(1)a,c的关系是
;
(2)当a+b+c+d=32时,a=
.
三、解答题(共64分)
18.(24分)(1)计算:-12 016-[5×(-3)2-|-43|];
(2)解方程:=1;
(3)先化简,再求值:
a2b-5ac-(3a2c-a2b)+(3ac-4a2c),其中a=-1,b=2,c=-2.
19.(8分)解方程:14.5+(x-7)=x+0.4(x+3).
20.(8分)如图,O为直线BE上的一点,∠AOE=36°,OC平分∠AOB,OD平分∠BOC,求∠AOD的度数.
21.(8分)某项工程,甲单独做需20天完成,乙单独做需12天完成,甲、乙二人合做6天以后,再由乙继续完成,乙再做几天可以完成全部工程?
22.(8分)一位商人来到一个新城市,想租一套房子,A家房主的条件是:先交2 000元,然后每月交租金380元,B家房主的条件是:每月交租金580元.
(1)这位商人想在这座城市住半年,那么租哪家的房子合算?
(2)这位商人住多长时间时,租两家房子的租金一样?
23.(8分)阅读下面的材料:
高斯上小学时,有一次数学老师让同学们计算“从1到100这100个正整数的和”.许多同学都采用了依次累加的计算方法,计算起来非常烦琐,且易出错.聪明的小高斯经过探索后,给出了下面漂亮的解答过程.
解:设S=1+2+3+…+100, ①
则S=100+99+98+…+1. ②
①+②,得
2S=101+101+101+…+101.
(①②两式左右两端分别相加,左端等于2S,右端等于100个101的和)
所以2S=100×101,
S=×100×101. ③
所以1+2+3+…+100=5 050.
后来人们将小高斯的这种解答方法概括为“倒序相加法”.
解答下面的问题:
(1)请你运用高斯的“倒序相加法”计算:1+2+3+…+101.
(2)请你认真观察上面解答过程中的③式及你运算过程中出现类似的③式,猜想:
1+2+3+…+n=
.
(3)请你利用(2)中你猜想的结论计算:1+2+3+…+1 999.
人教版七年级数学上册期末试卷2017年参考答案
一、选择题
1.B 选项A中,未知数的最高次数是二次;选项C中,含有两个未知数;选项D中,未知数在分母上.故选B.
2.B 选项A中,4x-9x+6x=x;选项C中,x3与x2不是同类项,不能合并;选项D中,xy-2xy=-xy.故选B.
3.B 4.A 5.D
6.B 由原价×=现价,得
原价=现价÷=现价×.
7.C
8.C 另一边长=×6m-(m+n)=3m-m-n=2m-n.
9.B 10.C
11.C 根据题意,得[-π]=-4,
所以3×(-4)-2x=5,解得x=-.
12.C 由构成的射线有20条,可知这条直线上有10个点,所以构成的线段共有=45条.
二、填空题
13.1 由题意得m+2=3,解得m=1.
14.3
15.2a-b AM+ND=MB+CN=a-b,AD=AM+ND+MN=a-b+a=2a-b.
16. 这些数据的分子为9,16,25,36,分别是3,4,5,6的平方,
所以第七个数据的分子为9的平方是81.
而分母都比分子小4,所以第七个数据是.
17.(1)a+5=c或c-a=5 (2)5 (1)a与c相差5,所以关系式是a+5=c或c-a=5.
(2)由数表中数字间的关系可以用a将其他三个数都表示出来,分别为a+1,a+5,a+6;当a+b+c+d=32时,有a+a+1+a+5+a+6=32,解得a=5.
三、解答题
18.解:(1)原式=-1-(45-64)=-1+19=18.
(2)2(2x+1)-(10x+1)=6,
4x+2-10x-1=6,
4x-10x=6-2+1,
-6x=5,x=-.
(3)a2b-5ac-(3a2c-a2b)+(3ac-4a2c)
=a2b-5ac-3a2c+a2b+3ac-4a2c
=a2b-2ac-7a2c.
当a=-1,b=2,c=-2时,原式=×(-1)2×2-2×(-1)×(-2)-7×(-1)2×(-2)=3-4+14=13.
19.解:(x-7)=x+(x+3).
15×29+20(x-7)=45x+12(x+3).
435+20x-140=45x+12x+36.
20x-45x-12x=36-435+140.
-37x=-259.解得x=7.
20.解:因为∠AOE=36°,所以∠AOB=180°-∠AOE=180°-36°=144°.
又因为OC平分∠AOB,
所以∠BOC=∠AOB=×144°=72°.
因为OD平分∠BOC,
所以∠BOD=∠BOC=×72°=36°.
所以∠AOD=∠AOB-∠BOD=144°-36°=108°.
21.解:设乙再做x天可以完成全部工程,则
×6+=1,解得x=.
答:乙再做天可以完成全部工程.
22.解:(1)A家租金是380×6+2000=4280(元).
B家租金是580×6=3480(元),所以租B家房子合算.
(2)设这位商人住x个月时,租两家房子的租金一样,则380x+2000=580x,解得x=10.
答:租10个月时,租两家房子的租金一样.
23.解:(1)设S=1+2+3+…+101, ①
则S=101+100+99+…+1. ②
①+②,得2S=102+102+102+…+102.
(①②两式左右两端分别相加,左端等于2S,右端等于101个102的和)
∴2S=101×102.∴S=×101×102.
∴1+2+3+…+101=5151.
(2)n(n+1)
(3)1+2+3+…+n=n(n+1),
∴1+2+3+…+1998+1999
=×1999×2000=1999000.
看了“人教版七年级数学上册期末试卷2017年”的人还看了:
1.七年级数学上册期末试卷及答案2017
2.人教版七年级上册数学期末试卷及答案2017
3.2017七年级数学上册期末考试题
班级
姓名
教学目标:
1、使学生通过自主探究发现图形中隐藏着的数的规律,并会应用所发现的规律。
2、使学生会利用图形来解决一些有关数的问题。
3、使学生在解决数学问题的过程中,体会和掌握数形结合、归纳推理、极限等基本的数学思想。
教学重点:引导学生探索在数与形之间建立联系发现规律,正确地运用规律进行计算。
教学难点:经历探索规律及验证规律的过程。
【温故知新】
填空
(1)1,3,5,7,(
),11,13,(
),17…
(2)1,4,9,(
),25,36,(
),64…
(3)9=(
)2,36=(
)2,(
)=82…
【设问导读】
认真阅读教材P107内容,思考后回答下列问题。
1.
三幅图中分别有(
),(
),(
)个小正方形,根据每幅图中每行和每列中小正方形的个数尝试用乘法算式表示出每个图中小正方形的个数:
(
),(
),(
)。
2.
观察从第一幅图到第二幅,再到第三幅图,每次增加了多少个小正方形?每幅图中小正方形的总数可以用算式表示为:(
),(
),(
)。
3.
根据以上分析,填空:
1=(
)2
1+3=(
)2
1+3+5=(
)2
4.
通过以上的分析,你发现了什么规律?
【自学检测】
你能利用规律直接写一写吗?如果有困难,可以画图来帮助。
1+3+5+7=(
)2
1+3+5+7+9=(
)2
1+3+5+7+9+11+13=(
)2
=92
【巩固训练】
1.根据例1的结论算一算
1+3+5+7+5+3+1=(
)
1+3+5+7+9+11+13+11+9+7+5+3+1=(
)
上述问题还有其他解决方法吗?
2.完成课本P108“做一做”的2题。
3.先找规律,再填空。
(1)先画出第五个图形并填空。再想一想:后面的第10个方框里有(
)个点,第51个方框里有(
)个点。
(2)如图,用同样的小棒摆正方形,像这样摆10个同样的正方形需要小棒___
根。
【拓展延伸】
运用例1学到的思考方法,能直接算出下面式子的结果吗?
2+4+6+8+10+12+14+16+18+20=(
)
教学目标:
1.
学生通过自主探究,理解并掌握小数乘分数的方法,能根据数据的特点选择合适的方法进行计算。
2.
在探索计算方法的过程中,培养学生初步的推理能力以及抽象、概括能力。
3.
在学习中进一步体会数学知识之间的内在联系,感受数学探索活动本身的乐趣,增强学好数学的信心。
教学重点:
掌握分数乘小数的计算方法。
教学难点:
根据数据特点灵活选择合适的计算方法。
教学过程:
一、复习导入
计算下列各题。
设计意图:通过复习分数乘分数和分数乘整数的计算方法,唤醒学生已有认知,为本节课学习分数乘小数奠定基础。
二、探究新知
1.
松鼠欢欢的尾巴有多长?
师:同学们,你们知道松鼠的尾巴有多长吗?
师:松鼠尾巴的长度约占身体长度的,从这句话中你发现松鼠的尾巴长度和身体长度之间的关系是什么?
生:尾巴长度=身体长度×
师:松鼠欢欢尾巴有多长,你能列出算式吗?
生:2.1×
师:正确,用你自己的方法试着算一算吧。
学生独立完成,全班展示计算方法。
师:谁来说一说你是怎么算的?
生1:我是把2.1化成分数,按照分数乘分数的计算方法进行计算的。
生2:我是把化成小数,按照小数乘小数的计算方法计算的。
学生分享过程中,教师课件展示计算过程。
师:看来计算小数乘分数的时候,可以转化成分数乘分数计算,也可以转化成小数乘小数计算,也就是把两个因数转化为同一类数计算。
设计意图:根据“一个数的几分之几是多少”用乘法计算,对分数的意义再巩固,也找出了尾巴长度与身体长度之间的关系,为解决问题做准备。
2.
松鼠乐乐的尾巴有多长?
师:乐乐也想知道自己的尾巴长度,你能帮它解决这个问题吗?
生:2.4×
师:自己试着算一算。
学生独立计算,全班交流算法。
生1:计算2.4×,可以把化成小数0.75计算。
生2:计算2.4×,可以把2.4化成分数计算。
师:我们观察算式,2.4和分母4是可以约分的,所以我们还可以先直接约分,约分后是0.6,0.6×3=1.8。
师:谁来说一说0.6是怎么来的?为什么是0.6呢?
师:1.8是怎么计算出来的?
师:我们发现当小数和分母有倍数关系时,这样约分计算更简便。
师:通过刚才的探究,我们发现了很多计算分数乘小数的方法,看来在计算分数乘小数时,同学们要根据具体的数据来选择合适的算法。
设计意图:通过数据的变化,感受计算方法的多样性,让学生学会计算时要根据数据特点选择合适的方法。
三、巩固练习
1.
算一算。
2.
我国人均淡水资源量是多少万立方米?
3.
成年帝企鹅的身高是多少米?
4.
果糖和葡萄糖共有多少千克?
设计意图:通过习题的设置,引导学生进一步熟悉分数乘小数的计算方法。让学生学会观察数据特点,再选择合适的计算方法。
四、课堂小结
师:回顾刚才解决问题的过程,我们是怎样计算小数乘分数的呢?
生1:可以转化成分数乘分数计算。
2017人教版七年级上数学期末试题
一、选择题(共6小题,每小题3分,满分18分)
1.+8﹣9=(
)
A.+1 B.﹣1 C.﹣17 D.+17
2.单项式﹣ πxy2的次数为(
)
A.﹣ B.﹣ C.4 D.3
3.若a=b,则下列式子错误的是(
)
A. a= b B.a﹣2=b﹣2 C.﹣ D.5a﹣1=5b﹣1
4.一元一次方程 x﹣1=2的解表示在数轴上,是图中数轴上的哪个点(
)
A.D点 B.C点 C.B点 D.A点
5.点E在线段CD上,下面的等式:①CE=DE;②DE= CD;③CD=2CE;④CD= DE.其中能表示E是CD中点的有(
)
A.1个 B.2个 C.3个 D.4个
6.A、B两地相距450千米,甲、乙两车分别从A、B两地同时出发,相向而行.已知甲车速度为120千米/小时,乙车速度为80千米/小时,经过t小时两车相距50千米.则t的值是(
)
A.2 B.2或2.25 C.2.5 D.2或2.5
二、填空题(共8小题,每小题2分,满分16分)
7. 的倒数是
.
8.绝对值是3的数是
.
9.西宁市2015﹣2016学年度第一学期初一年级参加期末考试人数约为1.2万人,将1.2万人用科学记数法表示为
人.
10.54°36′的余角为
.
11.已知关于x的方程1﹣a(x+2)=2a的解是x=﹣3,则a的值是
.
12.若2x3m﹣1y2与4x2y2n可以合并,则m+n=
.
13.点A,B,C在同一条直线上,AB=6cm,BC=2cm,则AC=
.
14.如图,用大小相等的小正方形拼大正方形,拼第(1)个大正方形要4个小正方形,拼第(2)个需要9个小正方形…,想一想,按照这样的方法拼成的第n个大正方形由
个小正方形拼成.
三、解答题(共8小题,满分66分)
15.计算﹣22÷ ×(﹣ )2.
16.计算:25× .
17.解方程:2(1﹣0.5x)=﹣(1.5x+2)
18.解方程: .
19.求2(x2+y2)﹣ (x2y2﹣x2)+ (x2y2﹣y2)的值,其中x=1,y=﹣3.
20.如图,已知直线AB和CD相交于O点,∠COE是直角,OF平分∠AOE,∠COF=34°,求∠BOD的度数.
21.西宁市为了鼓励市民节约用水制定阶梯收取水费,每月每户如果用水量没超过10立方米,则每立方米水费为2.5元;每月每户如果用水量超过10立方米,超过的部分每立方米在原单价的基础上增加20%收费.张清家12月份共交水费49元,请问张清家12月份用水多少立方米?
22.(1)如图1,点C是线段AB上的一点,AB=10,点M,N分别为AC,CB的中点,MN为多少?请说明理由.
(2)如图2,点C,D是线段AB上的两点,AB=10,CD=4,点M,N分别为AC,DB的中点,MN为多少?请说明理由.
2017人教版七年级上数学期末试卷参考答案
一、选择题(共6小题,每小题3分,满分18分)
1.+8﹣9=(
)
A.+1 B.﹣1 C.﹣17 D.+17
【考点】有理数的减法.
【分析】先将减法转化为加法,然后再利用加法法则计算即可.
【解答】解:+8﹣9=8+(﹣9)=﹣(9﹣8)=﹣1.
故选:B.
【点评】本题主要考查的是有理数的减法,掌握有理数的减法法则是解题的关键.
2.单项式﹣ πxy2的次数为(
)
A.﹣ B.﹣ C.4 D.3
【考点】单项式.
【分析】根据单项式次数的定义进行解答即可.
【解答】解:单项式﹣ πxy2的次数为3.
故选D.
【点评】本题考查的是单项式,熟知一个单项式中所有字母的指数的和叫做单项式的次数是解答此题的关键.
3.若a=b,则下列式子错误的是(
)
A. a= b B.a﹣2=b﹣2 C.﹣ D.5a﹣1=5b﹣1
【考点】等式的性质.
【分析】根据等式的基本性质:等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0的数(或字母),等式仍成立.即可解决.
【解答】解:A、左边乘以 ,右边乘以 ,故A错误;
B、两边都减2,故B正确;
C、两边都乘以﹣ ,故C正确;
D、两边都乘以5,再都减1,故D正确;
故选:A.
【点评】本题考查的是等式的性质:等式的两边加(或减)同一个数(或式子)结果仍相等;等式的两边同乘(或除以)同一个数(除数不为0)结果仍相等.
4.一元一次方程 x﹣1=2的解表示在数轴上,是图中数轴上的哪个点(
)
A.D点 B.C点 C.B点 D.A点
【考点】解一元一次方程;数轴.
【专题】计算题;一次方程(组)及应用.
【分析】去分母,移项合并,把x系数化为1求出方程的解,即可作出判断.
【解答】解:方程去分母得:x﹣2=4,
解得:x=6,
把方程的解表示在数轴上,是图中数轴上的D点,
故选A
【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.
5.点E在线段CD上,下面的等式:①CE=DE;②DE= CD;③CD=2CE;④CD= DE.其中能表示E是CD中点的有(
)
A.1个 B.2个 C.3个 D.4个
【考点】两点间的距离.
【专题】推理填空题.
【分析】点E如果是线段CD的中点,则点E将线段CD分成两段长度相等的线段.即:CE=DE.由此性质可判断出哪一项符合要求.
【解答】解:假设点E是线段CD的中点,则CE=DE,故①正确;
当DE= CD时,则CE= CD,点E是线段CD的中点,故②正确;
当CD=2CE,则DE=2CE﹣CE=CE,点E是线段CD的中点,故③正确;
④CD= DE,点E不是线段CD的中点,故④不正确;
综上所述:①、②、③正确,只有④是错误的.
故选:C.
【点评】本题考点:线段中点的性质,线段的中点将线段分成两个长度相等的线段.
6.A、B两地相距450千米,甲、乙两车分别从A、B两地同时出发,相向而行.已知甲车速度为120千米/小时,乙车速度为80千米/小时,经过t小时两车相距50千米.则t的值是(
)
A.2 B.2或2.25 C.2.5 D.2或2.5
【考点】一元一次方程的应用.
【分析】应该有两种情况,第一次应该还没相遇时相距50千米,第二次应该是相遇后交错离开相距50千米,根据路程=速度×时间,可列方程求解.
【解答】解:设经过t小时两车相距50千米,根据题意,得
120t+80t=450﹣50,或120t+80t=450+50,
解得t=2,或t=2.5.
答:经过2小时或2.5小时相距50千米.
故选D.
【点评】本题考查了一元一次方程的应用,解决问题的关键是能够理解有两种情况、能够根据题意找出题目中的相等关系.
二、填空题(共8小题,每小题2分,满分16分)
7. 的倒数是 .
【考点】倒数.
【专题】推理填空题.
【分析】此题根据倒数的含义解答,乘积为1的两个数互为倒数,所以﹣7的倒数为1÷(﹣1 ).
【解答】解:﹣1 的倒数为:1÷(﹣1 )=1÷(﹣ )﹣ .
故答案为:﹣ .
【点评】此题考查的知识点是倒数.解答此题的关键是要知道乘积为1的两个数互为倒数.
8.绝对值是3的数是 ±3 .
【考点】绝对值.
【分析】根据绝对值的性质得|3|=3,|﹣3|=3,故求得绝对值等于3的数.
【解答】解:因为|3|=3,|﹣3|=3,所以绝对值是3的数是±3,
故答案为:±3.
【点评】本题主要考查了绝对值的性质,掌握绝对值性质的逆向运用是解答此题的关键.
9.西宁市2015﹣2016学年度第一学期初一年级参加期末考试人数约为1.2万人,将1.2万人用科学记数法表示为 1.2×104 人.
【考点】科学记数法—表示较大的数.
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【解答】解:将1.2万用科学记数法表示为1.2×104.
故答案为:1.2×104.
【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
10.54°36′的余角为 35°24′ .
【考点】余角和补角;度分秒的换算.
【分析】根据余角的定义列出算式,然后再进行计算即可.
【解答】解:90°﹣54°36′=35°24′.
故答案为:35°24′.
【点评】本题主要考查的是余角的定义和度分秒的换算,掌握余角的定义以及度分秒的换算是解题的关键.
11.已知关于x的方程1﹣a(x+2)=2a的解是x=﹣3,则a的值是 1 .
【考点】一元一次方程的解.
【分析】把x=﹣3代入方程即可得到一个关于a的方程,解方程求得a的值.
【解答】解:把x=﹣3代入方程得:1+a=2a,
解得:a=1.
故答案是:1.
【点评】本题考查了方程的解的定义,方程的解是能使方程左右两边相等的未知数的值,理解定义是关键.
12.若2x3m﹣1y2与4x2y2n可以合并,则m+n= 2 .
【考点】同类项.
【分析】根据同类项是字母项相同且相同字母的指数也相同,可得m、n的值,根据有理数的加法,可得答案.
【解答】解:2x3m﹣1y2与4x2y2n可以合并,得
3m﹣1=2,2n=2.
解得m=1,n=1,
m+n=1+1=2.
故答案为:2.
【点评】本题考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.
13.点A,B,C在同一条直线上,AB=6cm,BC=2cm,则AC= 4cm或8cm .
【考点】两点间的距离.
【分析】A、B、C在同一条直线上,则C可能在线段AB上,也可能C在AB的延长线上,应分两种情况进行讨论.
【解答】解:当C在线段AB上时:AC=AB﹣BC=6﹣2=4cm;
当C在AB的延长线上时,AC=AB+BC=6+2=8cm.
故答案为:4cm或8cm.
【点评】此题主要考查了两点之间的距离求法,求线段的长度,能分两种情况进行讨论是解决本题的关键.
14.如图,用大小相等的小正方形拼大正方形,拼第(1)个大正方形要4个小正方形,拼第(2)个需要9个小正方形…,想一想,按照这样的方法拼成的第n个大正方形由 (n+1)2 个小正方形拼成.
【考点】规律型:图形的变化类.
【分析】首先根据图形中小正方形的个数规律得出变化规律,进而得出答案.
【解答】解:第一个图形有22=4个正方形组成,
第二个图形有32=9个正方形组成,
第三个图形有42=16个正方形组成,
∴第n个图形有(n+1)2个正方形组成,
故答案为:(n+1)2.
【点评】此题主要考查了图形的变化类,根据图形得出小正方形的变化规律是解题关键.
三、解答题(共8小题,满分66分)
15.计算﹣22÷ ×(﹣ )2.
【考点】有理数的混合运算.
【分析】首先进行乘方运算、同时把除法运算转化为乘法运算,然后进行乘法运算即可.
【解答】解:原式=﹣4×
=﹣9×
=﹣ .
【点评】本题主要考查有理数的混合运算,乘方运算,关键在于正确地进行乘法运算,认真的进行计算.
16.计算:25× .
【考点】有理数的乘法.
【分析】根据有理数的乘法,应用乘法的分配律,即可解答.
【解答】解:原式=25×( )
=25×(﹣ )
=﹣5.
【点评】本题考查了有理数的乘法,解决本题的关键是熟记有理数的乘法法则.
17.解方程:2(1﹣0.5x)=﹣(1.5x+2)
【考点】解一元一次方程.
【专题】计算题;一次方程(组)及应用.
【分析】方程去括号,移项合并,把x系数化为1,即可求出解.
【解答】解:去括号得:2﹣x=﹣1.5x﹣2,
移项合并得:0.5x=﹣4,
解得:x=﹣8.
【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.
18.解方程: .
【考点】解一元一次方程.
【专题】计算题;一次方程(组)及应用.
【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.
【解答】解:去分母得:7(2x﹣1)=42﹣3(3x+1),
去括号得:14x﹣7=42﹣9x﹣3,
移项合并得:23x=46,
解得:x=2.
【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.
19.求2(x2+y2)﹣ (x2y2﹣x2)+ (x2y2﹣y2)的值,其中x=1,y=﹣3.
【考点】整式的加减—化简求值.
【专题】计算题;整式.
【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.
【解答】解:原式=2x2+2y2﹣ x2y2+ x2+ x2y2﹣ y2= x2+ y2,
当x=1,y=﹣3时,原式= + =16.
【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.
20.如图,已知直线AB和CD相交于O点,∠COE是直角,OF平分∠AOE,∠COF=34°,求∠BOD的度数.
【考点】角平分线的定义.
【专题】计算题.
【分析】利用图中角与角的关系即可求得.
【解答】解:∠COE是直角,∠COF=34°
∴∠EOF=90°﹣34°=56°
又OF平分∠AOE
∴∠AOF=∠EOF=56°
∠COF=34°
∴∠AOC=56°﹣34°=22°
则∠BOD=∠AOC=22°.
故答案为22°.
【点评】此题主要考查了角平分线的定义,根据角平分线定义得出所求角与已知角的关系转化求解.
21.西宁市为了鼓励市民节约用水制定阶梯收取水费,每月每户如果用水量没超过10立方米,则每立方米水费为2.5元;每月每户如果用水量超过10立方米,超过的部分每立方米在原单价的基础上增加20%收费.张清家12月份共交水费49元,请问张清家12月份用水多少立方米?
【考点】一元一次方程的应用.
【分析】可设张清家12月份用水x立方米,根据张清家12月份共交水费49元列出方程计算即可.
【解答】解:设张清家12月份用水x立方米,依题意有
2.5×10+2.5×(1+20%)(x﹣10)=49,
解得x=18.
答:张清家12月份用水18立方米.
【点评】考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.
22.(1)如图1,点C是线段AB上的一点,AB=10,点M,N分别为AC,CB的中点,MN为多少?请说明理由.
(2)如图2,点C,D是线段AB上的两点,AB=10,CD=4,点M,N分别为AC,DB的中点,MN为多少?请说明理由.
【考点】两点间的距离.
【分析】(1)根据线段中点的性质,可得MC,NC的长,根据线段的和差,可得答案;
(2)根据线段的和差,可得(AC+BD)的长,根据线段中点的性质,可得(MC+ND)的长,根据线段的和差,可得答案.
【解答】解:(1)MN=5,理由如下:
由点M,N分别为AC,CB的中点,得
MC= AC,NC= BC.
由线段的和差,得
MN=MC+NC= (AC+BC)= ×10=5;
(2)MN=7,理由如下:
由线段的和差,得
AC+BD=AB﹣CD=10﹣4=6.
由点M,N分别为AC,DB的中点,得
MC= AC,DN= DB.
由线段的和差,得
MN=MC+CD+DN= (AC+DB)+CD= ×6+4=7.
【点评】本题考查了两点间的距离,利用线段的和差得出(MC+CD+DN)是解题关键.
看了“2017人教版七年级上数学期末试卷”的人还看了:
1.2017人教版七年级上册数学期末试卷及答案
2.七年级数学上册期末试卷及答案2017
3.人教版七年级上册数学期末试卷及答案2017
第5页—第7页
选择题
1B2C3C4B5B6A7B8D
填空
(1)1(2)y=2x+1-1(3)m<2n<3(4)y=-3x+3
(5)y=x+3(6)y=64x+48(7)S=2n+1(8)y=1/5x-630
解答题
(1)设y=kx+b
-4k+b=15
6k+b=-5
k=-2b=7
y=-2x+7
(2)略
(3)①表示y与x的关系,x为自变量
②10时离家10km13时离家30km
③12时-13时,离家30km
④13km
⑤2时-13时
⑥15km/h
第9页—第11页
1.选择题
(1)A(2)C(3)C
2.填空
(1)y=-2x(2)m<2(3)y=5x+3(4)y2>y1(5)y=-2x+10025
(6)9
3.解答题
(1)①Q=200+20t②(0≤t≤30)
(2)①y=80(0≤x≤50)
y=1.9x-15(50≤x≤100)
②y=1.6x
③选择方式一
(3)①在同一直线上y=25/72x
②当x=72时,y=25
当x=144时,y=50
当x=216时,y=75
y=25/72x(0≤x≤345.6)
③当x=158.4时,y=25/72x158.4=55
(4)①y甲=2x+180
y乙=2.5x+140
②当x=100时,y甲=200+180=380
Y乙=140+250=390
380〈390
租甲车更活算
第13页—第15页
1.选择题
(1)D(2)C(3)C
2.填空
(1)x=2
y=3
(2)x=2x>2
(3)-3-2x=-5/8y=-1/8
(4)1/20x=2
y=3
(5)y=5/4x
2.解答题
3.(1)略
(2)①依题意
-k+b=-5
2k+b=1
解得
k=2b=-3
y=2x+3
当y≥0时
2x-3≥0,x≥3/2
②当x<2时,2x<4
则2x-3<1
即y<1
(3)①y会员卡=0.35+15
y租书卡=0.5x
②若y会员卡〈y租书卡
则0.35x+15<0.5x
x>100
租书超过100天,会员卡比租书卡更合算
(4)设A(m,n)
1/2x4xm=6
m=3
n=2
A(-3,-2)
y=2/3x,y=-2/3x-4
(5)①y甲=0.8x1.5X+900=1.2x+900(x≥500)
Y乙=1.5x+900x0.6=1.5x+540(x≥500)
②若y甲=y乙
1.2x+900=1.5x+540
x=1200
当x<1200时,选择乙厂
当x=1200时,两厂收费一样
当x〉1200时,选择甲厂
2000>1200,选择甲厂
y甲=1.2x2000+900=3300
第17页—第19页
1.选择题
(1)C(2)D(3)C
2.填空
(1)630(2)0.170.17(3)35(4)①238.1824②12.9③2万
3解答题
(1)
①七大洲亚洲
②亚洲和非洲
③100%
④大洋洲
⑤不能
(2)①一车间第四季度
②一车间二车间
③①是图(1)得出的②是图(2)得出的
(3)①48②0.25③哪一个分数段的学生最多?70.5~80.5的学生最多。
第21页—第23页
1.选择题
(1)B(2)B(3)C(4)B
2.填空
(1)20%30%25%25%(2)扁形36%115.2度(3)411
3解答题
(1)
县ABCDEF
人口(万)9015722737771
百分比12.9%2.1%10.3%39.1%11.0%24.5%
圆心角度数46.47.737.1140.839.788.2
(2)图略
(3)身高(cm)频数
154.5~159.52
159.5~164.54
164.5~169.56
169.5~174.510
174.5~179.55
179.5~184.53
(4)图略结论:只有少数人对自己工作不满。
(5)①200.16②略
第25页—第27页
1.选择题
(1)B(2)C(3)A(4)C(5)B(6)C
2.填空
(1)∠D∠CDCODOC(2)DECDE∠D600
(3)∠CADCD(4)50010108(5)ADECAE
3解答题
(1)①DCE可以看作是ABF平移旋转得到的
②AF不一定与DE平行,因为∠AFE不一定等于∠D
(2)∠ABC=1800x5/18=500
∠C=1800x3/18=300
∠B’CB=∠A+∠ABC=800
ABC≌A’B’C’
∠A’=∠A=300
∠B’=∠ABC=500
∠B’BC=1800-∠B’-∠B’CB=500
(3)①略②分别取各边中点,两两连接即可.
(4)延长AD至E,使AD=DE,连接BE
AD=ED
D为BC的中点
在BDE和CDA中
BD=CD∠ADC=∠BDEDE=DA
BDE≌CDA
BE=AC
AE
AD
第29页—第31页
选择题
(1)D(2)B(3)B(4)C
2.填空
(1)6(2)200(3)BO=CO(4)AB=DC∠ACB=∠DBC
3.解答题
(1)AE=CF
AE+EF=CF+EF
AF=CE
CD=ABDE=BFCE=AF
CDE≌ABF
∠DEC=∠AFB
DEBF
(2)ABE≌ACG
ABD≌ACF
AB=AC
∠ABC=∠ACB
BD平分∠ABC,CF平分∠ACB
∠ABD=∠ACF
∠BAF=∠BAF
AB=AC
ABD≌ACF
(3)BA=BC
AB=BC
∠B=∠B
BE=BD
BEA≌BDC
(4)
证明EH=FHDH=DHDE=DF
DEH≌DFH
∠DEH=∠DFH
(5)①证明∠BCA=∠ECD
∠BCA-∠ACE=∠ECD-∠ACE
即∠BCE=∠ACD
EC=DCBC=AD
BEC≌ADC
BE=AD
1教学目标
1.使学生在具体情境中认识列、行的含义,逐步制定统一规则,初步理解数对的含义,会用数对表示物体的位置;
2.使学生经历由具体的座位图抽象成用列、行表示的平面图的过程,提高抽象思维能力,发展空间观念;
3.使学生体验数学与生活的密切联系,进一步增强用数学的眼光观察生活的意识。
2学情分析
从学生已有知识经验出发,创设现实情境,增加学生参与、体验的机会,让其在实践中加深理解,在活动中感受数学与生活的紧密联系,培养学生的空间观念。
3重点难点
教学重点:
体验创建数对的过程,掌握数对的书写形式,会用数对确定位置。
教学难点:
观察者角度的理解,方格线上和方格中位置描述的异同理解。
4教学过程
4.1教学过程
4.1.1教学活动
活动1【讲授】用数对确定位置
一、探讨描述位置两要素
师:今天,谢老师的好朋友带来一份神奇的礼物。有请X先生
第一关:找地鼠
师:请描述小地鼠的位置。
师:还能怎么说?
生:从右往左数第2个。
师:这只地鼠的位置呢?
生:从上往下数第3个,从下往上数第2个。
师:看来,描述一条线上的位置,我们只需要一个数。
师:(平面上的一个地鼠)现在还能用一个数字来描述位置吗?不能。为什么?
师:我们全班来玩一个小游戏,请一位同学上台背对屏幕,其他同学描述地鼠的位置帮助他猜?
师:你来说,谁有不同的说法,还有吗?
师:看来同学们都认为,描述平面上某个位置需要两个数,这个发现很重要。
师:(面向猜的同学)听了这么多说法,能猜到位置吗?
师:你是怎样猜的?大家分析分析他为什么会猜错?(描述位置的方向不一样)怎样让你的描述更加准确些。(说清楚方向:从左往右数第2排,从下往上数第3个)(板书说法)
师:经过不断完善,终于能消除误解,并赢取第一块拼图。听(X先生录音)
二、从列和行引出数对确定位置
师:在第一关,我们发现由于每人所定规则不同,导致描述方法不一致,甚至有可能会出错。这时,我们就需要统一规定。
师:(我们进入第二关,确定你的位置)从游戏回到教室里,像同学们的座位有的竖着排,有的横着排,数学中统一规定,像这样的竖排,我们称作列(板书:列),确定第几列一般是从左往右数,请第一列同学起立。你是怎样数的?有道理。这位同学,我看出了你的犹豫,有什么想说的?
师:勇于表达自己的想法,真了不起。两个第一列!这个时候又需要规定,列要站在观察者的角度从左往右数,教室里的观察者就是(老师),那你们就是被观察者。站在我的角度从左往右请第一列同学起来,第二列,第三列,。。。原来你们是第6列。请记住自己是第几列了。
师:竖排是列。像这样的横排,我们称作行(板书:行)确定第几行一般从前往后数(手势从前向后点),第一行同学在哪?第二行,第三行。。。同样,记住自己是第几行。
师:列和行的观察方向已经确定了,请用列和行表示自己的位置。写在草稿纸上。你的位置是、你的位置是、你的位置是。都很准确。
师:回到大屏幕,当教室中的座位画在图上就成了这样。面对这幅图,谁是观察者?站在我们的角度,从左往右数第一列在哪里?第二列,接着。。。
师:教室中行是从前往后数,到了这幅图上就变成了从下往上数了。第一行在哪?第二行、、、张亮的位置是?还可以怎么说。
师:发现张亮的位置在从左往右第2列,从下往上数第3行的交点处。图上,还有两位同学的位置,谁来说。同意吗?看来,大家用列和行描述位置的已经比较熟练了。
师:把座位图变化一下,用图形代替了桌子,还能描述张亮的位置吗?(能)来个小考验把,能快速记下包括张亮在内的四个位置吗?拿出草稿纸,准备。怎么了?(太快了)想想有没有快速记录的方法,再来一次?准备。这次好些了。以张亮的位置为例,谁来说说你的好方法。(2
3)什么意思?(2表示第2列,3表示第3行)还可以怎么说(3
2)。这个想法很好,更加简洁了。
师:这些都是张亮位置的描述方法,你喜欢哪一种?
(1、列和行的方法,很具体但数学应该追求简洁明了,
2、两个数字的方法,很简洁但容易误解。)都有道理,但是数学家还是选了其中的一种方法来描述位置。你觉得是那种?(手势上下移动)这种。
师:数学家也发现了漏洞,怎么办呢?干脆,一不做二不休,来了个规定:以后凡是用两个数表示位置时,都先说列(板书),再说行。中间用逗号隔开,再用括号把他们括起来,最后给它取个名字,叫做数对,而今天我们就重点研究用数对确定位置。(板书课题)
师:所以张亮的位置用数对表示是(指板书对的)读作数对(2,3)。
师:剩下的三个位置也用数对表示吧。写在草稿纸上。
师:四个数对中有两个比较特别,谁来说?
师:归纳的真准确,(3,4)不能表示赵雪的位置(4,3)也不能能表示王艳的位置。我们说一个数对只能确定一个位置,也就是说数对和位置一一对应。以后,一看到这样表示的形式,就知道是数对,是用来确定位置的。这也是数学符号的独特性。
师:回到同学中间(指向同学)请用数对表示自己的位置。你的位置是、你的位置是、和张亮同一个位置的是谁?(课件强调张亮)。
师:你是怎样判断的?
师:其实,从图上到教室里,观察者角度转变了,同学们还能灵活的用数对来确定位置,非常棒。听。(X先生评价)
三、点子图中的位置表示
师:祝贺大家,回到大屏幕,座位图再次发生变化,变成了(用点)来表示位置,再把这些点用线连起来,形成了一个方格图,规范的方格图会多出这样一列和一行(课件强调),我们把它们叫做起始列和起始行,他们的交点我们用0来表示,称作起始点。从起始点开始,我们可以数出列数和行数。在这里你还能确定张亮的位置吗?数对(2,3)。
师:X先生又有话说:(第三关找场馆。)这是动物园的平面图,我们一起来看看。大门的位置是(数对(3,0))什么意思?
师:图上的四个场馆,能用数对表示他们的位置吗?第二题呢?翻开书第20页,直接写在图上。
师:老师也有感兴趣的场馆,先给个提示(,4)能确定是哪个场馆吗?为什么?)能确定的只是(在第4行上)。换个提示,这个场馆在(1,
)上,可能是哪些场馆。老师感兴趣的场馆其实就是(大象馆)。也就是第4行和第1列的交点处。
师:再次请出X先生:第四关摆放花盆(课件出示第四关)确定花盆的位置需要知道什么?(确定行列)
师:随意指两个位置提问。(单击课件)这四盆草围成一个长方形,能找出这四盆小草的位置吗?X表示几,Y表示几。请拿出练习纸,用圆圈表示4盆小草的位置。
师:根据已知数对可以很快确定三个点的位置,根据长方形的特性找到第四个点的位置。同学们都做对了吗?掌声送给自己。
四,数对的日常运用
师:数对的运用的确广泛。日常生活中还有那些地方会用到数对呢?像同学们说到的电影票、围棋棋盘等等。
国际象棋棋盘上也有行和列,这是白王,它的位置用数对表示是?(g,2)
这是南昌的经纬图,南昌位置可以用数对(116,25)来表示,在这里116表示的是?29表示的是?(经度和纬度)
师:学到这里我不禁想问:这么简单准确的数对又是谁发明的呢?数对背后又隐藏着怎样的故事呢?感兴趣的同学可以课后百度:笛卡尔和蜘蛛
五、拓展总结。
师:同学们我们还差一块拼图了,听听X先生带来了什么问题:第五关:确定位置,需要几个数?)
生:需要两个数。
师:什么情况下用两个数?(平面上的位置)(课件出图)一个数不行吗?(课件出示打地鼠图片)行。
师:什么情况下我们用一个数就能确定位置?(直线上的)。
师:直线上的点用一个数字确定位置,平面上的点用数对确定位置,那有没有用三个数确定位置的可能?(出现省略号)这个就留到以后学习了。
教学内容:
冀教版《数学》四年级上册第
85、86
页。
教学目标:
1.结合具体情境,了解平均数的实际意义,能计算简单的平均数。
2.通过合作交流,经历认识平均数、求平均数以及讨论平均数意义的过程。
3.积极参加数学活动,体会数学与生活的密切联系,体验学习数学的乐趣。
教学重难点:
教学重点:体会平均数的作用,掌握求平均数的方法。
教学难点:理解平均数实际意义。
教学方法:讨论法、讲授法、练习法等
教具准备:课件,练习卡
教学过程:
一、创设情境,激趣导入
1.谈话引入:同学们,你们听说过《龟兔赛跑》的故事吗?老师今天给大家带来一个《新龟兔赛跑》的故事,你们想不想看?
2.
播放《新龟兔赛跑》视频,生观看。
3.师:谁来说一说这个视频讲了什么故事?
生答。
师:4只乌龟和5只兔子怎么比赛呢?
生:用平均数
师:那你们认识平均数吗?
生:不认识!
4.引出课题——《认识平均数》(板书课题)
二、探究新知
(一)创设情境,认识平均数
1.课件出示小明一家打篮球情境图,师提问:你能从图中了解到哪些数学信息呢?
2.学生找出数学信息:爸爸投中6个,妈妈投中3个,小明投中5个,妹妹投中2个。师提问:谁投中最多?谁最少?
生:爸爸投中最多,妹妹投中最少。
师:妹妹投中最少,为此她很难过,为了能让妹妹觉得她和大家是一样厉害的,同学们,
你们能对小明一家投球总数进行平均分吗?
3.请同学上台用移一移的方法解决“每人平均分得多少个球”的问题。
4.师:你还有其他方法解决这个问题吗?把你的方法写在练习本上。
5.请同学说一说你是怎么样算的,为什么这样算,教师板演。
6.师:像这样,把几个不相同的数,通过移多补少或先全部加起来再平均分等方法,得到一个相同的数,这个数就是这几个数的平均数。引出平均数概念:一组数据的总和除以这组数据的个数所得的商就是平均数,并得出用公式法求平均数的方法:平均数=总数量÷总份数。
(二)解决问题,计算平均数
1.课件出示课本例2,教师谈话,提出问题:你从中可以了解到哪些数学信息?
生说。
2.通过所获得的数学信息,教师提出问题:哪组成绩好?
生1:第一组
生2:第二组
……
3.同桌讨论:哪一组成绩比较好?让学生讨论,并充分发表不同意见,教师相机引导学生达成共识:比较每组平均每人投中的个数更公平。
4.四人小组合作:利用平均数比较哪一组成绩好。
5.根据计算结果得出结论:第一组成绩好。学生代表展示:说一说你是怎样算的,为什么这样算?教师让学生用平均数描述两个组的平均成绩,并介绍平均数意义:平均数可反映总体情况或者代表总体的水平,并不能代表个体水平。
三、巩固练习
1.
下面说法正确吗?正确的画“√”,错误的画“×”。
(1)某小学全体同学向希望工程捐款,平均每人捐款3元。那么,全校每个同学一定都捐了3元。
(
)
(2)学校排球队队员的平均身高是160厘米,有的队员身高会超过160厘米,有的队员身高不到160厘米。
(
)
(3)小明所在的1班学生平均身高1.4米,小强所在的2班平均身高1.5米。小明一定比小强矮。
(
)
2.
哪个小组成绩好些?
第一小组4人,
一共做了100个。
第二小组5人,
一共做了110个。
3.在一场激烈的篮球比赛中,小明受伤了,需要换人上场,7号和8号都是替补队员,但教练不知道换谁比较好,聪明的你,能通过计算告诉教练到底换谁上场吗?
下面是7号、8号在小组赛中的得分情况
第一场
第二场
第三场
第四场
第五场
7号
9
11
13
8号
7
13
12
8
请你算一算,7号和8号派谁上场更合适?
四、课堂总结
这节课你有什么收获?
五、问题思考:平均水深问题。
课本第
86
页的问题讨论:游泳池的平均水深为120厘米,小军身高是140厘米,他在这个游泳池中学游泳会有危险吗?请同学说说你的看法,渗透安全教育。
六、达标检测
以下是新华小学四(6)班第五组和第六组同学坐位体前屈的成绩。(单位:厘米)
第五组
19
8
12
9
——
第六组
10
18
9
11
7
请你算出每个组的平均成绩。
作业布置:课本第86页练一练
板书设计:
认识平均数
教学目标:
1.
通过观察、交流等活动认识倒数,理解倒数的意义及“互为倒数”的含义。
2.
经历找一个数的倒数的方法,会求一个数的倒数。
3.
在交流的活动中,培养观察、归纳、概括的能力,发展数学思维。
教学重点:
理解倒数的意义,会求一个数的倒数。
教学难点:
理解1、0的倒数,理解“互为倒数”的含义。
教学过程:
一、复习导入
口算下列各题。
设计意图:通过复习积为1的分数乘法,学生利用知识间的迁移,为本节课学习倒数奠定基础。
二、探究新知
1.
认识倒数。
师:观察这些算式,看看有什么规律。
生1:两个数的乘积都是1。
生2:相乘的两个数的分子、分母正好颠倒了位置。
师:乘积是1的两个数互为倒数。和互为倒数,就是指:的倒数是,的倒数是。
师:你能像这样说说其它几组数字吗?
生1:,和互为倒数,的倒数是,的倒数是。
生2:,和互为倒数,的倒数是,的倒数是。
生3:,和互为倒数,的倒数是,的倒数是。
师:非常正确,想一想,互为倒数的两个数有什么特点?
生1:如果两个数都是分数,那么这两个数的分子、分母交换位置。
生2:如果一个是整数,那么另一个分数的分子是1,分母就是该整数。
设计意图:本环节通过计算、观察、交流等活动,归纳出它们的共同规律,引出倒数的定义,在学生发言中进一步理解“互为倒数”的含义,进而引导学生思考互为倒数的两个数的特点。
2.
认识1和0的倒数。
师:下面哪两个数互为倒数?
生1:和互为倒数。
师:为什么呢?
生1:乘积是1的两个数互为倒数,,所以和互为倒数。
师:没错,这就是交换了分子、分母的位置来找倒数的方法。
生2:,所以和互为倒数。
生3:,所以和互为倒数。
师:我们找到了三组互为倒数关系的数,那么1和0有倒数吗?
师:1的倒数是多少?
生1:1×1=1,所以1的倒数还是1。
师:完全正确,1的倒数就是1,也可以说1的倒数是它本身。
师:0的倒数是多少?
生2:0没有倒数。因为0乘任何数都得0,不会等于1,所以0没有倒数。
师:没错,0没有倒数。
设计意图:本环节在找倒数的活动中,初步体验找倒数的方法:调换分子、分母的位置。总结在求倒数时的三种情况:求分数的倒数;求整数的倒数;1和0的倒数问题,使学生理解1的倒数是1,0没有倒数,突破本节课的难点。
三、巩固练习
1.
写出下面各数的倒数。
设计意图:本题巩固求倒数的方法,即交换分子和分母的位置。
2.
先计算出每组算式的结果,再在里填上“>”“<”或“=”。
设计意图:本题通过几组乘、除法算式的对比,让学生初步感知除以一个数等于乘这个数的倒数,为后面学习分数除法奠定基础。
3.
下面的说法对不对?为什么?
设计意图:本题巩固倒数的意义,其中第(2)使学生明白倒数是两个数之间的关系,而不是一个数或多个数之间的关系。
4.
小红和小亮谁说得对?
设计意图:本题是对倒数意义的进一步认识,使学生认识到只要两个数的乘积是1,那么这两个数就互为倒数,与这两个数是整数、分数还是小数无关。
四、课堂小结
执教:
单位:
教学内容:
人教版小学数学教材六年级上册第62-64页。
学情分析:
六年级的学生具备一定的逻辑思维能力与成像能力,他们已经掌握了周长的意义及圆的特征。课前调查中发现:大部分的学生已经知道圆周长的计算公式。但是能正确理解圆周率意义的却只是少数,即使在某些老师上完此课,学生能准确说出圆周率意义和特征的学生只有一半左右。也就是说,学生对圆的周长公式的理解只停留在表面上。
教学目标:
1.知识与技能:直观认识圆的周长,知道圆的周长的含义;理解圆周率的意义,理解和掌握求圆的周长的计算公式。
2.过程与方法:通过观察、推理、分析、综合、抽象、概括等数学活动,经历探索圆的周长与直径的关系的过程,渗透极限的思想;培养学生动手操作能力、合作能力与创新精神。
3.情感态度和价值观:通过揭示圆周率的意义及介绍古人对圆周率的研究史料,激发学生的科学探究的热情,增强民族自豪感。
教学重点:
圆的周长计算公式的推导,能利用公式正确计算圆的周长。
教学难点:
验证圆的周长和直径的关系。(本课的关键就是理解圆周率的意义)
教学过程:
一、预习导航
1.交流发现
师:孩子们,这节课我们一起来学习圆的周长。(板书课题)
师:通过课前的预习,大家对这节课的学习内容都有所认识,请大家先拿出课前小研究先看一看,下面我们以小组为单位进行组内交流,请看活动要求。(出示)
活动要求:
(1)在组内先核对一下课前小研究第1、2题的答案
(2)在小组内互相说说你知道了什么?
(3)在组内挑选一张最好的作品进行小组汇报。
(学生组内交流)
2.小组汇报
师:下面我们进行小组汇报,哪个小组来说说你们小组预习《圆的周长》这一课的学习收获。(思维导图板书:圆的周长)
(小组汇报,教师随机利用思维导图进行板书)
问:还有其他收获吗?
师小结:你们小组的收获真不少,知道了圆的周长的定义(板书:定义)还知道了算圆的周长的方法。(板书:方法)圆的周长的计算公式c=πd或c=2πr。(板书:c=πd)
3.适时点拔
教师结合思维导图进行追问:
(1)出示圆和长方形的图形,问:圆的周长和长方形的周长有什么不同的地方?(板书:曲线)
(2)学生演示绕绳法
师:我们给这种方法起个名,叫绕绳法(板书:绕绳法)
问:用绕绳法进行测量时要注意什么?
(3)课件演示滚动法
师:这种方法叫滚动法。(板书:滚动法)在测量时要注意标出起点。
问:这两种方法都有什么共同的地方?
教师小结:无论是绕绳还是滚圆它们的最终目的都是把圆的周长这条曲线变成了直线段,我们都把它概括为“化曲为直”。
4.聚焦问题
师:在预习中你们还有什么不懂的问题。(学生汇报,教师板书)
预设问题:
问题1:圆的周长是它的直径的几倍?
问题2:圆周率是怎么来的?
问题3:为什么圆的周长c=πd?
(设计意图:复习课中,我们不仅要针对知识的重点、学习的难点、学生的弱点进行整理和复习,更要这是复习课的重要任务之一。为了发挥学生学习的自主性和积极性,提高自学的效率,课前向学生提供了一份《课前小研究》作为预习导航,以思维导图的形式让学生小结课前收获,使学生将所学的知识进行归纳、整理,构建完整的知识网络,打破以往线性教学中一问一答的局面,让学生清晰、高效地自学这部分内容。然后通过学生的展示,使学生深切地体会到“化曲为直”的数学思想方法,从而突出重点,突破难点。最后通过问题的聚焦,为下面的导学反馈指明了方向。)
二、导学反馈
(一)问题1:圆的周长是它的直径的几倍?
1.测量圆的周长
师:圆的周长到底是它的直径的几倍?下面我们进行小组合作学习,一起动手量一量圆的直径和周长的长度,再算一算圆的周长除以直径大约等于几倍,并观察所得数所,看看有什么发现?请看活动要求:(课件出示活动要求)
要求:
(1)利用工具测量手中圆的周长和它直径的长度,并算出周长和它的直径的比值。(结果保留两位小数);
(2)完成任务的小组把结果填入学习记录单中。
(3)观察表中的数据,你们发现了什么?
组别
测量对象
硬币
小齿轮
1号
圆片
2号
圆片
瓶盖
光盘
第
(
)
小
组
周长C
(cm)
直径d
(cm)
C÷d的商
(保留两位小数)
我们的发现:
圆的周长除以它的直径的商大约是(
)倍
2.小组汇报
(1)小组汇报测量结果。
(2)观察数据,得出结论。
师:刚才汇报的两个小组的同学都不约而同地发现圆的周长除以它的直径的商都是3倍多一些。从左往右观察圆的周长、直径这两组数据是怎样变化的?它们的商都是多少?组内说说你有什么发现?
结论1:圆的直径变,周长也变,并且直径越短周长越短;直径越长,周长越长,但有一个数是固定不变的。
结论2:圆的周长总是它的直径的3倍多一些。(出示板书,齐读)
师小结:圆的周长会随着圆的直径的变化而变化,但圆不论大小,它的周长总是直径的3倍多一些,是一个固定不变的数,我们把它叫做圆周率。
(设计意图:本环节为学生提供已标有直径的一元硬币、小齿轮、1号、2号圆片、瓶盖和光盘等学生身边常见的物品作为实验物品,不仅能提高实验的速度,而且也能减少实验误差。引导学生分工合作,用自己喜欢的方法测量出圆的周长和直径,求出比值,并对学生实验的方法进行深入细致的指导,让学生边动手操作边进行信息的收集和分析处理,最后组织学生观察、分析、思考,引导学生发现“圆的周长都是直径的3倍多一些”这一结论,使学生真正理解消化了教学难点。学生在探索新知的过程中,由知识的接受者转变为知识的发现者和创造者,不仅理解掌握了知识,促进了学生的学习方法的养成,还学会了与人合作,培养了合作意识,并且感受到了成功的喜悦,体验了学习数学的乐趣。)
(二)问题2:圆周率到底等于几?
1.介绍圆周率
师:历史上,有不少的数学家都对圆周率作出过研究,想不想了解它背后的故事?让我们一起走进历史,来了解数学家们研究圆周率的历程。
(课件演示)
教师:看完了介绍,现在你们对圆周率有什么想法?
预设:
学生1:我认为圆周率太神奇了,竟然能算到12411亿位还没有算完!
学生2:我认为还有一个神奇的地方,圆周率算到第12411亿位,竟然没有一个循环节!
师:圆周率是一个无限不循环小数,用字母π表示,(板书:π)认识了圆周率,我们再回头来看看刚才实验得出的结论(课件出示:圆的周长总是它的直径的3倍多一些),这3倍多一些指的就是π,所以这句话还可以说成圆的周长总是它的直径的π倍。(课件替换π)如果用字母C表示圆的周长,d表示圆的直径,那么c/d=π(板书:c/d=)
为了计算方便,在实际应用中我们一般只取它的近似值,π≈3.14。
(设计意图:向学生介绍了人类探索圆周率的历程,拓宽了他们的数学视野,让学生感受到数学文明的发展,体验到人类不断探索的脚步。而对祖冲之详细的介绍,使学生了解到祖冲之令人神往的成就,感受到身为一个中国人的骄傲和自豪,同时对学生的后续学习也起到了一定的激励作用。)
2.引导学生发现误差,从而发现测量方法的局限性。
师:回到我们的实验数据,为什么我们实验的结果大部分都得不到3.14呢?
预设:
学生1:我认为测量圆的周长的时候,绳子是松的,而绳子伸直时是撑紧的,绳子有拉力。
学生2:我认为圆在滚动时,圆有可能在原地打转,测量有误差。
教师:很好,与测量工具有关。测量时,误差是不可避免的。用测量的方法来研究圆的周长与直径的关系是不准确的。
(设计意图:选取了相同的圆形物品让学生进行测量,再引导学生进行观察对比,发现同样的物品,测量出来的长度是不同的,知道误差是存在的,如何减少误差,提高测量计算的准确性。)
(三)问题3:为什么圆的周长c=πd?
师:数学家们千方百计地计算出这个圆周率,利用这个c/d=π这个式子,如果知道圆直径,那么可以计算圆的周长c=πd,如果告诉你半径,又怎么求圆的周长?
(设计意图:当学生发现了已知直径求圆周长的方法后,让学生思考还可以已知什么条件来求圆周长,这样通过学生自己总结得出的结论印象更深刻。)
(四)反馈练习
师:要求圆的周长,需要知道什么条件?
1.课件出示相应的练习
(学生完成相应的练习)
师小结:我们知道要算出圆的周长可以有几种方法,对比三种方法,哪种方法更简单?
2.教师出示教材第64页例1。
课件分步出示例1,学生独立完成后讲评。
3.课堂小测
(见附件)
(设计意图:为了巩固所学的知识,体现练习题有梯度、有层次性、有趣味性,设计了层次分明的练习,从计算直观的图形的周长到解决实际问题,让学生学以致用,体会到数学知识在生活中的运用价值,进一步激发数学学习的兴趣和爱好,尤其是小测中的最后一题,让学生选一道自己最想交流的题目与小伙伴们分享,让学生充分巩固所学知识,可以为小伙伴提供一些合理的建议。)
三、归纳积累
1、通过本节课的学习,你有哪些收获,把它补充在思维导图上。
2、学生在思维导图上写收获。
3、全班交流学习收获。
(设计意图:通过小结,让学生们沉静下来回顾本节课学习过程,思考自己本节课的感受和收获,让思维导图梳的形式梳理本节课所学习知识,能更好的沟通知识间的联系,使零散分布的知识连成线,结成网,方便学生理解和记忆。)
四、布置作业
1、完成课本第65页第1、2、3、4题
2、预习第65页和第66页,把不懂的问题在课本上标注出来。
(设计意图:设计一定量的作业让学生完成,让学生更好的巩固本课所学知识,提高学生运用知识解决问题的能力,预习的设计,让学生明晰下节课的教学内容,能带着问题走进课堂,培养学生发现问题的能力,提高学习效果。)
《圆的周长》教学反思
新课程强调学生自主、合作、探究学习方式的培养,让学生在情感体验、知识技能、数学思考、解决问题各方面得到均衡发展。本课的教学就是在新课程理念的指导下,通过教学情境的创设和学生实践活动的开展,积极践行自主、合作、探究学习方式,使学生的主体性和教师的主导性都得以有效的发挥,使教学内容更加厚实、教学活动更加丰富,教学环节清晰,教学效果得到有效的提高。
1、真正体现学生的主体地位,教师是一个组织者、引导者与合作者
在教学测量圆的周长这一内容时,我设计了一个个让学生充分探究的情节,小组合作,根据已有的材料,用不同的方法测量圆的周长,探索规律,让学生充分展示他们的思维过程,把静态的知识结论转化为动态的探索对象,让学生在探索未知领域的同时实现自己的智力发展,教师只是作为学生学习过程的陪伴者,给予适当的点拔和引导,把学习的主动权交还给学生。
2、让学生带着问题去学习,亲历知识获取的过程
我国著名教育家顾明远说过“不会提问的学生不是好学生”,“学问就是要学会问”。《国家数学课程标准》也明确指出:“动手实践、自主探索与合作交流是学生学习数学的重要方式,数学学习活动应当是一个生动活泼、主动探索和富有个性的过程。”也就是说,学生学习数学并非单纯的依赖模仿和记忆,数学学习过程的实质是学生主体富有思考性的探索过程。所以,数学知识的探索轨迹,应作为学生是否主动参与的标志,展现于课堂教学的全过程。在教学中,让学生围绕着问题“圆的周长计算公式为什么是C=πd?圆的周长是它的直径的几倍?”通过学生亲自动手的测量、计算、自学、推导、论证等充分的实践活动而展开的。特别是在测量周长与计算周长与直径的比值这一环节中,我采用了小组合作学习,让学生用不同的方法,如绕绳法、滚动法和折叠法测量不同的圆形物品的周长,小组同学有的测量,有的记录,有的用计算器计算,让学生在具体实验中,体会到“圆的周长总是直径的三倍多一点”这一结论,并知道圆周率的相关知识,进一步推导出c=πd,c=2πr。动手操作,合作探究加深了学生对所学知识的理解,达到突破难点的效果,体现了课堂教学的有效性,学生的合作能力、思维能力、特别是创新能力和实践能力也可以得到发展。可以说,每个知识点的发现,都是学生自主探索的成果,而不是学生被动接受的结论。探索,作为学生学习数学的重要方式,体现了学习中求发展,在发展中求创造的教育思想。
3、数学阅读让学生感受数学的厚实的文化
在数学学习过程中,适当介绍一些有关数学发现与数学史的认识,能够丰富学生对数学发展的整体认识,对后续学习起到一定的激励作用。结合本节课的教学内容,教师向学生介绍了圆周率的有关认识。这里的介绍从《周髀算经》中的“周三径一”、祖冲之的“算筹”到圆周率在现代生活中的应用以及用电子计算机来计算圆周率。通过对“圆周率”发展历史的介绍,来开拓学生的视野,丰富学生的知识面,使学生了解知识的来龙去脉,使学生对圆周率的历史有一个完整的认识,感受到我们祖先的智慧,体会数学知识与人类生活经验和实际需要的密切关系。
4、课堂检测,提高学生做题的积极性
如果一节课都是练习,学生容易疲劳,如果把练习题设计成测试题,有利于提高学生做题的积极性。本节课围绕教学目标设计了一份小测题,用卷子的形式呈现给学生,由学生独立完成。做完后,在课堂上进行小组核对答案,对测试中出现的共性问题,采取相应的补救措施。尤其是小测中的最后一题,让学生选一道自己最想交流的题目与小伙伴们分享,让学生充分巩固所学知识,可以为小伙伴提供一些合理的建议,体验到学习的乐趣。
课前小研究
姓名____________
班别____________
学号______________
组别____________
一、认真阅读课本第62~64页,完成下面的练习。
1.
用红色笔描出下面圆的周长,并说说什么圆的周长。
2.认真观察下图,结合学习长方形、正方形周长的经验,猜想:圆的周长可能和____________有关,为什么?
o
o
o
o
二、完成下面的思维导图。
课堂小测
姓名____________
班别____________
学号______________
组别____________
一、求下面各圆的周长。
二、解决问题
1.一个圆形喷水池的半径是5cm,它的周长是多少厘米?(π取3.14)
一、教学内容
人教版六年级数学上册第五单元圆的面积。
二、教学目标
1、认知目标:使学生理解圆面积的含义;掌握圆的面积公式,并能运用所学知识解决生活中的简单问题。
2、过程与方法目标:经历圆的面积公式的推导过程,体验实验操作,逻辑推理的学习方法。
3、情感目标:引导学生进一步体会“转化”的数学思想,体验发现新知识的快乐,增强学生的合作交流及安全意识和能力,培养学生学习数学的兴趣。
三、教学重点:掌握圆的面积的计算公式,能够正确地计算圆的面积。
四、教学难点:理解圆的面积计算公式的推导。
五、教学准备:相应课件;圆的面积演示教具
六、教学过程:
一、情境导入
出示课件:¬——《下水道无盖图片》,同学们:从这些图片中你意识到了哪些危险存在?
生:下水道没有井盖,路人会不小心掉下去。
师:那我们应该怎么办呢?
生:按个井盖。
师:井盖是什么形状的?但是我们要按一个多大的井盖呢?这个“多大的井盖”是让我们求出它的周长吗?
生:不,是面积。
揭示课题:《圆的面积》
[设计意图:通过“无盖的下水道”这一场景,让学生自己去发现安全隐患问题,同时使学生感悟到今天要学习的内容与身边的生活息息相关、无处不在,同时了解学习任务,激发学生学习的兴趣。]
二、探究合作,推导圆面积公式
1、渗透“转化”的数学思想和方法。
师:什么是圆的面积呢?圆所占平面的大小叫做圆的面积,让学生们摸一摸,感受圆的面积。
圆的面积怎样计算呢?计算公式又是什么?你们想知道吗?
我们先来回忆一下平行四边形的面积是怎样推导出来?
生:沿着平行四边形的高切割成两部分,把这两部分拼成长方形师:哦,请看是这样吗?(教师演示)。
生:是的,平行四边形的底等于长方形的长,平行四边形的高等于长方形的宽,因为长方形的面积等于长乘宽,所以平行四边形的面积等于底乘高。
师:同学们对原来的知识掌握得非常好。刚才我们是把一个图形先切,然后拼,就转化成别的图形。这样有什么好处呢?
生:这样就把一个不懂的问题转化成我们可以解决的问题。
师:对,这是我们在学习数学的过程当中的一种很好的方法。今天,我们就用这种方法把圆转化成已学过的图形。
师:那圆能转化成我们学过的什么图形?你们想知道吗?(想)
2、演示揭疑。
利用圆的面积教具,分组研讨,演示交流,学生合作,推导公式。
出示课件问题:观察、讨论完成这三个问题:
①转化的过程中它们的(形状)发生了变化,但是它们的(面积)不变?
②转化后长方形的长相当于圆的(周长的一半),宽相当于圆的(半径)?
③你能从计算长方形的面积推导出计算圆的面积的公式吗?
比较一下,同样大小的圆平均分的份数不同,拼出来的图形有什么变化?——
发现:平均分的份数越多,拼成的图形越接近长方形。
[设计意图:通过小组汇报、采访小组等不同形式,来调动学生的多种感官参与学习,发挥学生的主体作用,培养学生主动探究、互助合作的精神,并通过电脑验证,使学生进一步明确圆可以拼成的近似的长方形,渗透化曲为直的方法。]
3、揭示字母公式。
师:如果用S表示圆的面积,那么圆的面积计算公式就是:S=πr2
(齐读公式,强调r2=r×r(表示两个r相乘)。
从公式上看,计算圆的面积必须知道什么条件?在计算过程中应先算什么?
[设计意图:通过小组合作、讨论使学生进一步明确拼成的长方形与圆之间的对应关系,有效地突破了本课的难点。]
三、运用公式,解决实际问题。
设计“援助中心”活动环节,以游戏情节,按照由易到难的训练顺序,引入圆面积的巩固练习。
[设计意图:学生已经掌握了圆面积的计算公式,教师可以引导学生分析理解,大胆放手让学生尝试解答,培养了学生运用所学知识解决实际问题的能力。]
四、课堂总结
师:同学们,通过这节课的学习,你有什么收获?学生自由叙述,除了学习到圆面积的相关知识以外还提高了安全意识,增强自我保护能力,懂得学到的知识越多,对自己对别人帮助越大,激发了学生学习的浓厚兴趣和极大的学习动力。
教材分析:
《角的初步认识》作为小学数学“空间与图形”的一部分,是学生在已经认识长方形、正方形、三角形的基础上教学的。这部分内容为以后深入学习角的含义、角的分类、角的度量等知识奠定基础。本课教材分为两部分,第一部分是认识和感知角,知道角的各部分名称,能简单地比较角的大小。第二部分是学会用直尺画角的方法。培养学生动手操作能力和观察、思考能力,使学生体会到数学来源于实践的思想。
学生分析:
1、初步认识平面图形:“角”是在学生已经初步认识长方形、正方形、三角形和圆等平面图形的基础上进行学习的,并且知道一些图形中有角。
2、知道生活中存在着的“角”:如桌面上有角,教室的黑板和铁柜有角,也有把角误认为是那个尖尖的点。
3、不能形成角的正确表象:二年级学生年龄小,他们以直观思维为主,不易理解抽象的概念。对角的认识还处于非常直观的感性认识阶段,学生必须通过亲自操作和感知获得直接经验进行正确的抽象和概括。
教学目标:
1、初步认识角,知道角的各部分名称;学会用尺子画角;建立角的大小的初步表象。
2、通过观察、比较、归纳等方法,探索发现角的特征,认识角,体会数学与实际的密切联系。
3、紧密联系学生的生活实际,培养学生仔细观察、认真思考的学习习惯,让学生明白生活中处处有数学,提高学习数学的兴趣。
教学重点:让学生明确角的共同特征,能够正确画角,知道如何比较角的大小。
教学难点:让学生形成“角”的正确表象,知道比较角的大小的方法,为角的度量打好基础。
教学准备:课件、教具(角、长方形)、学生学具、学习单
教学流程:
猜图形导入研究角的特征根据角的特征画角找生活中的角角的大小比较角在生活中的应用
教学过程:
一、猜图形导入:
1、猜图形,教学法:
出示图形①:遮挡了一部分的三角形
请学生说清猜图形的方法。
提炼学法:抓特征,猜图形
2、用学法,猜图形:
出示图形②、③、④
请学生回答图形特征及所猜图形
3、找共同特征
(设计意图:从学生已经学过的平面图形入手,先教学法,再放手让学生用所学方法,继续猜图形,激发学生兴趣的同时,自然导出新知识。)
二、研究角的特征:
1、课件出示:
问题:这些角有哪些共同特征?
要求:先独立思考,再把你的发现告诉你的同伴。
2、学生反馈,全班交流。(教师相机板书)
3、教师点拨:明确角的各部分名称及特征。
4、变式练习:判断下面这些图形是不是角,是的打√,
不是打X。并说明原因。
(讨论:你为什么这么判断?)
指名讲解。
(设计意图:从图形特征到角的特征,学生认识到“特征”的含义,通过小组合作,探究出角的共同特征,尊重学生的认识,再给予数学规范性的语言。通过变式练习,巩固学生建立的角的表象)
三、根据角的特征画角:
1、明确用具
纸、笔、尺子(再次强调角的特征)
2、学习画角
电脑动画指名汇报教师示范动手画角展示评价儿歌牢记
(设计意图:通过电脑、指名说、教师示范等强化画角的步骤,让学生牢记画角的步骤和方法)
四、生活中的角
1、找一找,身边藏着哪些角。
2、教师指导指角方法。
(设计意图:让学生经历从认识数学书的角,回到生活中,用学过的知识更理性地找角,真切感受到生活中处处有角,培养学生用数学的眼光观察周围世界的意识和能力)
五、角的大小比较
1、“谁的眼力好”
信封里的东西倒出来:缺一角的长方形,三个角
找一找合适的角,向同桌解释为什么不选择另外两个角。
全班交流(请同学到黑板上演示)。
2、三个角的大小比较
独立思考,你是怎么比较的?
小组交流。
全班交流。
(设计意图:通过游戏,突破角的大小比较的难点,让学生通过“补一补”的方法,判断长方形原来的角,并能够通过动作明确角有大有小。之后进行三个角的大小比较,学生的比较方法多样,要尊重孩子有价值的想法。)
六、角在生活中的应用:
设计师的三种滑梯草图,请同学们利用角的大小的知识,看看哪个设计又安全又有趣?
(设计意图:从生活中来,再回到生活中去,生活中常见的滑梯中的角引发思考,里面蕴含着角的大小比较的知识,学生能说清楚选择哪一种滑梯的原因,也就明白角的大小比较的方法及意义。)
板书设计:
角的初步认识
特征:
共同特征:
3个角
1、尖尖的一个顶点
5个角
2、两条直的线两条直的边
一、选择题(每题3分,共30分)1、在ABC和DEF中,AB=DE, ∠B=∠E,如果补充一个条件后不一定能使ABC≌DEF,则补充的条件是( )A、BC=EF B、∠A=∠D C、AC=DF D、∠C=∠F2、下列命题中正确个数为( )①全等三角形对应边相等;②三个角对应相等的两个三角形全等;③三边对应相等的两个三角形全等;④有两边对应相等的两个三角形全等. A.4个 B、3个 C、2个 D、1个3、已知ABC≌DEF,∠A=80°,∠E=40°,则∠F等于 ( )A、 80° B、40° C、 120° D、 60°4、已知等腰三角形其中一个内角为70°,那么这个等腰三角形的顶角度数为( ) A、70° B、70°或55° C、40°或55° D、70°或40°5、如右图,图中显示的是从镜子中看到背后墙上的电子钟读数,由此你可以推断这时的实际时间是( )A、10:05 B、20:01 C、20:10 D、10:026、等腰三角形底边上的高为腰的一半,则它的顶角为( )A、120° B、90° C、100° D、60°7、点P(1,-2)关于x轴的对称点是P1,P1关于y轴的对称点坐标是P2,则P2的坐标为( )A、(1,-2) B、(-1,2) C、(-1,-2) D、(-2,-1)8、已知 =0,求yx的值( )A、-1 B、-2 C、1 D、29、如图,DE是ABC中AC边上的垂直平分线,如果BC=8cm,AB=10cm,则EBC的周长为( )A、16 cm B、18cm C、26cm D、28cm10、如图,在ABC中,AB=AC,AD是BC边上的高,点E、F是AD的三等分点,若ABC的面积为12 ,则图中阴影部分的面积为( )A、2cm ² B、4cm² C、6cm² D、8cm²二、填空题(每题4分,共20分)11、等腰三角形的对称轴有 条.12、(-0.7)²的平方根是 .13、若 ,则x-y= .14、如图,在ABC中,∠C=90°AD平分∠BAC,BC=10cm,BD=6cm,则点D到AB的距离为__ .15、如图,ABE≌ACD,∠ADB=105°,∠B=60°则∠BAE= .三、作图题(6分)16、如图,A、B两村在一条小河的同一侧,要在河边建一水厂向两村供水.(1)若要使自来水厂到两村的距离相等,厂址P应选在哪个位置?(2)若要使自来水厂到两村的输水管用料最省,厂址Q应选在哪个位置?请将上述两种情况下的自来水厂厂址标出,并保留作图痕迹. 四、求下列x的值(8分)17、 27x³=-343 18、 (3x-1)²=(-3)²
五、解答题(5分)19、已知5+ 的小数部分为a,5- 的小数部分为b,求 (a+b)2012的值。 六、证明题(共32分) 20、(6分)已知:如图 AE=AC, AD=AB,∠EAC=∠DAB.求证:EAD≌CAB. 21、(7分)已知:如图,在ABC中,AB=AC,∠BAC=120o,AC的垂直平分线EF交AC于点E,交BC于点F。求证:BF=2CF。22、(8分)已知:E是∠AOB的平分线上一点,ECOA ,EDOB ,垂足分别为C、D.求证:(1)∠ECD=∠EDC ;(2)OE是CD的垂直平分线。
23、(10分)(1)如图(1)点P是等腰三角形ABC底边BC上的一动点,过点P作BC的垂线,交AB于点Q,交CA的延长线于点R。请观察AR与AQ,它们相等吗?并证明你的猜想。(2)如图(2)如果点P沿着底边BC所在的直线,按由C向B的方向运动到CB的延长线上时,(1)中所得的结论还成立吗?请你在图 (2)中完成图形,并给予证明。
一、选择题(每题3分,共30分)C C D D B A B C B C二、填空题(每题3分,共15分)11、1或3 12、±0.7 13、2 14、4cm 15、45°三、作图题(共6分)16、(1)如图点P即为满足要求的点…………………3分(2)如图点Q即为满足要求的点…………………3分 四、求下列x的值(8分) 17、解:x³= ………………………………2分 x= …………………………………2分 18、解:3x-1=±3…………………………………2分①3x-1=3x= ……………………………………1分②3x-1=-2 x= ……………………………………1分五、解答题(7分)19、依题意,得,a=5+ -8= -3……………2分b=5- -1=4- ……………2分a+b= -3+4- =1…………2分 = =1…………………1分六、证明题(共34分)20、(6分)证明:∠EAC=∠DAB ∠EAC+∠DAC=∠DAB+∠DAC 即∠EAD=∠BAC………………2分在EAD和CAB中, ……………3分EAD=CAB(SAS)…………1分
21、(7分)解:连接AF ∠BAC=120°AB=AC∠B=∠C=30°………………1分FE是AC的垂直平分线AF=CF ∠FAC=30°…………………2分∠BAF=∠BAC-∠CAF=120°-30°=90°……………………1分又∠B=30°AB=2AF…………………………2分AB=2CF…………………………1分22、(9分)证明:(1)OE平分∠AOB ECOA EDOB DE=CE………………………2分∠EDC=∠ECD………………1分(2)∠EDC=∠ECD EDC是等腰三角形∠DOE=∠CDE………………………………1分∠DEO=∠CEO………………………………1分OE是∠DEC的角平分线…………………2分即DE是CD的垂直平分线…………………2分23、(12分)解:(1)AR=AQ…………………………………………1分ABC是等腰三角形∠B=∠C……………………………………1分RPBC∠C+∠R=90°∠B=∠PQB=90°………………………………1分∠PQB=∠R……………………………………1分又∠PQB=∠AQR ∠R=∠AQR……………………………………1分AQ=AR…………………………………………1分(2)成立,依旧有AR=AQ………………………1分补充的图如图所示………………1分ABC为等腰三角形∠C=∠ABC………………1分PQPC∠C+∠R=90°∠Q+∠PBQ=90°…………1分PBQ=∠ABC∠R=∠Q…………………1分AR=AQ……………………1分
(时间:60分钟)
题目
一
二
三
四
五
六
七
总分
得分
小朋友,这学期你一定学会了很多数学知识。相信你一定能解决下面的问题,加油!要细心哦!
一、看谁算得又对又快。
(10分)
3+9=
5+9=
4+7=
4+2=
14-4-3=
6+9=
12-10=
8+8=
18-3=
4+0+6=
二、填空(32分)绿色圃中小学教育
1、15里面有(
)个十和(
)个一
,这个数在(
)和(
)的中间。
2、2个十是(
),10里面有(
)个一。
3、一个数的个位上是0,十位是2,这个数是(
),它在(
)的后面。
4、按规律填数:(
)8(
)(
)11(
)(
)
15
5、大约是(
)时
(
:
)
大约是(
)时
(
)时
6、在
里填上“<”、“>”或“=”.绿色圃中小m
9-3
9
11+4
15
14+4
11+2
7
6+3
6-6
12
3+9
5+7
7、在
里填上“+”或“-”。
14
4=10
16
4=20
8
7<9
12>6
5
8、在()里填上合适的数。
4+( )=11
(
)-(
)=5
7+4=(
)+(
)
三、数一数,涂一涂,圈一圈。
(16分)
(
)个
(
)个
(
)个
(
)个
2、3、
(1)一共有(
)个五角星。
(2)将左起的第8个涂上红色。
(3)在左起第(
)个。
(4)第8个的右边有(
)个
四、按要求做一做。
(6分)
(1)一共有(
)个物体,其中
有(
)个。
(2)从左边数
排第(
),从右数排(
)。
(3)把从左数的第6个圈起来,把从右数的第3个物体涂成红色。
五、试试你的眼力如何!(8分)
1、比一比,把最长的铅笔涂上红色。
2、数一数,填一填。
六、看图列出算式.(6分)
七、解决问题(22分)
1、?支
2、15支
=(本)
=(本)
3、现在一共有几只?
=(只)
4、一本故事书,我昨天看了8页,今天看了9页,两天看了多少页?
=(页)
5、小明家有19只小羊,卖了9只,现在还有多少只?
=(只)
6、=(个)
小朋友,别忘了细心检查哦!
参考答案:
一、看谁算得又对又快。
12、14、11、6、7
15、2、16、15、10
二、填空
1、1,5,14,16
2、20,10
3、20,19
4、7,9,10,12,13
13,14,16,17,18,19
5、9,4:30,2,12
6、<、=、>
<、<、=
7、-、+、-、-(+)
8、7,没有唯一答案,没有唯一答案
三、1、略
2、(1)18
(2)略
(3)5
(4)10
四、(1)8,5
(2)1,8
(3)略
五、1、略
2、4,1,2,4,
六、没有唯一答案
七、1,
10+5=15(本)
2,8+4=12(本)
3,9+3=12(只)
4,
8+9=17(页)
5,
19-9=10(只)
教学目标
知识与技能:
1.掌握编码的特点,学会运用数字进行简单的编码。
2.通过生活中的事例,初步体会数字编码在解决实际问题中应用的广泛性。
过程与方法:
3.在学生经历“观察、比较、猜想、验证”这个完整的数学思辨过程中初步探究出“编码”这一数学思想方法的基本特点,初步培养学生的抽象和概括能力。
情感、态度、价值观:
4.学生在数学活动中逐步养成与人合作的良好习惯,初步学会表达和交流解决问题的过程和结果。
教学重点
掌握数字编码的基本特点,学会运用数字进行简单的编码
教学难点
在于学生如何在辨析、实践中逐步体会数字编码思想在解决实际问题中的广泛应用。
教具准备
多媒体课件
学具准备
搜集到的身份证号码、生活中常见的编码
教学过程
教师引导
学生活动
设计意图
一、课前谈话:
老师知道同学们很会学数学,谁来说说如何才能上好数学课?
自由发言
通过课前谈话和讲故事对学生进行习惯养成教育,引导学生养成“会倾听、善思考、敢表达”的良好听课习惯。
《聋哑人和盲人到五金店买钉子和剪刀》的故事:有一位聋哑人,想买几根钉子,就来到五金商店,对售货员做了这样一个手势:“左手食指立在柜台上,右手握拳做出敲击的样子”。售货员见状,先给他拿来一把锤子,聋哑人摇摇头。于是售货员就明白了,他想买的是钉子,聋哑人买好钉子,刚走出商店,接着进来一位盲人。这位盲人想买一把剪刀,请问:“盲人将会怎样做?”
学生猜答案,谈想法。
二、新课导入
(1)师:同学们认识我吗?知道我的名字吗?(从屏幕上找到答案了,齐读一下)
师:我是某某,那“某某”真的是我吗?
师:正如同学们说的一样。如果在百度上输入“某某”搜索一下,我们一共可以找到像这样的信息600多条(课件出示百度搜索到的图片)。看来关于“某某”的信息还真不少!下面咱们就选择几条,一起来看一下。(课件出示。)
师:这5条信息中说的都是我吗?哪些说的是我,哪些不是?说说理由。
师:(总结)第一条,年龄不合适;第二条与事实不符;第三条人物的地址不对!
师:大家认为有可能的是4.5这两条了。可仅仅只通过这些信息还是不能确定我的身份。其实要想确定一个人的身份,只要知道一个号码就可以了。知道是什么号码吗?
师:对了!我国每一个公民都有一个唯一的、不变的用来表示自己身份的号码,就是身份证号码。
(2)师:这是两个某某的身份号码,现在你有答案了吗?(出示两位某某的身份号码。)
说说你的想法。
师:他认为在身份号码中有表示性别的数字,进而得出了判断。(板书。)
师:那他的判断对不对呢?咱们来检验一下。这是我的身份证,身份号码是……现在能确定我的身份了吗?都有谁猜对了?请大家齐读一下我的身份号码。(板书。)
(1)说老师的名字,根据网上搜集到的有关某某的信息,结合自己的经验初步对马老师的身份进行判断。
(2)借助身份证编码的帮助和自己对身份证号码组成的了解,判定马老师的身份
采用网上搜索自己名字的方式导课:
一、是感觉这种导课方式比较新颖,可以激起学生学习的兴趣;
二、是为了掌握学生对身份证号码组成的了解情况,以便接下来更有针对性的组织教学,实现依学定教;
三、是通过让学生借助身份证号码确定那一条信息是我本人,初步体验到编码的唯一性。
四、引导学生养成通过网络搜集、处理信息的意识,拓宽学生的学习渠道。
三、探究活动
1.探索身份证号码的组成。
(1)猜测身份证号码的组成
师:同学们借助身份证号码的帮助,确定了那一条信息说的是马老师。可见身份证号码真的很重要,那你明白组成身份证号码的这些数字所代表的含义吗?课前老师也让大家搜集了自己的身份证号码。下面就请同学们按照大屏幕上面的要求来进行研究。
(2)大屏幕出示探究要求:以小组为单位,把你了解到的有关身份证的信息互相说一说。再和老师的身份证号码比一比,想一想、猜一猜,身份证号码中的这些数字都代表什么含义?如果有疑问,就记录下来,我们一起来研究。
(3)展示探究成果。
师:同学们通过大家对同组间同学身份证号码和老师身份证号码的比较和猜测,一定有很多的发现或想法,谁来说说?
(4)进行有意义的接受教学。
师:(结合学生汇报小结。)正像前面许多同学谈到的那样,身份证号码的前6位数字表示的是居民常住户口所在的地址码。这里的37表示的就是——省(山东省),23表示的是——滨州市,01表示的是滨城区。
师:(边指边画边)身份号码的7到14位是--出生日期码,15到17位是顺序码。同一常住户口所在地、同一日期出生的人在办理身份号码时要按一定的顺序编号,这里有一个原则就是把奇数分配给男性,偶数分配给女性。
师:身份号码的最后一位是校验码,它根据前17位数字按照统一的公式计算产生的,既提高号码的有效利用率,又很好地起到检验的作用。
(5)揭示课题。
师:像身份号码这样用预先规定的方法将文字、数字或其他符号组合在一起用来表示一定含义的,在数学上我们就把它称之为(生:编码)。像身份证号码都是有数字组成的,顾名思义就叫做(生:数字编码)。这节课我们重点来学习数字编码。(板书课题)
(1)、(2)借助自己课前搜集到的身份证号码和有关身份证号码的知识以小组为单位通过比较、猜测的方法探究身份证号码的组成
(3)展示自己小组的探究成果
(4)进行有意义的接受学习
(5)结合学习到的身份号码组成的知识,提炼出本节课课题
通过课前让学生收集身份证号码、对身份证号码的组成以小组为单位进行探究,是为了让学生经历搜集信息、分析整理信息和抽象概括的能力。课前通过和学生交流发现部分同学对“地址码和出生日期码”有一些了解,而对“顺序码和校验码”比较陌生,再就是我感觉在身份号码的组成中“地址码”和“出生日期码”与学生的生活距离更近一些,便于学生进行猜想,而“顺序码”和“校验码”离学生的生活距离较远不便于学生进行探究,所以该教学环节我采用了“学生自主探究学习”为主和“有意义的接受学习”为辅的教学模式。
2.探索编码的特性。
(1)位数相同、科学规范
师:同学们,我们一起了解了身份号码的组成?现在请大家看看收集到的号码,还有什么疑问吗?
师:马老师的生日应该是哪一天?(1984年1月23日),可这里为什么要加上一个0呢?
师:那为什么后面还要写一个X呢?
师:身份号码前面用0占位,位数的一增;后面用罗马数字代换,位数的一减,其实有着异曲同工之妙,都是为了保证同一类编码的位数相同,而这也恰恰正是编码科学性与规范性的最好体现。
(1)说自己的困惑,猜测“出生日期码”前加0和“校验码”用罗马数字“X”表示的目的。
明确同一类编码的数位要相同
本环节的设计是紧接着上一环节来的,目的是让学生对编码的一些重要特点进行更深入的了解。
(2)编码时要注意编码的适用范围,选取重要的、不变的信息。
①师:看来这编码中的学问还真不少,这也激发了老师编码的兴趣,看看我编的。出示198401231(有出生年月和性别)
师:用这个来表示我的身份证行不行?
师:再缩小点范围就在咱们之间用这个编码行吗?
师:如果在咱们班级里给自己编一个码,用几位数就行。
师:在咱们整个四年级行吗?在咱们整个授田英才学园?整个滨城区……生:不行
师:看来编码的时候,首先要考虑(引导学生说出:编码的适用范围)。
②师:信息少了不全面,那么我又在我的身份证号码中加了18位,看看行不行?(课件出示:372301198401232726172160423210012911,代表我的年龄、腰围、身高、体重、鞋码、裤长、血型、民族)
师:有的同学笑了,笑过之后应该有自己的数学思考。谁来说说自己的想法?
师:在编码的时候我们应选择?
师:血型、民族很重要,不发生变化,会不会加进去呢?
师:在不久的将来我们说不定真的要补充上“血型”和“民族”这两个重要的信息。因为编码他是一门科学,也经历了一个不断发展和完善的过程。
①结合老师第一次的身份编码,明白要注意编码的使用范围
②结合老师第二次的身份编码,明白编码要选用重要的、不变的信息
通过自己对身份证采用不同的方式进行编码,一次次的刨制教学陷阱,让学生在思考的基础上不断的进行激烈的辩论、不断的自我否定,然后比较自然地得出编码的基本特点。
(3)编码的发展。
师:可能有的同学会发现旧的身份编码只有15位。(板书。)
新的身份证编码变成了18位,这里加入的具体年份和校验码有效地提高了编码的使用率。
师:所以有的专家预测,不久的将来可能真的要在我们的身份证号码前面再加上18位。(大屏幕出示)
师:这样我们就真的与国际接轨了。
学习编码的发展史
使学生初步了解编码的发展过程,培养学生学习编码的兴趣、激发学生探究编码的动机。
四、课内练习
1.
你能帮这对双胞胎姐妹把身份证号码补充完整吗?
豆豆,女,1999年1月4日出生于山东省滨州市滨城区。
乐乐,女,1999年1月4日出生于山东省滨州市滨城区。
3
7
2
3
1
9
6
6
9
6
8
x
师:即使是双胞胎身份证号码也不一样,正是编码唯一性的最好体现。
2.我是编码设计者。
(1)我校要为今年入学的一年级学生制作校牌,一年级有10个班,每班35名同学,若在每个校牌上设定一个编号,你认为编号中应该包含哪些信息?
(2)若设定在每一个编号的末尾用1表示男生,用2表示女生。张红同学是我校一年级三班的第23号同学,是一名女同学。应该如何编号?
(3)我校张华的编号是200903121,你能从这个编号中知道哪些信息?
1.自主思考、展示
2.自主思考,小组内交流,全班展示、讨论,优化设计方案。
通过典型练习题设计的帮助学生进一步梳理本节课所学内容,培养学生的应用意识和实践能力。
五、本课小结
师:这节课我们学习了数字与编码。通过学习,你都知道了些什么?说说你的收获。
思考、谈收获、倾听同学发言
学生自己梳理本节课所学知识,培养学生懂得与他人分享学习成果,正确评价自己和他人的意识和能力。
六、生活指导
师:同学们,在我们的生活中你还在哪见到过数字编码呢?(生:举例)
师:这样说下去能说的完吗?
师:老师也搜集一些欣赏生活中常见的数字编码的图片