美章网 精品范文 测控导论论文范文

测控导论论文范文

前言:我们精心挑选了数篇优质测控导论论文文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。

测控导论论文

第1篇

1.1试验台结构设计

测试系统的作用是控制机械部件进行运作,其中,驱动部件带动试验台面部件,使其能够在床身上进行往复的运动;加载部件能够对被测导轨进行正确的加载,并且可以调节力的大小,从而使试验装置进行模拟加载跑合试验;并对相关寿命试验参数进行监测和采集。这些功能的实现需要搭建完善的测控硬件系统,并且根据所需要实现的功能,编制完善的试验控制软件、测试软件、数据分析软件等,使试验台能够按照预计的方案进行试验,并能够获得导轨副相关参数如:型号、载荷、震动等相对工作时间的变化曲线。本试验台主要由测控系统、加载力控制系统、驱动电机控制系统及数据采集系统组成。

1.2加载力控制系统

1.2.1试验的加载力分析

我国目前的寿命试验台可以进行单条导轨的试验,然而加载力不能变化,加载方式单一,不能提供高加载。为了提高试验效率,试验台面上表面设置相互平行的三条被测导轨副转接板,每条被测导轨副转接板上均设置一条被测导轨副,被测导轨副转接板可以根据被测导轨副型号的不同进行更换,保证了试验装置的通用性,因此需要三组加载力装置分别对三条被测导轨进行加载,实现被测导轨可以分别加载或是同时加载;由于工作时,导轨所承受的载荷是变化的,因此加载力的调节范围需要较大,并且现在厂家所使用的导轨最大承载可达到30t,根据以上要求,选择液压加载的方式,液压加载可以提供高压力(30t),并且其传动平稳,可以实现自动过载保护,具有使用寿命长、体积小、重量轻等优点,满足本试验台的需求。因此加载部件主要由龙门和三个液压缸组成,三个液压缸并排安装在龙门顶部,可分别对三条被测导轨副进行加载,并且可以根据实际加载要求更换不同上下加载工装。

1.2.2加载力控制系统设计

液压缸加载的控制分为加载动作的控制和加载力大小的控制。加载动作即为液压缸的伸出和缩回,可以通过三位四通电磁换向阀来控制;加载力的大小通过减压阀来控制。根据试验要求,现设计加载力控制的液动原理图,当液压站本身通路正常时,三个减压阀8接收到AO电压信号后,输出相应的压力,压力变送器可以监测减压阀输出压力的大小,换向阀10接收到减压阀给的压力信号后,可以给油缸11相应的液压力,换向阀的左右电磁铁的通断,可以控制油缸流量进入的方向,从而控制油缸的伸出和缩回动作,蓄能器7的作用是保压,可以避免电机长期连续工作。减压阀的控制信号AO要求可以通过程序提供0~10V的电压信号,工控机给输出卡信号,使板卡输出相应的模拟电压信号给减压阀,经分析PCI-1720是一款具有4路模拟量输出口的输出卡,可以提供0~10V范围的电压,满足试验需求。结合所选板卡及试验要求,设计加载力大小控制接线,工控机控制采集卡PCI-1720输出0~10V的电压信号,板卡VO口输出的电压信号发送给相应的减压阀,减压阀为液压缸的运动提供压力。电磁阀的控制信号DO要求所选的控制板卡可以给出六位的数字信号,每两位高低信号控制一个电磁阀,,当电磁阀右电磁铁为高信号,左电磁铁为低信号时,油缸的活塞向下运动,实现伸出动作;当电磁阀左电磁铁为高信号,右电磁铁为低信号时,油缸的活塞向上运动,实现缩回动作。经分析PCI-7260可以提供8通道大功率继电器输出,并且可以单独控制,满足试验需求。结合所选板卡及试验要求,设计电磁阀的控制接线,工控机控制板卡PCI-7260的NO和COM口向电磁阀发送数字信号,六个DO口分别控制三个液压缸的伸出与缩回动作。由于电磁阀里有磁铁线圈,当断电时,它会产生电感电流,其中与电磁阀并联的二极管就是为了释放这些电感电流,防止这些电流加在板卡的端口,影响板卡的性能。

1.3驱动电机控制系统

1.3.1电机控制的分析

,本试验台的运动通过在试验台面的一侧安装齿条,齿条与驱动部件中的齿轮啮合,在驱动部件的带动下实现试验台面部件往复运动的功能。驱动部件主要是由电机与减速器组成,电机的转速及其正反转一般是由变频器[9]控制的,变频器根据工控机输入的电压量,来控制电机的转速,从而控制试验台面的移动速度,并且变频器通过接受相应的数字信号可以控制电机的启动和停止;电机要实现正反转控制,将其电源的相序中任意两相对调即可,当试验台面运动到最大试验位置时,变频器会接收到相应的数字信号,并且可以输出信号给电机来改变转向。同时,由于电机的控制程序有出错的可能,使电机不能正常的正反转,所以还要设计一个急停开关,可以通过人工控制使机床瞬停。

1.3.2电机控制系统设计

变频器接收到的电压量和数字信号都可以由工控机的板卡提供,电机的启动、停止和正反转要求所选的控制板卡可以给出三位的数字信号,并可单独控制,经分析PCI-1716可以提供16位数字量输入/输出通道,并且可以提供0~10V的模拟输出,由于变频器输出的电流量比较高,但是板卡输出的的较小电流信号,因此选用继电器用于电机的控制系统中,起到电控开关的作用,根据所选板卡、电器元件及试验要求,设计使用五个继电器分别控制电机的停止、启动和正/反转信号开关以及正向到位和反向到位开关,当继电器的输入端接受到板卡PCI-1716相应DO口发出的数字信号后,继电器便处于接通状态,变频器的端口接受到信号后,在输出信号控制电机的电机的停止、启动和正/反转;正向到位和反向到位信号时要通过光电开关控制的,光电开关安装在试验台面试验范围的最远端,试验台面运动到最大试验距离时,会遮挡光电开关,光电开关给PCI-1716相应DI口的发出信号,通过工控机中所编程序控制反馈给电机正反转开关,改变电机的转向,从而实现试验台面的往复运动。正极限和反极限开关是由两个限位开关实现的,两个限位开关安装在试验台运动的最远端,串联接在变频器的急停端口处,一旦试验台接触或是人工触碰到任意限位开关,试验台都会当即停止,防止试验台冲出床身,造成事故。

1.4数据采集系统

1.4.1数据采集分析

试验台往复运行时,被测导轨的振动状态可以体现导轨的使用寿命状况,通过监测振动量相对工作时间的变化曲线,可以分析导轨的磨损状况;同时,加载力也要实时监测,确保被测导轨所承受的载荷是按预设的大小施加的;,由于液压系统中的油缸及油路管道对于减压阀输出的压强有损耗,所以减压阀的输出压强也需要进行监测。

1.4.2数据采集系统设计

振动量、加载力及液压力的采集都可以通过板卡采集,并传送给工控机中显示出来,经分析PCI-1716可以提供16路单端模拟量输入,满足试验需求,传感器将采集的信号传送到板卡的AI口,板卡将接收到信号传送给工控机,工控机将信号的变化曲线显示在电脑界面上,实现了实时监控被测导轨参数的目的。试验台进行寿命试验时,工控机通过输出卡PCI1716给变频器信号,变频器控制驱动电机的转速,使试验台按预计的速度运行,当试验台接触到光电开关时,光电开关给变频器信号,实现试验台的正反转,当试验台运行超过设计范围时,限位开关起到急停作用,工控机还可以通过控制采集卡的数字输出,来控制泵的使用,对被测导轨进行;试验台正常运行时,需要对被测导轨进行加载,PCI1720输出卡给减压阀相应的电压信号,使液压缸输出预计的压力,电磁阀接受PCI7260输出卡的数字信号,来控制液压缸的动作,液压力计记录液压缸的内部输出压强,力传感器监控被测导轨所受的加载力,帮助液压缸提供符合试验要求的加载力;试验台正常加载运行时,振动传感器不断的将采集到的三条导轨的机械振动量转化成电信号,电信号通过调理仪的分析转化,传送给采集卡PCI1716,从而可以在工控机的记录仪里观测到振动的变化曲线,记录试验台不同运行速度和不同加载力情况下的被测导轨振动变化曲线,从而来分析导轨的寿命。

2控制系统软件设计

根据试验的需求,系统的软件设计包括试验控制软件、测试软件、数据分析软件,针对本试验台所要实现的功能,控制软件主要是电机的控制、液压缸的加载及泵的控制,测试软件主要是液压缸压强、被测导轨加载力及振动变化曲线的监测,数据分析软件的功能主要是对于试验数据的分析、记录、调用及输出打印等。

2.1系统主程序流程图

系统主程序流程图,试验开始时,首先要确定被测滚动直线导轨副的型号和加载力大小及其试验环境,数据处理软件记录这些参数的设置,接着把被测件安装在被测导轨副转接板上,通过按键控制开启系统,为试验的进行做准备;接下来,启动加载液压缸对被测导轨副进行加载(先空转,然后逐步加载),通过控制伺服阀以及压力传感器的监测将载荷加至指定值,并保持载荷不变,来模拟导轨实际工况;然后,启动振动传感器,在线监测振动量的变化情况,启动电机控制系统,使工作台面按试验计划往复运作。在测试软件里,可以对振动量实时监测显示,试验者通过观察振动变化曲线来分析导轨使用寿命的状况。当变化曲线有异样时,需要观测被测导轨是否有点蚀,如果有的话,并且导轨的行程没有达到额定值,说明此产品不合格,数据处理软件记录下此不合格导轨的信息;若被测导轨没有发生点蚀现象并且行程达到额定值,则说明导轨的寿命合格,数据处理软件同样也记录下此合格导轨的信息,如此完成导轨的寿命试验。

2.2试验台程序主界面

程序的主界面是利用VisualBasic6.0编写的,程序的主界面,界面上包含了参数的设置、寿命试验的实施、加载力及振动的监测、板卡及电机的测试和被测导轨数据的分析,数据存储、数据查询及数据的输出报表等功能。

2.3寿命试验程序界面

寿命试验运行的程序界面,可以控制试验台往复运行以及加载力的控制。

2.4参数监测界面

,可以实时观测加载力的变化,振动变化曲线是通过iocomp控件来绘制的,纵坐标为板卡所收集到的传感器测得的信号。

2.5数据处理软件

本测控系统的数据处理软件是采用VisualBasic6.0编写,并结合Access数据库设计了导轨副寿命测量信息数据库、人员及测量标准数据库以及数据库管理软件,用于保存导轨副参数信息,寿命测量原始数据,分析数据结果等,能够很好地满足工厂的实际生产测量需要。

3试验台设计成果

为滚动直线导轨寿命试验台实物图,在已经设计好的试验台机械结构的基础上,运用上文所分析设计的测控系统,试验台面已经可以模拟工况的往复运行,并且液压加载系统可以为三根被测导轨提供0~30t的加载力,在加载力为30t时,试验台面可以最高速度正常运行,振动传感器所收集到的信号可以在参数监测界面进行监测,同时试验数据通过数据处理软件保存在数据库中,随时可以被调用分析。

4结束语

第2篇

关键词:文控管理;资料;收集整理

前言:随着市场经济的不断发展,不断完善市场竞争机制,已经成为市场经济的必然要求。目前,竞争机制已经进入了各个领域,在石油建设工程项目管理方面也是这样。随着石油建设工程项目日益国际化,竞争更扩大为全球性竞争,项目管理便显得更为重要。按照现代管理学理论,工程项目管理一般由六大控制组成-HSE控制、信息控制、合同控制、进度控制、成本控制(对于业主方而言则是投资控制)和质量控制。其中HSE控制和信息控制是最基本的两项控制[1]。在传统的工程建设项目中信息控制是比较容易被忽略的一个环节。但从目前从事的外部项目中可以看出,文控工作的重要性越来越显露出来。

1文控管理工作的基本要求

文控是“文件信息控制”的简称[2]。文控工作在实际操作中,文控人员要对信息做出正确的判断和准确的传递,他可以将文件及时、准确地传递给信息需要的各个相关方面,既不可以人人都传,这不仅造成混乱,还增加工作量;又不可以少传,因为这样会使信息不够畅通,工作无法顺利执行。同时,要求文控人员具有一定的专业水平,在日常的工作中,通过与业主、监理和施工单位进行文件往来,熟悉并了解业主的习惯做法,以利于本单位文件信息的传输和沟通。

文控人员需要对项目整个过程中产生的各种形式的资料、文件、信息进行及时、恰当的处理,保证信息流通渠道畅通无阻,使项目各个层次、组织及成员能够及时、准确地了解和掌握其应当知道的信息,并能做出相应的和办法。

2.无损检测项目文控管理程序

2.1开工前期,细化分工,提前准备。

根据项目部人员配备情况,对项目各类人员的职责进行明确的分工。无损检测一般只设一名文控管理人员即资料员。资料员接到监理单位的检测指令后,及时通知检测机组,由机组长根据监理指令合理安排现场施工。由现场检测人员负责核对现场焊口与监理指令上的焊口有没有差别,如果没有出入,则按正常程序进行检测;如发现现场焊口与监理指令上焊口有不一致的情况,则通知资料员与监理联系进行确认。

在工程项目开工进场报审时,由于施工单位较多,部分项目中业主和监理单位的管理力量不是太充分,因此对无损检测单位的报审资料要求的可能不是太严格。但部分报审资料,如开工报告、施工组织设计、HSE实施程序等文件要进入交工资料,但交工资料的审查有时要比开工时的还要严格。于是,问题就出现了:编制交工资料的时候还得做前期开工时期的工作。如果修改的资料涉及到业主和监理单位的签字,那就更加减缓了后期交工资料的编制进度。因此,进场报审材料要提前着手准备,并且要认真仔细,各种签字及日期应按照规定填写,签名一般要求手签,不要直接打印上去。

2.2过程控制,完整有序。

在项目施工过程中,文控管理的主要工作是登记监理指令,填写检测报告、回执单、日报、周报及月报,整理和回复业主及监理单位的通知,收集影像资料等工作。在以上的工作内容中指令汇总表既是过程控制资料又是交工资料的内容。文控管理员接到监理指令后应及时将拿到的指令填入指令汇总表中,作为过程控制资料,指令汇总表可以帮助资料员了解检测焊口的总量、已完成无损检测的焊口情况、返修焊口情况、接到指令而目前没有完成检测的焊口等信息,这样指令汇总表中的工作量成为上报日报、周报等报表的基础,因此指令汇总表是日常工作中比较重要的一个表格,应该将该表填写的尽量完整、正确。目前,所参与的长输管道项目,施工过程中一般不要求交检测报告(除了开工前焊工考试焊口的检测报告),而是等工程结束后再与交工资料一起移交给业主项目部。因此,个别无损检测项目在施工过程中没有形成检测报告的电子版,于是形成了工程完工后还得另外用几个月时间来输入检测报告的状况,既造成了人力的浪费又拖延了时间。项目开工时,业主通常会通过监理单位下发各种表格,其中一般会包括无损检测报告等常用表格。有了确定的表格,文控管理员完全可以在施工过程中每隔一段时间将电子版的检测报告输入电脑保存。根据以前参与的几个项目来总结,如果每周处理一次电子版的检测报告还是合适的。因为目前好多项目是按监理指令填写报告(一份指令写一份报告),由于各种原因一份指令中最早检测的一道口和最后检测的一道口可能会有1-2天甚至更长的时间间隔,如果每天处理一次报告的话,可能每天都得在报告中单独记下那些没有检测的焊口,这就增加了工作量并且容易将没有检测的焊口漏掉。因此,将处理报告的时间间隔选为一周还是合适的。另外,由于文控管理员有些是还没有参加过培训的,他们对专业知识还不是太熟悉,可能不能将报告中的工艺参数等数据填的完全正确。因此,在实际工作中还需要项目上的师傅帮助检查文控管理员填写的报告内容。至于回执单、日报、周报和月报,都是按照相关规定或监理单位要求的时间内上报的,因此对于这些内容重点是保证内容正确、数据准确、文件编号统一。

2.3交工阶段,认真仔细。

工程进入尾声时,文控管理员的主要任务就是整理交工资料了。按照业主项目部下发的交工资料管理规定或其它通知,将工程施工过程中形成的各种资料进行认真的整理,最终形成符合档案管理要求的交工资料。如果前期工作做得比较完善的话,这个阶段并不会花太长的时间,或许有两个星期的时间就可以完成了。

3.结语

由于文控管理工作涉及到工程建设的全部过程,因此要专人负责项目中的文控工作。只要文控管理员做好每个阶段的文控管理工作就可以满足过程控制和交工的要求。

参考文献:

[1] 余勇.文控信息管理在石油建设工程项目管理中的重要性用.化学工程与装备,2008,4:159.

第3篇

作者:董泽政 李绿萍 许哲 单位:上海卫星工程研究所

常见的寻优算法

对于各种约束的处理有两种方式,一种是将其作为寻优的目标函数,第二种方式是限定约束条件的范围,如发射时间窗口限制和转移时间限制。对于轨道设计中的寻优问题,目前采用的寻优策略是全局寻优+局部寻优的方法,即通过全局寻优算法初步确定最优值所在的区域,再通过局部寻优方法确保解的极值性。局部寻优算法局部寻优算法需要给定初值,寻优算法根据目标函数的性质寻找附近的极值。常用的局部寻优算法有Nelder-Mead算法和序列二次规划,优点是不需要任何目标函数或是约束条件的梯度信息,可保证最终逼近最优值,但其收敛较慢,计算量大。序列二次规划算法利用梯度信息,寻找最优解,其优点是在极值附近时能够快速收敛。序列二次规划算法的计算量集中在Hessian矩阵上,计算量随自变量维数非线性增加,因此有了一些简化Hessian矩阵的计算方法,比较有名的(BFGS-LBFGS)即是一种通过一阶偏导数来计算Hessian矩阵的算法。全局寻优算法局部寻优算法的优势是高效率和高精度,然而无法保证全局最优,因此其寻优能力具有局限性。对于深空轨道设计问题,不同极值之间性能指标相差较大,如图。。中最大极值为3.7km/s,最小极值为2.1km/s,可见仅仅局部极值是无法满足设计要求的。经分析,适合在轨道设计中使用的全局搜寻算法主要有遗传算法(GA)、差分进化法(DE)、粒子群算法(PSO)和模拟退火法(ASA)等,下面对各个算法进行简要的说明并通过仿真算例来说明不同算法间的特点。遗传算法(GA):遗传算法(GeneticAlgorithm,GA)由美国J.H.Holland教授首次提出的、以达尔文自然进化论和Mendel遗传变异理论为基础的求解复杂全局寻优问题的仿生型算法。GA基于适者生存,优胜劣汰的进化原则,对包含可能解的群体反复使用遗传学的基本操作进行迭代,不断进化群体,同时以全局并行的搜索技术来搜索寻优全体中的最优个体,以求得满足约束的最优解或准最优解。GA应用广泛,在深空轨道设计中逐渐得到重视[1,4]。作为一种新的全局寻优搜索算法,遗传算法具有简单通用,鲁棒性强,适用于并行处理以及应用范围广的显著特点。差分进化算法(DE):差分进化法是一种新的进化算法,由Storn和Price在1995年提出[5],是一种随机的启发式搜索算法,主要特点是算法简单、收敛速度快,所需专业领域知识少。通过国内外大量研究发现,DE算法具有很强的收敛能力,比较适合于解决复杂的寻优问题。当然差分进化算法也有一些自身的不足,由于DE算法的关键步骤“变异操作”是基于群体的差异向量信息来修正各个体的值,随着进化代数的增加,各个体之间的差异化信息在逐渐缩小,以至于后期收敛速度变慢,甚至有时会陷入局部极值点。针对这一问题文献[6]总结了几种改进方法,改进的方法主要是自适应调整编译因F和交叉概率CR上。粒子群(PSO)算法:一种启发式全局寻优算法,模拟生物群体的社会行为进行进化,充分利用群体内部各个个体之间的关系。粒子群算法最早是由Kennedy和Eberhart于1995年[7]提出。受到人工生命的研究结果启发,PSO的基本概念源于对鸟群捕食行为的研究。PSO在函数寻优等领域蕴含着广阔的应用前景,在Kennedy和Eberhart之后很多学者都进行了这方面的研究。目前已提出了多种PSO改进算法[8,9,10],并应用于深空轨道设计中,具体可参考文献[2]。自适应模拟退火法(ASA):基于热力学理论,即对于高温熔体,分子在其中的运动时不规则的随机的。然而当温度下降到熔点附近时,分子的运动就会受到一定的限制并逐渐趋于低能状态,当能量最小时能量便产生了结晶。Kirkpatrick在1983年基于以上过程提出了模拟退火法,基本模拟退火法不是一个群体寻优算法,文献[11]将模拟退火法转化成一种群体算法,显著地增加其全局寻优性能。基本的模拟退火算法由于收敛精度问题,搜索速度比较慢。目前改进的方法有将其和遗传算法相结合的方法以及采用自适应机制调整控制参数的自适应模拟退火法(AdaptiveSimulatedAnnealing),本文采用自适应模拟退火法。多目标函数寻优方法多目标函数寻优方法可在深空轨道设计将速度增量和转移期这两个不同指标同时作为目标函数,便于在各个目标之间进行权衡,使目标性能尽可能达到Pareto意义下的最优。NSGA2是目前用得最多的一种解决多目标寻优问题的方法,由Deb等在2000年在NSGA基础上进行改进而来,其特点是采用非优超排序和排挤机制。其中非优超排序机制保证搜索过程向Pareto最优收敛,排挤机制保证了Pareto最优解的多样性。原始的NSGA算法复杂度为O(mN3),而采用快速非优超排序后,NSGAII算法复杂度将为O(mN2)。

仿真算例

以从地球发射至小行星阿波菲斯为例,研究不同寻优算法在简单双脉冲问题中的应用。以地球-地球-木星转移轨道为例,说明算法在带行星借力的多脉冲星际转移轨道中的应用。研究在两种不同转移策略下各种算法的性能,主要为目标函数调用次数、寻优消耗时长、多目标函数寻优方法的适用性。地球-阿波菲斯转移方案搜索首先考虑直接从地球出发前往小行星阿波菲斯,转移方式为双脉冲方式,因此寻优的自变量为发射时间0t和飞行时间1T,目标函数选择两次速度增量之和,即:(式略)窗口搜索范围设为2017年1月1日~2021年1月1日,分别采用GA、DE、PSO、ASA四种寻优算法,得到仿真结果。从表中可得到GA算法的表现最好,其函数调用次数和耗时最少,并且成功地进行了寻优。总之对于简单的双脉冲转移而言,四种算法都较好地完成了寻优。由计算结果可知,除粒子群算法PSO外,其他三种算法均成功收敛行时间与速度增量的Pareto解集。最短飞行时间为180天,对应的速度增量需求为5.1km/s;最小速度增量需求为4.90km/s,对应的飞行时间为290天。综上所述,对于简单的单目标函数-双脉冲星际转移问题,四种算法均能寻找到最优的转移窗口。对于多目标函数的情况,粒子群算法PSO收敛性差,无法完成转移窗口设计,其他三种算法则能够用来处理这类问题。

免责声明

本站为第三方开放式学习交流平台,所有内容均为用户上传,仅供参考,不代表本站立场。若内容不实请联系在线客服删除,服务时间:8:00~21:00。

学术顾问

免费咨询 学术咨询 期刊投稿 文秘服务