美章网 精品范文 工艺管理论文范文

工艺管理论文范文

前言:我们精心挑选了数篇优质工艺管理论文文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。

工艺管理论文

第1篇

从六十年代初日本开始工业化生产冷冻鱼糜以来,冷冻鱼糜技术和生产设备的开发研究基本上是同步进行的[1]。三十多年来,虽然其生产工艺未发生重大的变化,然而在生产方法和使用的设备上还是有了不少的改进和完善,具体表现为对采肉方法、漂洗形式和脱水设备等进行了开发研究。根据漂洗和脱水这两个工艺过程中所使用设备的工作原理改用由一次管道式槽和许多U型管道组成的漂洗装置,再用倾析式离心机使鱼肉和水初步分离,达到预脱水的目的。采用这一工艺后,漂洗水中固形物的损失就比较少,从而提高了鱼糜的产量,也降低了企业的生产成本。

1材料与方法

1.1实验材料使用马鲛鱼为原料,采用去头去内脏后部分,清水洗净,再按下面两种不同的工艺进行处理。

传统工艺:采肉一次漂洗回旋筛脱水二次漂洗回旋筛脱水三次漂洗回旋筛脱水精滤螺旋压榨机压榨脱水。

新工艺:采肉线型混合器漂洗管道式滞留室漂洗倾析式离心机预脱水精滤螺旋压榨机压榨脱水。

1.2测定方法

1.2.1固形物含量的测定称取一定量的鱼糜,采用直接干燥法进行测定。

1.2.2凝胶强度的测定将各种鱼糜解冻,加入3.0%食盐,擂溃30min,灌肠后于90℃加热40min使之凝胶化,将样品切成直径2.6cm、高度1.3cm的圆柱体,于NRM-1002A食品流变仪上测定。

1.2.3白度的测定用ZBD型白度仪测定,将工作白度标准板放在试样座上进行白度校正,然后将样品放在试样室测定。

2结果与讨论

2.1漂洗工艺的特点将马鲛鱼用二种不同的工艺处理,比较在不同工艺阶段对漂洗液中固形物回收率的影响,见表1。

由表1可见,在传统工艺中,鱼糜经三次漂洗后固形物损失了29.29%,而经精滤和压榨后,又有16.14%的固形物损失掉,也就是说,总共有45.43%的固形物将在加工中流失掉。其中,有三分之二左右的固形物是在漂洗中流失掉的,而漂洗中固形物的流失又集中在回旋筛的预脱水过程中。为进行预脱水以便于下一次漂洗的有效进行,在回旋筛的圆筒中分布大量直径为0.4mm的小孔,这是造成固形物流失的

表1不同工艺对漂洗液中固形物回收率的影响

工艺标准鱼糜重量(kg)固形物重量(kg)固形物含量(%)固形物回收率(%)

传统工艺鱼糜

第一次漂洗

第二次漂洗

第三次漂洗

精滤后

脱水后

鱼糜

50

72.39

72.45

72.02

72.0

33.74

50

8.49

7.65

7.10

6.00

5.33

4.63

8.46

16.97

10.60

9.75

8.33

7.39

13.72

16.92

90.12

83.68

70.71

62.78

54.57

新工艺一次漂洗

精滤后

脱水后

86.52

81.26

36.14

8.04

7.25

6.06

9.30

8.92

16.77

95.09

85.70

71.63

主要原因。而改用新的漂洗和预脱水设备后就能有效地降低固形物的流失,由于这类漂洗设备的内部是一个线型混合器,鱼肉和水可在混合器内得到充分的搅拌混合,然后直接输入由许多弯管所组成的滞留室,在滞留室内,随着水流的快速运动,鱼肉颗粒周围产生了小的湍流,从而使鱼肉与水之间进行了充分的交换,可有效地使鱼肉中不需要的水溶性蛋白质和色素等成分溶出。由于这一新工艺中不使用回旋筛预脱水的方法,因而固形物的流失就很少,只有4.91%,比相应的三次漂洗中固形物的损失下降了24.38%。此外,在这一新工艺中,用水量上只比传统的漂洗工艺中一次漂洗用水量稍多一些即可,即鱼肉对水的比例根据不同鱼种控制在1∶6~8范围内,基本上能起到传统工艺中三次漂洗的效果,因而大大减少了用水量,节约了能耗,降低了生产成本。值得一提的是,滞留室的管道还可根据鱼种和漂洗要求的不同而在长度上予以调整,即漂洗白色鱼肉或新鲜鱼可缩短管道,而漂洗血红肉或鲜度稍差的鱼可加长管道,所以这套设备使用方便,尤其适合新鲜原料鱼的加工,因为原料鱼越新鲜,漂洗因素对凝胶强度影响就越小。

2.2倾析式离心机的作用

倾析式离心机的结构如图2所示,用于对漂洗鱼糜进行预脱水,使鱼糜中的固形物与水能有效地分离。

从倾析式离心机的结构来看,它能起到使鱼糜预脱水的作用。固形物在螺杆的转动下被送入狭窄的一端出来,而漂洗水部分则流向相反的一端出来,比较二种不同工艺在精滤后固形物的损失,新工艺中固形物的损失比传统工艺要低22.98%,说明经倾析式离心机预脱水比传统工艺中三次回旋得预脱水对固形物的回收率要高。这主要是因为这类离心机使鱼糜中的固液两相分别从二端出来,其液相中虽能带走一部分固形物,但流失量还是较少,而在回旋筛中,则一部分固形物转出水一起从网孔中流失,所以传统工艺中三次漂洗后的预脱水将使固形物的流失大为增加。从数据结果分析看,用倾析式离心机预脱水其固形物的损失率仅相当于第一次回旋筛预脱水的结果。所以,倾析式离心机在鱼糜生产工艺中的最大作用就是大大降低了固形物的损失,值得推广应用。

2.3鱼糜制品的凝胶强度

将传统的经一、三、五次漂洗和新工艺漂洗后的鱼糜制品的凝胶强度列于表2。

表2凝胶强度的比较

样品漂洗一次漂洗二次漂洗三次新工艺漂洗

凝胶强度(g.cm)195115230217

由表2可知,采用新工艺漂洗后鱼糜制品凝胶强度与二次漂洗的效果相同,仅比三次漂洗的结果下降5.6%。因此,新工艺对凝胶强度稍有影响。

2.4鱼糜制品的白度传统漂洗和新工艺制备的鱼糜制品的白度如表3。

表3白度的比较

样品漂洗一次漂洗二次漂洗三次新工艺漂洗

白度50.253.355.252.6

由表3可知,新工艺漂洗样品在白度上仅比三次漂洗低4.7%。因此,对白色肉鱼类更合适些。

第2篇

关键词:酒精工艺管理

引言

酒精工业是我国国民经济中重要的基础原料产业,广泛应用于食品、医药、工业等各领域,最近几年由于石油价格飞涨,酒精作为石油的一种替代能源,可以有效缓解石油危机带来的能源短缺。目前我国酒精的年产量已居世界第三位,但是在酒精行业大发展的同时仍然有许多问题有待解决,首先就是原料问题,我国的许多生产厂家是以玉米小麦等淀粉质作为原料,这样就不能降低成本并且还威胁到了我国的粮食安全,因此必须寻找比较好的替代原料;其次就是酒精生产过程中还面临着废渣、废水、废气的产生,这不仅造成环境的污染而且也浪费掉大量可用资源。为使酒精产业能可持续发展下去,必须改进现有生产模式,使酒精产业能够在高效益、低能耗、低污染的条件下良性循环发展。

国内目前主要酒精生产方法,就是利用薯类、谷类及野生植物等含淀粉的原料,在微生物作用下将淀粉水解为葡萄糖,再进一步发酵生成酒精。整个生产过程包括原料粉碎、蒸煮、糖化剂制备、糖化、酒母制备、发酵及蒸馏等工序。

一、酒精生产工艺流

二、新的生产工艺

当前的酒精生产工艺相比以前已有很大的改进,但是为了适应未来资源短缺的局面,开发新的节约资源和能源的工艺是非常迫切的。目前研究的较多的是生料发酵工艺和高浓度酒精发酵工艺。

2.1生料发酵工艺研究进展传统的淀粉质原料酒精生产过程中,消耗能量最大的两个工序是原料蒸煮和发酵醪的蒸馏。蒸煮需要消耗大量的热能,所耗的蒸气,占整个生产过程蒸气消耗的25%~30%。若采用生料发酵,将不仅能节省大量的能源和省去大量的冷却水消耗,还能够提高原料碳的转化率和后续淀粉发酵转化为酒精的能力。生料发酵研究始于国外,1944年Balls等报道了小麦、玉米和甘薯的生淀粉颗粒能被胰和米曲霉浸出液转化成可发酵性的糖,指出生淀粉和糊化了的淀粉其酶解的差异只是在水解的速率上。1981年SeiuosukeUed等人报道了用木薯制酒精的试验方法,实验得出生木薯的酒精产量是理论值的82%~99%。1984年YusakuFujio利用根霉对生木薯粉进行不接种酵母的一步酒精发酵试验,指出不需要另外添加糖化酶制剂和接种酵母,只使用根霉麸曲就可以直接将生淀粉转化为酒精,为今后以淀粉质原料的酒精发酵生产开辟了一条新途径。国内在上世纪八十年代后开始研究生料发酵,并取得了一定的研究成果,较有代表性的是:1982年,刘大杰结合企业实际使用酿酒的糖化酶剂和主要酿酒原料,以试验的方法证实淀粉质原料不蒸煮发酵的可行性,探索用于工业化生产的条件,为工业化生产提供了制定工艺的依据;2005年马文超等对玉米生料发酵酒精进行试验,取得了较好的效果,为进一步工业化生产创造了较好的基础。

2.2高浓度酒精发酵国内外研究进展高浓度酒精发酵的定义是以提高单位体积内发酵醪液中淀粉的含量,在适量的酿酒酵母菌的作用下,在一定的时间内力求得到最多的发酵终产物酒精。高浓度酒精发酵与传统的酒精发酵工艺相比,高浓度酒精发酵具有如下最明显的优点:较高的发酵强度、可抑制酒精生产中杂菌的生长和增殖、能源消耗和用水数量同比大幅降低。ThomasKC报道说在20℃,酿酒酵小麦糖化液,可以产生超过21%的乙醇。北京市轻工业食品发酵科学研究所秦人伟等,用工业微生物菌种保藏中心和生产厂提供的26支菌株,采用浓糖化醪发酵,初筛出发菌株,经紫外线诱变和驯化分离,筛出一支可以耐13%(v/v)酒精度的菌株。华子安等采用耐热、耐乙醇等处理方法对酒精酵母KJ进行驯化、筛选、分离得到一株可以耐受38℃~40℃高温,且具有优良性状的酵母菌株KJ-1,并通过正交试验获得了优良发酵条件。

三、生产过程的管理优化

3.1生产过程的计算机控制使用计算机控制技术监控和管理工业生产过程是现代工业技术的标志。为适应连续发酵的进行,使用计算机控制技术协调、监控生产全过程,可实现提高乙醇产量、强化工艺控制、提高抗污能力、节省能源消耗、降低生产成本等目标;可大幅降低生产过程中水、电、气的消耗,降低可发酵成本;可监控生产的各环节,降低有害废物泄露的风险。:

3.2培训高素质的员工目前企业员工的专业技术及环保意识均能满足生产需要,但对清洁生产和循环经济知之甚少,主要是由于企业对清洁生产和企业清洁生产审计的概念及知识缺少宣传,缺乏对员工主动参与清洁生产的激励,没有从生产的全过程控制污染物的产生,也是废弃物产生的原因。假若对员工进行良好的培训并有相应的鼓励措施,相信企业在减少资源浪费方面将有大的收获。虽然酒精工业是一个高能耗高污染的行业,但从酒精生产全过程来看,仍然存在着很多发展清洁生产和循环经济的潜力和机会,特别是存在着许多无污染或低耗费的方案。虽然目前酒精生产行业还存在的高能耗高污染现象,但是随着社会对酒精生产良性发展的需要越来越强,一大批新的生产技术和工艺的正不断涌现,相信随着新的生产技术和工艺在实际生产中的逐步应用以及进一步完善,酒精生产行业必然会适应未来发展循环经济的需要。

参考文献:

第3篇

金属的机械加工通常包括两种类型:金属的去除和金属的变形。前者作业是靠刃具把金属从被加工件上除掉;后者则是用模具使金属在应力下塑性变形,如轧、拉拔、冲压、挤压等。一般习惯地把金属去除作业所用的剂称为切削液,而把金属变形用的剂称为金属加工工艺用液体。金属加工液则是泛指上述两类加工、作业用剂。

(一)、金属切削液的选用(技术切削设备的见机床的特点)

大部分金属切削需要使用切削液,甚至在可以正常进行干切削的作业,如果选用适当的冷却剂也可增加工效。早在1883年,F.W.泰勒(Taylor)曾证明用冲洗刀具和加工件可使切削速度提高30%~40%。金属切削液的品种繁多。

ASTMD2881把金属加工用的液体划为三类:

(1)油和油基液体;

(2)水基乳液及分散体;

(3)化学溶液(真溶液及胶体溶液)。

2类与3类之间的基本区别在于分散相的粒度和粒度分布。溶解油乳化液的平均粒度大于1μm,真溶液及胶体溶液的粒度范围为20~40nm。胶体乳液(Ⅱ-C)代表了一种介于化学溶液与溶解油的乳液之间的中间状态,其粒度分布介于上述两等级之间。这种划分原则基本上是一个理论性的区分,因为从典型的矿物油到不含油的化学溶液之间,可能存在着无限度的等级。

近年来,金属切削液的发展和变化主要是在水溶性液体领域(2、3类)。由于这类液体以水为基质,其传热速度高(水的传热速度为油的2.5倍)。等量的水吸收一定热量后,比油的温升要慢得多,从而提高了冷却效果,且可减少油雾,因此水基切削液的用量增大。以英国为例,水基切削液在整个切削液市场中约占60%。但是水基切削液与油相比存在着性差,其次是锈蚀、胶体稳定性、化学稳定性、生物稳定性、可滤性、泡沫性等问题。这些问题对切削液在机床应用时的“油池寿命(SumpLife)”至关重要。合理选择、应用、监控和维护,对使用水基切削液特别重要。

1、金属切削液的成分与选择

根据我国目前市场情况,切削液的主要成分如下。

(1)油或油基液体:属于ASTMD2881分类中的Ⅰ-A、Ⅰ-B、Ⅰ-C,习惯称为切削油(也称净切削油),主体为矿物油,含或不含添加剂。

(2)乳液:属于ASTMD2881分类中的Ⅱ-A、Ⅱ-B、Ⅱ-C,有时称为溶解油。根据矿物油含量和油滴粒度可分为3种:粗乳液:含油65%~80%,油滴粒度2~10μm;微乳液:含油40%~50%,油滴粒度<1μm;半合成乳液:含油5%~40%,油滴粒度约0.1μm;

(3)合成液体:含油或不含油,以溶于水的高分子有机物为主要剂。

(4)化学溶液:不含油,属ASTMD2881分类中的Ⅲ。从以上成分来看,以切削油的性最好。乳化液中的粗乳、微乳和半合成型乳液,如配制得当也有相当好的性能。目前粗乳液和微乳液的使用范围最广泛。用于重负荷切削的乳化液要含极压添加剂。合成液是乳化液的补充产品。这种液体常用在特定的用途上。某些合成液体在使用中由于浓度增大,清洗性增强而导致损伤操作人员的皮肤和机床涂层。化学溶液是不含矿物油的水溶液。使用前用水稀释,有良好的冲洗、冷却效果,并应能防止接触区域的锈蚀。这类液体主要用于研磨,功能在于清洗和冷却,没有性。切削液的选择,首先要避免使用那些对机床、刃具和加工材料有害的液体。通常,不含游离硫的硫化油适用于加工钢材和铜材。而有些铜合金和高镍合金,在硫剂(特别是含游离硫)作用下会产生暗色斑痕。水基切削液的成分比较复杂,这是因为要顾及乳化系统的稳定,既要考虑诸成分的HLB值,又要达到各项性能的平衡。由于切削液以水为基质,还应考虑诸成分的水溶性或在水中分散的性质。

选择切削液前应充分了解下列情况。

1.1加工材料的性质

被加工的材料物理化学性质各异,反映在切削操作上就会有切削的难易和与切削液相容性等新问题。对较难加工的材料及其与切削液的相容性分别简略介绍如下。

铝:质软,切割易粘切具。乳化液如碱性强,与铝产生化学反应,造成乳液分层。应选用专用乳化液或石蜡基矿物油作冷却剂。

黄铜:切削时产生大量细屑,易使乳化油变绿。含活性硫的油剂可使加工材料变色,如选油剂要有过滤设备。

青铜:剪切前产生显著的塑性变形,可使乳化液变成绿色。如选油剂要有过滤设备。

铜:粘韧,切削时产生微细卷曲的屑,可使乳化液变成绿色,影响乳化液的稳定,在活性硫作用下生污斑。如选用油剂要配备过滤设备。

可锻铸铁:切削时产生大量微细的具有化学活性的磨蚀性屑。这些活性细屑好似过滤介质,削弱了乳化液的活性,而且可生成铁皂,使乳化液变为红褐色,乳化液的稳定性变劣。如使用油剂,必须用离心机或过滤器把铁屑除去

铅及其合金:易切削,可生成铅皂,破坏乳化液的稳定。如使用油剂,对油剂有稠化倾向,要防止使用含大量脂肪的油剂。

镁:切削时产生细屑,可燃。一般不使用水基切削液,可采用低粘度油作为切削液。

镍及高镍合金:切削时局部产生高热,切屑可能烧结。可选用重负荷乳化液或非活性硫化油。

钛:产生磨蚀性、可燃的切削,易发生加工硬化现象,应用重负荷乳化油或极压油剂。

锌:切削面不规整,难以取得良好的光洁度,与乳化液生成锌皂,使乳化液分离,应选专用乳化液。

1.2加工工况

刀具的作用是在主剪切区域把加工材料用强剪切力切除剥落。刀具的推进面和暴露的新鲜金属面之间,由于强烈的附着作用使推进面受到高的应力。因切割剥落的屑要移过刀具推进面,从而形成了第二剪切区域。在第二剪切区域产生的剪切作用使刀具受到最大摩擦力。和冷却作用在此时同样重要。但属于金属去除的机械加工种类很多,又各有其独特的工况。一般认为,在低速加工(螺纹切削、扩孔和齿面切削)时,切削剂的主要任务是缩小推进面与屑的粘结,作为边界剂。在高速切削加工时,切削液的主要作用是降低摩擦热,带走热量。

那些切削液难以到达剪切区域的加工作业,给、冷却造成很大的困难。通常对扩孔、齿轮切削(特别是滚齿)、深孔钻和镗孔、攻丝(特别是盲孔)、深套孔、车螺纹加工要精心选择适用的切削液。

1.3油基和水基的特点

油基切削液指含添加剂的矿物油。水基切削液指乳液、合成液及化学溶液。笼统地说,低速重负荷切削需要充分的,通常选用极压切削油剂。高速浅层切削,冷却是首要的,一般选用水基切削液。有些极压乳化液具有很好的和冷却性,可以用于重负荷切削。一般的研磨加工,有时反而有害,故可使用合成液或化学溶液。加工材料、刀具材质、机床构造也是确定选用油基液或水基液的重要依据。

2使用和维护

2.1配制(稀释)只有水基切削液需要配制,即按一定比例加水稀释。水基切削液特别是乳化型的,在用水稀释时要注意以下几个方面。

2.1.1水质一般情况下不宜使用硬度超过400的水,因高硬度的水中所含的钙、镁离子会使阴离子表面活性剂失效,乳液分解,出现不溶于水的金属皂。即使乳化液是用非离子表面活性剂制成,大量的金属离子也可使胶束聚集,从而影响乳液的稳定性。太软的水也不宜使用。用太软的水配制的乳化液在使用过程中易产生大量泡沫。

配制乳化液的水的适宜硬度应为50~200。可用去离子水和未经处理的工业水混配使用。我国幅员辽阔,切削液品种极多,因此在选购水基切削液之前,最好用当地的水作调配试验。一般禁止使用处理后的污水、含化学物质的水和二次水来配制乳化液。锅炉用的软化水也要慎用。硬水地区的用户可采用碳酸钠法把水软化后使用。软化剂用量最好经试验确定。要防止软水后水的pH值过高。软水剂使用过度会破坏乳化液的稳定。

2.1.2稀释

切削液的稀释关系到乳化液的稳定。切削液在使用前,要先确定稀释的比例和所需乳化液的体积。然后算出所用切削液(原液)量和水量。

选取洁净的容器,将所需的全部水倒入容器内,然后在低速搅拌下加入切削液原液。配制乳化液时,原液的加入速度以不出现未乳化原液为准。切削液原液和水的加入程序不能颠倒。不要在机床的油池(槽)内直接调配乳液。

2.2切削液的使用

切削液的使用效果,首先取决于正确选用适合加工工况的切削品种,以及合理地调配稀释。但以下诸因素亦值得重视。

(1)循环液体总量

机加工过程中循环使用的切削液因飞溅、雾化、蒸发以及加工材料和切屑携带,不断地消耗。这种消耗以a(携带值)表示。其定义是:为了维持机床油槽原有切削液的体积,每月需补加切削液量,以原有体积倍数表示。例如,一个切削液循环系统的a=1,是指一个V为20m3液体循环系统,每月需补充稀释后的切削液(或油)20m3。欧洲汽车工业机加工的a值为1~1.5。个别切削液循环系统可低至0.25,即原来投入的切削液,假设不进行补充,4个月就会被携带完,也有高达a=4的。

携带值a与加工材料的形状关系很大。携带值a无疑与机加工费用相关。但携带值太小会增大切削液的维护费用。每立方米冷却剂一年的总费用K为:

K=k1+k2+k3(元/m3·年)

式中,k1为变换冷却剂的费用(原液+水)、废冷却液排放费用(劳力、清洗、充入水以及停工时间);k2为携带值费用(液体因工件、切屑携出的损失及液体雾化、蒸发的损失);k3为冷却剂的维护费用。从上式可知,携带值过大或过小都会增大费用。

冷却液的逐渐消耗,使循环系统的液体减少,液体温度上升甚至过热,冷却效力下降。冷却效力下降会影响加工件的精度,并使刀具硬度下降。切削液温度升高会加剧液体的雾化和蒸发,污染车间环境,进而增大液体消耗,形成恶性循环。通常机床的液槽(油槽)如处于半满状态就不能发挥液体的应有功效,而且液体易变质。

当使用油剂切削液(净切削油)的温度过高,危害更为严重。净切削油的冷却能力较低,且多用在那些难加工、发热量大的切削中。油槽内净切削油超温不但具有前述危害,还可能导致添加剂分解(分解可能产生有害物质),损坏机床、加工材料和刀具,恶化环境。特别是含大量氯化物添加剂的净切削油,大多用于苛刻的机加工,产生的热量大。这时油槽应增多充油量,以增加热容量。

(2)切削液的流量

一般的机加工应保证压力、大流量。镗深孔和空心杆刀具可采用高压喷射冷却液,以利于把切屑冲刷出来。有些中低碳钢和钛材的钻孔加工采用脉冲式注射冷却液更有利,但要注意适合油泵的性能。苛刻的加工所使用的含氯净切削油,要加大流量。

流量的大小可用循环系数f表示。定义是每小时循环量为总容量的倍数。切削液循环系统的温度、泡沫、污染物含量对f都有影响。

(3)油嘴形状

油嘴的形状应适合被加工件的形状和大小,以及刀具种类和操作程序。良好的油嘴应使切削液一直保持液流平坦,使加工件各部分充分浴于液体内。油嘴形状要按实际效果来调整,基本要求是使最需要冷却和之处得到足够的冷却液。

(4)泡沫

水基切削液和净切削油在使用中会发生泡沫过多的问题。泵速过大会造成液体湍流,或者油管阻力形成喷射会增大液体的泡沫。特别是水基切削液的泡沫性是其主要性能指标之一。不同性质的切削液相混(如净切削油与乳化液相混)也会使泡沫增多。机床变更切削液前要洗净油槽和循环路线。此外配制乳化液时要避免激烈搅拌和空气搅拌。过度软化的水和含碱的水会增加乳化液的泡沫。流体循环泵密封不严也会增大液体的泡沫。泡沫的危害使冷却液失效和油槽容积的浪费。泡沫严重的冷却液会造成机床、刀具和工件损坏。

(5)机床的密封

经常检查机床的轴封(特别是用乳化液作为冷却剂时),防止切削液串入机床齿轮箱、床头箱或其它密封的传动机构内。乳化液如果进入矿物油系统将使机床磨损。含极压剂的净切削油串入机床传动或液压系统,危害较小。

2.3切削液的维护

大型机械加工车间常采用集中冷却系统。这类循环系统的冷却液不停地循环使用,油池寿命十分重要。延长油池寿命除了冷却液的质量和合理使用外,冷却液的维护也是重要的因素。冷却液、切削液的维护工作主要包括以下几项。

(1)确保液体循环路线的畅通

及时排除循环路线的金属屑、金属粉末、霉菌粘液、切削液本身的分解物、砂轮屑,以免造成堵塞。

(2)抑菌

削液(特别是乳液)抑菌生长的重要性是人所共知的。可采用定期投入杀菌剂和用超微过滤等手段抑制细菌的繁殖。

(3)切削液的净化

污染切削液的物质主要是金属粉末和砂砾细粉、飘浮油和游离水、微生物和繁殖物,特别是毛霉目真菌。

切削液内所含的固体粉末来源于加工件和刀具。这类固体不但易堵塞管路并有以下危害:(1)悬浮于冷却液内的粒子损坏泵的密封,增大刀具磨损,损害人的皮肤,影响加工质量;(2)固体沉淀在油池底部,与有机物聚结,形成一层有大量气孔的沉淀层,为微生物繁殖提供了有利条件,而霉菌的细丝更稳定了沉淀的固体;(3)切削液中的金属粉末具有很高的化学活性,可使切削液中的某些成分失效。菌污染使切削液酸败分解,霉菌的繁殖产生粘稠物,导致管路和喷嘴堵塞。

飘浮油是指机床传动和液压系统用油因机床密封不严漏入切削液系统的油。飘浮油的危害是使切削液系统的某些材料膨胀变形,干扰了乳化液的乳化平衡,使乳化液失去稳定性。而且飘浮油常浮于乳液油表层,阻挡了乳化液和空气的接触,导致乳化液缺氧,使厌氧菌快速繁殖,加速乳化液的腐败变质。