美章网 精品范文 数学概率统计论文范文

数学概率统计论文范文

前言:我们精心挑选了数篇优质数学概率统计论文文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。

数学概率统计论文

第1篇

1.概率统计教材中数学文化元素的现状

在高校概率统计教材中,从数学文化的角度对概率统计教学进行诠释已经得到数学教育界的普遍重视,教材在数学文化价值教育方面起到至关重要的作用。高校概率统计教材在数学文化教育方面也做了大量的工作,我们以盛骤等人主编的《概率论与数理统计》(第四版)、缪全生主编的《概率与统计》(第三版)和同济大学应用数学系主编的《工程数学—概率统计简明教程》三本教材(后文中分别以教材一、教材二、教材三称之)作为例子,它们在数学文化渗透方面的特点体现在:

(1)教材设计更注重生活和技术应用领域背景的渗透

在内容编排方面,每个知识点都能注意以生活实际或当前的技术应用问题作为背景予以介绍,强调知识的直观性和应用背景,强调实际问题的解决,使得学生有比较直观的认识,能提高学生的学习兴趣和学习热情。如在介绍条件概率的定义时,教材几乎都能从掷硬币、掷骰子等简单的生活实际出发,从特殊到普遍地引出条件概率的定义。内容背景涉及较多的是产品质量分析模型(如质量、寿命、含量、误差等方面),教材一和教材三比教材二涉及应用背景的面更加广泛、量更大。在例题和习题设计方面,教材注重以解决有经济、社会、工程技术等方面实际背景的问题为主,旨在提高学生的实际应用能力。在所统计的三本教材中,具有应用背景的例题占总的例题数超过了50%,习题中有应用背景的题目在50%左右,特别是以自然科学为应用背景的题目占了绝大多数

(2)紧密结合信息技术的发展,提高统计计算能力的培养

加强数理统计的内容,注重统计方法在实际工作中的应用。如增加了假设检验问题中的P值检验法和一些统计图的应用,还介绍了bootstrap方法在数据处理方面的应用。增加Excel软件和“宏”数据分析工具的使用。信息技术的发展给概率统计的研究赋予更强大的工具,没有现代的专业统计分析软件作为研究工具,概率统计问题的研究是不可想像的,在概率统计教材中适当引入统计软件的运用是必要的。虽然现在统计分析软件的功能很强大,但需要经过专业的学习才能掌握,为适应概率统计的入门使用,盛骤等人主编的《概率论与数理统计》(第四版)中就增加了Ex-cel软件和“宏”数据分析工具在概率统计中的应用,特别是在数理统计方面的运用,这对没有经过专业统计软件学习的学生和使用者有很大的帮助。

2.高校概率统计教材数学文化元素渗透中存在的问题

(1)教材中数学史的呈现太少

呈现方式不明朗数学史的学习,能使学生了解数学在推动社会发展方面和社会发展之间的相互作用,能使学生了解数学科学的思想体系、数学的美学价值和数学家的创新精神等因素。教材中的定义、定理、法则和公式都是数学家们经过上百年甚至上千年的历史锤炼后的完美逻辑体系,这种完美的形式忽略了曲折复杂的数学发现过程,但正是这种过程隐含着丰富的数学文化元素。如对概率定义的引入,三本概率统计教材几乎都是这样表达“历史上有人做过……其结果如表……”,然后在表格中列出历史上的几个有关频率的试验,甚至有些教材只是用简短的语言一带而过,然后给出概率的统计定义,紧接着就给出概率的其他定义。这样的表达,学生缺乏对概率定义公理化过程的认识,也失去了一次培养学生提高学习概率统计兴趣与热情的机会。更重要的是,概率定义的形成本身就是数学抽象化过程的典型例子,在这个过程中,学生可以体会到数学的抽象特性和方法。遗憾的是,目前高校概率统计教材中出现数学史的地方实在太少了。据统计,教材一、教材二和教材三中出现数学史的地方仅有频率的定义中提到的德摩根、蒲丰和皮尔逊等人抛硬币试验的介绍或一些试验数据;教材二在引言中则对概率论的发展历史作了一个简介。三本教材中对数理统计的历史介绍等于0,其实概率统计教材中能出现数学史的地方比比皆是,教材可以充分利用这些素材进行呈现。

(2)应用背景相对薄弱

概率统计是一门实践性强、应用性广的学科,当前高校教材都注重生活和技术应用领域背景的渗透,社会科学的应用背景相对薄弱。这样的知识呈现方式,对提高学生的学习兴趣和应用意识都有很大的帮助。但数学文化背景的方式是多样,如重要数学名人物传、数学发展事件记、重要数学成果和概率统计在社会科学方面的应用等内容,这是体现数学文化价值的一种有效方式,也是学生从中获取数学思想方法、体会数学精神和体验数学美的重要途径,遗憾的是当前高校概率统计教材在这方面还比较缺乏。

(3)多元文化缺失

概率统计已经成为现代社会、经济、管理等学科的重要工具,高校概率统计教材在体现这些领域的应用方面有较大的篇幅,但与学生相关生活文化背景的联接方面显得不够,这容易导致学生认为很多概率统计的知识与他们生活或工作相隔遥远甚至没有关联,严重影响了学生学习概率统计的兴趣和态度。

二、概率统计教材设计

中凸显数学文化的思考现行的概率统计教材的知识系统逻辑体系已经经过多年的验证,证明是可行的。数学文化视野下的教材设计目的是,如何在现行教材的知识体系中体现数学文化的元素,数学文化很大一部分是内隐的,这就要求我们不能单纯把数学文化内隐的知识部分相关内容简单地累加到教材里面去,而应该有机地结合在概率统计外显的知识内容中去。下面谈几点构想。

1.关注数学史在教材中的作用

概率统计教材的内容安排要适当兼顾知识发现的历史,使学生能够领略到数学内容发现的过程,体会到数学知识发现过程所蕴含的数学思想、数学方法和数学精神,有利于学生数学知识体系的建构和优秀品质的形成。如在介绍“概率”的定义时,教材的编排最好能介绍概率定义形成的三个历史阶段:概率的统计定义、古典定义和公理化定义。使学生在学习概率的定义时能了解概率定义形成的历史,了解贝朗特悖论的意义,得到数学螺旋上升抽象过程的感悟,掌握数学思维的方法,从而学会批判、质疑、独立和严谨的思维品质。在学习DeMoivre-Laplace定理时可以介绍DeMoivre等人在二项分布正态逼近的研究工作,这项研究是数理统计学的基础,也是概率统计思想的重要体现,重温这段历史可以启迪学生的思维、激发学生的兴趣。回归与相关分析的发现对数理统计学发展的影响是极其重大的,这个统计模型的应用,使统计学由统计描述时期进入了统计推断的时期,它促使一个严谨的统计学框架的形成,学习该知识点内容时,很有必要向学生介绍回归与相关分析的产生历程。其实,概率统计中还有很多地方可以进行数学史介绍的,学生在了解这些知识产生的过程中将会得到浓厚的数学思维熏陶。

2.强调知识与文化的有机融合

概率统计的数学文化部分呈现要以导引的形式出现,而不能把相关内容简单地累加到教材中去,从而保护学生自我探索热情,使数学文化真正植根于学生的知识建构中去。如在“概率的基本概念”部分,有必要介绍概率定义形成的三个历史阶段,但在具体的教材呈现中,没有必要把这些历史材料详细地罗列到教材中去,如果只是简单地把数学史料添加到教材里面去,只能增加教材的容量,导致教材臃肿,变成数学史的堆积而已。而应该是在循序渐进介绍概率定义的同时,适当采用简洁和引导性的语言,营造一种宽松的数学学习环境,引导学生学会自己查找相关学习资源,让学生既能感受到概率定义的发展历史,也能掌握如何通过查找资料来进一步验证和了解这种发展的详细情况的能力。又如,在“假设检验”这一章,可以介绍历史上威尔登检验骰子是否均匀的试验,但没必要陈述这个试验的详细过程,可以以问题的形式把威尔登与皮尔逊对试验结果的争论呈现出来,使学生既能了解假设检验产生的这段历史,也可以重温探索科学的过程。

3.充分发挥现代信息技术功能

第2篇

“概率统计”是一门具有实践性与理论性的重要学科,在不断发展的过程中已经成为数学科目不可或缺的组成部分,并且对此起到重要的作用。在根据课程的相关特点中,利用现代科学进行审视与组织,从而使数学概率统计中融入新鲜元素,在教学内容上引入有趣的应用题目,并且要对科学方法以及相关技术、概率统计知识进行联系。学生在运用“概率统计”知识的基础上们能够建立数学模式,对“概率统计”的知识也会产生兴趣爱好。除此之外,还能促进学生学习习惯的改变,变被动为主动,从根本上提高学习效率。将数学建模的思想积极融入到数学概率统计之中,能够在不打破传统知识的同时,应用案例进行解决。通常情况下,学习通过对案例的学习,能够亲自体验在使用概率统计知识进行数学建模的整个过程,从而加深对概率统计知识的认知与理解,促进学生的学习兴趣与学习习惯。从另一个角度而言,学生在努力学习数学概率知识的同时,能够真正做到“学以致用”,由于数学概率统计是一门重要且复杂的课程,在不影响到教学大纲的情况下利用多种手段进行教学,可以增强学生数学建模的基本能力,从根本上体现数学建模的思想。

二、教学方法得以改进,促进开放式学习方式的形成

(一)改变传统教学模式,探索新型教育方式通过实践证明,传统的教学模式与方式无法适应社会的需要,不能满足现代化的教学要求,因此无法在传统教育模式中取得满意的教学效果。通过将数学建模融入到数学概率统计之中,可以在传统的教学模式中融入新鲜元素,并且结合相关案例,采用启发式教学模式进行教学,实现由浅入深、由难到易,使学生掌握数学概率统计的基本概念以及相关方法,从而对数学学习产生兴趣,变被动学习为主动学习,从根本上加深学生对数学概率统计知识与建模思想的认识与理解。

(二)改变传统学习方式,建立开放型学习形式在数学概率统计的教学内容上,认可教师不可以按照传统的教学模式作为基本模式,不能按照教科书进行照本宣科。众所周知,数学建模是没有固定模式的,在进行数学建模时,要积极利用各种方式、各种技巧,因此,教师在对学生传授相关知识的同时,要积极引导学生如何学习,如何正确的使用建模技巧,并且要让学生对问题发生的背景以及过程进行探索,从根本上提高学生的自主创新能力。除此之外,在对习题进行处理时,学生也不能局限于比较充分的问题上,要不断引用条件不充分的问题进行研究,并且要自己动手对材料、信息,对数据进行分析,建模,并且还要对较为抽象的问题进行具体化,从而增强自身对学习的兴趣与能力。此外,教师要不断开展讨论课,让学生积极发表自己的建议,对问题的见解进行回答,加强与同学之间的交流与学习,从而使学生在开放型学习环境中不断成长。

三、改善教材中的理论学习,加强实践学习

在学生的实践活动之中,为了能够使学生对知识有所了解,那么教材僬侥设计有关学生训练的习题。一般而言,数学概率统计中的教材在教学内容的处理上过于理论化,对习题的次序与搭配却不符合学生的基本特点,甚至有部分教材在设计的习题中难度过高,从而导致学生在学习中遇到困难,对数学概率统计与数学建模失去兴趣。从实际角度而言,数学概率统计作为数学教材,习题是非常重要的,大量的习题可以锻炼学习的逻辑性与思维型,因此,在对数学教材进行编写时要按照由浅入深的基本原则,对练习题进行分门别类的编写,从而满足不同层次与不同对象的基本需求。在现有的数学概率统计习题之中,还需增加比较有趣、与生活有关的系统,并且该类习题要对数学建模的思想进行体现。与此同时,在教材中还应该添加应用性强的概率案件与统计案件,比如像数据的统计、数据的拟合等,让学生能够学会数学建模,在丰富学生课余知识的同时,也在一定程度上提高了学生的应用能力。

四、结语

第3篇

我们熟知许多科学定律,例如牛顿力学定律,化学中的各种定律等。但是在现实中,事实上很难用如此确定的公式描述一些现象。比如,人的寿命对于个人来说是难于事先确定的。就个体来说,一个有很多坏习惯的人(比如吸烟、喝酒、不锻炼的人)可能比一个很少得病、生活习惯良好的人活得更长。实际上活得长短是受许多因素影响的,有一定的随机性。这种随机性可能和人的经历、基因、习惯等无数说不清的因素都有关。总体来说,人的平均年龄非常稳定。一般而言,女性的平均寿命比男性多几年。这就是规律性。一个人可能活过这个平均年龄,也可能活不到这个年龄,这是随机性。但是总体来说,平均年龄的稳定性,却说明了随机之中有规律性。又比如你每天见到什么人是比较随机的,但规律就是:你在不同的地方一定会见到不同的人,你在课堂上会见到同班同学,你在宿舍会碰到同寝室的室友,你去打球会见到球友,这两种规律就都是统计规律。

二、巧借实例自然引入新概念

着重培养学生的数学应用意识,教师在教学中的示范作用很重要。概率统计课程的概念是教学的难点,教师上课如果直接写出来,则学生会感到很突兀,很抽象且难于接受。一个教学经验丰富的教师应当重视概念引入的教学设计,从学生的认知规律出发,先使学生对概念形成感性认识,揭示概念产生的实际背景和基础,了解概念形成的必要性和合理性。例如极大似然估计的概念教学,一般引入的第一个例子是有个同学和一个猎人去打猎,一只野兔从前方经过,只听一声枪响,野兔就倒下了,这发命中目标的子弹是谁打的?同学们一定会推断是猎人,你们会说猎人命中目标的概率比同学的大,这个例子说明了你们形成了极大似然估计的初步思想。极大似然估计的思想是在已经得到实验结果的情况下,应该寻找使这个结果出现的可能性最大的那个θ作为θ的估计θ∧。极大似然估计法首先由德国数学家高斯于1821年提出,英国统计学家费歇于1922年重新发现并作了进一步研究。第二个例子是两个射手打靶,甲的命中率为0.9,乙的命中率为0.4,现靶面显示10中6,且是一个人所为,请问是谁打的?一开始学生中会形成不同意见,有的说是甲,有的说是乙,有的不知如何判断。表面看,甲的命中率高,如果说是甲好像低估了甲的水平,乙的命中率低,如果说是乙又高估了乙的水平,但现在要作一个合理推断,我们建立一个统计模型:有一个总体为两点分布,参数为P(0.9或0.4侍定),现有样本X1,X2,…,Xn(n=10),其中有6个观察值为1,4个为0,设事件A={10枪6中靶心}若是甲所射,则A发生的概率为P1(A)=C610(0.8)6(0.2)4=0.088,若是乙所射,则A发生的概率为P2(A)=C610(0.8)6(0.5)4=0.21,显然,P1(A)<P2(A),故可认为乙所射的可能性较大。从这两个实例中教师再引出极大似然估计的原理:在已经得到试验结果的情况下,我们应该寻找使这个结果出现的可能性最大的那个θ作为真θ的估计,显得水到渠成。

三、合理假设形成模型意识

概率统计学科本来就是为了解决实际问题而产生的,它的起源是对赌博问题的研究。要培养学生的应用意识更应加强模型意识。数学模型是指应用数学的方法和语言符号对现实事物进行数学的假设和合理简化,可以理解为现实事物在数学世界的抽象存在,也是人们对实际问题的原型进行的数学抽象,它的目的是便于应用适当的数学工具得到对问题的量化研究。在概率统计教学中建立的数学模型应当选择问题的主要要素,模型相对比较简单并且易于教学推理和分析。

四、循序渐进培养应用能力

数学应用能力是一种综合能力,应循序渐进,慢慢培养。在现实中我们要注意:(1)概率是指某件事情发生的可能性大小。例如在天气预报中会提到晴天与雨天,预报明天下雨,只是说雨天可能性很大,这种概率不可能超过百分之百。(2)有些概率是可以估计的。比如掷骰子,你得5点的概率应该是六分之一,但掷骰子的结果还只可能是六个数目之一。这个已知的规律就反映了规律性,而得到哪个结果则反映了随机性。(3)应当在大量重复试验中出现的频率来估计生活中随机事件出现的概率。(4)多学习一些统计软件,充分利用一些直接的或间接的数据来源。

五、结语

第4篇

概率论与数理统计案例教学方法的应用中,案例的正确选择非常重要,选择合适的案例可以让学生能更好的进入数学知识点的学习中,身临其境的体会概率论与数理统计带来的学习乐趣,使课堂气氛变得活跃,从而提高教学质量,同时也增强了学生学习的主动性。例如:选择概率和彩票的案例进行教学,教师可以适当对彩票的相关知识进行拓展;然后将概率和彩票的中奖率联系起来,提出概率的运算思路,在其中添加统计的知识点,让学生大胆的提出问题;最后,对概率和统计进行归纳,对概率和彩票中奖率的关系进行解答,增强学生的学习兴趣,培养学生的独立思考能力,从而达到案例教学的目的,促进教学质量的不断提高。因此,正确选择案例,活跃课堂气氛,在教师的带动作用下,数学教学可以变得很轻松愉悦,概率论与数理统计的教学质量可以得到快速提高,从而促进学生综合素质能力的全面发展。

二、开放学生思维,明确教学目的

在数学教学过程中,学生是是教学的主体,每个人都有自己的思维能力,所以教师必须明确教学目的,使学生的思维得到尽可能的开放,促进学生探索创新能力的不断提高。因此,教师在选择案例时,要综合评估学生的学习能力,对概率的概念、公式进行仔细讲解,将统计知识点贯穿到整个课堂教学,使案例突出教学重点,达到知识点融汇教学的教学目的。开放课堂教学,不仅可以使学生掌熟练握更多的概率论与数理统计知识点,更能拉近学生与作者、学生与自己的师生距离,使师生之间的感情更加融洽,从而大大提高教学质量的目的。

三、有效组织教学,提高综合能力

在数学学习是整个过程中,打好基础是非重要的,因此,在概率论与数理统计的教学中运用案例教学,教师要有效组织教学,促进学生综合能力的提高。针对概率论与数理统计的难点和易点,循序渐进的提升难度,让学生熟练掌握每个知识点,培养学生敏捷的数学思维能力,不断开阔学生的视野,使学生的概率论与数理统计分析能力变得更强,从而达到提高教学质量的目的。例如:针对篮球投篮问题,根据球队人数的变化来计算投篮的概率,从最简单的计算开始,随着人数的变化,计算复杂程度也变得越来越高。这就是一个概率论与数理统计知识点逐渐加深的案例,通过这个案例教学,学生的思维能力可以不断增强,综合能力也会得到不断提高。

四、课后教学总结,不断改革创新

概率论与数理统计的教学中,案例教学方法应用的课后总结,是教师对课堂教学不足的完善,可以有效保证案例教学的教学质量,不断创新教学方法和模式,同时促进教师自我的不断提升。课后总结,分为学生的总结和教师的总结,学生通过总结,可以对案例教学进行仔细的分析,培养学生处理问题和解决问题的思路,提升学生实践动手能力;教师总结时,对重点知识进行再度印象加深,促进学生不断探索和创新,从而促进教师教学的不断创新。

五、结束语

第5篇

关键词:概率论;数理统计;数学建模

教学研究概率论和数理统计是教育领域中的两个不可或缺的学科,而这两者都有着较为抽象的特征,这就意味着学生在学习时难免会遇到这样或那样的困难。倘若无法正确认识相关概念,那么在今后的深入学习中便会遇到更多的难题。在很多情况下,日常练习与考试中出现的大部分错误主要就是因为学生未对概念有正确的认识,更不用说知识拓展了。这就要求教师在包括课前、课上以及课后的教学过程中考虑怎样设置教学才可以使学生愿学,好学以及学好。笔者将从以下几个方面分析概率论与数理统计教学优化的对策。

1以课程发展历史切入,激发学生兴趣

数学学科中涉及到的理论、思想以及思维等都是社会得以进步的关键,同时还是衡量人类发展水平的标尺。不管是学习个体,还是全人类,其发展均离不开数学的辅助。数学并不单单是一门课程,同时还是一类文化。不仅如此,它还是人们得以进步的重要手段与思想理念。数学中蕴含的意义不受时间和空间的限制,它存在于人们发展的各个时期。西方数学家早已明确提出,多种学科,包括心理学,语言学等,都和数学之间有着千丝万缕的联系。所以,在教学过程中,教师可以向学生讲述概率论与数理统计和其他学科间的关系及其发展历史,以此来激发学生的学习兴趣。只要学生对学习产生了兴趣与热情,那么概率论与数理统计教学质量必将会得到有效提升。

2弥补传统教学中的不足

从整体上看,《概率论与数理统计学》课本本身十分重视与概率论有关的理论知识。相比之下,数理统计的实践知识所占比例则要稍显偏少。笔者通过深入研究分析后发现,教材所关注的更多的是概率论知识理论层面上的传授,而对于数理统计在实践中的应用则涉猎的非常有限,也没有进行具体的分析。例如,数理统计一般都只讲解到区间估计与假设检验两个环节就停止,造成学生无法真正掌握并运用有着良好实用特征的回归与方差分析方法。而在一些其他的部分,也仅仅介绍了概率论,没有突出数理统计,学生尽管掌握了概率论的率计算法则,却并没有真正掌握这一方法的实际运用。通常情况下都是在学习了理论知识后便快速遗忘,其最终结果就是学生虽然拿到了实践数据,但并未掌握具有较强实用性的分析方法。这种现象不利于学生实用能力的有效提升,也背离了应用型本科院校重视提升学生应用型能力的教育思想。

3揉合数学建模实现应用能力的提升

人们都知道,学习数学学科的最有效方法就是“学以致用”。就现阶段的教育现状而言,学生从最初接触数学开始,对数学的认识就仅限于能够解题,获得高分。无可厚非,这是一种衡量学生知识掌握情况的重要标准,但绝不是仅有的标准。尽管学生拥有牢固的理论基础,但如果无法将所学应用到生活实践中,那么整个学习过程将毫无意义。在计算机水平持续提升的阶段,概率统计软件层出不穷,且使用规模也在不断扩大,这为学生的实际应用创造了难得的机遇。数学建模实际上就是以社会生活中的某些生产与生活现象为基础,借助数学方法来获取缓解或解决对策,这需要学生有较强的实践能力。对学生的数学建模思想进行针对性的提升不仅能够提升学生应用概率论与数理统计学理论的实践能力,还可以有效提高学生的问题分析技巧。所以,教师在教学过程中应做好对学生数学建模思想的渗透工作,融入到实践性较强的案例中,从而使学生可以在不断的分析与研究过程中领悟应变能力与问题解决能力的重要性。

4改进教学方法和教学手段

现实案例和学生的生活环境有着密切的联系。学生对所处环境进行评价与研究,从而透彻的理解各个案例,探寻问题的根源,最终联系所学的概率论与数理统计知识来获得问题的解决办法。这一教学方式和生活息息相关,能够在很大程度上刺激学生的主动探索热情,增强他们的实践观念,帮助他们获得学以致用的成就感。就拿二项分布与正态分布而言,它们就能够解释多种生活实践中的现象,包括硬币的抛掷概率等,有着非常强的现实意义。这些案例能够激发学生主动投入到实践探索过程中去,在翻阅资料,搜集信息,并结合概率论与数理统计有关理论的过程中透析案例并寻求解决办法。不仅如此,保险理赔、公交车是否准时以及商业用电等都是学生在生活工作中随处可见的实际案例,学生通过了解、分析这些问题,探析其本质,从而逐渐增强自身的概率论与数理统计应用观念,并提升数学能力。

5完善考核方式

考核在整个教学环节中扮演着不可或缺的角色。它不仅能够用于了解学生学习过程中存在的问题,还能够对教师的教学水平进行一定的评价。概率论与数理统计课程是考试课程,所以不应完全根据期末成绩占总分70%,平时成绩占30%的计算方法得出学生的最终文化分。而是应把考核体制中的成绩评估进行进一步细化,这不仅可以提升学生的学习主动性,还可以突出学生在应用概率论与数理统计知识方面的技能与水平。在这样一种详细的考核机制中,学生的实践能力才可以得到最终的提升。因此,概率论与数理统计教学必须要完善考核方式。

6总结

总而言之,概率论与数理统计教学过程中,教师不应将教学目标定位使学生掌握有限的概率论与数理统计解题方法,而应考虑帮助学生在学习这一学科的各个环节中开拓学生的思考方式与视野。同时,还要使学生感受到这一学科在实践当中的使用价值,从而有效增强学生分析与解决问题的技能。只要教师在教学中实施精心教育,那么学生的自身素质必然会有所提高,也会为学生的就业打下良好的基础。

作者:王晓敏 单位:西安外事学院工学院

参考文献:

第6篇

关键词 随机变量 分布函数 概率密度 数字特征

中图分类号:G642 文献标识码:A

0 引言

概率论与数理统计是研究随机现象的数量规律的一门数学学科,该课程作为现代数学的重要分支,在自然科学、社会科学和工程技术的各个领域都被广泛地应用,它已成为各类专业大学生的数学必修课之一。

由于概率论的研究对象与一般数学学科不同,因而处理问题的方法也不一样。它除了具有其它数学学科的理论的抽象性和逻辑的严密性外,还具有自己独特的思维方式和计算技巧。它在解决问题时更注重概念与思路,因此学生在学习这门课程时,特别是在前期的学习过程中常常感到困难,不易掌握它的规律。根据这一现象,教师在教学中应采取一些措施,进行一些针对性的处理,以帮助学生克服困难,逐步懂得运用概率论的特点,掌握其规律性。

下面对这门课程的教学中的几个问题进行一些探讨。

1 随机事件的关系及运算

随机事件是概率论与数理统计这门课程的最基本的概念之一。了解事件的关系及运算,把复杂的事件分解成若干个简单事件的和或积,从而利用概率的基本公式计算随机事件的概率,是学生应该掌握的基本方法,也是第一章的重点和难点。

在讲授事件的关系和运算时,可以结合集合的关系及运算,并用文氏图加以说明。例如,列出如下的对照表(表1,表2),就能使问题清楚、直观,便于学生理解和掌握。

同时,在讲课中,应特别注意强调其概率意义的描述,避免学生走入只会从集合的角度理解问题的误区。

2 几个基本概念之间的关系

在课程的第二章引进了随机变量及其分布的概念, 这一部分的特点之一是:基本概念很多,描述这些基本概念之间的关系的定理和公式也很多。因此学生容易将一些概念混淆,搞不清它们之间的关系,记不住相应的公式。针对这些问题,在讲完一部分相关的内容以后,可以进行一次小结,将相关的概念以及它们之间的关系进行梳理。例如,可以用图形来表示各个概念之间的关系,并在图中标出所用的公式。这样做可使各个概念更清楚、直观、容易记忆。

3 随机变量的数字特征

随机变量的数字特征是用来描述随机变量分布特征的某些数字。其中有数学期望、方差、标准差、原点矩、中心矩、协方差、相关系数等。由于随机变量分为离散型和连续型两类,它们的各种数字特征的计算公式也不相同。在讲授这一部分时可以将离散型和连续型的情形加以对照,这样既能使学生加深对概念的理解,又容易记住公式。例如,在讲授一维随机变量的数字特征时,可以列出下列对照表(表3)。

从表中3可以看出,离散随机变量与连续随机变量的同一数字特征的计算公式的不同之处仅仅在于一个是求级数,另一个是求积分。将离散求和换成连续求和,就可以由离散随机变量的数字特征的公式得到连续随机变量的相应公式。

本章的另一个难点是求各种数字特征的公式太多,学生容易混淆,难以记住。例如对于二维离散随机变量来说,就有数学期望、方差、标准差、各阶原点矩、各阶中心矩、协方差、相关系数等的计算公式。对于连续随机变量也有这些相应的公式。要区分、记住这么多公式是比较困难的。针对这一问题,在讲完相关的内容后,可以将上述所有公式的记忆归结到两个公式:离散型和连续型随机变量4 结束语

概率论与数理统计这门课程的难点主要集中在概率论的部分,教师在教学中应根据每一处难点的具体情况,采取切合实际的、具体的方法来解决问题,帮助学生克服困难。这样才能使学生真正理解和掌握该课程的基本概念、基本理论和基本方法。

参考文献

第7篇

关键词:概率统计;数学软件;Maple

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2016)31-0083-02

一、传统概率统计教学中的问题

(一)重概率轻统计

我国概率统计教学中普遍存在“重概率轻统计”的问题,具体表现为:(1)大多数工科院校概率统计课程只能讲授到参数估计中的点估计部分。因为学时较少,统计推断中重要的区间估计和假设检验只能作为自学内容。(2)大部分教师对于概率部分内容非常熟练,但是统计部分内容较为生疏。

造成这种现象的原因主要有以下几点:(1)公共基础课概率统计学时一般较少,例如安徽理工大学概率统计课一般为48学时;(2)统计推断部分内容,实用性很强,计算量也比较大,动辄数百个数据。因此,如果不借助软件仅靠人工计算确实难度很大。(3)考研概率部分的试题一般不考统计部分内容。

(二)重理论轻应用

概率统计特别是统计推断部分的内容有着很强的应用背景,例如:近些年的全国大学生数学建模大赛的赛题,几乎都涉及到统计学的内容。对已给数据进行初步的检验、分析比较、分类筛选、总结回归等,这些都是评阅要点中明确指出的重要得分点。由于教学中没有涉及统计推断部分的内容,造成很多参赛学生只能临场边学边做,十分被动。

由于长期轻视统计应用的教学,造成很多数学专业的学生在毕业设计时选题范围十分狭小,很难写出高水平的毕业论文。

(三)重解题技巧,轻视对学生动手能力的培养

长期以来概率统计相关习题主要以手工计算为主,因此过分强调解题技巧。例如,古典概型的题型中需要很多排列组合的技巧、计算一些连续型变量的函数型分布和函数型数字特征时需要用到很多积分技巧等。但是很多实际的问题,例如以统计推断为背景的题型,往往更加强调学生的动手能力。包括对大数据的处理能力(分析数据、标准化数据等),以及借助常用软件计算一些常用统计量的值等。由于平时疏于这方面的教学,很多学生遇到一些简单的实际问题往往束手无策。

二、多种数学软件辅助教学的优点

引入多种数学软件辅助教学的优点主要体现在以下方面。

1.概率统计总课时有限,不可能系统地学习某一特定的统计软件。针对不同问题的特点,选择最为有效、最简单的数学软件来解决。这样可以节约大量的时间,增加效率。本文在第四部分会结合实例进一步说明。

2.通过多种软件的使用,可以最大程度地扩展学生的知识面,使学生学到在传统课堂教学中无法获取的实用知识。

三、多种数学软件辅助教学的具体措施

具体如何来改善传统概率统计教学,提高教学效率和学生的实际动手能力?各学校可以根据具体实际情况结和自身条件因地适宜地选择不同的措施。下面给出一些建设性的意见。

1.开设概率统计教学实验课。概率统计总课时并不多,课堂时间在专门介绍应用以及各种软件的使用确实时间不够。因此,可以在原有的课时基础上专门增加3~4次实验课,结合各种软件讨论和解决概率统计别是统计部分内容。

2.录制教学视频或者直接收集相关资料。因为各学校的课时都比较紧张,如果无法开设单独的实验课可以录制视频,或者直接给学生提供相关的资料。最好能够建立相关的监察机制,这样可以更好地引导和督促学生自主学习。

3.开展相关的毕业设计和毕业论文。在高年级学生中的毕业设计和毕业论文选题中有针对性地加入一些统计类型的课题。

4.利用数学建模平台建立跨学科交流平台。每年一次的全国大学生数学建模比赛给各学科提供了一个重要合作契机。统计学在数学建模中有着举足轻重的作用,几乎每年都会有与数据处理、数据检验和分析等相关的题目。可以把历年来有关概率统计内容的题目在学生中进行推广,也能提高学生的概率统计实际应用能力。

五、结束语

通过本文第四部分可以看出,很多概率统计的问题如果借助数学软件来解决可以省去很多烦琐的计算过程,有利于解决更加复杂的实际问题。如果能够在平时教学中加入适当的数学实验课,学习相关软件的使用,不仅可以提高学生的学习兴趣而且还可以一举解决传统教学中的诸多问题。

参考文献:

[1]唐国强.Excel在概率计算中的应用[J].安阳大学学报,2003,3(1):55-57.

[2]李晓毅,徐兆棣.概率统计教学与数学建模思想的融入[J].沈阳师范大学学报,2008,26(2):245-247.

[3]韦程东,唐君兰,陈志强.在概率论与数理统计教学中融入数学建模思想的探索与实践[J].高教论坛,2008,(2):98-100.

[4]阿荣.Maple在概率论与数理统计教学中的应用[J].中央民族大学学报(自然科学版),2012,2(21):67-71.

第8篇

作为数学与应用数学专业一门重要专业课,首先在教学内容上突出了师范性。这是培养中学合格数学师资的基本要求,主要做了以下两方面工作:一是为适应素质教育和社会发展的要求,加强了中学数学中概率统计内容的教学,例如古典概型、事件的独立性等。突出了中学数学中概率统计的随机性思想方法的教学。二是为适应教育科研的需要,渗透了教育统计的相关内容,增加了试卷统计分析的基本方法,为学生今后从事教育科研打下了一定的基础。其次在教学内容突出了先进性。先进性是概率统计课程教学改革的根本要求,而目前高师概率统计的教学内容对新知识体现不够,缺乏先进性和时代性。因此,在教学内容中增加了统计方法在解决经济中问题的有关内容。第三,突出了本学科的实际应用性。应用性是由这门学科的特点所决定,这门学科可以说是一门应用性非常强的学科,是一种工具和方法。因此,我们调整了教学内容,加大了应用性方面内容的教学,例如用假设检验方法解决实际问题等。

2.改进了概率统计的教学方法

目前高师概率统计的课堂教学仍在采用传统的“满堂灌”的教学方法,无视学生的表现和教学效果,教学的目的往往只针对最后的统一考试,教学过程中只是简单地把知识灌输给学生,强调对解题能力的训练,忽视了学生对知识理解和应用的掌握,忽视了对学生创新能力的培养。因此,我们改进了概率统计的教学方法,首先在概率统计课堂教学中突出了的数学思想的教学。概率统计中的数学思想的教学主要有随机思想、统计调查思想、统计描述思想、统计推断思想等。在概率统计教学过程中,我们注重了数学思想方法的教学,注意了各种统计方法的使用条件及注意事项,而且分析它们与一般的数学思想方法的异同,突出概率统计思想方法的特点。其次在概率统计教学中采用了类比方法进行教学。类比是一种从特殊到特殊的推理,具有推理的猜测性、联系的广泛性、探索性等特点。概率统计中有许多内容可以作类比教学,例如,多维随机变量的教学可与一维随机变量的进行类比,连续型随机变量的教学与离散型随机变量进行类比。

3.加强了现代信息技术与课程内容的整合

现代信息技术的发展对数学教育的影响是不言而喻的。在实际课堂教学中,教师们充分利用计算机的优势,使得概率统计这门学科学生学起来更便利,使得课堂更加多样和丰富多彩,现在在我们这个学科的课堂上,计算机已经成为了学习的有力工具。对于概率统计的教学,除了采用多媒体教学之外,还让学生通过数学软件或统计软件,如MatLab、SAS等上机操作实验,体验概率统计的思想,如概率中的蒲丰投针问题、冯-诺依曼用数学程序在计算机上模拟等给我们上机操作提供了有趣的题材。我们在概率统计课堂教学中强调了学生动手能力的培养,在教师指导下运用所学的知识和计算机技术,分析解决一些实际问题,写出分析报告。例如,在回归分析这部分内容的学习过程中,通过让学生收集本校大学生学习投入与学业成绩的相关数据,指导学生运用统计软件,建立大学生学习投入与学业成绩之间关系的回归模型。这样做大大提高了实践教学的效果,在实验中,通过动手能帮助学生理解该课程中一些抽象概念和理论,同时利用所学的方法和技巧,让学生独立完成研究型的小课题,从而培养学生的创新精神和实践能力。

4.改革了考核方法

课程的考核方法是教学中重要的一个环节。现在该课程的考核方式与其他课程基本上类似,期末考试成绩占80%(或70%),平时成绩占20%(或30%)。现行的考核方式不尽合理,不能全面的评价学生的整体成绩,所以我们进行了改进。我们在实际工作中采取了灵活多样的多种方式相结合的考核方法。就是将传统的单一闭卷考试方式改为闭卷与开卷相结合、平时考核与期末考试相结合的灵活多样的考核方法。闭卷考试主要考查学生对概率统计概念、理论的掌握程度;开卷考试主要考查学生对概率统计方法的掌握程度,通过设计一些与教学相关的、应用性的综合型案例,采用数学建模的形式,让学生完全自主的运用所学方法去分析、讨论和解决实际问题。平时考核的方式采取多种形式,包括平时的作业训练、学习小结及撰写课题小论文等。课题小论文是教师在教学过程中设计一些小课题,通过学生对这些课题的分析、讨论、总结及撰写论文的过程,达到了调动学生学习主动性、促进了自主学习的目的。多样的考核形式,既增强了教师教学的灵活性,又让学生真正体会到学习的乐趣,增加学习的积极性,真正培养了学生的应用能力和创新思维,达到了明显的教学效果。

5.总结

第9篇

Universitt Berlin, Fakultt II Institut für

Mathematik, Germany

Andreas Greven, Universitt Erlangen,

Fachbereich Mathematik und Physik

Mathematisches Institut, Germany (Eds.)

Interacting Stochastic

Systems

2005, 450pp.

Hardcover EUR 89.95

ISBN 3-540-23033-5

本书的内容报道了欧洲随机研究协会资助的“DFG-Schwerpunkt 随机系统” 课题中在概率论方向的网络科研人员所作的原创性工作,题为“极复杂交互随机系统”科研项目,研究目标是探索和开发无限维随机分析、统计物理、基于数学生物学的全球人口模型、金融市场的复杂模型与其它学科相关的随机模型之间的联系。

该书分层次地给出了关于基本理论问题的论文,这些论文是在为期6年的科研项目快要结束时,由项目参与者完成的。把基本定理和研究中所出现的结论结合在一起产生新的方法和结果,这对应用概率论、物理学、经济学和生命科学领域中的科研人员具有重要的参考价值。

全书收录18篇论文,分为四大部分。第一部分统计物理中的随机方法,论述了 Kac 模型的新型处理技术,由7篇论文组成:量子晶体的吉布斯测度及其存在性、唯一性和先验估计;量子域理论中的跃变过程;布朗轨道;非稳定随机趋势的谱理论;非晶体随机 Schr?dinger 算子的研究;抛物型Anderson 模型;随机谱分布。第二部分人口模型中的随机性,含有3篇论文:人口模型;随机插入与消除过程;统计序列随机环境中的分支过程。第三部分随机分析,由5篇论文组成:布朗运动的稀疏点;随机过程中的耦合、正则性和曲率;随机共振的数学方法;随机半线性抛物型方程的惯性流形连续性;交互扩散过程的随机游动表示。第四部分随机分析在金融工程中的应用,由3篇论文组成:金融保险数学应用中的最坏投资;船稳定性中的随机动力系统方法;对收缩算法的分析。

本书内容新颖,结构严谨,层次分明,既含有随机系统中最新科研成果,又给出了随机领域发展的新见解和新视点,是从事概率论、随机过程、统计物理、经济学和生命科学研究的科研人员和研究生的有益读物。

朱永贵,博士

(中国传媒大学理学院)

Tschu Kangkun, Professor

第10篇

论文关键词:信息技术,统计,概率,数据分析

 

小学阶段“统计与概率”的主要内容有:①描述统计。包括整理数据、统计图表等;②数据的代表。平均数、中位数、众数;③可能性。

这些内容的教学主要是帮助学生逐渐建立起数据分析的观念,“统计与概率”是与生活联系,又有学生可以操作实践的内容,比较容易体现新课标的理念。下面结合一些教学实例,谈谈信息技术在小学数学统计与概率教学中的应用。

1、信息技术在小学数学统计知识教学中的应用。

小学数学统计知识,从数学活动看,主要经历如下一些学习:对数据的统计活动有初步的体验、解读和制作简单的统计图表、在活动中获得对一些简单的统计量(如平均数、众数、中数等)的意义理解等等。

在这些内容的教学组织中,信息技术有以下应用:

1.1利用信息技术, 能够设计并呈现符合小学生生活经验的特定情境。

内容的组织与呈现要充分考虑到小学生已有的日常经验与他们的现实生活,使小学生在现实的和经验的活动中去获得初步的体验。

例如,小学生对统计全过程的理解可能是有困难的,因为他们习惯的是面对已经给定的甚至是已经被处理过的一些数据进行思考和判断。因此,可以根据小学生的日常经验和兴趣,去设计并呈现一些特定情境下的现实问题,让他们通过自己的多次尝试去不断体验。

如在教学《组织比赛》一课,就利用信息技术创设了一个游戏情境:“小朋友在操场做游戏,要从跳绳、套圈、拍球和踢毽子四种活动中选一种进行比赛。要选哪种活动更好呢?”开始时,小学生们可能会依照自己的喜好随意判断期刊网,但是,多次的交流后就会体验到这样是不行的,因为联欢会是大家一起参加的活动。于是,他们就会尝试着先调查每一个人的口味和喜好。可是,面对一大堆杂乱的数据怎么办呢?这时已经构建的分类与排列思想就会提供帮助,他们就将调查得来的那些数据,构成了一幅扇形统计图。接下来,学生们进一步讨论,喜欢哪一种活动的同学多些?同学们比较喜欢的集中在哪几种活动?喜欢哪一种(和几种)活动的同学最少?于是,不仅帮助学生对“组织比赛”的行为选择提供了帮助,而且对统计与统计量的意义也提供了理解上的帮助。

1.2利用信息技术,强化数学活动过程。

课程教学要有利于学生的动手操作,使学生在经历一个数学活动的过程中去体验和理解知识的内在意义。因此在教学组织的过程中,不要将一些统计知识简单地当作对那些表示概念的词汇的识记,或者将它简单地当作一种程序性的技能来反复操练,而要尽可能地用一些活动来组织,以增加学生在学习过程中的体验。

例如,统计图表的认识不只是一个简单的认识问题,而是有制作、对比过程中体验和理解统计图表意义的问题,即不是一个简单的数据堆砌的过程,而是一个对数据理解的过程。

在教学《扇形统计图》中,先出是上面两个图形,利用信息技术向学生呈现了;然后让学生学会如何将同一信息分别制作成条形统计图和扇形统计图,让学生经历观察、思考、讨论等数学活动,从图中获取一些有用的信息,并对比各自的优缺点,从而进一步理解和认识扇形统计图的意义。

1.3利用信息技术,将知识运用于现实情境。

小学生对统计知识的学习,重点并不是能记住几个概念,能计算几个习题,能制作几个统计图表,关键是要能学会一些初步的和简单的统计思想和统计方法,能将知识运用于现实情境。小学生可以在这些问题解决的过程中,有效地获取知识和技能,增进理解;运用数学知识发现和解决一系列现实生活问题;处理由课程其他领域或其他学科提出的问题;对数学内部的规律和原理进行探索研究等。

如在Excel中可以设计以下练习题期刊网,帮助学生分析问题,运用所学知识解决问题。

下面是某校运动队跳绳测试情况的记录单。(以每分钟跳过次数计算)

 

编号

成绩

编号

成绩

编号

成绩

编号

成绩

1

39

11

38

21

44

31

44

2

40

12

43

22

36

32

34

3

44

13

37

23

39

33

50

4

43

14

45

24

42

34

43

5

34

15

46

25

29

35

36

6

43

16

38

26

50

36

37

7

37

17

35

27

37

37

45

8

47

18

45

28

43

38

44

9

45

19

48

29

39

39

38

10

42

20

39

30

48

第11篇

论文摘要:从教学内容、教学安排、教学形式、以及对该课程的考核方法等方面对《概率论与数理统计》的教学进行了研究和探讨。

《概率论与数理统计》是研究随机现象客观规律的一门学科,是全国高等院校数学以及各工科专业的一门重要的基础课程,也是全国硕士研究生入学数学考试的一个重要组成部分。该课程处理问题的思想方法与学生已学过的其他数学课程有很大的差异,因而学生学起来感到难以掌握。大多数学生感到基本概念难懂,易混淆、内容抽象复杂,难以理解、解题不得法、不善于利用所学的数学知识和数学方法分析解决实际问题。为此,笔者从教学安排、教学内容、教学形式和考核方法4个方面对《概率论与数理统计》的教学进行了研究和探讨。

1 教学内容和安排

《概率论与数理统计》的内容以及教师授课一般都存在着重理论轻实践、重知识轻能力的倾向,缺少该课程本身的特色及特有的思想方法,课程的内容长期不变,课程设置简单,一般只局限于一套指定的教材。《概率论与数理统计》课程 内容主要包括 3大类 :①理论知识 。也就是构成本学科理论体系的最基本 、最关键的知识,主要包括随机事件及其运算、条件概率、随机变量、数字特征、极限定理、抽样分布 、参数估计 、假设检验等理论知识,这些是学 习该课程必须要掌握的最重要 的理论知识。②思维方法 。指的是该学科研究的基本方法,主要包括不确定性分析、条件分析、公理推断、统计分析、相关分析 、方差分析与回归分析等方法 ,这些大多蕴涵在学科理论体系中,过去往往不被重视,但实际上对于学生知识的转化与整合具有十分重要的作用。③应用方面。《概率论与数理统计》在社会生活各个领域应用十分广泛,有大量的成功实例 。

因此,在课程设置上,不能只局限于一套指定的教材,应该在一个统一 的教学基本要求 的基础上 ,教材建设应向着一纲多本和立体化建设的方向发展 。在教学进度表中应明确规定该 门课程的讲授时数 、实验时数、讨论时数、自学时数 (在以前基础上适 当增加学时数),这样分配教学时间,旨在突 出学生的主体地位,促使学生主动参与,积极思考。

2 教学形式

1)开设数学实验课教学时可以采用 以下几个实验 :在校门 口,观察每 30s钟通过汽车的数量,检验其是否服从 Poisson分布;统计每学期各课程考试成绩,看是否符合正态分布,并标准化而后排 出名次;调查某个院里的同学每月生活费用的分布情况 ,给出一定置信水平的置信区间;随机数的生成等等。通过开设实验课 ,可以使学生深刻理解数学的本质和原貌 ,体味生活中的数学 ,增强学生兴趣 ,培养学生的实际操作能力和应用能力。

2)引进 多媒体教学多媒体教学与传统的教学法相比有着不可比拟的优势。一方面,多媒体的动画演示 ,生动形象,可以将一些抽象的内容直观地反映出来,使学生更容易理解,同时增强了教学趣味性。如在学习正态分布时,可以指导学生运用 Matlab软件编写程序,在图形窗 口观察正态分布的概率密度函数和概率分布函数随参数变化的规律 ,从而得出正态分布的性质。另一方面,由于概率统计例题字数较多,抄题很费时间。制作多媒体课件,教师有更多的精力对内容进行详细地分析和讲解,增加与学生的互动,增加课堂信息量。对于教材中的重点、难点、复习课 、习题课等都可制作成多媒体课件形式,配以适当的粉笔教学,这样既能延续一贯的听课方式,发挥教师的主导作用,又能充分体现学生的认知主体作用。比如在概率部分 ,把几个重要的离散型随机变量、连续型随机变量的分布率、概率密度、期望、方差等列成表格;在统计部分 ,将正态总体均值和方差的置信区间,假设检验问题的拒绝域列成表格形式,其中所涉及到的重要统计量的分布密度 函数用 图形表示 出来。这样,学生觉得一目了然,通过让学生先了解图形的特点,再结合分位数的有关知识,找出其中的规律,理解它们的含义及联系,加深了学生对概念的理解及方法的运用,以便更容易记住和求出置信 区间和假设检验问题的拒绝域。这样,不仅使学生对概念的理解更深刻、透彻,也培养了学生运用计算机解决实际问题的能力。

3)案例教学,重视理论联系实际 《概率论与数理统计》是从实际生产中产生的一门应用性学科,它来源于实际又服务于实际。因此,采取案例教学法,重视理论联系实际,可以使教学过程充满活力,学生在课堂上能接触到大量的实际问题,可以提高学生综合分析和解决实际问题的能力。如讲授随机现象时,用抛硬币、元件寿命、某时段内经过某路口的车辆数等例来说明它们所共同具有的特点;讲数学期望概念时,用常见的街头用随机摸球为例,提出如果多次重复地摸球,决定成败的关键是什么,它的规律性是什么等问题,然后再讲数学期望概念在产品检验及保险行业的应用,就能使学生真正理解数学期望的概念并能自觉运用到生活中去;又如讲授正态分布时,先举例说明正态分布在考试、教育评估、企业质量管理等方面的应用 ,然后结合概率密度图形讲正态分布的特点和性质,让同学们总结实际中什么样的现象可以用正态分布来描述 ,这样能使学生认识到正态分布的重要性及其应用的广泛性,从而提高学生的学习积极性,强化学生的应用意识。

另外,也可选择一些具有实际背景的典型的案例,例如概率与密码问题、敏感问题的调查、血液检验问题等等。通过对典型案例的处理,使学生经历较系统的数据处理全过程,在此过程中学习一些数据处理的方法,并运用所学知识和方法去解决实际问题。

3 考核方法

考试是一种教学评价手段。现在学生把考试本身当作追求的目标,而放弃了自身的发展愿望,出现了教学中“教”和“学”的目的似乎是为了“考”的奇怪现象。有些院校概率统计课程只有理论课,没有实验课,其考试形式是期末一张试卷定乾坤,虽然有平时成绩,主要以作业和考勤为主,占的比率比较小 (一般占2O),并且学生的作业并不能真实地反映学生学习的好坏,使得教师无法真正地了解每个学生的学习情况,公平合理地给出平时成绩。而这种单一的闭卷考试也很难反映出学生的真实水平。

所以,我们首先要加强平时考查和考试,每次课后要留有作业、思考题,学完每一章后要安排小测验,在概率论部分学完后进行一次大测验 。其次注重科学研究,每个学生都要有平时论文,学期论文,以此来检查学生掌握知识情况和应用能力.此外还有实验成绩。最后是期末考试,以 A、B卷方式,采取闭卷形式进行考试。将这 4个方面给予适 当的权重,以均分作为学生该门课程的成绩。成绩不及格者.学习态度好的可以允许补考。否则予以重修。分数统计完后,对成绩分布情况进行分析,通过总体分布符合正态分布程度和方差大小判断班级的总体水平,并对每道题的得分情况进行分析,评价学生对每个知识点的掌握情况和运用能力,找出薄弱环节,以便对原教学计划进行调整和改进。总之,通过科学的考核评价和反馈,促进教学质黾不断改进和提高。

[参考文献]

第12篇

关键词:数学地质,数值分析,C语言程序设计,教学方法

 

数学地质解决地质问题的一般步骤或途径如下:第一,进行地质分析,定义地质问题和地质变量,建立正确的地质模型;第二,根据地质模型选择或研究适当的数学模型;第三,运用数值分析理论对数学模型进行求解;第四,运用C语言设计计算机程序,并上机试算;第五,对计算机输出成果进行地质成因解释,对所研究的地质问题作出定量的预测、评价和解答。为了很好地解决地质问题,需要同时学好《数学地质》、《数值分析》和《C语言程序设计》三门课程。本文将对《数学地质》、《数值分析》和《C语言程序设计》三门课程的教学内容和方法进行研究,并介绍瓦斯危险性预测数学地质软件的开发。

1数学地质的教学内容及方法

数学地质(mathematicalgeology)是六十年代以来迅速形成的一门边缘学科。它是地质学与数学及电于计算机相结合的产物,目的是从量的方面研究和解决地质科学问题。它的出现反映地质学从定性的描述阶段向着定量研究发展的新趋势,为地质学开辟了新的发展途径。数学地质方法的应用范围是极其广泛的,几乎渗透到地质学的各个领域。

1.1 数学地质的教学内容

数学地质的研究对象包括地质作用、地质产物和地质工作方法。通过建立数学模型查明地质运动的数量规律性。这种数量规律性具体表现为地质体的数学特征、地质现象的统计规律以及地质勘探工作中存在的概率法则。其内容可概括为以下3个方面:①查明地质体数学特征,建立地质产物的数学模型。例如矿体数学特征是指矿体厚度、品位等标志变化的数量规律性。按其属性可划分为矿体几何特征、空间特征、统计特征和结构特征等4类。比如,尽管矿产有多种多样,但矿石有用组分品位的统计分布却服从正态分布、对数正态分布等有限的几种分布律。从它们的分布特征可以分析判断其成因特点,而且各类数学特征还具有不同的勘探效应。②研究地质作用中的各种因素及其相互关系,建立地质过程的数学模型。如盆地沉积过程的数学模型,地层剖面的计算机模拟,岩浆结晶过程的马尔柯夫链分析等。③研究适合地质任务和地质数据特点的数学分析方法,建立地质工作方法的数学模型。论文写作,C语言程序设计。例如,对于地质分类问题,可根据研究对象的多种定量指标,建立聚类分析或判别分析的数学模型,对所研究的地质对象进行分类或判别。又如针对大量的描述性的地质资料,通常可将其转化为0~1变量,建立各种二态变量的多元分析模型(逻辑信息模型、特征分析模型、数量化理论模型等),以解决地质成因分析和成矿远景预测等各类地质问题。论文写作,C语言程序设计。

1.2 数学地质的教学方法

数学地质的教学方法可概括为:①数学模型法。应用最广泛的是各种多元统计模型。例如用于地质成因研究的因子分析、对应分析、非线性映射分析、典型相关分析;用于研究地质空间变化趋势的趋势面分析和时间序列分析方法等。②概率法则和定量准则。由于地质对象是在广阔的空间、漫长的时间和复杂的介质环境中形成发展和演变的,因此地质现象在很大程度上受概率法则支配,且具有特定的数量规律性,这就要求数学地质研究必须遵循和自觉运用概率法则和定量准则。同时,地质观测结果不可避免地带有抽样代表性误差,因此对各种观测结果或研究结论都要做出可靠概率的估计和精度评价。以矿产定量预测为例,不仅要求确定成矿远景区的空间位置,而且应给出可能发现矿床的个数及规模,发现矿床的概率,查明找矿统计标志的信息量、找矿概率及有利成矿的数值区间等。

数学地质的主要研究手段是电子计算机技术,其中包括:①地质过程的计算机模拟,该项技术可以弥补物理模型法和实验地质学法的不足;②建立地质数据库和地质专家系统,以便充分发掘和利用信息资源和专家经验;③计算机地质制图;④地质多元统计计算及其他科学计算。

2数值分析的教学内容及方法

数值分析(numericalanalysis)是研究分析用计算机求解数学计算问题的数值计算方法及其理论的学科,是数学的一个分支,它以数字计算机求解数学问题的理论和方法为研究对象。为计算数学的主体部分。

2.1 数值分析的教学内容

运用数值分析解决问题的过程:实际问题→数学模型→数值计算方法→程序设计→上机计算求出结果。数值分析的教学内容包括插值法,函数逼近,曲线拟和,数值积分,数值微分,解线性方程组的直接方法,解线性方程组的迭代法,非线性方程求根,常微分方程的数值解法。论文写作,C语言程序设计。

数值分析具有如下特点:第一,面向计算机。第二,有可靠的理论分析。第三,要有好的计算复杂性。论文写作,C语言程序设计。第四,要有数值实验。第五,要对算法进行误差分析。

2.2 数值分析的教学方法

根据数值分析的特点,教学时首先要注意掌握方法的基本原理和思想,要注意方法处理的技巧及其与计算机的结合,要重视误差分析、收敛性及稳定性的基本理论;其次,要通过例子,学习使用各种数值方法解决实际计算问题;最后,为了掌握数值分析的内容,还应做一定数量的理论分析与计算练习,由于数值分析内容包括了微积分、代数、常微分方程的数值方法,学生必须掌握好这几门课的基本内容才能学好这一课程。

3C语言程序设计的教学内容及方法

C语言是一种计算机程序设计语言。论文写作,C语言程序设计。它既有高级语言的特点,又具有汇编语言的特点。它可以作为系统设计语言,编写工作系统应用程序,也可以作为应用程序设计语言,编写不依赖计算机硬件的应用程序。因此,它的应用范围广泛。

3.1 C语言程序设计的教学内容

C语言程序设计主要有两方面教学内容:一是学习和掌握C语言的基本规则;二是掌握程序设计的方法和编程技巧。“规则”和“方法”即语言和算法,是本课程的两条主线,二者不可偏废其一。从一定意义上说,“方法”更重要,因为它是程序的灵魂。一旦掌握,有助于学生更快、更好地学习和使用其他的程序设计语言。

3.2 C语言程序设计的教学方法

C语言程序设计是一门实践性很强的课程,对C语言初学者而言,除了要学习、熟记C语言的一些语法规则外,更重要的是多读程序、多动手编写程序。学习程序设计的一般规律是:先模仿,然后在模仿的基础上改进,在改进的基础上提高。做到善于思考,勤于练习,边学边练,举一反三,学会“小题大做”,一题多解,这样,才能成为一个优秀的C程序员。

4瓦斯危险性预测数学地质软件的开发

瓦斯危险性预测包括瓦斯含量预测、瓦斯涌出量预测和瓦斯突出预测。在利用数学地质技术进行瓦斯危险性预测时,需要进行大量的计算工作,一般要求用计算机完成其数学建模和未采区预测工作。随着计算机软硬件和可视化技术的发展,编制高速、高效、准确、灵活、用户界面友善的数学地质预测软件,是瓦斯地质研究向定量化发展的需要。论文写作,C语言程序设计。

4.1 数学地质模型的建立

瓦斯含量预测和瓦斯涌出量预测采用回归分析建立数学模型,即通过规定因变量和自变量来确定变量之间的因果关系,建立回归模型,并根据实测数据来求解模型的各个参数,然后评价回归模型是否能够很好的拟合实测数据;如果能够很好的拟合,则可以根据自变量作进一步预测。

瓦斯突出预测采用判别分析建立数学模型,即按照一定的判别准则,建立一个或多个判别函数,用研究对象的大量资料确定判别函数中的待定系数,并计算判别指标。据此即可确定某一样本属于何类。

4.2 数学模型的求解

对建立的数学模型,采用迭代法对线性方程组进行求解,即利用计算机运算速度快、适合做重复性操作的特点,让计算机对一组指令(或一定步骤)进行重复执行,在每次执行这组指令(或这些步骤)时,都从变量的原值推出它的一个新值。

4.3 数学地质软件的开发

采用C语言编写计算机程序,开发数学地质软件。瓦斯危险性预测软件的操作较为简便,功能较为齐全。在软件主界面菜单栏的菜单项下面,可分别进入瓦斯含量预测,瓦斯涌出量预测、瓦斯突出预测的对话框模块。在对话框里分别输入变量数据和数据文件,运行数据文件,按下详细资料或判别结果按钮,可以查看运算结果。按下预测未知单元按钮可进入预测对话框。

5结论

1)对数学地质、数值分析、C语言程序设计教学内容及方法的研究为解决地质问题提供了便利途径。

2)瓦斯危险性数学地质软件的开发较好地运用了数学地质、数值分析、C语言程序设计的理论和方法,为数学地质、数值分析、C语言程序设计的教学提供了应用实例。

参考文献:

[1]韩金炎.数学地质[M].北京:煤炭工业出版社,1993.1-282.

[2]姚传义.数值分析[M].北京:中国轻工业出版社,2009.1-373.

[3]贾宗璞,许合利.C语言程序设计[M].徐州:中国矿业大学出版社,2007.1-378.

第13篇

关键词: 概率论与数理统计教学 教学内容 考核方式

概率论与数理统计是一门研究随机现象客观规律的学科,在自然科学和社会科学中有着重要的应用,也是全国高等院校数学类的基础课程。由于该学科的思想方法与学生以往学习过的其他数学课程有较大不同,因此学生学习起来往往感到难以理解与掌握。学生不能从根本上认识其内涵,所以很难展开思维,不能和生产实践联系起来,解决实际问题。基于这一点,在这门课程的教学中采取科学的教学理念,合适的教学方法和教学方式,培养激发学生的学习兴趣,针对不同教学对象因才教学是十分必要的。我结合自身教学实践,谈谈自己对概率论与数理统计教学的一点思考,以期对本学科教学实践的发展提供有益参考。

1.重视培养和激发学生学习兴趣,提高学生学习的积极性和主动性

概率论与数理统计的研究的问题与现实生活有着广泛的联系,但是这门学科的思维方式与以往学生接触的数学课程有很大不同,学生在学习时感觉难以理解书中的概念、定理和解题方法技巧,往往产生畏难厌学情绪。如何调动学生的学习积极性,激发学生的学习兴趣,使学生发自内心的喜欢这门学科,是使学生学好这门课程的前提。课程内容要能引起学生的兴趣,要能引人入胜,首先要求教师对这门学科的产生和发展,对人类社会的功能和影响有着深刻的了解,然后组织好教学内容,使学生领会其基本主线、概念、原理,以及其独特的研究方法。在教学中教师可以引入经典故事和有趣实例来阐释这门学科有关知识,也可以提出启发性的问题,让学生去分析研究和讨论,引导学生去发现问题,分析问题,解决问题。总之,提高学生学习积极性归根结底要在教学中注重理论与实际的联系,把抽象的理论用简显的方式表述,把现实生活中的事例用书本中的理论来解释。

2.开设实验课,引导学生应用数学软件解决实际问题

传统的概率论与数理统计统计教学中只有习题课,没有数学实验课,不利于培养学生利用概率论与数理统计思想和方法解决实际问题的能力。开设数学实验课,把理论教学与学生上机实践相结合,变抽象的理论为具体,可使学生由被动接受转变为积极主动参与,激发学生学习本课程的兴趣,培养学生的创造精神和创新能力。在实验课的教学中,教师可以适量介绍MATLAB、MATHEMATIC、LINGO、SPSS、SAS等数学软件和统计软件,并结合概率统计介绍软件中与课程各章节有关的语句,介绍软件的操作及注意事项,使学生通过在计算机上学习概率论与数理统计,加深对基本概念、公式和基本运算的理解,同时可以使学生学会运用软件技术实现概率统计问题的求解过程。

3.引入案例教学,运用多媒体教学手段,丰富教学方法

案例教学法是把案例作为一种教学工具,把学生引导到实际问题情境中去,通过分析与相互讨论,调动学生的积极性和主动性,并提出解决问题的基本方法和途径的一种教学方法。它是连接理论与实践的桥梁。在课堂教学中,教师应注意收集经济生活中的实例,把收集到的实例适当地穿插于理论教学中,将理论教学与实际案例有机地结合起来。对案例的选择要有针对性,必须有产生问题的实际背景,能够为学生所理解。同时利用案例设置讨论,鼓励学生积极发言,讲出对问题的理解。从而达到培养创新能力的目的。例如讲授随机现象时,用元件寿命、某时段内经过某路口的车辆数等例来说明它们所共有的特点;讲授正态分布时,说明正态分布在考试、产品质量管理等方面的应用,然后结合概率密度曲线图形讲解正态分布的特点和性质,让学生总结现实生活中什么现象可以用正态分布描述,从而提高学生的学习积极性,强化学生的应用意识。

多媒体教学手段与传统的教学法相比有着不可比拟的优势。一方面,多媒体的动画演示生动形象,可将一些抽象的内容直观的反映出来,使学生容易理解。另一方面,可以使教师不必浪费时间用于抄写例题等工作,有更多的精力对重点内容进行详细的分析和讲解,增加课堂信息量。

4.改革考核方法

考试是教学过程中的一个重要环节,是检验学生学习情况,评估教学质量的手段。传统的概率论与数理统计课采用期末一次性闭卷形式的考试,教师按照固定的内容和格式出题。在这种考试形式下,学生往往把考试本身当作追求的目标,放弃了自身发展愿望,为了应付考试把精力过多地花在概念公式的死记硬背上,而不重视对这门课程所学知识在实际中的应用。这种考试方式不利于培养人才,不利于培养学生的创新能力。所以应该改革传统的考试方法,把对学生的考查分为平时考查、学期论文和期末考试三部分。首先,平时考查包括作业,思考题的完成情况,侧重考查学生在平时学习的学习状态,督促学生要勤于思考,对各个知识点要有清晰准确的理解。其次,期末论文侧重考查学生是否对这门学科有系统的理解和掌握,能否提出问题,思考问题。最后是期末考试,全面考查学生对知识的综合掌握。教师应把这三方面内容赋予适当权重,最终评定学生的学科成绩。

总之,概率论与数理统计的教学目标,不仅要使学生学会书本知识,而且要使学生学会如何应用所学知识解决以后学习和工作中的实际问题,提高学生的创新能力。

参考文献:

第14篇

改变“重理论,轻应用”的思想,培养学生的探究能力

传统的概率论与数理统计的教学过多地强调理论的严谨性,教师花大量时间用于定义的讲解,定理的证明,方法的推导和习题的演算,只注重知识的传授,往往缺乏重要数学思想的传递,特别是知识的应用。由于“重理论,轻应用”的教学思想,概率论与数理统计课程教与学的效果一直不好,学生普遍感觉很难学,没有应用意识、对随机数学思想方法不甚了解、只知道套公式解习题。概率论与数理统计是应用性很强的学科,它的生命力和发展动力在于它与实用学科的密切联系,隔断了这种联系,概率论与数理统计就成了无源之水,无本之木,产生不出有意义的问题和方法。如果在教学实践中,教师不让学生了解概率论与数理统计在他们所在学科专业的应用,不加强学生用概率论与数理统计知识解决实际问题的能力,这显然不符合应用型本科院校培养高水平应用型人才的目标。我们要改变传统的“重理论”的教学思想,注重培养学生的数学素质;同时教学内容要注重理论与实际的结合,强化培养学生的应用能力。为加强应用意识,全面提高学生的素质,课堂上应增加一些从实际生活中设计的课题,如“郑州市增加快速公交是否能缓和交通”“,某商品月底最佳进货量的计算”“,保险公司对某项保单收保费多少能使其利益最大”等等,有些题目甚至可以尝试着让学生进行直接操作,利用空余时间深入到社会中去,搜集数据,用数理统计方法解决生活中的实际问题,这样不仅使学生强化了知识结构,提高了动手能力,而且还进一步体现了数学价值。从而更增加了同学们学习数理统计的兴趣。

熟悉并灵活掌握至少一种统计软件要处理

在实际中搜集的大量的数据,就必须借助于一定的统计软件。其中在众多的统计软件中,Excel最为简单,同学们可以先了解如何运用Excel。但有些功能Excel无法实现。目前运用最多的要数SPSS软件。为此可以利用SPSS软件辅助教学,其操作方便,输出结果简约,并且提供的模块几乎囊括了诸如参数估计、假设检验、方差分析、回归分析等数理统计的所有领域。将SPSS引入概率论与数理统计的教学后,概率论与数理统计中的数据处理和数值计算变得轻而易举,使得教师可以将精力集中于讲清概率统计问题的思想方法,极大地提高教学效率,同时加强了学生应用能力的培养,以适应社会发展的需要。

第15篇

关键词:数学建模;素质教育;概率统计课程

中图分类号:G642

文献标志码:A

文章编号:1673-291X(2010)16-0244-02

数学建模是指对现实世界的特定对象,为了某特定目的,做出一些重要的简化和假设,运用适当的数学工具得到一个数学结构,用它来解释特定现象的现实性态,预测对象的未来状况,提供处理对象的优化决策和控制,设计满足某种需要的产品等。数学是在实际应用的需求中产生的,要解决实际问题就必需建立数学模型,从此意义上讲数学建模和数学一样有古老历史。例如,欧几里德几何就是一个古老的数学模型,牛顿万有引力定律也是数学建模的一个光辉典范。今天,数学以空前的广度和深度向其他科学技术领域渗透,过去很少应用数学的领域现在迅速走向定量化、数量化,需建立大量的数学模型。特别是新技术、新工艺蓬勃兴起,计算机的普及和广泛应用,数学在许多高新技术上起着十分关键的作用,因此数学建模被时代赋予更为重要的意义。

大学生数学建模竞赛自1985年由美国开始举办,竞赛以三名学生组成一个队,赛前有指导教师培训,赛题来源于实际问题。比赛时要求就选定的赛题每个队在连续三天的时间里写出论文,它包括:问题的适当阐述;合理的假设;模型的分析、建立、求解、验证;结果的分析;模型优缺点讨论等。数学建模竞赛宗旨是鼓励大学师生对范围并不固定的各种实际问题予以阐明、分析并提出解法,通过这样一种方式鼓励师生积极参与并强调实现完整的模型构造的过程。以竞赛的方式培养学生应用数学进行分析、推理、证明和计算的能力;用数学语言表达实际问题及用普通人能理解的语言表达数学结果的能力;应用计算机及相应数学软件的能力;独立查找文献,自学的能力,组织、协调、管理的能力;创造力、想象力、联想力和洞察力。他还可以培养学生不怕吃苦、敢于战胜困难的坚强意志,培养自律、团结的优秀品质,培养正确的数学观。这项赛事自诞生起就引起了越来越多的关注,逐渐有其他国家的高校参加。中国自1989年起陆续有高校参加美国大学生数学建模竞赛。1992年起中国开始举办自己的大学生数学建模竞赛。在2009年全国大学生数学建模竞赛中,河南工程学院共有28个队87名学生参赛,其中甲组(本科组)的成绩取得突破,张凤羽、王垒垒、任建辉代表队获得国家二等奖;7个代表队获得河南省一等奖;多个代表队获得省二、三等奖。

从最近几年的全国大学生数学建模竞赛题目中,我们看到,竞赛题目涉及的概率和统计知识较多,电力市场的输电阻塞管理、2008年北京奥运会人流分布、医院病床的合理安排等问题都不同程度地涉及概率和统计知识。《概率论与数理统计》课程描述、分析和处理问题的方法与其他数学分支不同,这是一种观测试验与理性思维相结合的科学方法。概率统计中蕴涵着丰富的数学方法,如模型化方法、构造方法、变换方法、数量化方法等。特别是模型化方法贯穿本课程全过程,如古典概型、几何概型、贝努里概型、正态分布、回归分析等。但是在全国大学生建模竞赛中,学生往往直接调用统计软件建立多元线性回归、时间序列预测等统计模型,不懂得充分考虑实际的随机数据的属性和性质。他们常常忽略了对现实数据进行充分分析,去识别模型、估计参数,对自己所建立的模型进行必要的检验。由此可见,要使学生较好地掌握概率论与数理统计的基本概念和基本方法,掌握相应的解决实际问题的能力,将数学建模思想与方法融入《概率论与数理统计》课程就非常必要。另一方面,在大学数学主干课程中融入数学建模的思想和方法是教育部倡导的一种新方法、新思路。作为数学教育工作者,自觉地在教学过程中去探索、实践是我们义不容辞的职责。数学家李大潜教授指出:如果数学建模的精神不能融合进数学类主干课程,仍然孤立于原有数学主干课程体系之外,数学建模的精神是不能得到充分体现和认可的;数学建模思想的融入宜采用渐进的方式,力争和已有的教学内容有机地结合,充分体现数学建模思想的引领作用;为了突出主旨,也为了避免占用过多的学时,加重学生负担,对数学课程要精选数学建模内容。

按照常规的教学方式,学生虽然从课堂上认识了大量的概念、定理和公式,对于它们的实际用途却知之甚少,容易造成理论与实际的脱节,因此难以激发学生的兴趣。许多学生之所以不能在实践中运用在学校学到的数学知识,其根本原因是数学学习仅仅是和教室的情景相关联的,数学建模思想是让学生体验数学在解决实际问题中的价值和作用,体验数学与日常生活和其他学科的联系,体验综合运用知识和方法解决问题的过程。这就需要教师整理一些具有现实意义、应用性较强的实例,让学生去分析、调查、研究,最后引导学生上升为概念、性质和理论,让学生在探索、创造的过程中体验数学的魅力,充分感受创新思维的乐趣。

例如,有一个古典概型问题,计算班级中“至少有两人生日相同”这一事件的概率。首先分析班级中同学“生日各不相同”的概率,这一问题就与下面问题具有相同的数学模型。

将n只球随机地放人N(N大于等于n)个盒子中去,试求每个盒子至多有一只球的概率。

从最终的理论计算和实际调查结果都可以看出,在仅有64人的班级里,“至少有两人生日相同”的概率与1相差无几H,这一结果出乎多数同学的预料。

日常生活中数学无处不在,而概率统计作为数学的一个重要部分,同样也发挥着越来越广泛的用处。投资和理财是人们普遍关心的问题,它可以用概率模型进行定量分析。1952年美国学者马柯威茨全面考虑“期望收益最大”和“不确定性(即风险)最小”,创立证券组合理论。1973年美国经济学家布莱克和斯科尔斯,引进概率统计和随机变量函数的一些定理和积分求值,探索出具有划时代意义的定价模型,导出了著名的布莱克―斯科尔斯公式。近年来,概率统计学及其相关学科在证券期货交易中的作用愈来愈被人们所认识和重视。在给学生讲授“数学期望、方差”这一概念时,可以指导学生查阅相关资料,进行简单的证券组合收益与风险的计算,选择合理的证券投资组合方案,熟悉经典的投资组合模型。在此基础上进一步启发学生,尝试建立新的投资模型。

继股票之后,彩票也成了城乡居民经济生活中的一个热点。花几元钱买一张彩票,然后就中了几百万乃至几千万的巨额奖金,这大概是很多人梦寐以求的事情,可是这样的机会有多大?同学们计算了几种不同类型的彩票,发现等奖的概率一般接近千万分之一,中一等奖的概率往往是几百万分之一。因此彩票的中奖率,尤其是中大奖的概率是很小的,只有极少数人能中奖,购买者应怀有平常心,既不能把它作为纯粹的投资,更不应把它当成发财之路。

另外,可以结合学生的专业选择一些具有专业背景的问题,然后利用概率统计的知识去分析。例如与机械制造专业有关的问题有:生产过程中机械出现故障的概率的计算,维修人员的安排,工艺参数的估计和产品质量的假设检验等。与经济贸易专业有关的问题有:蔬菜水果(大蒜、苹果等)价格分析及预测,商品需求量的估计和利润的分析等。对于保险精算、医学等专业,也能够找到许多与概率统计有关的问题。最后,还可以从历年的数学建模竞赛中选择一些优秀论文交给学生课后研读,组织学生在课堂上汇报交流。经过一学期的教学实践,从学生反馈的信息表明:大部分同学对数学学科越来越有兴趣,能够主动地尝试用概率统计的方法去解决一些实际的问题,学生的整体素质有所提高。

在知识经济时代,知识更新速度不断加快,如果思维模式和行为方式不能与信息革命的要求相适应,就会失掉与社会同步前进的机会。如今市场对人才的要求越来越高,人才流动、职业变化更加频繁,一个人在一生中可能有多次选择与被选择的经历。通过数学建模的学习和训练,学生不仅受到了现代数学思维及方法的熏陶,更重要的是提高了利用各方面的知识解决不同实际问题的能力。这样的学生具有较高的素质,无论以后到那个行业工作,都能很快适应工作环境,充分发挥自己的才能。

参考文献:

[1]姜启源.谢金星.叶 俊.数学模型[M].北京:高等教育出版社,2003.

[2]彭晓华.改进教学方法,培养学生良好的学习习惯和创新能力[J].大学数学,2004,(3):23-25.

[3]李大潜.将数学建模思想融入数学类主干课程[J].工程数学学报,2005,(8):2-7.