前言:我们精心挑选了数篇优质天线技术论文文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。
第四代移动通信技术中采用了智能天线技术,智能天线一般是指安装在基站的天线,主要是通过能够编程的电子相位关系来确定方向性。智能天线技术采用的是SDMA,而SDMA是卫星通信方式的一种,主要是利用天线的方向性来确定范围,也就是频域,从而减少了成本,增加了收益。SDMA是利用空间分割来划分信道,采用智能天线技术可以改善信号质量,4G移动通信技术广泛采用这一能够降低建设成本的技术。另外,为了提高移动通信系统的性能,4G移动移动技术还采用了无线链路增强技术,像分集技术和多输入多输出(MIMO)技术,为数据的高速传输提供了技术支持。
2、4G移动通信技术的安全缺陷继解决措施
病毒,一般来说,是有些计算机操作人员恶意制造的一些计算机操作指令,载入在一些人们常用的软件和网页当中传播,破坏计算机的信息安全。病毒对网络通信的破坏是猝不及防的,而且其传播速度很快,在很短的时间内能让成千上万的文件或者程序受到攻击。而且病毒自身繁殖性也很强,一旦遭到病毒侵害的程序就会自身复制,能够像生物病毒一样繁殖下去,对通信安全将造成巨大的危害。黑客,一般都拥有大量的计算机相关的技能,能够轻易侵入别人的电脑或者拿别人的电脑当跳板再入侵其他的电脑来窃取用户信息,或者破坏通信信息安全。黑客非法地对国家政府、军事情报机关的网络、军事指挥系统、公司企业的计算机系统进行窃听、篡改,以达到危害国家安全,破坏社会稳定,致使企业造成损失,这将对用户的通信安全产生巨大的威胁。网络服务器或者浏览器本身存在的安全缺陷,极易被一些恶意软件携带的病毒攻击,而这些病毒经常不容易被发现,最终对通信和信息交换造成破坏。科技不断地发展,我们有信心解决以上提出的安全问题,为了有效地解决,我们在4G移动通信技术研究和开发的过程中一定要严密把控各方面的环节,确保第四代移动通信技术对于用户数据的信息安全。采取增加网络防火墙,使用更加复杂的秘钥等措施,提高系统的抗攻击能力,在不影响数据安全和完整性的前提下,同时提高系统的恢复能力。同时,各国政府也要成立专门的机构,出台相关的法律法规,增加对网络安全管理人员的培养,普及安全知识,同时加大对安全保护措施的投资力度,对危害通信安全和网络安全的不法分子严惩不贷。
3、结语
摘要:主要介绍了智能天线的提出背景、基本概念、关键技术、优点以及国外的研究进展情况,最后指出了智能天线的发展方向。
一、前言
随着蜂窝移动用户的不断增长,如何解决频谱资源紧张、抑制各种干扰、提高通信服务质量成为一个亟待解决的问题。为此,人们提出了一系列的解决方案,例如,在通信密集的地方引入微蜂窝技术、频率跳变技术、高效的编码技术以及进行功率控制等。而智能天线为这一切问题的解决提供了一条新思路。智能天线能够成倍地提高通信系统的容量,有效地抑制复杂电磁环境下的各种干扰,并且还能与各种通信系统和其他多址方式兼容,从而以较小的代价获取较大的性能提高。目前,国内外有许多大学和公司致力于智能天线的研究。欧洲电信委员会(ETSI)明确提出智能天线是第三代移动通信系统必不可少的关键技术之一,并制定了相应的开发计划。
二、智能天线的基本概念
智能天线综合了自适应天线和阵列天线的优点,以自适应信号处理算法为基础,并引入了人工智能的处理方法。智能天线不再是一个简单的单元,它已成为一个具有智能的系统。其具体定义为:智能天线以天线阵列为基础,在取得电磁信息之后,使用人工智能的方法进行处理,对电磁环境做出分析、判断,并自动调整本身的工作状态使之达到最佳。依据天线的智能化程度可将天线分成可变波束天线、动态相控阵列和自适应阵列3类。可变波束天线依据接收功率最大原则,在几个预设阵列波束中进行切换;动态相控阵列使用测向算法,能够连续追踪用户的方向而改变天线的波束,使接收功率达到最大;自适应阵列既对用户进行测向,又对各种干扰源进行测向,在形成波束时,不仅使接收功率最大,而且使噪声降到最低,从而使接收信噪比最高。
智能天线的发展可分成3个阶段:第1阶段是应用于上行链路,通过使用智能天线增加基站的接收增益,从而使接收机的灵敏度和接收距离大大增加;第2阶段是将智能天线技术同时应用于下行链路,在智能天线应用于下行链路后,能够控制波束的发射方向,从而有助于频率的复用,提高系统的容量;最后一个阶段是完全的空分多址,此时在一个蜂窝系统中,可以将同一个物理信道分配给不同的用户,例如,在TDMA中,可以将同一小区内同一时隙同一载波同时分配给两个用户。
三、智能天线的组成和关键技术
智能天线主要分为天线阵列、接收通道及数据采集、信息处理3部分。在移动通信系统中,天线阵列通常采用直线阵列和平面阵列两种方式。在确定天线阵列的形式后,天线单元的选择就十分关键。天线单元不仅要达到本身的性能指标,还必须具有单元之间的互耦小、一致性好以及加工方便的特点。目前微带天线使用较多。
接收通道及数据采集部分主要完成信号的高频放大、变频和A/D转换,以形成数字信号。目前,受A/D器件抽样速率的限制,不能直接对高射频信号和微波信号进行采样,必须对信号进行下变频处理,降低采样速率。
信息处理部分是智能天线的核心部分,主要完成超分辨率阵列处理和数字波束形成两方面的功能。进行超分辨率阵列处理的目的是获得空间信号的参数,这些参数主要包括信号的数目、信号的来向、信号的调制方式及射频频率等,其中信号的来向对于实现空分多址和自适应抑制干扰有着重要作用。在众多的超分辨率测向算法中,MUSIC算法及其改进算法一直占据主导地位,它不受天线阵排阵方式的影响,只需经过一维搜索就能实现对信号来向的无偏估计,并且估计的方差接近CRLB。此外,使用ESPRIT算法来解决移动通信中的测向问题也得到了广泛的研究。数字波束形成主要通过调整加权系数来达到增强有用信号和抑制干扰的作用,它需要收敛速度快、精度高的算法支持。根据所需先验知识的不同,目前的波束形成算法主要有3类:以信号来向为先验知识,如LCMV算法;以参考信号为先验知识,包括LMS算法及其改进算法NLMS、RLS等;不需要任何先验知识,如CMA算法。由于移动通信环境复杂,各种算法也有各自的优缺点,因此系统中必须对多种算法取长补短,才能达到最佳效果。
四、智能天线的特点和优势
(1)提高系统容量
在蜂窝系统中,用户的干扰主要来自其他用户,而智能天线将波束零点对准其他用户,从而减少了干扰的影响。由于系统提高了接收信噪比,因此减少了频谱资源的复用距离,从而获得了更大的系统容量。
(2)扩大小区覆盖距离和范围
使用智能天线可以提高用户和基站的功率接收效率,进一步扩大基站的通信距离,减少功率损失,从而延长电池的寿命,减小用户的终端。
(3)减少多径干扰影响
智能天线使用阵列天线,通过利用多个天线单元的接收信息和分集技术,可以将多径衰落和其他多径效应最小化。
(4)降低蜂窝系统的成本
智能天线利用多种技术优化了信号的接收,从而能够显著降低放大器成本和功率损耗,提高系统的可靠性,实现系统的低成本。
(5)提供新服务
智能天线在使用过程中必须对用户进行测向,以确定用户的位置,从而为用户提供基于位置信息的服务,如紧急呼叫等。目前,美国联邦通信委员会已准备实施用户定位服务。
(6)更好的安全性
使用智能天线后,窃听用户的通话将会更加困难,因为此时盗听者必须和用户处于相同的通信方向上。
(7)增强网络管理能力
利用智能天线可以实时检测电磁环境和用户情况,从而为实施更有效的网络管理提供条件。
(8)解决远近效应问题和越区切换问题
智能天线可自适应地调节天线增益,较好地解决了远近效应问题,为移动台的进一步简化提供了条件。在蜂窝系统中,越区切换是根据基站接收的移动台的功率电平来判断的。由于阴影效应和多径衰落的影响常常导致越区转接,增加了网络管理的负荷和用户呼损率。在相邻小区应用的智能天线技术,可以实时地测量和记录移动台的位置和速度,为越区切换提供更可靠的依据。
五、智能天线的技术现状
在分析智能天线理论的同时,国内外一些大学、公司和研究所分别建立了实验平台,将智能天线应用于实践中,并取得了一些成果。
(1)美国
在智能天线技术方面,美国较其他国家更加成熟,已开始投入实际应用中。美国的ArrayComm公司发展了针对GSM标准和日本PHS标准的智能天线系统。该公司已将智能天线应用于基于PHS标准的无线本地环路中,并投入了商业运行。该方案采用可变阵元配置,有12阵元、8阵元环形自适应阵列可供不同的环境选用,现场实验表明,在PHS基站采用智能天线技术可使系统容量增加4倍。
(2)欧洲
欧洲通信委员会在RACE计划中实施了第一阶段的智能天线技术研究,称为TSUNAMI,由德国、英国、丹麦和西班牙共同合作完成。它采用DECT标准,射频频率为1.89GHz,天线由8个微带贴片组成。阵元距离可调、组阵方式可变,有直线型、圆环型和平面型3种形式。数字波束形成的硬件主要包括2片DBF1108芯片,它在软件上分别由MUSIC算法、NLMS、RLS完成测向和求得最佳的加权系数。在典型的市区环境下进行实验表明,该智能天线能有效跟踪的方向分辨率大约为15°,BER优于10-3。
(3)日本
ATR光电通信研究所研制了基于波束空间处理方式的多波束智能天线。天线阵元布局为间距半波长的16阵元平面方阵,射频工作频率为1.545GHz。阵元组件接收信号在A/D变换后,进行快速傅氏变换,形成正交波束后分别采用恒模算法或最大比值合并分集算法,数字信号处理部分由10片FPGA完成。ATR研究人员提出了智能天线的软件天线概念。
(4)其他国家
我国的信威公司也将智能天线应用于TDD方式的WLL系统中。该智能天线采用8阵元的环形自适应阵列,射频工作于1785~1805MHz,采用TDD工作方式,收发间隔为10ms,接收机灵敏度最大可提高9dB。此外,爱立信公司与德国运营商也将智能天线应用于GSM基站上,但该天线的智能化程度不高。韩国、加拿大等国也开展了智能天线方面的研究。
(5)用于卫星移动通信的智能天线
上文主要介绍了基于蜂窝系统的智能天线,另外还有一种用于L卫星移动通信的智能天线。该天线采用了由16个环形微带贴片天线组成的一个4×4的方形平面阵,它的射频频率为1.542GHz,左旋圆极化,中频频率为32kHz,A/D变换器的采样速率和分辨率分别为128kHz和8位。在数字信号处理部分,选用了10个FPGA芯片,其中8个用于16个天线支路的准相干检测和快速傅里叶变换,另外2片则起到波束选择、控制和接口的作用;自适应算法则选择了CMA。系统的外场测试表明,它能产生16个波束来覆盖整个上半空间,并且不需要借助于任何传感器,就能用最高增益的波束来自动捕获和跟踪卫星信号,从而在各种复杂的环境下均能提供比采用其他天线要高得多的通信质量。
六、智能天线面临的挑战和发展方向
智能天线系统在改善性能的同时,也增加了收发机的复杂度。因为要对每个用户进行定位,并且波束形成的计算量很大,所以智能天线系统中有多个计算单元和控制单元。在实施SMDA时,资源管理也成为一个必须关注的问题。作为一种新的多址方式,在频谱分配和移动性管理上也提出了新的问题,将会对网络管理提出更多的需求。此外,目前智能天线的物理尺寸较大,不利于构建更小的基站。
摘要:近年发展起来的CDMA移动通信系统技术相对于FDMA、TDMA系统具有较大的容量,但由于多径干扰、多址干扰的存在,其容量优势并没有得到充分的发挥,如果在基站上采用智能天线可以降低这些干扰的影响,提高系统的性能。本文通过对智能天线的认识、优势的阐述,从而引发智能天线在现代移动通信中的重要性。
一、引言
我们知道,天线有很多种,但大体上可分为三大类:“线天线”、“面天线”及“阵列天线”。阵列天线最初用于雷达、声纳以及军事通信中,完成空间滤波和参数估计两大任务。当阵列天线应用到移动通信领域时,通信工程师喜欢用“智能天线”来称谓之。智能天线根据方向图形成(或称为波束形成)的方式又可分为两类:第一类,采用固定形状方向图的智能天线,且不需要参考信号;第二类,采用自适应算法形成方向图的智能天线,需要参考信号。
本文在以下提到的智能天线都是指第二类,即(自适应)智能天线,这也是目前智能天线研究的主流。
二、智能天线的技术现状
在分析研究智能天线技术理论的同时,国内外一些大学、公司和研究所分别建立了试验平台,用实验的方法来验证理论研究的成果,得出相应的结论。
(1)在美国
在智能天线技术方面,美国较其它国家要成熟的多,并已开始投入实用。美国ArrayComm公司将智能天线技术应用于无线本地环路(WLL)系统。ArrayComm方案采用可变阵元配置,有12阵元、8阵元环形自适应阵列可供不同环境选用,现场实验表明在PHS基站采用该技术可以使系统容量提高4倍。
(2)在欧洲
欧洲通信委员会(CEC)在RACE(ResearchintoAdvancedCommunicationinEurope)计划中实施了第一阶段智能天线技术研究,称为TSUNAMI(TheTechnologyinSmartAntennasforUniver-salAdvancedMobileInfrastructure),由德国、英国、丹麦和西班牙合作完成。该项目是在DECT基站上构造智能天线试验模型,于1995年初开始现场试验,天线阵列由8个阵元组成,射频工作频率为1.89GHz,阵元间距可调,阵元分布有直线型、圆环型和平面型三种形式。试验模型用数字波束成形的方法实现智能天线,采用ERA技术有限公司的专用ASIC芯片BDF1108完成波束形成,使用TMS320C40芯片作为中央控制。
(3)在日本
ATR光电通信研究所研制了基于波束空间处理方式的多波束智能天线。天线阵元布局为间距半波长的16阵元平面方阵,射频工作频率是1.545GHz。阵元组件接收信号在模数变换后,进行快速付氏变换(FFT)处理,形成正交波束后,分别采用恒模(CMA)算法或最大比值合并分集算法,数字信号处理部分由10片FPGA完成,整块电路板大小为23.3cm×34.0cm。ATR研究人员提出了智能天线的软件天线的概念。
我国目前有部分单位也正进行相关的研究。信威公司将智能天线应用于TDD(时分双工)方式的WLL系统中,信威公司智能天线采用8阵元环形自适应阵列,射频工作于1785~1805MHz,采用TDD双工方式,收发间隔10ms,接收机灵敏度最大可提高9dB。
三、智能天线的优势
智能天线是第三代移动通信不可缺少的空域信号处理技术,归纳起来,智能天线具有以下几个突出的优点。
(1)具有测向和自适应调零功能,能把主波束对准入射信号并适应实时跟踪信号,同时还能把零响点对准干扰信号。
(2)提高输入信号的信干噪比。显然,采用多天线阵列将截获更多的空间信号,也即是获得阵列增益。
(3)能识别不同入射方向的直射波和反射波,具有较强的抗多径衰落和同信道干扰的能力。能减小普通均衡技术很难处理的快衰落对系统性能的影响。
(4)增强系统抗频率选择性衰落的能力,因为天线阵列本质上具有空间分集的能力。
(5)可以利用智能天线,实时监测电磁环境和用户情况来提高网络的管理能力。
(6)智能天线自适应调节天线增益,从而较好地解决远近效应问题。为移动台的进一步简化提供了条件。越区切换是根据基站接收的移动台功率的电平来判断的。由于阴影效应和多径衰落的影响常常导致错误的越区转接,从而增加了网络管理的负荷和用户的呼损率。在相邻小区应用的智能天线技术,可以实时地测量和记录移动台的位置和速度,为越区切换提供更可靠的依据。
四、智能天线与若干空域处理技术的比较
为了进一步理解智能天线的概念,我们把智能天线和相关的传统空域处理技术加以比较。
(1)智能天线与自适应天线的比较
智能天线与自适应天线并没有本质上的区别,只是由于应用场合不同而具有显著的差异。自适应天线主要应用于雷达系统的干扰抵消,一般地,雷达接收到的干扰信号具有很强的功率电平,并且干扰源数目比天线阵列单元数少或相当。而在无线通信系统中,由于多径传播效应到达天线阵列的干扰数目远大于天线阵列单元数,入射角呈现随机分布,功率电平也有很大的动态变化范围,此时的天线叫智能天线。对自适应天线而言,只需对入射干扰信号进行抵消以获得信干噪比(SINR,SignaltoInterferenceplusNoiseRatio)的最大化。对智能天线而言,由于到达阵列的多径信号的入射角和功率电平均数是随机变化的,所以获得的是统计意义上的信干噪比(SINR)的最大化。
(2)智能天线与空间分集技术的比较
空间分集是无线通信系统中常用的抗多径衰落方案。M单元智能天线也可等效为由M个空间耦合器按优化合并准则构成的空间分集阵列。因此可以认为智能天线是传统分集接收的进一步发展。
但是智能天线与空间分集技术却是有显著的差别的。首先空间分集利用了阵列天线中不同阵元耦合得到的空间信号的弱相关性,也即是不同路径的多径信号的弱相关性。而智能天线则是对所有阵元接收的信号进行加权合并来形成空间滤波。一个根本性的区别:智能天线阵列结构的间距小于一个波长(一般取λ/2),而空间分集阵列的间距可以为数个波长。
(3)智能天线与小区扇区化的比较
小区的扇区化可以认为是一种简化的、固定的预分配智能天线系统。智能天线则是动态地、自适应优化的扇区化技术。现在,我们来讨论一个颇有争议的问题。根据IS-95建议,当采用120°扇区时系统容量将增加3倍。由此是否可以得到结论,扇区化波束越窄系统容量提高越大?考虑到实际的电磁环境,我们认为对这一问题的回答是否定的。这是因为窄波束接收到的信号往往是由许多相关性较强的多径信号构成的。一般情况下,各径信号的时延扩展小于一个chip周期。这时信号波形易于产生畸变从而降低信号的质量达不到增加系统容量的目的。同时如果采用过窄的波束接收信号,一旦该径信号受到严重的衰落,则将直接导致通信的中断。另外,过窄的接收波束在工程上是难以实现的,并将成倍地增加设备的复杂度。
五、智能天线的未来展望
(1)目前还没有一个完整的通信理论能够较全面地将智能天线的所有课题有机地联系起来,故需要建立一套较完整的智能天线理论;另一方面,高效、快速的智能算法也将是智能天线走向实用的关键。
(2)采用高速DSP技术,将原先的射频信号转移到基带进行处理。基带处理过程是数字算法的硬件实现过程。
(3)由于圆形布阵和二维任意布阵比等间隔线阵优越,同时阵列天线的数字合成算法能够用于任意形式阵列天线而形成任意图案的方向图,因而可考虑在CDMA基站中采用二维任意布阵的智能天线。
(4)在移动台中(如手机)采用智能天线技术。
(5)采用智能天线技术来改善移动通信信道中上下链路不能使用同一套权值的问题,以改善上下链路的性能。
(6)目前,智能天线技术的研究已不是单一地研究智能天线本身,应与CDMA的一些关键技术(如多用户检测技术、多用户接收技术、功率控制等)结合在一起研究。
1.1传输通道抗衰落油田数据传输系统中的移动台与通信基站之间的传输主要依靠无线电磁波,在传输过程中,周围电力线发射的电磁波会干扰信号强度。移动台发射无线电磁波的衰减率为N=V/(λ/2),其中V为数据信息在传输信道内的速率,λ为外界电磁波的波长。如果增大电磁波波长便能有效地控制抗衰减系数,一般采取增大信源设备发射功率的方法来提高传输速率[4]。在传输系统一级电路信号功率放大过程中,数据信号容易在通信线路中发生全反射现象,使数据信号的码片呈现离散状态。在距终端处理器3/4位置处,继续进行二级数据信号功率的放大,使传输线路中产生电磁波的强度高于外界干扰电磁波的强度,让传输信道内的电磁波与电磁波相互抵消,可降低其电磁波的强度。并且电磁波在相互抵消过程中,也进行了一部分的叠加,从而增强了通信信号强度。
1.2编码调制油田数据传输系统编码调制分为二进制编码调制、十进制编码调制以及十六进制编码调制。十进制编码调制的输入端有10个数据连接点,每个数据点代表不同的数据值。输出部分的连接点共有4个,形成为8421十进制编码。该数据连接点的排布从左向右为I0~I9,当编码的数字首位为0,其他数字为1时,输出端编出的码型序列为0;当编码的数字第二位为0,其他数字为1时,输出端编出的码型序列为1;当编码的数字第三位为0,其他数字为1时,输出端编出的码型序列为2,以此类推,即为十进制编码转换原则。十进制编码比二进制编码过程复杂,但保密性能比二进制好。十六进制编码与十进制编码过程相类似,但是对9以后的数字编码要用ABCDEFG进行编制,当编制的数据信息为103131156时,那么接收到的编码序列即为A3D1F6。数据传输系统中二进制编码技术通常应用于传输话音信号,其优势为编码技术简化,占用的信道宽;十进制编码和十六进制编码技术应用于传输视频信息与数据信息,这两种编码技术保密性能佳,并且在传输数据信息中添加了冗余码与纠错码,可保证传输信息的有效性。
1.3移动天线射频移动天线射频技术中的设备根据俯仰角度不同,分为全向天线与定向天线两种类型。全向天线由于覆盖范围大,发射功率低,所以容易受到大气层中电磁波的干扰,使传输的数据信号失真,这种设备多用于油田空旷地区。定向天线覆盖范围小,传输距离远,但是发射的功率信号只能朝一个传播方向,如果在大型油田建筑群体设立单独的定向天线,发射的信号就会被障碍物吸收,因此每个建筑通常设立3个天线,每个定向天线覆盖的范围为120°,组成一个全向覆盖范围区域。每个定向天线的俯仰角度控制在15°范围内,定向发射的频率为8000Hz。在发射射频功率过程中,发挥主要功能的设备为耦合器,其结构组成为直流耦合端、输入端、隔离端及耦合输出端。
2TD—LTE技术的应用
2.1数据传输信道TD—LTE无线通信系统的传输信道分成等间隔的32个信道,其中上行信道16个,下行信道16个。上行信道负责数据的编码,下行信道负责数据的传输。上行信道具有数据信息编码和译码功能,可以在数据编码过程中添加冗余码和纠错码。在数据字符串间添加冗余码的过程中,上行信道会根据冗余码的排列顺序进行翻译,若对等的字符串没有得到有效的翻译,编码器便会重新接收冗余码,再一次进行翻译表达,直到油田数据终端设备接收到的数据信息与信源设备输出的信息一致,才会完成对数据信息的译码。
2.2油田数据传输系统无线局域网无线局域网的组建要根据不同的IP地址进行划分,以达到共享石油专网内的数据资源的目的。IP地址段分为4个区域段,A类IP地址段为0~127,B类IP地址段为128~191,C类IP地址段为192~223,D类IP地址段为224~239,每个区域段之间的主机设备都能够实现远端控制功能。
3结语
关键词:食品添加剂;技术伦理;应用安全
中图分类号:TS202 文献标识码:A 文章编号:1001-828X(2013)03-00-01
一、食品添加剂应用中存在的技术伦理问题
随着社会的向前发展和科技的不断进步,出现了各式各样的食品,各种食品添加剂也如雨后春笋般的出现了,极大的丰富和改善食品品质,同时食品添加剂在应用中也出现了很多问题,并由此引发了一系列的技术伦理问题,而且呈现出愈演愈烈的态势,给人们的物质生活和精神生活都带来了很多的负担,食品添加剂的应用方面存在的技术伦理问题主要体现在以下几个方面:
(一)盲目的追求金钱利益,败坏道德品质
在食品的生产加工过程中,一些生产者片面的追求金钱利益,昧着良心把一些化工原料添加到食品中,例如三鹿奶粉事件导致30多万个婴儿患上了结石病,三鹿公司破产。这种可耻的行为不仅严重的威胁人的生命和健康,而且还扰乱了正常的食品生产加工秩序,从而使食品添加剂在消费者心中的形象大打折扣。
(二)拒不执行生产标准,忽略道德规则
现代的食品工业需要食品添加剂,食品中使用食品添加剂时只要严格按照“GB2760-2008 食品添加剂使用卫生标准”规定的种类、范围及最大使用量或残留量的要求,食品的安全是可以保证的。但是很多食品生产加工者忽略了道德规则,在执行食品添加剂使用标准时存在很多诸如如超标准使用食品添加剂、故意隐瞒或不明标注食品添加剂含量等问题。
二、 保障我国食品添加剂应用安全的策略
解决食品添加剂应用安全问题,需要从逻辑理性与可行性两个方面来考虑。因此我们要解决食品添加剂应用安全问题,既可以从相关的制度和规范入手,又可以从它所面临的伦理问题着手。但是由于食品添加剂的安全问题涉及面广,操作复杂,仅凭某一个部门或者某一个人是不可能轻易的解决问题,因此需要政府、社会、每个人的齐心协力,共同面对。从技术伦理的视角寻求相关的对策,主要表现在以下几个方面:
(一)坚持以人为本、安全健康的技术伦理原则
1.以人为本原则。从技术层面来看,坚持以人为本的原则就是坚持为人类服务的原则。坚持以人为本要求人们在从事技术工作的时候必须将“人”放在核心位置,不断肯定人的价值,维护人的尊严和权利。马克思认为:“科学绝不是一种自私自利的享乐。有幸能够致力于科学研究的人,首先应该拿自己的学识为人类服务。”①在食品安全问题上更是压迫坚持这一原则。
2.安全原则。“安全需要”是人的最基本的需要之一。自觉遵循的人的生命安全的需要是重要的伦理道德原则。在食品添加剂应用安全问题上坚持这一原则,确保人们在整个食用过程中的安全性才更是重中之重。安全性是人们在选购食品时的首要选择,所以我国食品添加剂应用的过程中应该坚持安全原则。
3.健康原则。把健康原则作为一种伦理原则来看待,是因为它在实践中有着普遍的应用和普世的价值观。在人类所进行的所有活动中,我们的行为不仅要尽可能有利于人和其他生命客体的发展,而且尽可能的有利于他人取得最大程度的健康效益。当今世界,追求健康已经被看做了一种新的社会潮流。它体现在饮食方面,就是消费者已经开始注重食品的安全性,是否有利于人的身体健康。
(二)推动我国食品添加剂健康安全发展的道德规范
1.坚持诚实守信、文明生产。诚信是传统美德。食品生产行业,应该立足诚信,做好本质工作,尤其更要以严肃的态度,在食品生产加工过程中使用食品添加剂时不应以掩盖食品腐败变质、食品本身或加工过程中的质量缺陷或以参杂、参假、伪造为目的,明确标明食品生产加工过程中所使用的食品添加剂,注明其使用功能及用途,以及使用剂量。从而让消费者了解这些信息,达到放心购买的目的。
2.做到敬业尽责、恪守标准。确保食品添加剂应用的安全,必须要有相应的食品添加剂使用安全标准。对于食品行业的从业人员来说,无论从事什么岗位,都应该把爱岗敬业作为一种责任,爱护自己的职业岗位是最基本的条件,同时在生产管理、加工时都应该严格的遵守遵守食品添加剂的使用标准。
(三)保障食品添加剂应用安全的技术伦理措施
要切实加强和保障我国食品添加剂应用安全,需要采取有效的措施。目前,在食品添加剂应用中,最难解决的是平衡各方面的利益问题,必须实现他律向自律转变。
1.坚持利益平衡原则,形成利益平衡机制。利益平衡机制是解决食品添加剂应用安全问题的有力杠杆。在当前市场经济条件下,食品生产企业与食品消费者之间所存在的利益冲突表现为企业追求在利润最大化的过程中忽视了消费者的生命健康权,导致消费者的利益受损。如果不考虑两者利益的平衡,最终影响食品企业的健康发展。因此需要由国家承担保护消费者权利的职责,通过立法、行政等给消费者特殊保护,补救其弱者地位,建立企业与消费者之间的利益平衡机制,维持企业与消费者之间的利益平衡,从而建立公平公正、健康有序的市场经济体制。
2.实现他律走向自律的转化。对于食品生产者和消费者来说,利益平衡机制只是外在的制约力机制,还必须探寻内在的制约机制,也就是哲学上所说的内因,即要求我国在食品添加剂安全应用过程由他律向自律转化。他律是外在的强制力,自律是内在的驱动力,两者相辅相成。他律走向自律是实现我国食品企业肩负起社会责任、弘扬道德诚信的强大动力。
注释:
①拉法格.回忆马克思恩格斯 [M].北京:人民出版社,1973年版第2页。
参考文献:
[1]李宏伟.现代技术的陷阱:人文价值冲突及其整合[M].北京:科学出版社,2008.
[2]翁定孟,沈文元,吴瑛.食品添加剂使用安全问题的探讨[J].职业与健康,2006.
[3]冯浩,吴莉,陈晓勇.浅析滥用食品添加剂的问题、原因及对策[J].中国卫生法制,2005.
[4]殷有敢,王伟博.“安全为天”的伦理阐释[J].理论界,2006.
[5]宋萍,马彦芳.食品安全与食品添加剂[J].食品与药品,2006.
关键词:蝶形,微带天线,阵列
引言
微带天线作为一种新型的天线,与普通天线相比,具有不可替代的优势。它具有体积小、重量轻、平面结构等特点,可以很容易地与导弹和卫星等结合。此外,微带天线也有结构紧凑,性能稳定等特性,易于使用的印刷电路技术和大批量制造技术。因此,微带天线以其独特的优势得到在无线通信系统更广泛的应用。近年来,许多研究人员通过努力研究了多种天线技术来克服或减少微带天线一些不足之处[1~3]。然而,以上这些天线定向性不能满足无线通信的要求。因此,有必要研究低成本、高增益的WiMAX阵列天线。
本文提出了一种用于WiMAX的新型微带阵列天线。天线采用独特的布局,包括两层辐射带,该天线提供了一个由5.3至5.9GHz的带宽,能很好应用于WiMAX通信系统中。
一.天线结构
蝶形微带阵列天线结构如图1所示,天线的辐射单元包括两个对称的印刷带。天线的上层辐射带包括八个辐射单元,辐射单元的长度为a=10mm,宽为b=8mm,底部辐射带结构与顶层相反。微带天线的尺寸354mm×50mm。两层辐射层均印制在teflon基体上,其介电常数为2.65,厚度为1mm。上下两层对称的辐射单元与相邻的馈线网络单元连接,结构形状如同蝶形。科技论文,微带天线。科技论文,微带天线。
图1 蝶形微带阵列天线结构
二. 仿真与实测结果分析
制作的微带阵列天线如图2所示,天线的测量结果由R3765CH网络分析仪给出。科技论文,微带天线。图3~5为微带天线仿真与实测辐射模式。科技论文,微带天线。仿真结果(虚线)与实测结果(实线)相对应。从图3~5中可以看出,仿真与实测结果一致。阵列天线在5.3GHz时,E面的最大增益达到22.14dBi。良好的定向性能。所测天线在5.9GHz时H面半波束宽度达到最大,为105.44°,增益为6.53dBi。以上辐射模式结果表明在整个频段内天线具有较好的辐射效率,同时天线具有重量轻,低剖面,易于平面电路集成等特点。
图2 阵列天线的照片
图3远场辐射模式,f=5.3GHz
图4 远场辐射模式,f=5.5GHz
图5 远场辐射模式,f=5.9GHz
三. 总结
本文提出了一种16单元的蝶形振子阵列天线,所测天线在驻波比小于1.45时带宽为5.3~5.9GHz。科技论文,微带天线。天线在5.3GHz时E面的最大增益为22.14dBi,H面在5.9GHz时最大波束宽度为105.44°。科技论文,微带天线。测量结果表明该天线能够满足WiMAX频段通信要求。
参考文献
[1]Z.Du,K.Gong,J.S.Fu.Anovelcompactwide-bandplanarantennaformobilehandsets.IEEEtransactionsonantennasandpropagation,2,2006:613~619.
[2]H.Wang.X.B.Huang,D.G.Fang.AsinglelayerwidebandU-slotmicrostrippatchantennaarray.IEEEantennasandwirelesspropagationletters,7,2008:9~12.
[3]R.A.Bhatti,J.H.Choi,S.O.Park.Quad-bandMIMOantennaarrayforportablewirelesscommunicationsterminals.IEEEantennasandwirelesspropagationletters,8,2009:129~132.
【关键词】 TD-LTE 多天线技术 2/8天线 性能对比
引言
多天线技术(MIMO)是LTE系统的关键技术之一,通过与OFDM及技术结合应用,能够对空、时、频多维信号进行很好的联合处理和调度,使系统的灵活性和传输效率大幅度提升。TD-LTE系统集成了TDD的固有特点和优势,能够很好的满足非对称移动互联网业务应用的需求。随着LTE上涌进程的不断推进,全球各大电信运营商已经大面积部署LTE网络,大部分FDD运营商采取了将LTE和3G系统共同部署的策略,基站主要采用2天线,而TDD运营商为了将TDD技术的优势充分发挥出来,其基站主要采用4天线和8天线技术,因此,需要充分了解不同天线技术各自的特点,从而为TD-LTE的实际部署和后续发展提供依据。
一、多天线技术
多天线技术是一种统称,根据实现方式的不同可以分为天线分集、波束赋形以及空分复用三种[1]。从LTE的发展过程来看,最基本的LTE MIMO形式采用了两端口的2×2形式。因此,多天线技术在TD-LTE系统中的发展及应用对于TDLTE的发展发挥着非常重要的作用。最优的MIMO算法对于不同的天线属配置来说存在一定的差异。
在TD-LTE系统中,常用传输方式主要包括TM2、TM3、TM4、TM7以及TM8,其中2天线主要采用的传输模式包括TM2、TM3和TM4;8天线除了支持2天线支持的传输模式之外,还支持TM7和TM8,其中TM8模式为R9支持技术[2]。表1给出了2天线和8天线的上下行对天线模式的支持能力。从表1来看,在上行上都是采用MIMO的分集模式,下行由于采用了模式间的自适应技术,当信道条件较好时会采用双流技术,而当信道条件较差时,则采用了单流技术。
二、2/8天线性能对比
2.1 2/8天线下行信道性能对比
表2给出了2/8天线SU-MIMO的系统性能对比数据,基于3GPP Casel-3D场景进行仿真,2天线采用TM4模式,8天线采用TM8模式,均支持单双流自适应。
从表2中的数据来看,8天线相对于2天线来说,平均频谱效率的增益达到了19%,边缘频谱效率的增益达到了22%。8天线的性能增益主要是由于其本身的空间自由度更高,能够形成更窄、指向性更强的波束,使有用信号提高,干扰也大幅降低。同时2天线通过终端反馈码本的方式存在码本量化损失,而8天线通过信道互易性得到的信道进行矩阵分解,可以得到更加准确的预编码向量。
由于8天线相对于2天线来说具有更大的空间自由度,因此8天线能够对MU-MIMO进行更好的支持。表3给出了8天线的SU-MIMO和MU-MIMO的性能对比,其中SUMIMO采用了单双流自适应技术,MU-MIMO则采用了2用户配对的单流技术。从表中的数据能够看出,MU-MIMO相对于SU-MIMO的平均频谱效率和边缘频谱效率均有15%左右的提升。8天线MU-MIMO模式下,用户配对准则以及用户之间的干扰消除的预编码算法会在较大程度上影响传输性能。
2.2 2/8天线上行信道性能对比
从上行链路的性能来看,8天线相对于2天线具有更大的接收分集增益。同时,8天线的空间自由度优势方便基站通过更具优势的接收算法来提升处理增益。表5给出了2/8天线系统上行仿真性能对比,仿真基于理想的信道估计。
接收端通过采用8天线和基于MMSE的干扰消除接收算法,8天线在平均频谱效率以及边缘频谱效率均有50%以上的增益效果,尤其是边缘频谱效率的增益接近80%左右。因为8天线具有很好的干扰消除性能,因此8天线的基站上行引入MU-MIMO技术能够进一步提升系统性能增益。
三、8天线在产品实现中的挑战
从前文的分析来看,基于8天线和2天线在物理实现、器件性能方面基本保持一致[3]。但是在实际产品实现方面,两者之间存在一定的差异,比如天线增益,这些对会对网络的实际上下行性能产生不同程度的影响。TD-LTE基于信道互易的8天线技术方案存在一定的问题。基于用户反馈码本的多天线方案,需要对上行容量进行充分的考虑,因此,一般会选择较粗的时频颗粒度进行反馈。但是在TDD系统中,基站能够通过上下行信道互易性获取上下行信道信息。因此,在预编码计算的过程中不会受到码本量化带来的影响。当硬件处理能力较高时,甚至能够实现所有物理资源块的波束赋型矩阵的计算,这能够使得波束赋型与信道条件之间的匹配程度进一步提高,从而促进波束赋型技术性能的进一步提升。
四、结语
TD-LTE继承了TDD的优势和特点,具有较高的灵活性和性能。通过论文的分析可以看出,8天线相对于2天线在平均频谱效率和边缘频谱效率具有更好的性能,同时8天线的MU-MIMO比SU-MIMO在平均频谱效率和边缘频谱效率具有更好的性能。因此,8天线能够更好的发挥空间和复用和干扰抑制方面的优势,能够进一步提升TD-LTE系统的性能。
参 考 文 献
[1]毕奇.LTE多天线技术发展趋势[J].电信科学,2014(10):1-7.
关键词:通信;天线;带宽
中图分类号:TP391 文献标识码:A文章编号:1007-9599 (2011) 14-0000-01
Broadband Patch Antenna Design
Jiang Jingjing,Liu Congmin,Chen Xingyi
(Nanjing University of Posts and Telecommunications,Nanjing210046,China)
Abstract:In recent years,due to the rapid development of the communications industry,the requirements of the antenna increases.Microstrip patch antenna with light weight,low cost,easy to manufacture,etc.,are widely used.But ordinary microstrip patch antenna has a major flaw-the bandwidth is narrow.Therefore,the broadening of the band microstrip patch antenna has become an important research direction.
Keywords:Communication;Antenna;Bandwidth
一、拓宽微带天线带宽的方法
对微带天线而言,通常影响其带宽的主要因素有微带天线基底的相对介电常数,基底介质损耗角正切,辐射单元的几何尺寸、形状结构,天线的匹配网络,天线的馈电方式等。现有的众多拓宽微带天线频带的方法通常从微带天线的结构和天线匹配电路这两个方面进行改进。通过对天线结构的改变,使其增加额外谐振频点,将原有的简单RLC电路变为多谐振点的耦合谐振电路。一种方法是用寄生贴片。但是这种方法需要扩大天线的尺寸,不论是在天线刨面还是高度方面。另一种方法是在天线结构中加载LC谐振电路,谐振电路中的容性阻抗使得天线的谐振频率低于无载天线的谐振频率,而感性阻抗使得天线的谐振频率高于无线天线的谐振频率,这样天线就有两个相邻的谐振点,从而拓宽了天线的带宽。由于现代的无线移动通信要求天线小型化,因此本论文主要采用对天线的结构进行改进来拓宽微带天线的带宽。目前普遍采用的补偿探针引入电感的方法是在辐射贴片上开出U型槽,此方法可以使得天线获得30%的带宽(S11
图2-1:U型槽微带贴片天线,且它的带宽能达到30%
二、微带天线的馈电方式
对微带天线的激励方式主要分为两大类:直接馈电法和间接馈电法。直接与贴片相接处的方法称为直接馈电法,目前普遍采用的有同轴背馈法和微带线侧馈法。与贴片无直接接触的激励方法就是间接馈电法,此类方法主要有:电磁耦合法,缝隙耦合法和共面波导馈电法等。馈电技术直接影响到天线的阻抗特性,所以也是天线设计中的一个重要的组成部分。
本论文中采用的是同轴探针背馈的天线模型,馈电探针可以直接焊接在贴片上。此馈电方法的最大优点是探针可以放置在贴片上的任何位置以达到天线的阻抗匹配,主要缺点是必须在介质基底和接地板上钻出孔眼,从而破坏了天线的平面结构和对称性。
三、E型微带贴片天线的频带拓宽效果
众多文献提E型微带贴片天线的带宽可达到30%以上,现在我们选取一种尺寸的E型贴片天线,采用50Ω同轴线馈电,用CST仿真软件对该天线的参数进行优化,得到了一个带宽为35.4%的E型微带贴片天线。
四、频带为1.9GHz-2.4GHz的E型微带贴片天线
由于现代通信对于频段的要求,本章中具体设计了一个包含1.9GHz和2.4GHz频段的带宽为35.7%的E型宽带贴片天线。这些覆盖的频段在现代无线电通信中非常重要。为TD-SCDMA的使用频段。
五、天线介质基板的选取
由于介质基板材料的相对介电常数、损耗正切角、介质厚度h对天线的性能影响很大,所用天线设计的第一步需确定所用介质基板及其尺寸。由于本论文主要讨论天线贴片部分的性能,所用选用空气介质,相对介电常数为1。通常情况下,要求基底介质厚度h
由于基底的过多向外延伸对这种场分布没有明显影响,从减小天线重量及安装面积和降低成本着眼,基底的尺寸不应太大。试验表明沿辐射元各边向外延伸λ/10就可以了。本论文中采用的基底尺寸为200mm×200mm。
六、带宽为1.9GHz-2.4GHz的E型微带贴片天线
本文此部分展示了一个E型微带贴片天线的各种性能,天线覆盖了1.9GHz~2.4GHz这一无线通信中的重要频段。天线的参数如下(millimeters):(L,W)=(70,50),h=15,(Xf,Yf)=(6,35),Ls=40,Ws=6,d=10。
七、E型微带贴片天线的增益
图4-5:包含1.9GHz和2.4GHz的E型微带贴片天线增益的变化情况
【关键词】时延估计 互功率谱相位 多天线 数据融合
随着月球探测等深空探测工程的启动与成功实施,拉开了我国深空探测的篇章。深空远距离的通信与导航定轨对深空网天线的性能提出新的要求。美国深空网(DSN)也明确指明了研究方向:采用射频频段的多天线组阵系统,天线组阵系统的一个研究重点就是天线之间的相对时间延迟估计。在较低信噪比下,它的准确与否直接关系到输出信号的合成效率。
将多个天线划分为多个天线对,接着利用传统时延估计方法对各天线对间的时延进行估计,之后利用天线间的几何关系对各天线对估计的时延进行融合处理得到融合后的时延估计。此类多天线时延估计方法中最为典型的方法:互功率相位谱系数相加方法。
1 系统模型与基本互相关算法
在被动时间延迟估计问题中,通常假定信号在信道中是以无色散球面波传播的。为了便于分析和处理,常常将信导源和接收器考虑在同一平面内,将三维空间简化为二维空间。在二维空间中,球面波退化为平面波。接收天线阵与目标深空航天器百万千米的距离相比,则可认为目标航天器发出的遥测信号是以平面波方式传播到接收天线阵的。
考虑如图1所示的多天线系统,其中多天线系统由L+1个天线组成,所有天线的几何位置关系已知,各天线的接收信号可以表示为xl[n],l=0,1,…,L;不失一般性,以第0个天线作为时延估计的基准。
信号模型可以表示为(1)
其中,s[n]表示未知的源信号,αl表示各个天线的衰减因子,τ表示第l个天线相对于第0个天线的时延,fl(τ)表示第l个天线相对于第0个天线的时延,xl[n]表示第l个天线的接收信号,wl[n]表示第l个天线的噪声,l=0,1,…,L。
结合信号数据级融合思路,将基于双天线的时延估计方法推广到多天线信号的联合时延估计。构造除基准天线外所有天线的融合信号x[n],则
(2)
鉴于基本互相关函数思想,为了理论分析方便,假设各天线衰减系数αl=1。基准信号x0[n] 与各天线融合后信号x[n]的互相关函数。
(3)
由互相关函数特性可化简为
(4)
则由自相关函数性质可知,自相关函数 在m=τ,f2(τ),…,fl(τ)处会出现峰值点,而这些峰值点对应的就是个天线相对于基准天线的时延值。
为了提高估计精度,可以在信号互相关运算前进行加权处理,使得基本互相关法变为广义相关法,来求得多天线的相对整数时延。互功率谱法就是互相关法在频域的表现形式,两者是等价的,故亦可以用在多天线信号联合时延估计。
2 多天线互功率谱法的算法分析
因为互功率相位谱稳健,计算简洁,在时延估计中得到了广泛的应用。互功率相位谱系数可以表示为
(5)
其中,si(n)和sj(n)表示第i根天线和第 j根天线接收到的信号,n和k都为时间索引。第i根天线和第j根天线之间的相对时延估计可以表示为
(6)
互功率相位谱系数相加方法就是将所有天线对计算所得的互功率相位谱系数直接相加,得到融合后的互功率相位谱系数,可以表示为
(7)
得到融合后的互功率相位谱系数后,即可以利用它估计时延,可以表示为
(8)
3 仿真分析
仿真条件说明:N个线阵等距布置,观测信号为射电星信号(高斯白噪声),只考虑整数时延。
图2为多天线信号在基本互相关法与广义互相关法时延估计结果。仿真实验中选取了6路天线信号在信噪比为-2dB进行实验。仿真结果显示通过搜索各个谱峰,就可以得到5路天线相对于参考天线的相对时延。其中广义相关法采用最大似然函数加权,通过加权的算法可以看出主谱峰突出,旁瓣相对幅度减小,算法性能明显提升。
图3示出了互功率相位谱系数相加方法在积分符号为1000情况下正确估计时延的概率(1000次蒙特卡洛仿真实验统计得到);其中,红线表示各天线对互功率相位谱系数相加后正确估计时延的概率(35个天线对互功率相位谱系数相加),蓝线表示各个天线对正确估计时延的概率。
从图2中可以看出,融合后正确估计时延的概率明显高于单个天线对;当信噪比为-15dB时,采用35个天线对互功率相位谱系数相加方法正确估计时延的概率大于0.8,而此时单个天线对正确估计时延的概率非常小。
图3示出了互功率相位谱系数相加方法在积分符号为1000情况下时延估计的均方根误差(1000次蒙特卡洛仿真实验统计得到);其中,红线表示各天线对互功率相位谱系数相加后时延估计的均方根误差(35个天线对互功率相位谱系数相加),蓝线表示各个天线对时延估计的均方根误差。
从图2中可以看出,融合后时延估计均方根误差明显低于单个天线对。
在信噪比为-20dB情况下,各天线对互功率相位谱系数相加后时延估计的误差分布情况如图5所示(1000次蒙特卡洛仿真实验统计得到)。
从图5中可以看出,在该仿真环境下,互功率相位谱系数相加方法得到的时延估计误差(错误估计情况下)近似呈均匀分布。
4 结束语
多天线时延估计方法首先将多个天线划分为多个天线对,接着利用传统时延估计方法对各天线对间的时延进行估计,之后利用天线间的几何关系对各天线对估计的时延进行融合处理得到融合后的时延估计(可以理解为数据级融合处理)。相比于单个天线对,性能改善也较明显;另外,多天线时延估计方法能够方便地与现有天线组阵系统相融合以改善时延估计精度。
参考文献
[1]ROGSTAD D,Mileant A,Pham T.Antenna Arraying Techniques in the Deep Space Network[M].Hoboken:AJohn Wiley&Sons,lnc,2003.
[2]陈彩莲.随机分布多天线组阵的关键技术研究与实现[D].信息工程大学硕士学位论文,2009,17-23.
[3]李雪梅,陶然,王越. 时延估计技术研究[J].雷达科学与技术,2010,8(4):362-371.
[4]王宏禹,邱天爽.自适应噪声抵消与时间延迟估计[M],大连理工大学出版社,大连,1999.
[5]黎英云.微弱多径信号时延估计技术研究[D],华中科技大学博士学位论文,2009.
[6]沈智翔.多天线信号合成关键技术研究[D],信息工程大学硕士学位论文,2010.
[7]金留念.基于二次相关的时延估计方法研究[J].电子信息对抗技术,2011,26(1):39-42.
作者简介
耿攀飞(1988-),河北省石家庄市人,助理工程师,研究方向为航天测控信号处理。
关键词:卡塞格伦光学天线 光束 热变形
中图分类号:TN820 文献标识码:A 文章编号:1674-098X(2014)05(c)-0028-02
空间光通信的快速发展,带动了光学天线系统设计技术的进步。光学天线系统作为空间光通信设备,具有自身的优势:体积小,重量轻、功耗低、频带宽、通信容量大,等等。卡塞格伦光学天线作为光学发射和接收天线,其突出的优点有[1]:(1)口径可以做得较大,不产生色差且可用波段范围较宽;(2)采用非球面镜后,有较大的消像差能力;(3)可以做到收发合一。但环境的变化对天线系统的性能会产生较大的影响。本文对一种典型的卡塞格伦光学天线的镜体进行了热变形仿真,并利用了光学仿真软件CODE-V分析了热变形对传输光束传输质量的影响。
1 天线镜体的热变形对光束传输的影响
1.1 镜体的热变形分析
我们知道,当镜子的表面和内部存在温差时,由于玻璃的导热率低,内外部温差产生的应力能使镜体变形并改变其表面的曲率半径,尤其是靠近外部的区域,会出现所谓的“塌边”或“翘边”的现象,这一温度效应称为“边缘效应”[2]。根据热弹性力学理论,镜体由于温度的改变而产生的形变,主要由三部分组成:镜体材料温度升高而产生的自由热膨胀、边界固定后不能自由膨胀而引起的和材料的泊松比有关的形变、热应力而产生的形变[3]。
为了形象地描述镜体的热形变,该文利用ANSYS软件仿真图[4],以常温(20 oC)为起始温度、压圈法固定镜体为例,分析了镜体随温度的升高而发生的形变。图1、图2、图3分别表示温度为100 oC时镜体在X、Y、Z方向的位移。从图中可以看出,升温时,天线系统的反射镜面向外鼓起。镜体在轴向方向(Z方向)的变化,对光束的传输影响最大,当温度变化为100 oC时,轴向方向(Z方向)的变形量为0.6 ?m。而当温度降低时,天线系统的反射镜面向内凹陷。由此表明,温度的变化对镜体的形变影响还是比较大的。
1.2 镜体的热变形对传输光束的影响
图4,图5分别描述了镜体变形前后天线的点扩散函数图。图6、图7分别描述了镜体变形前后天线系统的MTF图。图4、图5表明镜体变形前,光束通过设计的卡塞格伦光学天线,光束能量集中,发射光束发散角小,光线分布均匀,实现了卡塞格伦光学天线收发合一的功能。图6、图7表明,镜体变形后,光束在卡塞格伦光学天线中传输时,天线系统的传输特性变差。相应地,卡塞格伦光学天线的效率发生了明显的变化,光束的传输达不到镜体温度变化前的理想值。这种反射镜面的热变形对传输光束会产生偏转、传输光束中心移位及光束发散等影响[5]。在空间光通信中,传输光束的偏转、中心移位及光束发散会造成目标图像畸变、存在严重的像差以及图像不清晰等等。本文设计的卡塞格伦光学天线采用了大量的反射镜面,所以镜面的热变形对光束的传输影响很大。由此可见,在实际应用时,要在镜面材料选择、镜体应力释放方式、镜体大小选择等方面进行合理设计,尽量减小由于温度变化对镜体产生的应力,以避免出现像差增大和天线镜面破裂等现象。
2 结语
该论文研究了卡塞格伦光学天线镜体的热变形对传输光束传输质量的影响。光学天线的设计是空间光通信的重要发展部分,光学天线传输的质量高低直接影响到信号传输的准确性,所以在系统设计过程中,应该考虑环境变化对系统的影响。
参考文献
[1] Cho Y M,Kong H J and Lee S S.OPTICAL ENGINEERING[M]. Bellingham,1994:33-100.
[2] 冯树龙,张新,翁志成,等.温度对大口径主镜面形变形的影响分析[J].光学技术,2005,31(1):41.
[3] 彭玉峰,程祖海.热变形谐振腔的激光模式理论分析[J].强激光与粒子束,2000(B11).
【关键词】移动基站环境安全电磁辐射模型软件仿真
一、引言
随着通信需求量的增加,为保证整个网络的信号覆盖和通信质量,兴建了大量的基站,这同时增加了环境中电磁辐射水平,引起了社会对电磁辐射对公众健康的影响的广泛关注。因此,探究基站电磁辐射对环境及公众健康的影响意义重大。对于处于不同的地形地貌、环境、地区等的不同类型的基站天线,电磁辐射也各不相同,实地测量费时费力,需要对于具体移动通信基站天线辐射的电磁场值的大小和分布情况,才能研究电磁污染程度,从而确定通信基站选址是否合适。本文从理论数值计算方面分析和研究,模拟基站天线电磁辐射过程。实用软件进行仿真,节省更多的人力,物力,财力。更高效,合理,全面的建立基站。此模型的建立与推广应用对通信基站的辐射环境管理,设计建设,环境影响预测和评估具有重要指导意义,对诚城市可持续发展,城市电磁辐射环境规划和保护具有现实意义和深刻影响。
二、国家颁布的技术标准
国家环境保护局、卫生部颁发了《公众照射导出限值》(GB8702-88)与《环境电磁波容许辐射强度分级标准》(GB9175-88)两个主要技术标准,并颁布了《电磁辐射防护规定》、《环境电磁波卫生标准》两项技术标准。1997年3月,又国家环境保护18号令及《电磁辐射环境保护管理办法》等。
中华人民共和国国家标准“电磁辐射防护规定”(GB8702-88)规定:在一天24小时内,电磁辐射场量在任意连续6 min内的平均值应满足(30~3000MHz):
职业照射≤2W/m2=200滋w/cm2
公众照射≤0.4W/m2=40滋w/cm2
三、模型建立
3.1电磁辐射模型一:理论预测模型
自由空间是指一种理想、均匀的、各项同性的介质空间,当电磁波在该介质中传播时,不发生反射、折射、散射和吸收现象,只存在电磁波能量扩散而引起的传播损耗。
电磁波在自由空间中的传播损耗公式为:
Ls=32.45+20lgr(Km)+20lgf(MHz)
式中:Ls―――电磁波在自由空间的损耗;r―――天线轴向与被测点的直线距离;f―――电磁波的频率;
测试点实际接收的电磁波接受功率为:
从表四的预测结果中看出,当远场轴向距离为14.63m时,符合国家一级标准,功率密度已下降到0.08W/m2以下。
两个模型得到的安全距离大致吻合,也就是说,当场点距离大于14.63m以后,都符合国家一级标准,移动基站的电磁辐射不会对环境造成危害。
四、软件仿真
在实际操作中,模型的计算比较繁琐,而将理论模型导入软件,制出专门分析移动基站电磁辐射的软件,便于我们对移动基站的选址、估算。
我们利用VC++中MFC应用程序框架制作软件进行仿真,将上述两个模型导入软件中,系统自动计算,只有当两个模型的求解值都满足国家一级标准时才输出可以建立基站。
在图3中输入相应参数。
参考文献
[1]黄云飞,黄美美. 900MHz移动通信系统基站电磁辐射对环境的影响,2010
[2]马海卫,庞新新,刘振.移动通信基站电磁辐射特点及水平[会议论文],2004
[3],徐辉.认识移动通信基站电磁辐射特点,保护环境,实现移动通信的可持续发展[会议论文],2003
[4]王亚民,张永富,张金明.移动通信基站电磁辐射环境监测布点的讨论[期刊论文],2002
[5]张海鸥.移动通信基站的电磁辐射仿真模拟及应用[学位论文],2010
(淮北矿业集团芦岭煤矿,安徽 宿州 234000)
摘 要:文章以矿井瞬变电磁法的扇形观测系统在钱营孜煤矿西风井掘进巷道中的应用为例,分析了矿井瞬变电磁法在煤矿水文地质方面工作的作用,也阐述了扇形观测系统与常规的观测系统相比的优点。为矿井瞬变电磁方法的发展及在矿井水文地质工作中的推广做出了一定的贡献。
关键词 :矿井瞬变电磁;扇形观测系统;水文地质;数据采集
中图分类号:TD6文献标志码:A文章编号:1000-8772(2014)13-0203-01
1 矿井瞬变电磁法的基本原理
瞬变电磁法属时间域电磁感应方法。其探测原理是:在发送回线上供一个电流脉冲方波,在方波后沿下降的瞬间,产生一个向回线法线方向传播的一次磁场,在一次磁场的激励下,地质体将产生涡流,其大小取决于地质体的导电程度,在一次场消失后,该涡流不会立即消失,它将有一个过渡(衰减)过程,该过渡过程又产生一个衰减的二次磁场向掌子面传播,由接收回线接收二次磁场,该二次磁场的变化将反映地质体的电性分布情况。如按不同的延迟时间测量二次感生电动势V(t),就得到了二次磁场随时间衰减的特性曲线。如果没有良导体存在时,将观测到快速衰减的过渡过程;当存在良导体时,由于电源切断的一瞬间,在导体内部将产生涡流以维持一次场的切断,所观测到的过渡过程衰变速度将变慢,从而发现导体的存在。瞬变电磁场在大地中主要以“烟圈“扩散形式传播,在这一过程中,电磁能量直接在导电介质中传播而消耗,由于趋肤效应,高频部分主要集中在地表附近,且其分布范围是源下面,较低频部分传播到深处,且分布范围逐渐扩大[1-8]。
2 井下观测系统布置
本次探测主要是探测巷道顺层前方、顶板、底板的富水性,所以在测点上共布置三个探测方向,一个是线圈平面方向是平行巷道掌子面朝法线方向探测,一个方向是斜上45°方向探测巷道倾顶板方向,一个是斜下45°方向探测巷道倾底板方向。西三轨道山上山巷道迎头立面较小,矿井瞬变电磁法的发射和接收线圈的几何尺寸受到的一定的制约。现场观测系统布置时只能采用多匝小回线的发射和接收装置形式,即边长为2m。测点布置在巷道迎头里面附近,从巷道迎头左侧开始,左右两侧各布置了3个测点,每个测点处在竖直方向上采集3组数据,依此为超前顶板、超前顺层、超前底板,其中顶板和顺层方向数据采集时天线法线方向约与迎头立面成45°,顺层方向天线与迎头立面垂直。本次探测是轨道迎头前方的电阻率变化情况,巷道设计在停头位置做相应的变化,即在水平面内旋转天线,使天线的法线方向与巷道的左侧分别成60°、30°、45°和90°的夹角进行探测。当天线的法线方向与巷道迎头界而垂直时,根据其主迎头断面的宽度布置4个测点;到巷道迎头右侧时类似左侧方法分别成90°、30°、45°和60°的夹角进行探测、右帮布置3个测点,从而实现从多个角度采集数据,称之为“扇形”测深系统技术。
3 结果解析及结论
由图1可见迎头前方的视电阻率剖面,从观测系统中可以看出,本次探测的所有测点均分布在巷道平面上,为重点解释区域;本次实际探测掘进巷道迎头前方100m,解释迎头前方80m,盲区20 m。针对前方探测结果解释如下:
(1)掌子面前方20-40m段范围内顶板、顺层与底板的视电阻率值较高,相对较高,该段岩性变化不大,不存在低阻异常;
(2)掌子面前方40-60m段范围内顶板、顺层与底板的视电阻率值均有所降低,与迎头相比电阻率存在变化,相比岩性有所变化,注意支护;
(3)60m-100m左右,视电阻率的结果跳跃较大,特别是巷道的左上方及前方,推测是存在构造或者是破碎带,掘进到此处时请注意支护与超前钻孔探放水,以探查引起视电阻率变化的地质原因;
参考文献:
[1] 武军杰.瞬变电磁新技术在隧道超前地质预报中的应用研究.[硕士论文] 长安大学,2005.
[2] 李志聃.煤田电法勘探.徐州:中国矿业大学出版社,1990.
[3] 郑永祥,郗金栋.矿井无线电透视法试验研究.煤田地质与勘探.1978.03:22-31.
[4] 何峰,蒋维庆.矿井音频电透视的应用.中国煤炭学会第六届青年科技学术研讨会论文集.2000.
[5] 于景邨.矿井瞬变电磁理论与应用技术研究.[博士学位论文] 中国矿业大学.1999.
[6] 岳建华,姜志海.矿井瞬变电磁探测与应用.能源技术与管理.2006(5).
[7] 刘志新.矿井瞬变电磁场分布规律与应用研究.[博士学位论文]中国矿业大学.2007.
【关键词】 广播电视发射天线 发射天线原理 技术特征 应用
广播电视信号的传播,主要是将发射机所发出的中波和短波转为电磁波,在电磁波发射出去之后,由广播电视天线接收。但是天线并不需要与发射机连接,而是通过网络就可以将经过技术转换后的视听信号传播到广播、电视接收台。随着高端科技因子逐渐地融入到广播电视发射天线技术当中,使得该门技术不断升级。
一、广播电视发射天线基本结构
广播电视发射天线是在传输信号和接收信号的过程中,运用天线完成信号的传输和接收过程。广播电视发射天线的基本结构是垂直的天线铁塔、调配箱将馈线连接到圆盘系统,圆盘系统可以连接多根导线。天线铁塔为单桅杆拉线铁塔,在铁塔的底部架设有地网线。发射机将信号发出后,以高频电流的形式存在,经过信号转换之后,被传输到地网中,被广播、电视所接收。在整个的广播、电视信号传输和接收的过程中,周围地区一定范围内会被信号所覆盖。
本论文所研究的广播电视发射天线为并馈式自立铁塔中波天线,其基本结构是垂直结构的天线自立铁塔。塔体形式可以根据需要进行设计,可以是正方形的、三角形的,也可以是正多边形的。如果是普通的铁塔,所布设的导线有限,并馈式自立铁塔则有所不同,可以布设多根导线[1]。在并馈式自立铁塔的平台上连接导线的上端,下端汇集在铁塔底部的中心处。在并馈式自立铁塔的的底部架设有地网线。(并馈式自立铁塔结构图见图1)
与通常使用的广播电视发射天线相比,并馈式自立铁塔中波天线没有绝缘底座和绝缘拉索设计,不仅降低了工程施工量,而且还节约了成本。并馈式自立铁塔采用直流接地设计,具有良好的雷电导流系统,可以避免天线遭到雷击。并馈式自立铁塔中波天线不仅可以承担超过1千瓦的功率,而且还可以多个广播、电视频道同时运行。即便是根据实际需要在铁塔安装不同类型的天线,也并不会影响天线的正常使用。
二、广播电视发射天线发射中所存在的问题
广播电视发射天线技术直接关乎到广播电视信号的接收效果。广播电视发射天线发射的过程中,会受到多种因素的影响而存在一些问题。这些问题可以通过检测发射天线信号而获得,经过参数计算之后,就可以针对问题做出判断。
2.1信号功率不够而影响广播电视的信号接收质量
广播电视所接受的信号不稳定,是信号的回拨损耗中一项重要因素。广播电视发射天线接收的过程中,在信号输入的端口处会存在阻抗。如果此时的阻抗比标准的阻抗高出很多,就会导致所发射的信号存在功率损失,这就是回波损耗。随着阻抗的增高,功率损失就会越大,回拨损耗就会越小[2]。要使天线能够接收到高质量的信号,就需要所接收到的信号强度足够大。传输信号的功率不够,就必然导致信号强度下降,因此而影响到信号传输的质量。
2.2驻波比值不稳定而影响广播电视的信号接收质量
广播电视发射天线信号发射质量会受到驻波比值的影响。驻波比是广播电视发射天线发射信号过程中所存在的最大电流和最小电流之比。驻波比与天线的信号传输质量存在正相关性。随着天线传输信号过程中所产生的电流驻波比值越大,天线的信号传输质量就会有所下降[3]。
三、广播电视发射天线发射问题的解决方案
3.1对广播电视发射天线做好维护工作
1.定期检测天线信号
广播电视发射天线的质量与广播电视接收信号的质量密切相关。需要定期检测天线信号稳定性,一旦发现存在异常,就需要查找问题原因并立即解决,以确保天线发射的信号具有高可靠性。
2.定期检测天线的硬件设施
广播电视发射天线的硬件是保证天线信号发射质量的关键。包括桅杆以及调节结构等等,在检查的过程中如果发现有问题存在,就要立即修复,或者更换硬件。
3.2对馈管做好维护工作
广播电视馈管与信号发射机之间是通过接口进行连接的。如果接口处接触不良,就会导致接口处出现大火。对接口处定期检查,可以避免这一故障发生。在此基础上,还要检查馈管与变阻器之间的接口连接是否可靠。如果发现有连接松动之处,就要对螺丝二次加固。检查馈管周围的防护装置是否密封,连接是否牢固,以避免馈管内部存在积水现象。当发现电缆有破损现象的时候,要立即采取措施处理,必要的时候要更换电缆。检查发射铁塔的接地是否可靠,电缆是否有松动现象,及电缆与各个部件的连接是否牢固等。这些检查维护工作都是确保广播电视发射信号质量的重点环节。
3.3常用的发射天线的应用
1. 正交振子天线的应用
正交振子天线的构成上,是两个形式相同的对称振子相交而构成。正交振子天线所在平面上,法线方向圆极化,辐射场则是线极化的。对称振子的覆盖面比较大,可以使广播、电视的信号传递达到良好的效果,就需要处于水平位置。在正交振子天线使用的过程中,注意不可以使用介质绝缘子,否则,会影响到天线信号传递的稳定性。
2. 缝隙天线的应用
缝隙天线是半个个波长的长条形天线,导体面上有开缝。对信号的传输,所采用的是跨接的方式。缝隙天线的电子对抗性较强,可以用于各种通信设备和导航设备。由于其设计结构简单,且口径场的分布能够得到很好地控制,用于广播、电视信号的传输,可以提高信号质量。
四、广播电视发射天线技术的未来发展前景
从广播电视发射天线技术的未来发展情况来看,目前国外已经广泛地应用并馈式自立中波天线,而且应用技术比较成熟。中国在广播电视发射天线技术中,馈式自立中波天线也进入到应用领域,并发挥着重要的作用。广播电视台可以根据自己的需要选择天线基本结构,其对其他天线的兼容性是非常好的。比如,中国洛阳广播电台就采用了三角形并馈式自立中波天线,多年来运行良好,不仅信号稳定,而且使用过程中安全可靠性极高,信号范围很大,信号强度很高,且具有良好的防雷保护设施,降低了信号传播中的干扰率。
处于新媒体时代的今天,广播电视发射天线技术也在不断升级。特别是网络媒体的发展,使得广播电视技术正快速迈入到高科技轨道。广播电视发射天线技术取缔了传统的微波中继传输的天线技术,并根据广播电视业的需要而不断进行技术升级,使得信号传输中的噪声得以消除。特别是馈式自立中波天线,以其技术优势将成为行业市场中的主导。此外,针对电磁波辐射的问题,还要保护好发射天线场区,以避免危害到周围居民的身体健康。
五、结论
综上所述,传媒业的快速发展,广播电视发射天线技术所发挥的作用是需要被重视的。随着广播、电视领域对信号传输质量要求越来越高,广播电视发射天线技术也在不断升级。对该门技术的应用情况进行研究,分析技术应用中所存在的不足,对提高发射天线设计技术水平具有参考价值,也有助于推动广播电视业更好地发展。
参 考 文 献
[1]刘养荣.如何做好广播电视发射天线技术的维保[J].科技创新与应用,2015(14):78-78.
2016年是国家“十三五”的开局之年,两会更是把物联网的发展列入了“十三五”规划。射频识别(Radio Frequency Identification,RFID)作为物联网应用的核心支撑技术,无论是在科学研究还是在实际工程应用上都已有广泛关注[1]。对于高校电子类专业,《射频识别技术》是一门非常重要的专业课程,学生可以通过对本课程的学习了解行业发展情况和提升专业技术能力。而在实际的教学过程中,选择合适的教学内容和教学方法来提高学生的学习兴趣,使用恰当的课程考核方式对学生的学习情况进行全面、公平的评价,才能让学生能够快速、有效地掌握最新的专业知识,并在毕业时具备一定的专业能力。
本文针对在不同专业、不同年级的《射频识别技术》课程的实际教学情况,提出了在教学内容和学生评价考核方式的探讨,从而激发学生的学习兴趣和提升学生的学习效果。
1 丰富的教学内容
射频识别这门技术本身涉及的专业学科知识就很丰富,例如:模拟电子技术、数字电子技术、信号与系统、通信原理、数据传输、密码学等[2],实际教学时需要结合其他学科知识进行串讲,这样不仅能够增加多个学科间的关联性让学生学习兴趣提高,对于学生进行专业系统学习也有一定的帮助。
《射频识别技术》课程使用的教材[1]内容丰富,具体内容包括:RFID概述、系统组件阅读器和射频标签的原理、无线通信原理、标签识别和超高频识别协议标准、系统设计的影响因素、研究进展与应用情况等。课程采取的是“2+2”的形式,即两节理论课加两节实验课的形式。由于专业课程涉及内容丰富,无论是理论课还是实验课都需要对教学内容进行合理的安排,对于学科间联系紧密的内容应该适当串联引深,让学生了解各个学科专业间的关系。
1.1 理论教学内容
理论课程往往比较枯燥无趣,教学时如果引入一些学生学习过的其他专业课程的内容,不仅能够提高学生的学习兴趣,也能提升学生专业学习的总体效果。例如:在教材RFID概述和研究进展部分有提到物联网和传感网的内容,而物联网和传感器都是学生有学习过的专业课程,在教学这部分内容时就可以把物联网、传感器、射频识别等相关技术进行结合串讲,分析它们各自的原理、差异,列举一些实际的应用案例,让学生更好地理解学习的专业课程并不是孤立的,而是具有很强的关联性的,从而加强教学效果。
1.2 实验教学内容
实验教学是为了能够让学生更好地掌握理论知识、具备一定的实践能力,实验教学内容是依托于理论教学内容的。因此,《射频识别技术》课程实验教学内容是根据理论教学内容来合理安排的。理论教学内容丰富,实验教学内容也应该相对多样。本课程实验内容主要分三大部分:
1)RFID基础实验
RFID基础实验主要是RFID技术所使用的125KHz、13.56MHz、900MHz等三大典型频段的标签数据读取和写入实验。实验内容相对简单,主要是让学生认识到RFID技术在实际生活中应用是非常广泛的,并没有想象中那么高大上,从而引起学生的学习兴趣。
2)无线通信相关实验
无线通信的实验内容包括三维电磁仿真软件(HFSS)对天线的设计与仿真、SmartRF软件对射频芯片参数的设置、MATLAB软件对信号调制的仿真等。这部分实验内容是根据理论教学内容添加的。标签组件原理和无线通信原理两部分都有提到天线,特别是天线的性能与无线数据的传输有一定的联系。引入天线设计与仿真和射频芯片参数的设置实验是为了让学生更好地了解天线的极化、增益、谐振频率、发射功率等因素对于无线数据收发的影响。信号的调制仿真则算是学科间的交叉引申,让学生回顾其他专业课程内容。无线通信的实验涉及的软件较多,但并不是都学习过,教学时需要对各种软件的使用进行详细说明。多软件的学习使用也拓展了学生对于专业辅助工具的使用能力。
3)RFID系统综合实验
综合实验需要学生完成RFID小系统的组建,实现射频识别的功能。实验内容、步骤相对复杂,能够呈现出学生学习本课程后的学习效果。
2 多样的考核方式
《射频识别技术》课程开设的专业和年级不一,根据不同的专业和年级课程的考核方式也不尽相同。物联网工程专业主要采取闭卷考试的方法,其他专业则使用课程论文的方式。
1) 闭卷考试
《射频识别技术》是物联网工程专业在大三上期开设的核心课程,为了能够让本专业学生对该专业课程有更加深入的学习效果,采取理论期末闭卷考试方式。试卷题型应多样并分值合理。可适当加入开放性试题,比如:“列举生活中的射频识别技术的应用案例”。综合、全面地考核学生课程学习情况。
2)课程论文
对于电子科学与技术专业来说,《射频识别技术》并不是专业核心课程,且在大四上期开设,主要通过期末课程论文的方式进行考查。课程论文内容不限,只要是射频识别技术相关即可,考核学生对于射频识别技术的了解情况、材料分析归纳总结和论文写作能力等[3]。
关键词: B3G/ 4G,MIMO ,智能天线,多通道,校准
1 引 言
在B3G/ 4G系统中,为了达到超高传输速率和高的频谱利用率,MIMO(多输入多输出) [1 ] 、智能天线[2 ] [13 ] [14 ] 等被认为是核心关键技术。MIMO 通过采用空时(或空时频) 编码,提高系统的性能。为了保证系统性能的实现,工程上要求MIMO 系统天线阵列及射频通道之间的幅度和相位与理论设计相比,具有较小的误差;而作为核心技术的智能天线对天线阵列和通道也有同样甚至更高的要求。但是,由于加工、器件老化、温度变化等原因,天线、馈线和由模拟器件组成的射频通道(统称为通道) 往往需要校正才能满足要求。因此,已经对多通道的天线阵列的校准技术展开了广泛的研究,并取得了丰硕成果[3 ]~[11 ] 。文献[ 12 ]提出了一种利用训练序列进行信道估计的快速算法,在此基础上,结合工程问题,将该快速算法首次用于无线通信系统天线阵列校准,并通过大量的计算机穷举,找到一组合适的特定训练序列。通过仿真,证明该算法在通道校准应用中具有较好的性能。
通道校准方法可分为两大类,离线校准和在线校准。离线校准是指在系统调试和上电初始化阶段所采取的通道校准措施,主要针对非时变误差。这时由于不考虑对通信的影响,可根据实际需要选择校准算法、参考信号的功率和形式。
在线校准,也称为实时校准,是指系统正常工作阶段所采取的通道校准措施,硕士论文 主要针对时变误差。这时所选择的校准算法、参考信号的功率和形式、以及参考信号的获得方式等,都应该是在不影响正常通信的前提下进行。在线校准是实际通信系统中必须采用的通道校准措施。在此重点研究在线校准方法。
结合实际系统结构,在线校准方法可分为基于校准网络的方法和无校准网络的方法,其中基于校准网络的方法又可进一步分为基于校准通道和基于耦合网络两种方法。无校准网络的方法是采用工作通道轮换发射信号、其它通道接收的方式,从而得到通道之间的补偿系数,该方法由于操作时间较长,而且对通道阵列形式要求较高,因此目前在实际系统中主要采用基于校准网络的方法。
在基于校准网络的方法中,基于校准天线的方法主要应用于均匀圆阵或圆弧阵中,即工作天线均匀分布在圆周上,而校准天线位于圆心。该方法可以对收发通道的所有部分(天线、馈线、射频前端、线性功放和收发信机等) 进行校准,有利于工程实现;基于耦合网络的方法,可以没有校准天线,而是通过耦合器将信号注入,因此无法校准工作天线的幅相误差,但是该方法适用范围更广。
2 通道阵列校准算法
2. 1 基本原理
通道阵列校准(CC) 的功能在于补偿各通道发射( TX) 或接收(RX) 信号之间幅度和相位不一致性,职称论文同时检测某些物理故障。
通道校准算法的基本原理可以等同于信道估计的处理过程。通过估计各个通道的冲激相应,得到相互之间的幅度差异和相位差异,其中,所选择的基本训练序列应该自相关性较强,互相关性较弱。
K 个工作天线通道冲激响应组合成一个矢量,h = [ ( h(1) ) T , ( h(2) ) T , ⋯, ( h( K) ) T ] T 总长度KW , W为窗长。K 个工作通道对应的训练序列为m( k) =( m( k)1 , m( k)2 , ⋯, m( k)P + W - 1 ) T , k = 1 , ⋯K, 其中P 是基本训练序列的长度,接收端利用训练序列估计K 个工作通道的冲激响应,可表示为
em = ( m1 ,m2 , ⋯,mP) T = Gh + n (1)其中n = ( n1 , n2 , ⋯, nP) T 是长度为P 的加性高斯白噪声序列, h 为通道冲击响应矢量, G = [ ( G(1) ) T ,( G(2) ) T , ⋯, ( G( K) ) T ]T , G( k) 为P ×W 阶矩阵, 表示为
G( k) = [ Gkij ](2)
Gkij = m( k)
W + i - j , k = 1 , ⋯, K, i = 1 , ⋯, P , j = 1 , ⋯,W
根据矩阵G的表达式,得到h 的最大似然估计^h 为
^h = [ GH G] - 1 GH em (3)
窗长W =[ P/K]。
如果各工作通道对应的训练序列具有循环特性,则估计通道冲激响应可借用信道估计中FF T 的方法[12 ] ,即
h′= IFFT[FF T(m) ( R) )/FF T( m) ](4)
式中m 表示基本训练序列,m( R) 取决于接收的训练序列。可以证明,在没有噪声的情况下,该估计是无偏的。h′是长度为KW 的通道冲击响应估计矢量。
无论是基于校准通道的方法,还是基于耦合网络的方法,采用的通道校准算法原理相同,研究结论均适用于上述两种校准方法。因此,下面以基于校准通道的方法为例,对通道校准算法进行研究。为分析方便,不失一般性,对8 个通道的系统进行分析。设天线阵列为8 天线单元的均匀圆阵,校准天线位于圆心。在B3G/ 4G系统中,TDD 为一种很有前途的工作方式,此时可选用非盲算法。在FDD 系统,由于上下行频段不同,需要作一定的补偿。训练序列长度P 取32 。
2. 2 发射( TX) 通道校准算法
TX 校准的功能是补偿各工作TX 通道的不一致性。工作天线同时发射各自对应的训练序列,校准天线接收到训练序列后,就可计算各工作天线TX 通道之间的幅度差异和相位差异。TX 校准的训练序列长度为M chip s ,其中基本训练序列为N chip s ,所有工作天线对应的训练序列由N chip s 基本序列循环移位而得到。作为有价值的实例,又不失一般性,取M = 36 , N = 32 。
设实基本训练序列m = ( m1 ,m2 , ⋯,m32 ) ,对应的复基本训练序列m = (m1 ,m2 , ⋯,m32 ) ,即
mi = ( j) i- 1 ·mi (5)
根据循环特性,工作天线1~8 发射的训练序列依次为
m( T ,1) = ( m29 , m30 , m31 , m32 , m1 , m2 , ⋯, m32 )