前言:我们精心挑选了数篇优质致橡树教案文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。
学生的发展是新课程标准实施的出发点和归宿,课程改革的重点是面向全体学生,以学生的发展为主体,转变学生的学习方式。“二次函数的图像的性质”这一课题,通过对传统教法的改进,以全新的自主的学习方式让学生接受问题挑战,充分展示自己的观点和见解,给学生创设一种宽松、愉快、和谐、民主的科研氛围,让学生感受“二次函数的性质”的探究发现过程,体验研究过程,体验成功的快乐。
教学目标
知识目标
1、利用计算机制作动画(让学观察抛物线的形成过程)培养学生以运动变化的观点来观察问题、分析问题、解决问题的意识。
2、会用描点法画出二次函数的图像,能通过图像认识二次函数的性质
3、通过具体例子,在探索二次函数图像和性质的过程中,学会利用配方法将数字系数的二次函数表达式表示成:y=a(x-h)^2+k的形式,从而确定二次函数图像的顶点和对称轴。
4、通过一般式与顶点式的互化过程,了解互化的必要性。培养学生认识“事物都是相互联系、相互制约”的辩证唯物主义观点。
5、在经历“观察、猜测、探索、验证、应用”的过程中,渗透从“形”到“数”和从“数”到“形”的转化,培养了学生的转化、迁移能力,实现感性到理性的升华。
情感目标
1、通过主动操作、合作交流、自主评价,改进学生的学习方式及学习质量,激发学生的兴趣,唤起好奇心与求知欲,点燃起学生智慧的火花,使学生积极思维,勇于探索,主动获取知识。
2、让学生在猜想与探究的过程中,体验成功的快乐,培养他们主动参与的意识、协同合作的意识、勇于创新和实践的科学精神。
能力目标
1、拟通过本节课的学习,培养学生的观察能力、探索能力、数形结合能力、归纳概括能力,综合培养学生的思维能力及创新能力。
2、培养学生运用运动变化的观点来分析、探讨问题的意识。
教学重点:二次函数的性质
教学难点:通过研究、、、这几类函数图像,得出平移规律,并总结概括出二次函数的性质。
教学方法:
运用问题解决理论指导教学,力求体现“自主学习、动手实践、合作交流”的教学理念。
教学设备:计算机、网络
[教学内容]
步骤教学内容呈现方式
复习我们已经学习了一次函数与反比例函数,那么一次函数,反比例函数的图像分别是、.用媒体方式呈现,让学生填空,然后提交.
探索二次函数的图象是什么呢?(课前已经做过)
(1)画出图像经过了哪些过程?
(2)列表时自变量取了几个数?哪几个数?
(3)找几位同学展示一下自己画的图像。
(4)想一想,列表时如何合理选值?以什么数为中心?当x取互为相反数的值时,y的值如何?让学生结合老师强调的作图注意事项,再画函数的图图像。
然后老师用画函数工具作出的图像。由学生观察作比较。
教会学生用画函数工具画图,让学生比较两种画法,弄清学生自己所画的不足之处.
(2)观察函数的图象,你能得出什么结论?
用几何画板呈现已画好的函数图象,让学生观察图象上的点变化的过程,确认函数值随着自变量的变化而变化的规律.
让学生归纳函数的图象的性质.
老师作总结.
归纳:(1)二次函数的图象是抛物线,并且开口向上;
(2)二次函数的图象的对称轴是轴;
(3)抛物线与对称轴的交点叫做抛物线的顶点,那么二次函数的顶点坐标是;
(4)在对称轴的左边随着的增大而减小;在对称轴的右边随着的增大而增大.
实践一
一、1.利用画函数图象工具在同一直角坐标系下画出下列函数的图象,并观察图象,说出图象性质:
(1);
(2).
利用画函数图象工具。观察、比较两图象之间的关系。
2.练习:利用画函数图象工具在同一直角坐标系下画出下列函数的图象,并观察图象,说出图象性质:
(1);
(2).
学生观察、总结、交流
二、1.利用画函数图象工具在同一直角坐标系下画出下列函数的图象,并观察图象,说出图象性质,寻找两图象之间的关系:
(1),;
(2),.
利用画函数图象工具.
2.练习:利用画函数图象工具在同一直角坐标系下画出下列函数的图象:
,,
观察三条抛物线的相互关系,并分别指出它们的开口方向及对称轴、顶点的位置.你能说出抛物线的开口方向及对称轴、顶点的位置吗?
利用画函数图象工具.
三、1.利用画函数图象工具在同一直角坐标系下画出下列函数的图象,并观察图象,说出图象性质,寻找三个图象之间的关系:
(1),;
(2),;
(3),.
利用画函数图象工具.
2.不画出图象,你能说明抛物线与之间的关系吗?
四、1.利用画函数图象工具在同一直角坐标系下画出下列函数的图象,并观察图象,说出图象性质,寻找三个图象之间的关系:
(1),,;
(2),,;
(3),,.
利用画函数图象工具.教师指出就叫抛物线的顶点式。
2.把抛物线向左平移3个单位,再向下平移4个单位,所得的抛物线的函数关系式为.
讨论二次函数的图象可由函数怎样平移而得到?
归纳:由函数的图象沿对称轴向上(下)平移个单位(为向上,为向下),
向右(左)平移个单位(为向右,为向左)得到函数的图象.
实践二1.由二次函数解析式能否写出它的一般式.
2.讨论二次函数的图象怎样画,它的开口方向、对称轴和顶点坐标分别是什么?学生努力把它变形为顶点式
牛刀小试(1)抛物线,当x=时,y有最值,是.
(2)当m=时,抛物线开口向下.
(3)已知函数是二次函数,它的图象开口,当x时,y随x的增大而增大.
(4)抛物线的开口,对称轴是,顶点坐标是,它可以看作是由抛物线向平移个单位得到的.
(5)函数,当x时,函数值y随x的增大而减小.当x时,函数取得最值,最值y=.
(6)画图填空:抛物线的开口,对称轴是,顶点坐标是,它可以看作是由抛物线向平移个单位得到的.
(7)将抛物线如何平移可得到抛物线()
A.向左平移4个单位,再向上平移1个单位
B.向左平移4个单位,再向下平移1个单位
C.向右平移4个单位,再向上平移1个单位
D.向右平移4个单位,再向下平移1个单位
(8)抛物线可由抛物线向平移个单位,再向平移个单位而得到.
(9)二次函数的对称轴是.
(10)二次函数的图象的顶点是,当x时,y随x的增大而减小.
通过网络完成,然后反馈.
小结1、会用描点法画出二次函数的图象,概括出图象的特点及函数的性质.
2、会用工具画出、、、这几类函数的图象,通过比较,了解这几类函数的性质.
3、熟练掌握二次函数、、、这几类函数图象间的平移规律.
4、能通过配方把二次函数化成+k的形式,从而确定这类二次函数的性质.
作业1.在同一直角坐标系中,画出下列函数的图象.
(1)(2)
2.填空:
(1)抛物线,当x=时,y有最值,是.
(2)当m=时,抛物线开口向下.
(3)已知函数是二次函数,它的图象开口,当x时,y随x的增大而增大.
3.已知抛物线,求出它的对称轴和顶点坐标,并画出函数的图象.
4.利用配方法,把下列函数写成+k的形式,并写出它们的图象的开口方向、对称轴和顶点坐标.
(1)
(2)
中图分类号:G633.6 文献标识码:A 文章编号:1671-0568(2014)15-0041-01
一、问题的提出
新课程理论指出:学生学习知识不单是从教师授课的课程中获取,还需要学生结合教师的指导以及同学的合作,将自身的学习经验运用于一定的情境中,主动构建以获取课堂知识。理论主要阐述学生是学习的主体,课堂知识的获取应以学生主动学习为重心,而教师的作用只是辅导或促进学生获取知识。几年来,笔者通过对新课程理论的学习和实践,发现在中学数学教学中若能贯彻这一原则,数学课堂将是一种高效的活动。
二、教材中的地位
众所周知,初中教纲中已经涉及初步探讨正比例函数、反比例函数、一次函数以及二次函数的图象与性质。高中数学《指数函数的图象与性质》这节内容是在指数范围扩充到实数的基础上引入指数函数的,而指数函数是高中研究的第一种具体函数。由此可知,指数函数的图象与性质是课程知识学习的重点,而正确理解和掌握底数a对函数变化的影响是学习的难点。本节课主要是要求学生利用描点法画出函数的图象,并描述出函数的图象特征,从而指出函数的性质。通过这样的授课活动,从而使学生强化从形到数的熟悉,体验研究函数的过程与思路,实现意识的深化。
三、教学背景设计
新课改给予了我们全新的教学理念,在新教材的教学中,笔者慢慢体会到新教材渗透的、螺旋式上升的基本理念,知识点的形成过程经历从具体的实例引入,形成概念,再次运用于实际问题或具体数学问题的过程,它的应用性、实用性更明显的体现出来。学数学重在培养学生的思维品质,经过多年的数学学习,学生还是害怕学数学,尤其高中的数学,对于学生来说显得很抽象。所以,如果再让学生感到数学离我们的生活太远,那么将很难激发他们的学习爱好。在教学中要尽力抓住知识的本质,以实际问题引入新知识。另外,就本章来说,指数函数是学习函数概念及基本性质之后研究的第一个重要的函数,让学生学会研究一个新的具体函数的方法比学会本身的知识更重要。在这个过程中,所有的知识都是生疏的,在大脑中没有形成基本的框架结构,需要老师的引导,使他们逐渐建立。数学中任何知识的形成都体现出它的思想与方法,因而授课中注重让学生领悟其中的思想,运用其中的方法去学习新的知识是非常重要的。
四、教学目标确立
1.知识目标:准确理解指数函数定义,初步掌握指数函数图象与性质,并能简单应用。
2.过程与方法:由实例引入指数函数的概念,利用描点作图的方法做出指数函数的图象,(有条件的话借助计算机演示、验证指数函数图象)由图象研究指数函数的性质,利用性质解决实际问题。
3.能力目标:一是探讨指数函数的图像与性质,培养学生观察、分析和归纳能力,并使学生进一步了解数形结合的数学思想方法;二是分析指数函数变化规律,使学生能掌握函数变化的基本分析方法。
【教学过程】
由实际问题引入:
问题1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个……以此类推,1个细胞经过x次分裂后,细胞个数y与x的函数关系表达式是什么?
分裂次数与细胞个数:1,2;2,2×2=22;3,2×2×2=23;……;x,2×2×……×2=2x,归纳:y=2x。
问题2:某种放射性物质经过不断放射会转为其它物质,该物质每经过1年放射后占原先物质总量的84%,x年后该物质的剩留量y与x的函数表达式是什么?
经过1年,剩留量y=1×84%=0.841;经过2年,剩留量y=0.84×0.84=0.842…… 经过x年,剩留量y=0.84x。
寻找异同:由以上两个实例中,能归纳总结出函数表达式的异同点吗?
共同点:以上两个实例中,变量x与y函数表达式都为指数函数形式,底数都为常数,自变量为指数;不同点:底数的取值不同。
下面,我们来学习一个新的基本函数:指数函数。指数函数的定义:函数表达式为y=ax(a>0且a≠1)的函数叫做指数函数。我们在以前所学的函数中,函数表达式为y=kx+b(k≠0)的函数是一次函数,函数表达式为y=k/x(k≠0)的函数是反比例函数,函数表达式为y=ax2+bx+c(a≠0)的函数是二次函数。对于其一般形式上的系数都有相应的限制。问:为什么指数函数对底数有这样的要求呢?
若a=0,当x>0时,恒等于0,没有研究价值;当x≤0时,无意义。
若a<0,当x=0,……时是无意义的,没有研究价值。
若a=1,则x=1,y是一个常量,也没有研究的必要。
所以有规定a>0且a≠1。
由定义,我们可以对指数函数有一初步熟悉。
进一步理解函数的定义:
指数函数的定义域:在我们学过的指数运算中,指数可以是有理数,当指数是无理数时,也是一个确定的实数,对于无理数,学过的有理指数幂的性质和运算法则都适用,所以指数函数的定义域为R。
研究函数的途径:
由函数的图象的性质,从形与数两方面研究。函数的应用是函数学习的重要课堂目标,通过探讨分析函数图象与性质,从而使用函数的图象与性质解决实际问题以及数学问题。根据以往的经验,你会从那几个角度考虑?(图象的分布范围,图象的变化趋势,……)函数图象分布与函数的定义域和值域有关,函数的变化规律表现出函数的单调性。引导学生从定义域,值域,单调性,奇偶性,与坐标轴的交点情况着手开始。
首先做出指数函数的图象,以具体函数入手,让学生以小组形式取不同底数的指数函数画它们的图象,将学生画的函数图象展示,(画函数图象的步骤是:列表、描点、连线)。 最后,老师在黑板(电脑)上演示列表,描点,连线的过程,并且画出取不同的值时函数的图象。要求学生描述出指数函数图象的特征,并试着描述出性质。
数学演变过程表明,任何重要的数学概念从提出到发展都有着丰富的经历,新课程教学理论中已经较好地阐述出这点。在新课程理论指导下,学生要了解数学知识的学习是一种数学化的过程,也就是说,学生通过仔细观察和思考常识材料并经过分析、比较、综合、抽象、概括等思维活动,对常识材料进行归纳总结。文章案例正是从数学实验过程研究以及数学知识研究的角度进行设计,学生的思维过程可能没有重演人类对数学知识探索的全过程,然而学生通过数学实验的观察和思考,并经历分析、比较、综合、抽象、概括等思维活动,能真切地感受将数学知识数学化的探索过程,从而激发学生学习数学知识的兴趣,并能了解数学知识的一些研究方法。
学生学习的数学知识虽是前人已经提出并发展好的,然而课堂要求掌握的数学知识对于学生来说是全新的,需要学生经历自身的思维活动再现数学知识形成的过程。教师应该把教学设计成学生动手操作、观察猜想、揭示规律等一系列过程,学生的探索、分析与思考,侧重于过程的探究及在此过程中所形成的一般数学能力。
教师活动的展开应以学生活动为主体,教师地位应从主导者转为引导者,通过教师的引导,学生能够积极学习数学知识,能够独立探索数学知识的研究过程。使教学活动始终处于学生的“最近发展区”,使每一个学生通过自己的努力,在自己原有的基础上都有所获,都有提高。
一、指导思想
以新时代中国特色社会主义思想为指导,全面贯彻中央、国务院和省、市、县关于扫黑除恶专项斗争工作的决策部署,按照扫黑除恶专项斗争三年为期工作目标和“有黑扫黑、有恶除恶、有乱治乱”要求,进一步强化组织领导、深化线索摸排核查、加强部门联动、落实“一案三查”责任、建立健全长效机制,聚焦群众反映强烈的突出问题,切实把专项治理和系统治理、综合治理、依法治理、源头治理结合起来,加大交通运输行业乱点乱象专项治理力度,规范行业市场准入、监督、管理,推动我县交通运输行业扫黑除恶专项斗争纵深发展。
二、目标任务
坚持问题导向,通过开展以道路运输、公路管理、工程招投标、工程建设重点领域专项整治行动工作,全面开展涉黑涉恶线索摸排和乱点乱象综合治理,进一步提升行业治理水平、进一步增强管理能力、进一步规范行业市场秩序、进一步健全长效治理机制,彻底铲除黑恶势力滋生土壤,不断提升人民群众安全感、幸福感和获得感。
三、整治内容
道路运输领域非法营运等;公路管理领域违法侵害路产路权、超限运输等;工程招投标领域恶意竞标、串通投标、虚假投标等;工程建设领域非法聚众阻扰交通工程施工等乱点乱象。
(一)道路运输领域重点整治:未取得经营许可擅自从事道路客运经营的,以及打着“网约车”“顺风车”幌子开行班线客运业务等违法违规行为;未取得驾培经营许可擅自从事驾培行为;出租车随意拼客、“漫天要价”、拒载、不打表等违法违规行为。
责任单位:县运管局
责任人:
工作时限:6月底前形成初步成效,并长期坚持
(二)公路管理领域重点整治:未经审批随意开挖公路、损毁污染公路路面、防护设施等违法违规行为;公路及公路两侧控制区乱搭乱建、乱倒垃圾、占道经营等侵害路产路权违法行为;超限运输以及扰乱治超秩序、暴力抗法、强行闯关等违法行为。
责任单位:县交通运输综合行政执法队
责任人:
工作时限:6月底前形成初步成效,并长期坚持
(三)工程招投标领域重点整治:恶意竞标、串通投标、虚假投标、挂靠投标、出让资质等违法违规行为以及恶意投诉举报现象。
责任单位(股室):局计财股
责任人:
工作时限:6月底前形成初步成效,并长期坚持
(四)工程建设领域重点整治:通过黑力威胁等手段强行供应材料、强行运输、强行转包分包等强揽工程的行为,组织煽动在征地拆迁中“抢栽、抢种、抢建”、恶意索要补偿费用,恶意组织阻工、上访、投诉、讨薪等行为。
责任单位(股室):局建管股
责任人:
工作时限:6月底前形成初步成效,并长期坚持
四、工作措施
(一)提高站位,统筹部署。各单位(股室)要迅速将思想和行动统一到中央和省、市、县的决策部署上来,切实提高政治站位,加强组织领导,充分认识此次重点领域整治的必要性和紧迫性,积极抽调精干力量组成工作专项开展,将重点领域专项整治行动抓紧抓好。负责集中整治工作的组织、指导、协调。
(二)发挥职能,梳理排查。各单位(股室)要认真履职,积极动员,扎实工作,把排查线索、摸清底数作为开展本次专项整治行动的重要基础,对行业领域的涉黑涉恶乱点乱象情况进行全面排查。要加强线索核查,结合行政执法和行业监管职能,从涉稳档案、群众诉求、积案、职务犯罪、妨碍公务、暴力抗法等方面入手,找准乱象根源,有针对性地进行分类处置,依法依规查处一批恶意扰乱市场环境的违法违规行为。要结合日常工作和一线走访等活动,通过与一线运输企业、施工工地走访交流等形式,从群众中搜集发现线索,聚焦行业广大从业人员反映强烈的涉黑涉恶涉乱问题,深挖彻改,依法打击。
(三)加强协调,主动配合。各单位(股室)要强化协作配合,切实承担好在扫黑除恶专项斗争中的职责任务,打好整体战,形成全行业一盘棋的集中整治格局。要积极主动协调配合公安交警、自然资源、市场监管、水务、建设等部门和各乡镇开展联动行动,实现共同打击和整治,切实推进本行业整改工作和对策,推进和落实行业涉黑涉恶涉乱的防范工作。