美章网 精品范文 抗震理念论文范文

抗震理念论文范文

前言:我们精心挑选了数篇优质抗震理念论文文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。

抗震理念论文

第1篇

关键词:工建筑工程;抗震结构;设计

Abstract: In recent years the quality requirements for construction projects showing increased year by year trend, especially in the construction of related facilities for construction projects, is to become the focus of attention, the earthquake construction of the building construction project is one of the important part. This paper will combine with many years of practical experience, civil engineering seismic analysis focus on the simple exposition, for reference.Key words: construction work projects; seismic structure; design

中图分类号:TU3文献标识码: A 文章编号:2095-2104(2012)06-0020-02

0引言

由于我国处于地壳运动中的两条地震带上,导致我国相关城市经常会遭受到地震灾害的影响,从上世纪六、七十年代的几次地震中足以看出,因建筑物倒坍、倾斜等而造成的人员伤亡和财产损失占到了整体灾害损失80%左右,因此,加强对建筑工程抗震结构施工,从而提高建筑项目的稳定性能已刻不容缓。

加强对建筑工程的抗震结构建设,首先需要对建筑结构进行抗震结构分析工作,以使其在建设施工过程中抗震效益得到最大程度的发挥,因此起初的设计分析工作尤为关键。当然,在对建筑工程进行抗震结构设计时,应充分对相关的影响因素进行考虑,使其整体概念符合设计施工的标准规范。简言之,抗震结构概念设计是指在特定的建筑空间及地理条件下,通过整体概念对结构的总体方案进行分析,依据结构总体系与分体系之间的力学关系、结构破坏机理、震害、试验现象和工程经验所获得的基本设计原则和设计思想,从整体的角度来确定建筑结构的总体布置和抗震细部构造措施的宏观控制。概念设计受到国内外工程界的普遍重视,并将发挥更大的作用。

1概念设计的重要性和必要性

随着社会经济的发展和生活水平的提高,人们对建筑结构设计也提出了更高的要求。发展先进计算理论,加强计算机的应用,加快新型高强、轻质、环保建材的研究与开发,使建筑结构设计更加安全、适用、可靠、经济已成为当务之急。而且针对建筑结构设计的现状,提倡采用概念设计思想来促进结构工程师的创造性,推动结构设计的发展,是非常有必要的。这就需要工程界和教育界共同的努力,而推广概念设计思想是一种有效的办法,分析如下:

1.1建筑抗震设计规范(GB50011-2001)(以下称新抗震规范)

以可靠度理论为基础,吸收了延性设计的思想。但对于一些具体问题,例如“中震可修”的设防目标等,规定相当模糊。所以我们不能盲目地照搬照抄规范,应该把规范作为一种指南和参考,并在实际工程应用中作出正确的选择。这就要求我们对整体结构体系与各基本分体系之间的力学关系有透彻的认识,把概念设计应用到实际工作中去。

长期以来,人们认为结构设计很简单,只需遵循规范和手册,等建筑师完成建筑设计后,使用计算机就可以完成结构设计。但这不能充分地运用结构设计者的知识和技能,而且还会与建筑设计方案产生分歧和矛盾。所以我们应考虑在结构设计中如何运用概念设计,比如结构的抗风设计与抗震设计,抗震设计要求能消减外荷载,吸收或转换震动的能量;而抗风设计则要求结构在风的作用下动力效应较小,刚度较大。这一矛盾必然影响结构体系的抗风和抗震性能。为了弥补这一缺陷,需要合理的概念设计与延性构造措施来加以保证。

1.2概念设计的重要性,还体现在方案设计阶段。初步设计过程是不能借助计算机来实现的,这就需要结构工程师综合运用结构概念,选择最为可靠、经济的结构方案。为此,需要工程师不断地丰富自己的设计理念,深入了解各类结构的性能,并能有意识地、灵活地运用它们。运用概念性近似估算方法,可以在设计方案阶段迅速、有效地对结构体系进行构思、比较与选择。所得方案往往概念清晰、定性准确,避免后期设计阶段一些不必要的繁琐运算,具有较好的经济可靠性能。同时,这也是判断计算机内力分析输出数据可靠与否的主要依据。美国一些著名学者和专家曾说过:“误用计算机造成结构破坏而引起灾难只是一个时间的问题。”计算软件的选择和使用不当,也会造成结构设计的不合理,甚至影响到建筑物本身的安全性。应用概念设计的思想,可以避免此类情况的发生。

1.3新抗震规范提出了在建筑物内设置地震反应观测系统的要求,并提出了结构两个主轴方向的动力特性(周期和振型)相近的抗震概念。所以在结构概念设计中还应该注意结构与场地的共振问题。例如在唐山地震时,天津塘沽地区的7-10层框架结构房屋破坏严重,而3-5层的砖混结构住宅却只有轻微损坏。后来经调查发现,框架房屋的自振周期和场地的卓越周期一致导致共振,而3-5层砖混住宅的自振周期远低于场地的卓越周期,因此破坏较轻。

1.4建筑结构的抗震设计,存在着许多模糊而且不确定的因素。例如地震作用是一种随机性很强而且循环往复的荷载,建筑物的地震破坏机理又十分复杂,要准确计算或预测建筑物所遭遇的地震特性和参数,还难以做到。风荷载的脉动性与涡流作用情况也是如此。因为建筑物受到的地震作用难以确定,所以适用、安全、经济的结构体系必须注重概念设计。

2概念设计的理解及应用

结构抗震设计的目的是使结构在强度、刚度、延性以及节能等方面取得最佳,从而满足“小震不坏,中震可修,大震不倒”的要求。在当前的科技水平和经济条件下,为了保证结构具有可靠的抗震性能,概念设计应充分考虑以下因素:场地条件和场地土的稳定性,建立结构计算模型,抗震结构体系的选取,材料效用,风作用、温度作用以及结构的空间作用等。

2.1现行抗震计算模型的理解和应用

新抗震规范规定:一般情况下,应允许在建筑结构的2个主轴方向分别计算水平地震作用并进行抗震验算,各方向的水平地震作用应由该方向抗侧力构件承担。而实际结构难以实现强柱弱梁的主要原因则是计算模型问题。即:仅仅对相互正交的2个主轴方向进行内力分析和强度设计,不能真实反映结构的空间作用。所以,应用概念设计的原理,结合大量震害和试验研究成果,所得出的结论是:构件的最不利受力状态随着构件和地震作用方向而变化。当地震作用方向与结构主轴方向一致时,梁处于最不利受力状态;当地震作用与结构的主轴方向呈45度时,大多数柱处于最不利受力状态。

2.2结构薄弱部位抗震构造措施的理解和应用

结构薄弱部位的处理,如建筑平面外墙转角处的转角窗,限制了角部结构竖向抗侧力构件的设置,如果采用概念设计,解决这一问题的方法是2竖向构件间应设厚板、暗梁等可靠拉结。再如,由于节点部位的重要性,所以引入抗裂性的概念,以此来比较梁、柱节点偏心所引起的节点性能的变化。建议在地震区,不宜采取梁柱偏心过大的节点形式,而且构件节点的承载力不应低于其连接构件的承载力。

3建筑结构抗震设计的前景展望

结构抗震体系由传统的以“硬抗”为主的抗震体系向以“柔抗”为主的结构减震控制体系发展。结构减震体系采用的是以“柔”克刚的新概念,它通过调整结构动力特性、隔震、减能或控制来达到抗震的目的,在未来的工民建中结构抗震的思路将向着减轻危害的方向发展。

4总结

经过多年的抗震探索和研究,设计中引入了概念设计的设计新理念。这种设计理念从宏观角度对建筑抗震结构进行设计,在某些方面弥补了以往设计思路对抗震结构思考的不足之处,为今后的工民建结构抗震设计开辟了新路。

参考文献:

[1] 杨星;;地下室结构的分析与设计探讨[A];计算机技术在工程建设中的应用――第十三届全国工程建设计算机应用学术会议论文集[C];2006年

第2篇

【关键词】楼梯;建筑抗震;刚度;影响;分析

中图分类号:TU973+.31 文献标识码:A 文章编号:

一.引言

楼梯是建筑的一个重要组成部分,是最重要的疏散工具,在抗震防灾中起着举足重轻的作用。所以楼梯的设计是十分重要的工作,楼梯设计的好坏也直接影响到建筑的抗震能力。从地震被损坏的钢筋混凝土结构房屋来看,其中一个特点是楼梯构件的破坏,影响了逃生通道安全,造成人员伤亡。根据2008年汶川地震震害的相关报告,楼梯对结构安全以及疏散时人身安全的意义非常重大。因此,我们有必要认真研读规范的有关要求,结合工程实际情况,认真对待抗震设计时的楼梯设计。

二.抗震设计楼梯参与结构计算的重要性

现代建筑工程抗震性能的需求要求建筑工程设计过程中必须考虑抗震设计楼梯参与结构计算工作的重要性。以抗震楼梯设计对建筑物主体结构抗震性能的促进作用促进建筑物的抗震性能提升。建筑工程设计单位应根据现代建筑工程设计过程中楼梯设计对建筑物主体工程的影响强化抗震设计楼梯参与结构计算工作,实现建筑物抗震性能的提高,促进现代建筑工程设计目标的达成

在现代建筑工程的设计中,钢筋混凝土框架结构所具有的优势使得其在现代建筑工程的设计中有着极为广泛的应用。在钢筋混凝土框架结构中,楼梯能够对楼梯间结构起到斜撑作用,增加主体结构的刚度。在传统的结构设计中,由于计算方式与设计理论的限制使得楼梯及楼梯间不参与整体结构的计算。随着现代建筑设计理论的日趋成熟以及建筑物抗震等级要求的不断提高,建筑工程抗震楼梯设计参与整体结构计算已经纳入相关规范要求。在抗震楼梯与楼梯间增加刚度的同时,还应与水平隔板、楼盖板等做好链接,以此形成整体、提高建筑物的抗震性能。在汶川地震震后调查中,楼梯梯段板断裂的情况非常普遍,严重影响了震后的自救与救灾。而且,楼梯系统的断裂也造成了对主体结构抗震性能的影响,造成了余震中建筑物抗震性能的下降。

三.楼梯和结构主体

楼梯对主体结构的影响主要表现有两个方面,楼梯对竖向构件的影响以及楼梯自身的传力。由于楼梯传力,竖向构件往往会出现短柱或错层。而楼梯本身传力需得到保障,从而实现疏散功能。

理论研究以及一些震害调查表明,楼梯对主体结构的影响大小,主要取决于楼梯与主体结构的相对刚度比。主体结构整体刚度越大,比如抗震墙结构,框架一抗震墙结构,由于结构主体自身的刚度很大,整体性能好,楼梯刚度对于主体而言相对很小,那么它对主体影响就很小,有时可以忽略不计;而当采用框架结构,装配式结构,特别是砌体结构的时候,楼梯对其主体的影响就不容小视了,在多遇地震作用下,结构基本是处于弹性工作状态,填充墙、砌体承重墙没有开裂或者开裂程度不高,刚度尚未退化,楼梯刚度在主体结构中依旧可以认为不大,而在超出设防烈度及罕遇地震的时候,结构一般进入弹塑性状态,墙体开裂,刚度骤然降低,楼梯刚度在主体刚度中所占的比重就越加增大,现浇梯板可视为刚性楼板,承担传递水平地震作用的重任,从而导致楼梯梯板拉裂,楼梯间短柱破坏,最终导致主体破坏甚至坍塌。

经过工程实例对比发现,楼梯构件是否参与结构整体计算,不仅影响地震作用效应的计算结果,也可能由于改变恒载、活载的传递途径而对相关构件计算产生影响。

对比发现当其他区域荷载小于楼梯间时,不考虑楼梯影响计算结果显示位移比较大,考虑楼梯刚度后刚心与质心的重合程度有所改善,位移比有所减小。

结合条文说明,规范允许根据不同的具体结构,判断楼梯构件对整体的可能影响很大或不大,然后区别对待,并不要求一律参与整体结构的计算,但楼梯构件自身应计算抗震。现行规范对钢筋混凝土结构楼梯间抗震设计的基本要求可归纳为:是否参与整体抗震计算,视情况而定;楼梯构件应进行抗震设计计算;加强楼梯间填充墙与主体结构的拉结。

由于地震动的不确定性、地震的破坏作用、结构地震破坏机理的复杂性,以及结构计算模型的各种假定与实际情况的差异,.目前,依据所规定的地震作用进行结构抗震验算,不论计算理论和工具如何发展,计算怎样严格,计算的结果还是比较粗略,过分地追求数值上的精确是不必要的。然而,从工程的震害看,这样的抗震验算是有成效的,不可轻视。

四.楼梯抗震设计的几点建议

考虑楼梯对主体结构的影响时,应根据主体结构与楼梯的侧向刚度大小,采取相应的设计措施:

1.楼梯采用现浇式或者装配整体式混凝土结构,不应采用装配式结构。

2.对框架结构,砌体结构及其他整体性不好的结构,结构计算中应注意考虑楼梯对主体结构的影响和主体结构对楼梯的影响,采用包络设计的方法。基于现行规范,在对结构进行规则性判断和位移计算时,可不计楼梯的影响。而构件设计则需要考虑楼梯的作用,按计入和不计人楼梯分两种情况进行设计。

3.对主体结构刚度很大,整体性较好的结构,如抗震墙结构、框架一抗震墙结构等,一般不考虑楼梯的影响,不过在结构平面布置时,应重视楼梯间周围的竖向构件,类似于电梯井,尽量使抗震墙位置合理,这样,既可以使楼梯对主体结构的影响减小,同时也保护了楼梯构件。

4.需特别注意设置楼梯形成的框架短柱或错层柱,柱箍筋除应满足计算要求外,箍筋应全高加密,宜按抗震等级提高一级配置。

5.楼梯处梁上立柱时,柱子截面一般都很难做大,但该柱也应按照框架柱要求设计,保证其截面面积不小于300mmX300mm,柱最小边长不应小于200mm,并相应增加另一边高度。£在以往的设计中,当底层无地下室时,楼梯直接支撑在孤立的楼梯梁上,而根据震害调查发现,此做法不妥,地震时楼梯板吸收的水平地震作用在楼梯梁处的水平传力路径中断,孤立的楼梯梁很难担当由梯板传递的水平推力,梯板边缘的梁截面处往往开裂甚至破环,设计中应尽量避免。

五.结束语

楼梯是建筑的一个重要组成部分,是最重要的疏散工具,在抗震防灾中起着举足重轻的作用。从地震被损坏的钢筋混凝土结构房屋来看,其中一个特点是楼梯构件的破坏,影响了逃生通道安全,造成人员伤亡,所以建筑楼梯设计是非常重要的工作。综上所述,不管是对规范理解出发,还是结合工程实际,楼梯设计对建筑抗震的影响应当被广大设计师高度重视。目前来看,各种软件的楼梯参与建筑抗震计算情况并不够理想,不能过分依赖。设计可在比较合理的基础上利用计算软件,不拘泥于细节,不追求过高的计算精度,强调按概念设计进行各种调整。让楼梯参与建筑抗震计算和加强抗震措施,使得楼梯对建筑抗震的影响降到最低,从而让建筑结构更为合理。

参考文献:

[1]严微 不同楼梯在地震下的反应分析[学位论文], 2010 - 太原理工大学:结构工程

浅谈楼梯设计对建筑抗震的影响

[2]乔锐 [期刊论文] 《黑龙江科技信息》 -2012年7期

[3]孙烨SUN Ye楼梯刚度对震区塔式建筑抗震设计的影响分析 [期刊论文] 《浙江建筑》 -2009年9期

[4]吴波 楼梯结构的抗震性能分析及地震作用下对主体结构的影响 [学位论文], 2009 - 西南交通大学:结构工程

[5]王亚勇 戴国莹WANG YayongDAI Guoying《建筑抗震设计规范》的发展沿革和最新修订[期刊论文] 《建筑结构学报》 ISTIC EI PKU -2010年6期

[6]孟凡林 孟祥瑞 张维学Meng Fan-linMeng Xiang-ruiZhang Wei-xue考虑楼梯影响的框架结构地震响应分析 [期刊论文] 《工程抗震与加固改造》 ISTIC PKU -2012年1期

第3篇

【关键词】地震 桥梁抗震 课程教学 本科教育 现状分析

【中图分类号】G64 【文献标识码】A 【文章编号】2095-3089(2012)11-0247-01

引言

众所周知,近年来世界范围内发生了多次大震强震,特别是2008年的汶川地震、2011年的日本地震等,给人民的生命财产造成巨大的损失。桥梁作为生命线工程,在抗震救灾的交通运输中发挥着重要的作用。而《桥梁抗震》课程作为众多高等院校土木工程专业本科生的专业必修课,它的教学效果的好坏将直接影响学生就业后处理工程实践问题的能力和自我专业素养的发展能力,因此是土木工程专业本科生十分重要的一门基础专业课。

笔者作为桥梁抗震课程的主讲教师,在多年的教学实践中体会到该课程的教学内容、教学方法和教学手段等很多方面存在一定的不足,尚需要进一步改革和完善。尤其在当今全球地震频发的自然环境下,该课程的教学研究对提高本科学生分析问题和处理工程实践问题的能力具有重要的意义。

1.《桥梁抗震》课程的本科教学现状

1.1缺乏适合本科生教育的桥梁抗震教材

现有一些与桥梁结构抗震相关的书籍,总体上分为两类:一类称为工程结构抗震,如《建筑与桥梁抗震设计》、《工程结构抗震》等,这类书中较全面的涉及了各种房屋建筑结构的抗震,而对桥梁结构的抗震内容一般只涉及一章简支梁桥或简单的规范条文,知识量较少,内容片面且偏简单,远远不能满足本科生的专业学习需求。另一类书是专门针对各种大跨径桥梁的桥梁抗震书籍,主要为同济大学范立础编写,如《桥梁抗震》、《大跨度桥梁抗震设计》、《桥梁减隔振设计》、《桥梁抗震研究》、《高架桥梁抗震设计》等,这类书大多为研究生学习用书,理论深奥,难以理解,有的内容片面,没有很好地结合本科学生实际的理论水平和实践基础,使得他们在学习时不知从何入手,使用时不知用在何处。此外,人民交通出版社出版的叶爱君等编著的《桥梁抗震》教材第2版,相比之下在章节划分上所涉及桥梁抗震的内容点比较全面,而且在一定程度上能结合现行规范,但是该教材总页数偏少,书中的很多基本概念描述过于简单,对于初学桥梁抗震的本科生来讲,还需要由教师补充很多资料,扩充很多基本内容。

另外,桥梁抗震课程教学所依据的重要学习资料即为抗震设计规范,但是规范的内容大多是经过提炼的结论性的条文,只能作为辅助参考工具,不能作为本科生学习基本理论基础知识和解决实际工程问题的教学用书。

因此目前的土木工程专业本科生,迫切需要一本难度适宜、易于掌握、内容全面、指导性和实践性较强的桥梁抗震教材。这也是作为本课程的教学老师需要进一步做的工作。

1.2 授课学时少,内容难度大

针对目前我国大学教育正经历着从精英教育向大众教育的转型,桥梁抗震课程面临学时少,内容多的问题,学生学习起来感觉很有难度。 原因是:一方面该课程的基础理论与基础课(如动力学、 高等数学、 材料力学、结构力学等)联系紧密,学生淡忘的内容不少。教师需给出本课程与其它课程的结合点及本课程知识的定位点,让学生建立概念,顺利过渡。

本课程内容的特点相对较为抽象,尤其在结构设计和计算部分理论推导占有比例较大,多为枯燥和抽象的公式,使学生难于接受并产生兴趣。但是如果讲课内容过于简单,则学生所学知识缺乏深度,获取的专业信息较少。因此本课程在教学内容与课程体系应进行相应的调整,合理安排难易知识点。

1.3教学理念和教学模式需要改进

桥梁抗震课程的目的是介绍地震作用的基本原理和桥梁结构抗震的方法,使学生掌握结构抗震的基本理论和设计方法。由于涉及知识面广,同时对专业知识掌握程度的要求高,因此教师在授课过程中,学生普遍感觉难度较大。另外,过去对于本课程的讲授过于强调理论而忽视了与实践相结合的案例分析,缺乏实际地震和现场灾害调查资料,这些是我们专业课程教师需要改进和提高的方面。

首先,在课程的教学理念上,应以培养学生获取和应用知识的能力为目标,教学时注重学生对基本知识和基本概念的理解和把握。其次,在本课程教学中应探讨和尝试新的教学方法和教学手段,变被动学习为主动学习。目前,现代化的教学手段尚未得到充分利用,缺乏生动,适用的高质量多媒体课件。在传授知识的同时,应调动学生的主动思维和学习兴趣,通过课堂讨论、撰写小论文、观摩抗震试验、组织结构设计大赛等活动,提高学生学习和研究分析问题的能力。

1.4 缺少典型的优秀试题和案例分析

计算机辅助教学近年来在高等教育教学中得到较广泛的应用,并将逐步成为教学环节的一个重要手段。但针对桥梁抗震课程的教学课件及其习题库还不成熟,存在着分散、孤立、低水平重复的弊端。要想对课程内容有一个比较系统而全面的了解,培养学生学习的自觉性和兴趣很重要,因此除了传统的讲课、批作业、面对面答疑之外,可以建立该课程相应的习题库供学生自我训练和测试,不仅可以减轻老师的负担,提高教学效率,还可使学生在短时间内尽量扩大学习的信息量,有助于培养学生的独立学习能力和思维创造能力。由于目前未形成一个系统的习题库,制约了学生课下对本门课程的学习和进一步思考。

2.结论

《桥梁抗震》课程是土木工程本科教学中很重要的年轻的一门专业课,本文通过对本课程教学内容、教学理念、教学模式的现状分析,对该课程的本科教学改革方向进行了研究和探讨,以进一步提升本课程的教学质量,提高本科学生分析问题和处理工程实践问题的能力。

桥梁抗震是一个复杂的系统工程,但由于课程课时有限,还需在教学过程中不断总结前进。

参考文献:

[1]蒋永生,李爱群,曹双寅,邱洪兴. 土木工程专业培养人才的知识结构与能力结构.高等建筑教育.1999(3):34~36

第4篇

[论文摘要]高层建筑抗震工作一直建筑设计和施工的重点,概述高层建筑的发展,对建筑抗震进行必要的理论分析,从而来探索高层建筑的设计理念、方法,从而采取必须的抗震措施。

现阶段,土与结构物共同工作理论的研究与发展使建筑抗震分析在概念上进一步走向完善,如果可以在结构与地基的材料特性,动力响应,计算理论,稳定标准诸方面得到符合实际的发展,自然会在建筑结构抗震领域内起到重要的作用。

一、高层建筑发展概况

80年代,是我国高层建筑在设计计算及施工技术各方面迅速发展的阶段。各大中城市普遍兴建高度在100m左右或100m以上的以钢筋为主的建筑,建筑层数和高度不断增加,功能和类型越来越复杂,结构体系日趋多样化。比较有代表性的高层建筑有上海锦江饭店,它是一座现代化的高级宾馆,总高153.52m,全部采用框架一芯墙全钢结构体系,深圳发展中心大厦43层高165.3m,加上天线的高度共185.3m,这是我国第一幢大型高层钢结构建筑。进入90年代我国高层建筑结构的设计与施工技术进入了新的阶段。不仅结构体系及建筑材料出现多样化而且在高度上长幅很大有一个飞跃。深圳于1995年6月封顶的地王大厦,81层高,385.95m为钢结构,它居目前世界建筑的第四位。

二、建筑抗震的理论分析

(一)建筑结构抗震规范

建筑结构抗震规范实际上是各国建筑抗震经验带有权威性的总结,是指导建筑抗震设计(包括结构动力计算,结构抗震措施以及地基抗震分析等主要内容)的法定性文件它既反映了各个国家经济与建设的时代水平,又反映了各个国家的具体抗震实践经验。它虽然受抗震有关科学理论的引导,向技术经济合理性的方向发展,但它更要有坚定的工程实践基础,把建筑工程的安全性放在首位,容不得半点冒险和不实。正是基于这种认识,现代规范中的条文有的被列为强制性条文,有的条文中用了“严禁,不得,不许,不宜”等体现不同程度限制性和“必须,应该,宜于,可以”等体现不同程度灵活性的用词。

(二)抗震设计的理论

1、拟静力理论。拟静力理论是20世纪10~40年展起来的一种理论,它在估计地震对结构的作用时,仅假定结构为刚性,地震力水平作用在结构或构件的质量中心上。地震力的大小当于结构的重量乘以一个比例常数(地震系数)。

2、反应谱理论。反应谱理论是在加世纪40~60年展起来的,它以强地震动加速度观测记录的增多和对地震地面运动特性的进一步了解,以及结构动力反应特性的研究为基础,是加理工学院的一些研究学者对地震动加速度记录的特性进行分析后取得的一个重要成果。

3、动力理论。动力理论是20世纪70-80年广为应用的地震动力理论。它的发展除了基于60年代以来电子计算机技术和试验技术的发展外,人们对各类结构在地震作用下的线性与非线性反应过程有了较多的了解,同时随着强震观测台站的不断增多,各种受损结构的地震反应记录也不断增多。进一步动力理论也称地震时程分析理论,它把地震作为一个时间过程,选择有代表性的地震动加速度时程作为地震动输入,建筑物简化为多自由度体系,计算得到每一时刻建筑物的地震反应,从而完成抗震设计工作。

三、高层建筑结构抗震设计

(一)抗震措施

在对结构的抗震设计中,除要考虑概念设计、结构抗震验算外,历次地震后人们在限制建筑高度,提高结构延性(限制结构类型和结构材料使用)等方面总结的抗震经验一直是各国规范重视的问题。当前,在抗震设计中,从概念设计,抗震验算及构造措施等三方面入手,在将抗震与消震(结构延性)结合的基础上,建立设计地震力与结构延性要求相互影响的双重设计指标和方法,直至进一步通过一些结构措施(隔震措施,消能减震措施)来减震,即减小结构上的地震作用使得建筑在地震中有良好而经济的抗震性能是当代抗震设计规范发展的方向。而且,强柱弱梁,强剪弱弯和强节点弱构件在提高结构延性方面的作用已得到普遍的认可。

(二)高层建筑的抗震设计理念

我国《建筑抗震规范》(GB50011-2001)对建筑的抗震设防提出“三水准、两阶段”的要求,“三水准”即“小震不坏,中震可修,大震不倒”。当遭遇第一设防烈度地震即低于本地区抗震设防烈度的多遇地震时,结构处于弹性变形阶段,建筑物处于正常使用状态。建筑物一般不受损坏或不需修理仍可继续使用。因此,要求建筑结构满足多遇地震作用下的承载力极限状态验算,要求建筑的弹性变形不超过规定的弹性变形限值。当遭遇第二设防烈度地震即相当于本地区抗震设防烈度的基本烈度地震时,结构屈服进入非弹性变形阶段,建筑物可能出现一定程度的破坏。但经一般修理或不需修理仍可继续使用。因此,要求结构具有相当的延性能力(变形能力)不发生不可修复的脆性破坏。当遭遇第三设防烈度地震即高于本地区抗震设防烈度的罕遇地震时,结构虽然破坏较重,但结构的非弹性变形离结构的倒塌尚有一段距离。不致倒塌或者发生危及生命的严重破坏,从而保障了人员的安全。因此,要求建筑具有足够的变形能力,其弹塑性变形不超过规定的弹塑性变形限值。

三个水准烈度的地震作用水平,按三个不同超越概率(或重现期)来区分的:多遇地震:50年超越概率63.2%,重现期50年;设防烈度地震(基本地震):50年超越概率 10%,重现期475年;罕遇地震:50年超越概率 2%-3%,重现期 1641-2475年,平均约为2000年。

对建筑抗震的三个水准设防要求,是通过“两阶段”设计来实现的,其方法步骤如下:第一阶段:第一步采用与第一水准烈度相应的地震动参数,先计算出结构在弹性状态下的地震作用效应,与风、重力荷载效应组合,并引入承载力抗震调整系数,进行构件截面设计,从而满足第一水准的强度要求;第二步是采用同一地震动参数计算出结构的层间位移角,使其不超过抗震规范所规定的限值;同时采用相应的抗震构造措施,保证结构具有足够的延性、变形能力和塑性耗能,从而自动满足第二水准的变形要求。第二阶段:采用与第三水准相对应的地震动参数,计算出结构(特别是柔弱楼层和抗震薄弱环节)的弹塑性层间位移角,使之小于抗震规范的限值。并采用必要的抗震构造措施,从而满足第三水准的防倒塌要求。

(三)高层建筑结构的抗震设计方法

我国的《建筑抗震设计规范》(GB50011-2001)对各类建筑结构的抗震计算应采用的方法作了以下规定:1、高度不超过 40m,以剪切变形为主且质量和刚度沿高度分布比较均匀的结构,以及近似于单质点体系的结构,可采用底部剪力法等简化方法。2、除1 款外的建筑结构,宜采用振型分解反应谱方法。3、特别不规则的建筑、甲类建筑和限制高度范围的高层建筑,应采用时程分析法进行多遇地震下的补充计算,可取多条时程曲线计算结果的平均值与振型分解反应谱法计算结果的较大值。

参考文献

[1]朱镜清.结构抗震分析原理[M].地震出版社,2002.11.

第5篇

关键词:高层建筑;抗震性能;理念;具体方法

Abstract: the world's population increased continuously, make the per capita living space gradually reduce, and then make the emergence of the high-rise building become an inevitable result. In recent years, such as earthquake disaster for high-rise building with the great damage and loss makes people have to of high-rise building in the design and construction of the construction of the seismic performance increase of consideration. This article describes and analyzes the structure of the high-rise building aseismic design of many of the idea of the foundation, and further puts forward the specific methods of seismic design.

Keywords: high building; Seismic performance; Ideas; The specific method

中图分类号:[TU208.3]文献标识码:A 文章编号:

地震因为其高破坏力和高不确定性两个特征成为一种危害人类正常生活的重大自然灾害。同时也成为包括高层建筑在内的绝大部分建筑设计和施工项目都必需考虑的一个重要因素之一[1]。因为在人类的发展历史上,地震这一自然灾害给人们带来了巨大的经济财产和人身安全的损失,于是在很早以前抗震设计就成为了建筑结构设计里的一个重要考虑因素,而建筑结构的抗震设计理念和方法也随着历史的进步在不断的发展。虽然人类目前还无法准确预测地震灾害并确保建筑物在地震中免受损失和破坏,但是已经形成了一套比较完整的理论和方法体系,在一定程度上能做到“小震不坏,中震不修,大震不倒”,并尽大可能的做到了减少因地震建筑物倒塌而给人们生命和财产带来的的严重损失。

高层建筑结构抗震设计理念

一直以来,对于建筑物的抗震设计理念和方法的研究都是建筑结构设计中的一个必要考虑因素,而增强建筑物的抗震性能是理论研究者为之奋斗不懈的的目标。现有的抗震设计理念是经过以下几个重要的阶段而总结得来的。

一是刚性设计理念。这是人们应对地震这一自然灾害所总结和研究出的第一个设计的理念。当时的地震工程学者对地震和抗震理论知识的了解还很少,很贫乏。学者普遍认为建筑物在地震中损坏甚至倒塌的主要原因是因为建筑物的刚度不够,不能抵抗地震的巨大能量才会倒塌。按照这一设计理念人们在房屋的施工建设工程中就通过增加剪力墙的厚度和承重墙的钢筋和水泥的比例,以此来保证墙体结构有足够的刚度,从而时地基与整个主体建筑形成一个刚性的有机整体。但是这一理念有其自身所具备的局限性,因为强调对建筑物刚度的要求,使得建筑物在高度和跨度上的发展收到限制。

二是柔性设计理念。因为看到了刚性设计理念的先天性不足,在刚性设计理念之后,抗震设计专家和学者们又提出了一个与刚性设计理念全然不同的柔性设计理念。这一理念放弃了对建筑物刚性的追求并且利用柔性建筑在地震中建筑物可以有效的侧移和形变的优点来减少地震对建筑物的损害。事实表明,这一设计理念具备了刚性设计理念所无法具备的优势,并且在一些小的低等级的地震中能比较好的保证建筑物的完好[2]。但是也仅仅是限于应对低等级的地震,事实表明,当遇到较高等级的地震时,在这一设计理念的指导下所建设的房屋是没有任何抵抗力的。

三是结构控制设计理念。这一设计理念主要是通过对建筑物的控制结构的设置使已有的结构和新生的结构共同抵御地震。最近这些年以来,这一设计理念被广泛应用于桥梁和高层建筑物的抗震设计中。

第四个是性能设计理念。这一设计理念的主要思想是让建筑物在面对不同等级地震的时候能有不一样的与之对应的抗震能力与性能,体现了多级抗震设防的重要思想[3]。该理论是在之前刚性设计理念、柔性设计理念和结构控制设计理念的基础之上发展的全新的理论,因为其较大的抗震优势,使得它成为现阶段实际应用最为广泛的抗震设计理念。它具体表现为以下几个方面:①尽可能增加多道抗震防线。每一个抗震机构的体系都不是一个单一的体系,而一般都是右多个有良好延性的系统构成,而每一个分系统又是通过有较好延伸性能和柔性的构件相互连接配合作用的。比如说有剪力墙-框架体系是由具有良好延性的剪力墙和柔性较高的框架组成,而剪力墙又是分为双肢剪力墙和多肢剪力墙分体系。一般的,强地震都伴随着一系列的余震,这就要求建筑物节构具备抵抗强震的第一道防线之后还能有第二道,第三道防线来抵抗接下来的余震,只有这样,才能保证建筑物在强震之后仍旧能够不倒塌。这就要求每一楼层里的主要抗震耗能构建在强震中屈服后其他的辅助构建仍具有弹性性能,从而延长构件的“有效屈服时间”。 ②增强薄弱部位的抗震性能。构件的实际承受能力和计算承受能力是对构件合理布置的基础,当在实际地震过程中,构件的实际承受里高于计算承受力,也就是构件面临承受力的不定集中的情况,这时候就需要通过其他的与之相连的辅助构件对它的承受力完成转移[4]。在薄弱部位(很有可能出现力的集中的部位)增强抗震设计,提高其抗震性能,能够有效做到保证建筑物在地震中变形小,不倒塌。

二、高层建筑结构设计方法

对于建筑结构抗震设计,通常要考虑高层建筑物的刚度、强度,和延性,因为不仅要保证整体结构在地震中能够承受一定范围内的轴压力和剪力,同时还要做到在力过大的时候在允许结构有一定的变形但是不至于严重倒塌。这是抗震的主要内容,也是抗震的核心内容。而现在具体的设计方法有以下这些。

一是多采用强剪弱弯结构。建筑结构中的梁和柱子简剪力破坏比轴向扭力破坏所带来的后果要严重的多,所以在设计之中要增强粱柱和墙体的剪力弱化轴向弯力。另外与此类似的还应该多采用强柱弱梁和强节点弱构件的设计方法。

二是改善高层建筑结构均匀性设计。首先是高层建筑是一个三维结构,在地震中作用力的方向是任意的,使其侧向两轴在刚度上均匀是保证其抗震性和抗风性的重要因素[5];然后是在沿竖直方向的层剪力刚性性能尽量不要发生突变;最后就是沿同一轴的各向抗侧力结构要避免出现刚度较大而延性较低的结构。

三是加强短柱抗震性能。①改善建筑物整个结构的抗震性能可以通过缩小短柱的截面积,增大剪跨比进而提高短柱的计算受压载重力的方式达到。具体的方法是增强混泥土的实际等级,降低其轴压比。②采用钢管混泥土的方式浇灌短柱。在由圆形钢管构成的构件体系里浇筑混泥土保证了混泥土能够在三个方向都能受到足够强度的压力,从而提高了混泥土本身的抗压能力和极限应力,进而在保证刚度和强度的前提下增强了其延性。③采用分体柱结构。这种方法是通过人为的将柱子的抗弯性能降低到其抗剪性能之下,从而用短柱在地震中的延性破坏代替它的水平断裂进而保证建筑物不易倒塌。

结语

随着社会和科技的进步和发展,专家学者对建筑物结构抗震设计的理念也在不断的更新进步,进步和先进的理念给我们带来的是可靠的结构设计方法。虽然人类在战胜地震这一自然灾害的路上还是任重而道远,但是我们有理由相信,随着人们对已有地震经验的总结,我们的抗震工程学者会研究出更好的高层建筑结构设计理念理念和方法,进而进一步保证人类生命和财产不受损失。

参考文献:

[1] 张彭,解林伟.试析高层建筑结构设计理念及方法[J].陕西建筑,2011(08)

[2] 王欣.浅谈高层建筑结构选型要点[J].科技创新导报,2010,(15)

[3] 郑克勤.关于高层建筑结构设计探讨[J].中华民居,2011(03)

第6篇

【关键词】房建结构,结构设计,抗震设计现状,要求

中图分类号:S611 文献标识码:A 文章编号:

一、前言

房建结构抗震设计,关乎民生,关乎经济发展,社会稳定,对房屋建筑实施结构设计,主要涉及对建筑高度,承载力,总体结构,各个部件的性能规划等一系列的因素,要求通过对各个构件和整体规划的基础上,既实现满足居民生活生产保障安全的需要,又具有值得欣赏的美学价值。增强房建结构的抗震设计,必须综合考虑地基,房屋的结构体系选择,综合布局等多方面建设因素,是一项及其专业,严谨,复杂的高技术工作。

二、建筑抗震的主要影响因素

1、抗震设计标准

目前,国内在不同地区设定的基本设防烈度,主要是根据该地区以及具体建筑在一段时间内遭受地震以及地震强度的概率而定的。如果是一般建筑,则执行基本烈度设防,如果是重要的建筑物,则相应地提高设防烈度,但是,随着设防烈度的提高,建筑的造价会相应增加。

2、建筑结构形式

为了有效地保证建筑物“小震不坏,中震可修,大震不倒”,在最新的设计规范中,砖混内框架结构被严格取缔了。目前,主要采用的是框架结构、剪力墙结构等。框架结构空间布置灵活,相对造价低,但是其在水平地震力作用下,容易发生剪切变形,因此,框架结构适用的高度相对较低。剪力墙结构平面布置没有框架灵活,但其平面内自身刚度大,强度高,整体性能好,在水平荷载作用下变形小,抗震性能较强,适用于高度较高的高层建筑。

3、抗震措施

抗震措施主要是根据建筑的重要性决定的。在确定建筑等级及场地类型之后,将先进的抗震理念和系统的分析计算纳入到抗震设计中,即可改善建筑抗震性能,提高建筑抗震效果。

三、框架结构抗震设计的基本要求

有抗震性要求的框架结构,应设计成延性框架,遵守“强柱弱梁” 、“强剪弱弯”、强节点、强构件等设计原则,柱截面不宜过小,应满足结构侧移变形及轴压比的要求。在进行框架结构抗震设计的时候,需要确定框架结构的抗震等级,根据不同的等级进行设计,主要是为保证框架结构具有较好的延性,并且能满足合理、经济的设计要求。构件设计时应满足各自的基本要求:①框架结构在进行梁端抗震设计时,既要允许塑性铰在梁上出现又不要发生梁剪切破坏,同时还要防止由于梁筋屈服渗入节点而影响节点核心区的性能,使梁形成塑性铰后仍有足够的受剪承载力,梁筋屈服后,塑性铰区段应有较好的延性和耗能能力。②框架柱在设计时,应该遵循强柱弱梁,使柱尽量不要出现塑性铰,在弯曲破坏之前不发生剪切破坏,使柱有足够的抗剪能力,同时控制柱的剪切比不要太大。③框架节点在地震破坏时,主要是节点核心区剪切破坏和钢筋锚固破坏,因此在设计时,要采取“强节点弱构件”的设计概念,保证在多遇地震时,节点应在弹性范围内工作;在罕遇地震时,节点承载力的降低不得危及竖向荷载的传递。

四、框架结构构件抗震设计的构造措施

1、框架梁的截面抗震设计尺寸,宜符合下列各项要求:截面宽度不宜小于 200mm;截面高宽比不宜大于 4;净跨与截面高度之比不宜小于4。在计算出梁控制截面处考虑地震作用的组合弯矩后,可按一般钢筋混土受弯构件进行正截面受弯承载力计算。梁端纵向受拉钢筋的配筋率不应大于 2.5%,且计入受压钢筋的梁端混凝土受压区高度和有效高度之比,一级不应大于 0.25,二、三级不应大于 0.35。梁端截面的底面和顶面纵向钢筋配筋量的比值,除按计算确定外,一级不应小于 0.5,二、三级不应小于 0.3。梁端剪力设计值应根据强剪弱弯的原则,按的要求加以调整,对一、二、三级抗震等级分别采取1.3、1.2、和1.1梁端剪力增大系数。

2、框架柱的截面抗震设计尺寸,宜符合下列各项要求:截面的宽度和高度均不宜小于 300mm;圆柱直径不宜小于 350mm。剪跨比宜大于 2。截面长边与短边的边长比不宜大于3。柱轴压比不宜超过下表的规定;建造于Ⅳ类场地且较高的高层建筑,柱轴压比限值应适当减小。柱的钢筋配置,应符合柱纵向钢筋的最小总配筋率,中柱和边柱的一、二、三、四抗震等级分别是1.0、0.8、0.7、0.6,角柱、框支柱的一、二、三、四抗震等级分别是1.2、1.0、0.9、0.8。同时每一侧配筋率不应小 0.2%;对建造于Ⅳ类场地且较高的高层建筑,数值应增加 0.1。 当采用HRB400 级热轧钢筋时应允许减少 0.1,混凝土强度等级高于 C60 应增加 0.1。

3、框架节点核芯区箍筋的最大间距和最小直径宜按规范中的柱箍筋加密区的箍筋最大间距和最小直径,一、二、三级框架节点核芯区配箍特征值分别不宜小于 0.12、0.10 和 0.08 且体积配箍率分别不宜小于 0.6%、0.5% 和 0.4%。柱剪跨比不大于 2 的框架节点核芯区配箍特征值不宜小于核芯区上、下柱端的较大配箍特征值。

五、基于剪力墙结构建筑体形的抗震优化设计

高层建筑结构的设计,除了要合理选择结构抗侧力体系外,要特别重视建筑体形和结构总体布置。建筑体形是指建筑的平面和立面;结构总体布置是指结构构件的平面布置和竖向布置。建筑体形和结构总体布置对结构的抗震性能具有决定性的作用。

1、震害及抗震概念设计

结构抗震设计有许多不确定因素(地震特性、结构扭转等),进行精确的抗震计算是非常困难的。结构的抗震设计除了进行细致的计算外,要特别注重结构概念设计。概念设计是指在结构设计中,结构工程师运用“概念”进行分析,做出判断,并采取相应措施。根据概念设计,抗震房屋的建筑体形和结构总体布置应符合如下原则:采用规则结构,不采用严重不规则结构;明确的计算简图和合理的传力路径;具有必要的刚度和承载力,具备良好的弹塑性变形能力和消耗地震能量的能力;部分结构或构件破坏不应导致整体结构倒塌,增加超静定结构的次数。满足抗震设计原则:即:“强节弱杆”、“强竖弱平”、“强剪弱弯”;置多道抗震防线,形成两道或多道的抗震防线,增强结构抗倒塌能力。

2、建筑平面和结构平面布置

高层建筑的外形分为板式和塔式两大类:板式建筑平面两个方向的尺寸相差较大,塔式建筑平面两个方向的尺寸接近。多数高层建筑为塔式。对抗风有利的建筑平面形状是简单规则的凸平面,如圆形,正多边形、椭圆形等平面,以减小风压,有较多凹凸的复杂平面,对抗风不利,如V形、Y形等。对抗震有利的建筑平面形状是简单、规则、对称、长宽比不大的平面。

六、结束语

综上所述,建筑结构设计中的抗震设计十分重要,加上我国今年来地震较多,加强房屋抗震设计对于居民的安全具有很大作用,应该不断的加强研究。

参考文献:

[1] 张立军 房屋建筑结构设计体系选型及抗震没计 [期刊论文] 《科技与生活》 -2011年14期

[2]孟虎 房建工程砖混结构的抗震设计与前瞻性研究 [期刊论文] 《科技与企业》 -2011年9期

[3]万忠伦 成都驿园高层住宅结构抗震设计 [期刊论文] 《铁道建筑》 PKU -2008年12期

[4]吕西林.周德源、李思明、陈以一、陆浩亮.抗震设计理论与实例[M].同济大学出版社.2011

第7篇

关键词:高层建筑;混凝土房屋;抗震设计;抗震设防

Abstract: This article researches and analyzes the seismic design of the tall reinforced concrete building, according to the author’s practical experience and summarized relevant materials,.

Key words: high-rise building; concrete building; seismic design; seismic fortification

中图分类号:TU3文献标识码:A 文章编号:2095-2104(2012)

在建筑工程项目建设中,设计阶段是整个工程最为关键的一个环节,在设计中要考虑到多方面的因素。本文结合工作实践对高层建筑结构抗震设计进行理论上的研究,从设计理念、设计原则到设计方法进行了探讨,虽然有些粗浅,希望对同行们有一定的参考作用。

地震是人类在繁衍生息、社会发展过程中遇到的一种可怕的自然灾害。强烈地震常常以其猝不及防的突发性和巨大的破坏力给社会经济发展、人类生存安全和社会稳定、社会功能带来严重的危害。据统计,历史上各种自然灾害曾毁灭了世界各地 52 个城市,其中因地震而毁灭的城市有 27 个。地震之外的其它各种灾害,如水灾、火灾、火山喷发、风灾、沙灾、旱灾等毁灭的城市为 25 座。因此,地震占灾害总数的 52%。可见地震灾害确系“群害之首”。研究表明,在地震中造成人员伤亡和经济损失最主要的因素就是房屋倒塌及其引发的次生灾害(约占 95%)。无数次的震害告诉我们,抗震设计是防御和减轻地震灾害最有效、最根本的措施。

1 建筑抗震的理论分析

1.1 建筑结构抗震规范 建筑结构抗震规范实际上是各国建筑抗震经验带有权威性的总结,是指导建筑抗震设计(包括结构动力计算,结构抗震措施以及地基抗震分析等主要内容)的法定性文件它既反映了各个国家经济与建设的时代水平,又反映了各个国家的具体抗震实践经验。它虽然受抗震有关科学理论的引导,向技术经济合理性的方向发展,但它更要有坚定的工程实践基础,把建筑工程的安全性放在首位,容不得半点冒险和不实。正是基于这种认识,现代规范中的条文有的被列为强制性条文,有的条文中用了“严禁,不得,不许,不宜”等体现不同程度限制性和“必须,应该,宜于,可以”等体现不同程度灵活性的用词。

1.2 抗震设计的理论 拟静力理论。拟静力理论是 20 世纪 10~40 年展起来的一种理论,它在估计地震对结构的作用时,仅假定结构为刚性,地震力水平作用在结构或构件的质量中心上。地震力的大小当于结构的重量乘以一个比例常数(地震系数)。反应谱理论。反应谱理论是在加世纪 40~60 年展起来的,它以强地震动加速度观测记录的增多和对地震地面运动特性的进一步了解,以及结构动力反应特性的研究为基础,是加理工学院的一些研究学者对地震动加速度记录的特性进行分析后取得的一个重要成果。动力理论。动力理论是 20 世纪 70-80 年广为应用的地震动力理论。它的发展除了基于 60 年代以来电子计算机技术和试验技术的发展外,人们对各类结构在地震作用下的线性与非线性反应过程有了较多的了解,同时随着强震观测台站的不断增多,各种受损结构的地震反应记录也不断增多。进一步动力理论也称地震时程分析理论,它把地震作为一个时间过程,选择有代表性的地震动加速度时程作为地震动输入,建筑物简化为多自由度体系,计算得到每一时刻建筑物的地震反应,从而完成抗震设计工作。

2 高层建筑结构抗震设计

2.1 抗震措施 在对结构的抗震设计中,除要考虑概念设计、结构抗震验算外,历次地震后人们在限制建筑高度,提高结构延性(限制结构类型和结构材料使用)等方面总结的抗震经验一直是各国规范重视的问题。当前,在抗震设计中,从概念设计,抗震验算及构造措施等三方面入手,在将抗震与消震(结构延性)结合的基础上,建立设计地震力与结构延性要求相互影响的双重设计指标和方法,直至进一步通过一些结构措施(隔震措施,消能减震措施)来减震,即减小结构上的地震作用使得建筑在地震中有良好而经济的抗震性能是当代抗震设计规范发展的方向。而且,强柱弱梁,强剪弱弯和强节点弱构件在提高结构延性方面的作用已得到普遍的认可。

2.2 抗震设计理念 我国 《建筑抗震规范》(GB50011-2001)对建筑的抗震设防提出“三水准、两阶段”的要求,“三水准”即“小震不坏,中震可修,大震不倒”。当遭遇第一设防烈度地震即低于本地区抗震设防烈度的多遇地震时,结构处于弹性变形阶段,建筑物处于正常使用状态。建筑物一般不受损坏或不需修理仍可继续使用。因此, 要求建筑结构满足多遇地震作用下的承载力极限状态验算,要求建筑的弹性变形不超过规定的弹性变形限值。当遭遇第二设防烈度地震即相当于本地区抗震设防烈度的基本烈度地震时,结构屈服进入非弹性变形阶段,建筑物可能出现一定程度的破坏。但经一般修理或不需修理仍可继续使用。因此,要求结构具有相当的延性能力(变形能力)不发生不可修复的脆性破坏。当遭遇第三设防烈度地震即高于本地区抗震设防烈度的罕遇地震时,结构虽然破坏较重,但结构的非弹性变形离结构的倒塌尚有一段距离。不致倒塌或者发生危及生命的严重破坏,从而保障了人员的安全。因此,要求建筑具有足够的变形能力,其弹塑性变形不超过规定的弹塑性变形限值。

三个水准烈度的地震作用水平,按三个不同超越概率(或重现期)来区分的:多遇地震:50 年超越概率 63.2%,重现期 50 年;设防烈度地震(基本地震):50 年超越概率 10%,重现期 475 年;罕遇地震:50 年超越概率 2%-3%,重现期 1641-2475 年,平均约为 2000年。对建筑抗震的三个水准设防要求,是通过“两阶段”设计来实现的,其方法步骤如下:第一阶段:第一步采用与第一水准烈度相应的地震动参数,先计算出结构在弹性状态下的地震作用效应,与风、重力荷载效应组合。并引入承载力抗震调整系数。进行构件截面设计,从而满足第一水准的强度要求;第二步是采用同一地震动参数计算出结构的层间位移角,使其不超过抗震规范所规定的限值;同时采用相应的抗震构造措施,保证结构具有足够的延性、变形能力和塑性耗能,从而自动满足第二水准的变形要求。第二阶段:采用与第三水准相对应的地震动参数,计算出结构(特别是柔弱楼层和抗震薄弱环节)的弹塑性层间位移角,使之小于抗震规范的限值。并采用必要的抗震构造措施,从而满足第三水准的防倒塌要求。

2.3 抗震设计方法 我国的《建筑抗震设计规范》(GB50011-2001)对各类建筑结构的抗震计算应采用的方法作了以下规定:高度不超过 40m,以剪切变形为主且质量和刚度沿高度分布比较均匀的结构,以及近似于单质点体系的结构,可采用底部剪力法等简化方法;除 1 款外的建筑结构,宜采用振型分解反应谱方法;特别不规则的建筑、甲类建筑和限制高度范围的高层建筑,应采用时程分析法进行多遇地震下的补充计算,可取多条时程曲线计算结果的平均值与振型分解反应谱法计算结果的较大值。

3 结语

要使工程建设真正达到能够减轻以至避免地震灾害,把握好抗震设计关是减轻地震灾害的根本措施。

参考文献:

[1]朱镜清.结构抗震分析原理[M].地震出版社,2002.11.

[2]郑文忠,王英.对既有房屋套建增层改造的认识与思考[J].工业建筑,2008.6.

[3]计静.套建增层预应力钢骨混凝土框架抗震性能与设计方法研究.哈尔滨工业大学博士学位论文,2008.

第8篇

【关键词】房屋抗震;影响因素;措施

引言

房屋的抗震性能最大程度上取决于房屋的抗震设防标准,抗震设防标准越高,房屋的抗震性能就越强。目前,已有数百位专家在研究讨论新的房屋抗震设防标准,以期修改沿用多年的房屋建造抗震标准,增强新建房屋的抗震能力。北京地区近日已率先将农房抗震要求提高到了能抵御8级地震的高标准。据测算,抗震设防标准每提高一级,建筑成本将随之提高8%-10%。 房屋的选址是房屋抗震性能的外部主要条件,初步总结四川地震的经验和教训可以发现,遭遇同等强度地震的不同位置的房屋,其抗震性能有所不同。位于地质断层附近的房屋比其他房屋更易被震塌。我国是一个地震多发国家,发生过破坏性地震的城市占全国城市总数的10%以上。因此,各地今后在房屋建筑设计与施工之前,必须充分重视房屋的选址应远离地质断层,防患于未然。 房屋结构设计与施工质量、房屋装修是决定房屋抗震性能中受人为影响最大的两个因素。在房屋结构设计中,一般而言,剪力墙结构的抗震性能优于框架结构,框架结构优于砖混结构。在施工质量中,建筑物必须严格根据抗震设计规范施工。 居住者在房屋装修时不得随意更改房屋结构,尤其是不可随意更改房屋承重墙等一些关键部位,更改结构时应得到专业人士的指导或相关许可,任何擅自改动都有可能降低房屋抗震性能,造成致命隐患。

1 建筑物的重要性决定了其不同程度上的抗震性能

不同结构型式是不同建筑物功能需求和性价比所决定的,不能单单片面的说地震来临时,哪种结构型式就一定好哪种结构型式就一定不好;因为按目前的抗震设防标准,它们有一个共同的设防目标:小震不坏 、中震可修 、大震不倒。

国家按建筑物发生灾害时对人民生命财产可能造成损失的程度,按建筑物分为甲乙丙丁四类。主要的、重要的水电站、医院、电力、通讯等生命救援保障和人员密集建筑被定为甲类或乙类,一般的住宅、办公等均定义为乙类,设防的目标也不同:丙类建筑在设计时按设防目标进行;甲乙类建筑设计时至少要提高1度,请注意,这里均指是烈度而不是震级,这也很好理解,好的地基要比差的地基抗震性能好,处在地震活动带的建筑自然发生地震的几率大,抗震性能也很难保证。

2 建筑物得抗震性能首先取决于建筑物的抗震设防标准

国家根据地震发生的可能性和震害的严重性确定各地区基本设防烈度,这是各地区抗震设计的基本参数,主要代表地面加速度的大小。设防烈度一般分6~9度,上海地区设防烈度主要为7度,崇明、金山为6度。对具体建筑物,需要结合建筑使用功能的重要性确定建筑的抗震设防标准,即确定设计烈度和抗震等级。对一般建筑,设计烈度就是本地区设防烈度。设计烈度愈高,抗震能力愈强,但建筑物造价也愈高。

2.1 房屋结构的抗震性能与合理的抗震设计密切相关。

抗震设计就是要选择合适的结构形式,确定合理的抗震措施,保证结构的抗震性能,确保建筑物满足“小震不坏、中震可修、大震不倒”的抗震目标。所谓中震,指设防烈度,小震比中震小约1.55度,而大震则比中震增加约1度。合理的抗震设计主要基于先进的抗震理念、系统的分析计算和恰当的抗震措施。既要注意控制抗震指标如轴压比、相对变形等,又要采取合适的抗震构造措施。

目前高层住宅主要采用现浇剪力墙结构、框架-核心筒或框架-剪力墙结构,具有较好的强度和变形能力,抗震性能相对较好。因此,无论板式住宅还是点式住宅,只要设计合理,都可满足抗震要求。多层住宅大部分采用砖混结构,目前多采用现浇楼板,并采取设构造柱和圈梁等抗震措施,或者采用框架结构,大大增强了抗震能力。部分建筑外形怪异,平立面不规则,传力体系复杂甚至需要多次结构转换,这既增加了建筑物造价,也影响了建筑物的抗震性能。

2.2 房屋抗震性能还与施工质量等其他因素有关。因此加强施工质量监督,规范既有建筑的使用管理是十分必要的。

3 建筑物抵抗地震的能力不确定性

为了搞好抗震结构的施工,首先要了解地震力对建筑物可能引起的破坏作用。因为地震时不确定性和复杂性,我们很难用“数值设计”来有效控制结构的抗震性能,因此不能完全依赖于计算。根据目前对地震规律的认识,抗震设计的指导思想是:房屋在使用期间,对不同强度的地震应具有不同的抵抗能力,一般小震发生的可能性较大,因此,要求做到结构不损坏,这在技术上,经济上是可以做到的。近几年台湾发生三次地震,福建沿海受其余震波影响,没有造成建筑物严重损坏。如果要求结构遭受大震时不损坏,这在经济上是不合理的,因此可以允许结构破坏。但是在任何情况下,不应导致建筑物倒塌,概括起来说,抗震设防的一般目标就是要做到“小震不坏,大震不倒”。从另一方面看,一个地区的基本地震烈度也是难以准确估计的,要根据当地的地址,地形和历史地震情况等确定,因此房屋抗震能力很难确定。那就要在结构强度上和构造上下功夫,才能做到建筑物裂而不倒。这种危中脱险的工作主要依赖于良好的结构设计和施工质量。

4 施工质量和房屋抗震性能的关系

在强烈地震的作用下,要使建筑物裂而不倒,关键在施工过程的控制,以保证结构本身具有足够的强度和各部件间有可靠的连接。对混合结构来说,一是砌体强度,也就是砖块本身和砂浆标号。二是内外砖墙的咬槎以及构造柱,圈梁和墙体的连接构造。对钢筋混凝土结构来说一是混凝土和钢筋本身的强度。二是节点间的连接构造,两者都和施工的质量密切相关,强度和构造连接的施工质量好,建筑就能抵抗地震,否则建筑物就要遭到严重破坏,以致倒塌,人民生命财产遭到严重损失。

5 目前影响建筑物抗震的施工质量问题

对于砖混结构的建筑物,在材料选用、施工质量上应当引起足够重视。砌体强度不足,砂浆不饱满,砂浆标号低,砌筑前砖块不湿润,冬季施工不浇水都会降低砂浆的粘结力和砌体的抗剪强度;加之砌体结构通常采用单块的材料和砂浆砌筑,抗拉压力低,且主要以手工操作,容易丧失承载能力。圈梁和构造柱的配筋不合理:圈梁和构造柱依靠其中的钢筋将建筑上下各层,各片墙体连在一起,哪里连接不好,哪里就容易出问题。我们在施工现场经常发现钢筋搭接长度不够,钢筋接头该错开的不错开,该弯钩的不弯钩,钢筋位置偏差大等等,都会直接影响到结构整体连接。 构造柱与墙体拉接筋放置不准确,构造柱混凝土振捣不密实,都直接影响构造柱的抗震能力,关系到砖混结构建筑物能否满足抗震要求。

对于混凝土结构的建筑物,当前钢筋混凝土结构的施工存在问题比较多,对结构的抗震性能极为不利。首先混凝土强度问题,混凝土水泥用量,水灰比和含砂率控制不严,对混凝土湿润养护不重视,振捣不密实,柱头施工缝遗留木屑、焊渣等造成柱的断层,这些都是削弱结构支撑竖向荷载能力的重要因素,严重影响房屋抗震能力。

6 总结

前面谈到影响房屋抗震的施工质量问题,这些都不是很难做到,只要我们在施工过程中认真负责,引起重视,发现问题及时整改,严格按照施工规程操作,控制好每一个分项、分部工程,绝不片面追求施工速度不顾工程质量,对人民的生命财产要有高度负责的态度。只有这样,才能使建筑物的抗震安全性能得到进一步保证,人民生命财产免遭损失。

参考文献:

[1]杨佑发;邹银生 底部框剪砌体、房屋空间弹塑性地震反应分析 [期刊论文] -振动与冲击2003(01) .

[2]杨佑发 底部框剪砌体房屋抗震及隔震性能研究 [学位论文] 1998 .

[3]杨佑发;魏建东 结构动力分析的非线性拟动力方程法 [期刊论文] -世界地震工程2002(02) .

[4]郭子雄 RC低矮抗震墙的变形性能及恢复力模型研究 1998(01) .

第9篇

Abstract: In oder to make construction projects really be able to reduce or even avoid the earthquake disaster, a good grasp of the relevant seismic design is a fundamental measure to mitigate earthquake disasters. Based on the summary of experience and relevant information, this articles studied and discussed the seismic design issues of reinforced concrete high-rise housing.

关键词:高层建筑;混凝土房屋;抗震设计;抗震设防

Key words: high-rise building;concrete housing;seismic design;seismic fortification

中图分类号:TU3文献标识码:A文章编号:1006-4311(2011)05-0084-02

0引言

地震是人类在繁衍生息、社会发展过程中遇到的一种可怕的自然灾害。强烈地震常常以其猝不及防的突发性和巨大的破坏力给社会经济发展、人类生存安全和社会稳定、社会功能带来严重的危害。据统计,历史上各种自然灾害曾毁灭了世界各地52个城市,其中因地震而毁灭的城市有27个。地震之外的其它各种灾害,如水灾、火灾、火山喷发、风灾、沙灾、旱灾等毁灭的城市为25座。因此,地震占灾害总数的52%。可见地震灾害确系“群害之首”。研究表明,在地震中造成人员伤亡和经济损失最主要的因素就是房屋倒塌及其引发的次生灾害(约占95%)。无数次的震害告诉我们,抗震设计是防御和减轻地震灾害最有效、最根本的措施。

1建筑抗震的理论分析

1.1 建筑结构抗震规范 建筑结构抗震规范实际上是各国建筑抗震经验带有权威性的总结,是指导建筑抗震设计(包括结构动力计算,结构抗震措施以及地基抗震分析等主要内容)的法定性文件它既反映了各个国家经济与建设的时代水平,又反映了各个国家的具体抗震实践经验。它虽然受抗震有关科学理论的引导,向技术经济合理性的方向发展,但它更要有坚定的工程实践基础,把建筑工程的安全性放在首位,容不得半点冒险和不实。正是基于这种认识,现代规范中的条文有的被列为强制性条文,有的条文中用了“严禁,不得,不许,不宜”等体现不同程度限制性和“必须,应该,宜于,可以”等体现不同程度灵活性的用词。

1.2 抗震设计的理论拟静力理论。拟静力理论是20世纪10~40年展起来的一种理论,它在估计地震对结构的作用时,仅假定结构为刚性,地震力水平作用在结构或构件的质量中心上。地震力的大小当于结构的重量乘以一个比例常数(地震系数)。反应谱理论。反应谱理论是在加世纪40~60年展起来的,它以强地震动加速度观测记录的增多和对地震地面运动特性的进一步了解,以及结构动力反应特性的研究为基础,是加理工学院的一些研究学者对地震动加速度记录的特性进行分析后取得的一个重要成果。动力理论。动力理论是20世纪70-80年广为应用的地震动力理论。它的发展除了基于60年代以来电子计算机技术和试验技术的发展外,人们对各类结构在地震作用下的线性与非线性反应过程有了较多的了解,同时随着强震观测台站的不断增多,各种受损结构的地震反应记录也不断增多。进一步动力理论也称地震时程分析理论,它把地震作为一个时间过程,选择有代表性的地震动加速度时程作为地震动输入,建筑物简化为多自由度体系,计算得到每一时刻建筑物的地震反应,从而完成抗震设计工作。

2高层建筑结构抗震设计

2.1 抗震措施 在对结构的抗震设计中,除要考虑概念设计、结构抗震验算外,历次地震后人们在限制建筑高度,提高结构延性(限制结构类型和结构材料使用)等方面总结的抗震经验一直是各国规范重视的问题。当前,在抗震设计中,从概念设计,抗震验算及构造措施等三方面入手,在将抗震与消震(结构延性)结合的基础上,建立设计地震力与结构延性要求相互影响的双重设计指标和方法,直至进一步通过一些结构措施(隔震措施,消能减震措施)来减震,即减小结构上的地震作用使得建筑在地震中有良好而经济的抗震性能是当代抗震设计规范发展的方向。而且,强柱弱梁,强剪弱弯和强节点弱构件在提高结构延性方面的作用已得到普遍的认可。

2.2 抗震设计理念 我国《建筑抗震规范》(GB50011-2001)对建筑的抗震设防提出“三水准、两阶段”的要求,“三水准”即“小震不坏,中震可修,大震不倒”。当遭遇第一设防烈度地震即低于本地区抗震设防烈度的多遇地震时,结构处于弹性变形阶段,建筑物处于正常使用状态。建筑物一般不受损坏或不需修理仍可继续使用。因此,要求建筑结构满足多遇地震作用下的承载力极限状态验算,要求建筑的弹性变形不超过规定的弹性变形限值。当遭遇第二设防烈度地震即相当于本地区抗震设防烈度的基本烈度地震时,结构屈服进入非弹性变形阶段,建筑物可能出现一定程度的破坏。但经一般修理或不需修理仍可继续使用。因此,要求结构具有相当的延性能力(变形能力)不发生不可修复的脆性破坏。当遭遇第三设防烈度地震即高于本地区抗震设防烈度的罕遇地震时,结构虽然破坏较重,但结构的非弹性变形离结构的倒塌尚有一段距离。不致倒塌或者发生危及生命的严重破坏,从而保障了人员的安全。因此,要求建筑具有足够的变形能力,其弹塑性变形不超过规定的弹塑性变形限值。

三个水准烈度的地震作用水平,按三个不同超越概率(或重现期)来区分的:多遇地震:50年超越概率63.2%,重现期50年;设防烈度地震(基本地震):50年超越概率10%,重现期475年;罕遇地震:50年超越概率2%-3%,重现期1641-2475年,平均约为2000年。对建筑抗震的三个水准设防要求,是通过“两阶段”设计来实现的,其方法步骤如下:第一阶段:第一步采用与第一水准烈度相应的地震动参数,先计算出结构在弹性状态下的地震作用效应,与风、重力荷载效应组合。并引入承载力抗震调整系数。进行构件截面设计,从而满足第一水准的强度要求;第二步是采用同一地震动参数计算出结构的层间位移角,使其不超过抗震规范所规定的限值;同时采用相应的抗震构造措施,保证结构具有足够的延性、变形能力和塑性耗能,从而自动满足第二水准的变形要求。第二阶段:采用与第三水准相对应的地震动参数,计算出结构(特别是柔弱楼层和抗震薄弱环节)的弹塑性层间位移角,使之小于抗震规范的限值。并采用必要的抗震构造措施,从而满足第三水准的防倒塌要求。

2.3 抗震设计方法我国的《建筑抗震设计规范》(GB50011-2001)对各类建筑结构的抗震计算应采用的方法作了以下规定:高度不超过40m,以剪切变形为主且质量和刚度沿高度分布比较均匀的结构,以及近似于单质点体系的结构,可采用底部剪力法等简化方法;除1款外的建筑结构,宜采用振型分解反应谱方法;特别不规则的建筑、甲类建筑和限制高度范围的高层建筑,应采用时程分析法进行多遇地震下的补充计算,可取多条时程曲线计算结果的平均值与振型分解反应谱法计算结果的较大值。

3结语

在建筑工程项目建设中,设计阶段是整个工程最为关键的一个环节,在设计中要考虑到多方面的因素。本文结合工作实践对高层建筑结构抗震设计进行理论上的研究,从设计理念、设计原则到设计方法进行了探讨,虽然有些粗浅,希望对同行们有一定的参考作用。

参考文献:

[1]朱镜清.结构抗震分析原理[M].地震出版社,2002.11.

第10篇

关键词:砌体结构;地震破坏;抗震设计;抗震新理念

中图分类号:P315 文献标识码:A 文章编号:

1 前言

砌体结构作为主要的建筑结构类型,大量应用于居民楼、办公楼及学校医院等建筑中。虽然近些年钢筋混凝土结构由于其较优良的性能而受到广泛的使用,但是现在大部分建成及在建的房屋建筑,尤其在乡村及城镇中,仍然以砌体结构作为主要的房屋结构。同时,我国所处的位置,板块运动比较活跃,经常发生地震灾害。在我国每年都会发生由于砌体结构抗震不足造成的人员及财产损失的事故。因此,本文重点讨论了增强砌体结构的抗震性能的措施和方法。在发生地震时,尽量避免出现人员伤亡,并努力降低财产的损失。

2 影响砌体结构抗震性能的因素

2.1 设计因素

(1)设计房屋建筑时,没有考虑结构将来的抗震要求。有些建筑的平面设计的不规则,只是盲目地追求立面的美观,外墙的窗户非常的大,而这使得建筑物的外墙不能承受地震的作用而常常出现破坏现象[1]。

(2)具有过多的悬挑结构,严重影响了抗震的性能。建筑设计中采用悬挑结构能达到一些立体的效果。但过于追求这种效果使得悬挑时受弯的构件产生较大的挠度,从而极易在地震中遭到破坏。

(3)仅仅依赖构造柱抵抗地震灾害。构造柱确实能显著地提高砌体结构的抗震性能。但若缺少足够的抗震墙体,只是单纯的依赖构造柱抗震往往效果不佳。

(4)房屋建筑的高度超过了规范的要求。现实施工中,总有些设计人员违反规定,房屋的层数或者总高度超出规定的值。房屋高度逐渐增加时,房屋的弯曲变形增加。但是砌体结构本身抵抗弯曲变形等方面的能力是很差的,房屋高度过高,在发生地震时极容易发生破坏。

(5)选择了不合理的基础方案。在抗震设防区内修建砌体结构时,若地基软弱,要首先考虑桩基或箱基等具有较好的抗震性能的基础形式。而有些单位贪图私利,使用廉价的基础形式。而这常会造成极其恶劣的后果。

2.2 施工因素

(1)砌筑时使用了不饱满的砂浆。水平灰缝或垂直灰缝所用的砂浆具有较低的饱满度,因而降低了砂浆与砌体之间的粘结力,影响了砌筑墙的强度,从而也影响到了砌体结构整体的抗震强度。

(2)纵墙与横墙交接的地方没有留牙槎。某些施工单位偷懒,砌筑时常常不留错槎。这严重地降低了房屋建筑的整体性能,并同样影响了砌体结构的抗震性能[2]。

(3)构造柱中的插筋位置移动。从基础圈梁或基础中伸出的预留的构造柱插筋发生了移位;在楼与屋盖的节点处的构造柱的箍筋没有加密;砌体内的水平向的拉结钢筋的位置没有满足要求或其深入到纵墙的长度不足等问题都会影响砌体结构的抗震性能。

(4)空心板底部坐浆未满足要求。铺好预制板后,提前铺好的坐浆厚薄变得不均匀,使得空心板变得不稳定,从而显著地影响了砌体结构的抗震能力。

(5)未按照施工图纸进行施工。个别施工单位没有取得设计单位的许可,擅自更改原设计的内容,极有可能为结构的抗震埋下隐患。

3 砌体结构的抗震设计

3.1 抗震概念设计

3.1.1 房屋高度与层数

通过研究历史上的多次地震,发现在正常的地基条件下,如果砌体结构房屋的层数愈多,高度愈大,则震害愈大。因此适当的限制砌体结构的层数及高度,能够既有效又经济的抵抗地震灾害。现在我国有关部门专门制订了相关的法律来控制砌体结构房屋的层数及高度。另外对于房屋的高宽比,即房屋建筑的总高度与总宽度的最大比值,也需要做出相关的规定。高宽比能表征结构的抗侧刚度、抗倾覆性能、整体稳定及承载能力等性能。若高宽比较大,结构在地震时容易产生整体性的弯曲破坏,因此对于房屋的高宽比要按照规范的要求选择合适的比值。

3.1.2 结构体系

如果房屋的结构采用砌体结构,则其主要采用横墙承重或者纵墙与横墙共同承重等房屋结构体系。纵墙与横墙尽量均匀对齐布置,在竖向要上下连续。相同的结构单元要选择相同的结构体系,不要混杂体系。砌体结构中墙体的布置要尽量使地震作用具有合适的传播途径,防止因为局部的突变而产生薄弱环节,从而造成应力集中或者塑性变形的集中。对于可能产生的薄弱环节,要及时采取措施增强其抗震性能。

3.1.3 平立面的布置

对于采用砌体结构的建筑,其平面布置要规则和对称。平面的形状应该有较好的整体性能。楼梯间尽量不要设置在建筑物的尽端及转角处。房屋建筑的立面以及竖直方向的剖面要求尽量规则,并尽量使结构的侧向刚度变化得均匀。墙体沿着竖向布置时,上下应该连续,防止刚度发生突变。

3.2 抗震构造措施

3.2.1 设置圈梁及构造柱

对于砌体结构,其构造柱及圈梁的设置要符合规范的要求。如果房屋建筑的层数或者高度毗邻砌体结构所要求的限定高度时,横墙中的构造柱之间的距离不应当超出两倍的层高。若多层住宅的开间较大或者横墙较少,则要更严格的设置构造柱的间距。沿着墙体的方向,构造柱的截面及配筋一般不发生变化,故各个楼层构造柱的高处应该有圈梁当作锚固点,从而形成左右及上下墙段的固结约束作用[3]。构造柱要与楼层上下处楼盖圈梁相拉结,使得圈梁对房屋进行水平约束。

3.2.2 构造件间的连接

构造柱与屋盖以及楼板之间要连接合适。圈梁与构造柱相连接的地方,构造柱内部的纵筋应该穿过圈梁,从而使得上下贯通。构造柱与房屋的墙体要进行恰当的连接。构造柱与墙体相连接的地方要砌筑成马牙槎,并设置一些拉结筋。屋顶之间同样要进行合理的连接。构造柱要一直伸到屋顶间顶部,并应该连接到顶部的圈梁。

3.2.3 楼梯间设计

作为灾害发生时主要的逃生疏散通道,一定要保证楼梯间不受过大的破坏并能及时使用。因此要重视楼梯间的抗震设计。当地震烈度为8度及9度时,顶层楼梯间的横墙与外墙要沿着墙高每0.5米设置2Φ6的钢筋。楼梯间和门厅阳角等处的大梁的支撑长度不得小于0.5米,并连接圈梁

4 砌体结构抗震新理念简介

4.1 隔震设计

砌体结构的隔震设计在最近得到了提倡。这种设计方法指将预先准备好的阻尼器及隔震器等隔震设施设置在房屋建筑物的上部结构及其基础之间。从而阻隔了地震产生的能量传播到建筑物的上部结构,同时降低了传入上部结构的能量。并且能够减弱房屋上部结构所产生的地震反应,所以能够满足期望的抗震性能的要求。在我国,“橡胶式隔震支座”技术目前较为成熟,并在一些实际工程中收到了良好的效果。

4.2 消能减震设计

砌体结构的消能减震设计是一种新颖的抗震设计。它将由阻尼器及连接支撑等器件组成的消能部件设置在房屋建筑的抗侧向力的结构中。并利用阻尼器产生的局部变形来施加附加阻尼,以便能够吸收及消耗地震所产生的能量[4]。这种设计中,阻尼器能消耗一部分地震能量,剩余的地震能转变为变形能及结构中的动能,因而能够降低地震对上部结构的影响。目前的理论及研究已经证实,消能减震设计能够有效的降低结构在水平及竖向方向的地震作用。

5 总结

砌体结构的房屋在我国应用非常广泛,是人类生活工作及从事其他活动的场所。因此在地震烈度较高的地区,要特别注意砌体房屋的抗震性能。本论文简要地分析了对房屋的抗震性能有影响的一部分因素,并特别研究了砌体房屋的主要抗震措施。另外简述了隔震设计及消能减震设计等抗震新理念,以保证人民群众能安心及安全的使用砌体建筑,尽可能降低地震引起的各种灾害。

参考文献

[1] 刘善国.影响砌体结构抗震性能的原因分析及应对措施[J].兰州工业高等专科学校学报.2002(01)

[2] 韩冬欢.砌体结构抗震设计的几点意见[J].山西建筑.2005(11)

第11篇

【关键词】房屋,建筑结构,抗震设计,要求

中图分类号:TU318 文献标识码:A 文章编号:

一.前言

由于经济发展速度加快,社会需求不断增多,使得建筑的高度不断加高,形态愈加复杂,建筑结构中抗震设计也趋于多样化。我国作为一个多震国家,结构设计中应注重抗震设计,良好的抗震设计和抗震措施至关重要。抗震设计中,要进行地基基础的抗震设计。抗震构造措施是结构设计的重要内容。针对房屋建筑结构中的抗震设计要求,进行结构抗震设计和抗震措施,在结构设计与建筑施工中,应熟悉各种结构设计的抗震构造措施。

二.建筑结构抗震设计的基本要求

地震作用越大,房屋抗震要求越高。不同设防烈度和场地上,结构的实际抗震能力会有差别,结构可能进入弹塑性状态的程度不同。震害表明,未经抗震设计的钢筋混凝土结构,在7度区只有个别构件破坏,8度、9度破坏增多,因此,对不同设防烈度和场地可以有明显差别。结构的抗震能力主要取决于主要抗侧力构件的性能,主、次要抗侧力构件的要求可以有区别。如框架结构中的框架与框架――抗震墙结构中的框架应有所不同。房屋越高,地震反应越大,其抗震要求越高。综合考虑地震作用,结构类型和房屋高度等因素划分抗震等级进行抗震设计,可以对同一设防烈度的不同高度的房屋采用不同抗震等级设计;对同一建筑物中结构部分采用不同抗震等级。

三.影响建筑抗震的因素分析

1.建筑抗震取决于所选取建筑结构形式

为实现“小震不坏、中震可修、大震不倒”的抗震目标,新版《建筑抗震设计规范》中取消了砖混内框架结构,提高了砖混结构建筑的设计要求。目前普遍使用的框架-剪力墙结构、剪力墙结构、框架结构三种结构形式中,框架-剪力墙结构的抗震性能最为突出,剪力墙次之。单纯的框架结构造价虽然抗震性能不如前两种,但其造价较低,施工技术成熟,是目前最为常见的结构形式。根据建筑当地的实际情况,结合建筑的使用功能,选取合适的结构形式,对于建筑抗震意义重大。

2.建筑抗震取决于适宜的抗震措施

在场地类型不同的情况下,抗震措施主要由建筑的不同等级决定。在确定建筑等级及场地类型之后,将先进的抗震理念和系统的分析计算纳入到抗震措施设计中,即可改善建筑抗震设计,提高建筑抗震效果。

3.影响房屋建筑抗震性能的因素

房屋建筑抗震性能取决于场地选择、施工质量等其他因素。建筑工程场地选择不当等造成施工质量下降,这些因素都可能对建筑结构的抗震性能造成重要影响。选择建好的工程场地、加强施工质量监督,对于提高建筑抗震性能是十分必要的。

四.建筑抗震设计具体分析

抗震设计的重要基本要求就是要确保房屋基础构造的延性设计要求得以保证,能够在建筑结构延性问题上设立多道防线,以此才能避免建筑结构脆性过大造成的构造强度失衡、失控的现象发生,从而影响其抗震性能及成果。因此,这就需要做好以下几点把握。

1.周全考虑房屋建筑选址问题在房屋工程项目立项之初,就要周全考虑好能够发挥抗震成果的选址问题,如健全周到考虑好土体结构、地质、地貌等问题,并要预测分析地震活动发生时建筑构造的承受能力,且要记录相关技术资料档案中,待实地考证时能够综合评价。此外,还要避开影响建筑构造抗震效果发挥的不利区域、地段等,当避无可避时应当立足实际采取合理控制措施

2.加强建筑构造规划研究

由于地震发生时建筑结构本身会发生应力过于集中、突破塑性变形弹性极限等的可能,进而形成结构抗震薄弱部分。因此,建筑构造设计应能保证建筑结构延性、安全度、以及选取合适的建筑平面、剖面进行设计,既要保证建筑结构强度稳定,又能避免建筑脆性过大而延性过小的负面现象发生。

3.保证地基与基础设计要求当房屋项目工程的地基土体为粘性土、软土、液化土、以及不均匀沉降土时,应当评估好地基的基础沉降是否在预控范畴之内,是否发生严重不规则沉降现象,从而才能有针对性的采取防控措施。

4.满足建筑构造体系设计要求

抗震性能价值体现是建筑构造体系设计中的重要组成部分。因此在构造设计上就要综合分析、周全考虑、能够统筹把握好各项综合因素。如考虑好抗震防御等级、抗震强度控制指标、项目建设场地、以及基础地基处理、供应材料的质量体系要求、现有技术规模等问题。

5.确保建筑构造的构件要求

(一)房屋建筑工程的结构基础构件设计应当满足相关规程标准、要求,如混凝土的圈梁、构造柱、芯柱、或者配筋砌体等的质量建设体系要求就必须能够保证。

(二)要保证混凝土结构合理设计,在建筑的具体结构构件应能具备尺寸合理、纵向承重钢筋及箍筋的强度达到设计标准,目的是控制剪切破坏先于弯曲破坏发生的可能,以及防止钢筋屈服而引起的构件塑性变形遭受破坏发生。

(三)钢结构建筑施工时能够保证其构件尺寸、规格、数量合理,进而才能避免整体构造抗震成果发挥不利、结构失稳的现象发生。最后,还要周全考虑好建筑构造构件之间的链接、衔接性的体现,控制好构件节点的稳定性,保证其在地震发生时的塑性破坏能够晚于其他结构构件,进而才能增强建筑结构的整体稳定性与安全度。

五.建筑结构设计抗震关键措施和设计方法

1.建筑结构抗震措施要点

(一)房屋建筑结构设计要从建筑的全局出发,全面考虑各种建筑部位的功能,在此基础上,科学设计每个部分的构件,保证每个部件之间的契合,促使每个部件或者是若干部件组合起来可以完成某一特定的设计要求,满足一定的现实需求,同时,通过抗震设计,使得每个构件都可以具有相应的承载力,当地震来袭,每个构件都可以有着一定的次序先后破会,整体组合构件将会有着更强大的承载力和柔性,从而延缓地震破坏的速度,消耗爆发的能量。增强建筑的整体抗震能力。

(二)要严格选择地基选址,地基选址是进行建筑结构设计的基础,因此,在建筑结构抗震设计中,要科学避开山嘴,山包,陡坡,河流等不利因素,要本着坚硬,牢固,平坦,开阔的选址原则。亲身实地,利用先进技术设备,进行地质勘探,山石水土监测,并取样论证,科学严谨分析。力求使得整个地基牢固可靠,地质稳定无渗漏,无坍塌,无暗河,无熔岩,无火山……从而保证整个地基不会因为承载而发生小范围的坍塌。影响到整体承载能力和抗震能力设计。

(三)采用合理的建筑平立面。建筑物的动力性能基本上取决于其建筑布局和结构布置。建筑布局简单合理,结构布置符合抗震原则,通过无数次的实验表明,简单、规则、对称的建筑结构抗震能力强,对延缓地震烈度范围延伸,消耗地震的能量,减少地震对整体结构的破坏,而且,对称结构容易准确计算其地震反应。

(四)选择合理的结构形式。抗震结构体系是抗震设计应考虑的关键问题。建筑结构抗震设计中,不同结构的抗震结构体系的承载力受到抗震设防烈度、建筑高度、场地条件以及建筑材料、施工条件、经济条件等多种条件的影响,因此房建结构抗震设计要综合考虑,做到科学选择,严谨设计。

(五)结构良好的延性有助于减小地震作用,吸收与耗散地震能量,避免结构倒塌。因此,结构设计应力求避免构件的剪切破坏,争取更多的构件实现弯曲破坏。

六.结束语

因为涉及到人类生命财产安全的重要问题,建筑物的抗震问题是目前建筑结构设计界讨论比较多的话题之一。因此,我们在对建筑物进行结构设计的时候,必须把房屋建筑结构中的抗震设计要求放到非常重要的位置,并采取适当的措施,尽量避免地震对建筑物的损坏,为保障人民的生命及财产作出应有贡献。

参考文献:

[1]戴国莹.建筑结构基于性能要求的抗震措施初探[J].建筑结构,2011,(08)

[2]吴智,李贵男,段壮志.民房建筑结构抗震能力分析与抗震措施探讨[J].山西建筑,2012(10).

[3]高利学.浅谈高层建筑的抗震设计与抗震结构[J].中国新技术新产品,2012,(03)

[4]黄星敏.房屋震害影响因素分析及应对措施[J].中国高新技术企业,2010,(2)

第12篇

关键词:高层建筑;抗震设计;结构体系

结构工程师按抗震设计要求进行结构分析与设计,其目标是希望使所设计的结构在强度、刚度、延性及耗能能力等方面达到最佳,从而经济地实现“小震不坏,中震可修,大震不倒”的目的。本文围绕高层建筑结构,总结了高层建筑结构设计的特点以及提出了高层建筑结构分析和各种体系相对应的方法。为实际高层建筑结构分析与设计提供一定参考。

1 高层建筑抗震结构设计的基本原则

1.1结构构件应具有必要的承载力、刚度、稳定性、延性等方面的性能

(1)结构构件应遵守“强柱弱梁、强剪弱弯、强节点弱构件、强底层柱(墙)”的原则。(2)对可能造成结构的相对薄弱部位,应采取措施提高抗震能力。(3)承受竖向荷载的主要构件不宜作为主要耗能构件。

1.2在设计构造上宜有多道抗震防线

(1)一个抗震结构体系应由若干个延性较好的分体系组成,并由延性较好的结构构件连接协同工作。例如框架―剪力墙结构由延性框架和剪力墙两个分体组成,双肢或多肢剪力墙体系组成。(2)地震之后往往伴随多次余震,如只有一道防线,则在第一次破坏后再遭余震,将会因损伤积累导致倒塌。抗震结构体系应有最大可能数量的内部、外部冗余度,有意识地建立一系列分布的屈服区,主要耗能构件应有较高的延性和适当刚度,提高结构抗震性能,避免大震时倒塌。(3)适当处理结构构件的强弱关系,同一楼层内宜使主要耗能构件屈服后,其他抗侧力构件仍处于弹性阶段,使“有效屈服”保持较长阶段,保证结构的延性和抗倒塌能力。(4)在抗震设计中某一部分结构设计超强,可能造成结构的其他部位相对薄弱,因此在设计中不合理的加强以及在施工中以大带小,改变抗侧力构件配筋的做法,都需要慎重考虑。

1.3对出现的薄弱部位,应采取措施提高其抗震能力

(1)构件在强烈地震下不存在强度安全储备,构件的实际承载能力分析是判断薄弱部位的基础。(2)要使楼层(部位)的实际承载能力和设计计算的弹性受力的比值在总体上保持一个相对均匀的变化,一旦楼层(部位)的比值有突变时,会由于塑性内力重分布导致塑性变形的集中。(3)要防止在局部上加强而忽视了整个结构各部位刚度、承载力的协调。(4)在抗震设计中有意识、有目的地控制薄弱层(部位),使之有足够的变形能力又不使薄弱层发生转移,这是提高结构总体抗震性能的有效手段。

2 高层建筑结构静力分析方法

2.1 框架-剪力墙结构

框架-剪力墙结构中剪力墙布置应按“均匀、分散、对称、周边”的基本原则考虑,内力与位移计算的方法很多,大都采用连梁连续化假定。由剪力墙与框架水平位移或转角相等的位移协调条件,可以建立位移与外荷载之间关系的微分方程来求解。由于采用的未知量和考虑因素的不同,各种方法解答的具体形式亦不相同。框架-剪力墙的机算方法,通常是将结构转化为等效壁式框架,采用杆系结构矩阵位移法求解。

2.2 剪力墙结构

计算剪力墙的内力与变形时,其剪力墙应计入端部翼缘地共同工作,剪力墙的受力特性与变形状态主要取决于剪力墙的开洞情况。单片剪力墙按受力特性的不同可分为单肢墙、小开口整体墙、联肢墙、特殊开洞墙、框支墙等各种类型。不同类型的剪力墙,其截面应力分布也不同,计算内力与位移时需采用相应的计算方法。剪力墙结构的机算方法是平面有限单元法。此法较为精确,而且对各类剪力墙都能适用。但因其自由度较多,机时耗费较大,目前一般只用于特殊开洞墙、框支墙的过渡层等应力分布复杂的情况。

2.3筒体结构

筒体结构包括框筒结构?筒中筒结构以及其它筒体结构。筒体结构的分析方法按照对计算模型处理手法的不同可分为三类:等效连续化方法、等效离散化方法和三维空间分析。等效连续化方法是将结构中的离散杆件作等效连续化处理。一种是只作几何分布上的连续化,以便用连续函数描述其内力;另一种是作几何和物理上的连续处理,将离散杆件代换为等效的正交异性弹性薄板,以便应用分析弹性薄板的各种有效方法。

3 高层建筑的结构体系

3.1框架-剪力墙体系。有框架结构布置灵活,使用方便的特点,又有较大的刚度和较好的抗震性能。当框架体系的强度和刚度不能满足要求时,往往需要在建筑平面的适当位置设置较大的剪力墙来代替部分框架,便形成了框架-剪力墙体系。在承受水平力时,框架和剪力墙通过有足够刚度的楼板和连梁组成协同工作的结构体系。在体系中框架体系主要承受垂直荷载,剪力墙主要承受水平剪力。框架-剪力墙体系的位移曲线呈弯剪型。剪力墙的设置,增大了结构的侧向刚度,使建筑物的水平位移减小,同时框架承受的水平剪力显著降低且内力沿竖向的分布趋于均匀,所以框架-剪力墙体系的能建高度要大于框架体系。

3.2剪力墙体系。剪力墙体系结构刚度大,空间整体性好,当受力主体结构全部由平面剪力墙构件组成时,即形成剪力墙体系。在剪力墙体系中,单片剪力墙承受了全部的垂直荷载和水平力。剪力墙体系属刚性结构,其位移曲线呈弯曲型。剪力墙体系的强度和刚度都比较高,有一定的延性,传力直接均匀,整体性好,抗倒塌能力强,是一种良好的结构体系,能建高度大于框架或框架-剪力墙体系。

3.3筒体体系。凡采用筒体为抗侧力构件的结构体系统称为筒体体系,包括单筒体、筒体-框架、筒中筒、多束筒等多种型式。筒体是一种空间受力构件,分实腹筒和空腹筒两种类型。实腹筒是由平面或曲面墙围成的三维竖向结构单体,空腹筒是由密排柱和窗裙梁或开孔钢筋混凝土外墙构成的空间受力构件。筒体体系具有很大的刚度和强度,各构件受力比较合理,抗风、抗震能力很强,往往应用于大跨度、大空间或超高层建筑。

4 结束语

在强烈地震作用下,建筑物的破坏机理和过程是十分复杂的,要进行精确的抗震计算是困难的,在总结大量地震灾害经验的基础上,提出了概念设计,并认为它是结构抗震设计的首要问题,比计算设计更为重要。对设计人员来说,掌握概念设计,有助于明确抗震设计思想,灵活、恰当地运用抗震设计原则,不致陷入盲目的计算工作,从而比较合理地进行抗震设计。

参考文献:

[1]朱镜清.结构抗震分析原理[M].地震出版社,2002,11

[2]徐宜,丁勇春.高层建筑结构抗震分析和设计的探讨[J].江苏建筑,2009

第13篇

关键词:地震、学校建筑、安全结构设计、重建、

中图分类号:S611 文献标识码:A 文章编号:

以往的各大地震灾害中,许多学校建筑展示出各大学校中建筑的安全问题。在每次的反思及总结,从吸取不足之处转换成对灾害各方面有益的变化,往后灾害中不再出现悲伤。以下从各方面分析大地震之后对学校建筑规划与设计上的一些个人想法供社会同行一起探讨。

1 各界对震后学校抗震安全及重建相关问题的探讨

各大地震后,学校建筑安全和灾后重建受到各界的关注,为总结经验教训并为地震灾后恢复重建提供科学技术支撑,各高等学校、科学技术研究开发机构等的学者积极展开了对学校抗震安全和重建有关问题的专题研究,成果文献的数量激增。

1.1震害调查

很多专业机构和研究人员奔赴地震灾区做了大量的震后房屋应急评估和震害情况实地调研,对包括学校建筑在内的灾区建筑震害调查分析的研究结论主要有:建筑设计和施工严格执行抗震设防标准的必要性和有效性,多跨钢筋混凝土框架结构体系抗震性能较好,学校建筑设计在规划选址、平面设计、空间造型设计、疏散设计、构造设计等方面亟须改进。

1.2经验介绍

为了应对地震灾害,中国政府部门和研究机构与联合国机构、国际援助机构等联合召开了多次关于地震灾后重建国际经验、政策建议、交流合作的研讨会,分享国际社会灾后重建和恢复规划的经验教训。各国学校防震经验研究方面的文献介绍分析了世界经济合作与发展组织(OECD)、日本、美国加州和中国台湾地区的国际经验,作为顺利开展灾后恢复和重建活动、制定灾后重建规划方案的借鉴。这些研究主要从教育管理及发展、建筑安全与防灾等学科角度,侧重于对国际上学校建筑地震安全和灾后重建的政策、法律、法规层面上的经验总结介绍,并提出了对我国的借鉴建议。

2 震后及时制定、修订了学校抗震安全和灾后重建相关法律、法规和设计规范学校

地震灾害暴露出现有法律法规体系的不足,地震灾害给现行法律观念和法律制度提出了挑战和要求,需要积极完善相关法律制度,须严格执行工程建设强制性标准,并符合教育部与住房和城乡建设部等的导则要求。

以上震后学校抗震安全和重建相关法律依据对指导灾区恢复重建,提高学校建筑工程抗震设防能力,保证建筑工程质量,保护师生生命安全具有重要意义,这些法律法规主要通过实施以下政策保证将学校等公共服务设施建成“最安全、最牢固、群众最放心的建筑”。

①优先重建:在重建计划上优先安排学校、医院等公共服务设施的恢复重建。

②科学规划:根据工业化、城镇化的进程和人口流动的基本趋势,合理调整灾后学校布局,进一步整合教育资源,提高教育质量。

③保证资金:灾后重建资金由中央财政支出、各省对口援建、港澳特区政府支持、社会捐赠、银行信贷支持和社会投入等构成,优先保证学校建筑等公共服务设施和民生工程的快速恢复重建。

④安全第一:提高了学校建筑抗震设防标准,要求灾区新建学校严格执行强制性建设标准规范和各行业建设标准,保证施工质量。灾区对口支援城市和援建企业为此不惜成本打造“最坚固、最安全,经得起历史检验的建筑”。

⑤提高标准:修订后的国家标准和规范特别加强了对未成年人在地震等突发事件中的保护,对教育建筑中幼儿园、小学、中学的教学用房以及学生宿舍和食堂抗震设防类别均予以提高,即不低于重点设防乙类,这意味着学校建筑将按高于本地区抗震设防烈度一度的要求加强其抗震措施。

3学校建筑规划设计理念

3.1设计和建造坚固安全的学校建筑物是规划设计的首要目标和保护师生生命的根本措施

历次地震反复证明,地震灾害中建筑物的损毁是人员伤亡和财产损失的直接原因,没有进行足够抗震设防设计或施工质量不合格的建筑非但起不到“庇护所”的作用,反而成为“杀人凶手”,人员伤亡95%以上是由房屋倒塌造成的。学校建筑规划设计的第一目标应该是保护学校建筑使用者的生命安全,盲目追求形式和造型上的新、奇、特而牺牲结构上安全性的设计潮流应予以纠正。而且应将浪费在华而不实、无中生有的各种架构上的宝贵投资用于提高结构抗震等级,回归建筑设计安全、实用、美观的基本目标。

3.2 将学校作为紧急避难场所设计的必要性

如果借鉴日本和美国的经验,将学校作为紧急避难场所或紧急求助中心进行设计,一方面较高的建筑抗震设防标准可保护学生和老师的生命安全,另一方面学校里大空间的教室和体育场馆以及较大的空地可供灾民避难和临时安置,学校操场还可供救援直升机降落用,充分发挥公共建筑在城市防灾安全体系中的社会公益性和紧急避难的重要作用。

4 震后学校重建工程成功实践了新的规划与设计理念和法规要求

4.1严格执行新的法规规范,确保建筑抗震安全

在抗震设防标准上,根据新修订的编号为GB50223-2008的国家标准《建筑工程抗震设防分类标准》,学校建筑将按高于本地区抗震设防烈度1度的要求加强其抗震措施。在按新的《建筑抗震设计规范局部修订》规定抗震设防烈度为8度、设计基本地震加速度值为0.20g的都江堰市,新援建的崇义镇土桥小学、光明团结小学等均执行了最新抗震标准,设计为9度抗震构造。

往年我国学校舍建筑多为砖混结构和框架结构,震害调查分析发现在经抗震设计房屋中,钢筋混凝土框架结构所受地震损伤相对较轻,其抗震能力优于底框架砌体结构和砖混砌体结构,而多跨框架结构优于单跨框架结构。在结构抗震安全上,重建的学校建筑吸取了地震灾害的经验教训,在建设资金充足的前提下纷纷采用抗震性能较好的钢结构、现浇钢筋混凝土框-剪结构和框架结构等。

4.2 应用新理念和新技术

为确保学校建筑安全和充分发挥公共建筑在城市防灾安全体系中的社会公益性,日本和美国的经验是将学校作为紧急避难场所或紧急求助中心进行设计,一方面较高的建筑抗震设防标准可保护学生和老师的生命安全,另一方面学校里大空间的教室和体育场馆以及较大的空地可供灾民避难和临时安置。

企业捐建的遵道学校不仅应用了先进的隔震技术,而且在规划设计上考虑了地震疏散和避难场所的要求:如广泛采用固定式设计的学校家具和设施,可防止倾倒伤人及造成撤离障碍。学校教学楼每层有多达6个楼梯疏散出口,楼梯也加宽至可通行4股人流的2.4m,提升了紧急通道的疏散能力,经过防灾演习和训练,全校1600名师生可在90s左右疏散至安全场地。经过特殊设计并提高了坚固程度的教室课桌,必要时可形成紧急避难空间。在学校的避难中心,供水系统无负压水箱自动蓄水,常年储备15m3备用水,按每人每天3cm3配备用水,在与市管网中断的情况下可保证1000人的5天紧急用水需要。

重建的遵道学校应用了成熟而先进的“隔震技术”,即通过在教学楼上部结构与建筑基础中安装叠层橡胶隔震支座,显著提升建筑物整体抗震性能。非承重墙体选用延性抗倾覆轻钢材料辅助抗震,轻钢墙体与主体结构之间“柔性连接”使墙体不易倾覆并易于修复。

此外,遵道学校还适应信息时代新要求,率先配备了突发事件监控中心报警系统和 “二十一世纪校园网络”系统,为孩子们创造了更安全、更现代、更灵活的学习环境。

第14篇

关键词:钢筋混凝土桥墩;抗弯刚度; 混凝土偏压构件;

1、引言

在地震荷载作用下,钢筋混凝土桥梁墩柱结构受到地震的水平力和竖向力的作用下,桥梁墩柱截面会有所开裂,直接致使桥墩构件的抗弯刚度降低有所下降。对于桥墩钢筋混凝土而言,在受拉钢筋或受压区混凝土屈服前,截面刚度会因为地震力荷载的变化而变化,主要是由于混凝土截面开裂所造成的影响,这种弹性范围内的刚度变化给抗震设计造成了很大的困难。

在地震力作用下,在桥梁抗震设计理论中,不管是桥墩的强度设计理论还是桥墩的延性设计理论,无论是需求设计理念还是能力设计计算,抗弯刚度的取值对整个抗震设计都起着非常大的重要作用,在桥梁墩柱的相关设计中,对双筋混凝土桥墩墩柱抗弯刚度的大小取值,一直是工程界比较关心的一个重要问题,特别是如何选取一个比较合理的桥墩墩柱截面开裂抗弯刚度值。

2、国内外钢筋混凝土桥墩结构抗弯刚度研究概况

钢筋混凝土桥梁墩柱结构受到地震的水平力和竖向力的作用下,钢筋混凝土偏心受压构件与桥墩墩柱有着极为相似的受力模式。区别在于:钢筋混凝土桥墩墩柱所受到的弯矩作用很大,并且钢筋混凝土偏心受压构件开裂程度远远没有它严重。混凝土开裂后

的钢筋混凝土桥墩等效刚度的研究在国内工作并不

多,国内基本已经做过大量试验研究工作的是钢筋混

凝土偏心受压构件的抗弯刚度取值的研究,通过大量的试验研究表明, 构件的刚度不但与配筋情况,截面

几何尺寸、材料性能有关, 而且还与截面的受力特性和内力状态有关。

同济大学(1973年)对内力重分布框架的研究时提出关于含有截面极限曲率、配筋系数、截面破坏弯矩等参数的混凝土偏心偏压构件破坏时的抗弯刚度计算公式。[1]

其中:Mp截面破坏弯矩,1/ρ为截面极限曲率。

南京工学院(1978年)通过对混凝土偏压构件的大量的试验研究,提出了抗弯刚度计算公式。计算公式中含有轴力水平、截面尺寸、以及配筋率等参数。[2]

其中:h0为截面有效高度,e0为偏心距, n为钢筋与混凝土的弹性模量的比值,μ为配筋率,Rf混凝土抗裂强度值。当时,以上计算公式按照计算值内插的方法确定。

四川省建筑科学研究所(1979年)根据截面的内外力平衡条件和材料应力应变曲线关系推导到得出了含有关混凝土截面平均压应力、混凝土抗压强度以及配筋率等参数的全截面偏压构件偏心受压构件的抗弯刚度计算公式。[3]

σk为混凝土截面平均应力,Ra为混凝土轴心抗压强度

近阶段,桥梁结构抗震设计中对开裂后的构件或截面刚度取值有着不同的研究成果。这也是国内有关学者对其做的大量相关的研究工作而得出的。

其中有同济大学的郭磊、李建中、范立础在论文《桥梁结构抗震设计中截面刚度的取值分析》中提出了,在反复荷载作用下,钢筋混凝土构件达到屈服前对刚度的如何取值有一些看法,他们认为:在外力作用下,钢筋混凝土构件达到屈服前,截面发生开裂后其刚度的取值应为截面弹性刚度,对截面弹性刚度在屈服前的情况下进行了分析,在毛截面刚度取值时的情况下与之进行抗震设计对比分析,继而提出了屈服前的截面弹性刚度合理取值的重要性。[4]

式中:(圆形);(矩形)My为桥墩墩柱等效屈服弯矩;D为桥墩截面高度;εy为钢筋屈服应变。

还有北京交通大学的李永哲、阎贵平等撰写的论文《钢筋混凝土桥墩刚度和强度折减系数确定》,他们通过试验而得出力-位移滞回曲线,刚度和强度的退化因随配筋率、配箍率、轴压比等变化而变化的情况进行了回归分析而提出了相关的表达式,现存钢筋混凝土桥墩的强度和刚度折减情况,能够根据根据理论力-位移滞回模型的分析预测。[5]

由重庆交通科研设计院主编且刚实施的《公路桥梁抗震设计细则》(JTG/T B02-01-2008)对桥梁延性构件的有效截面抗弯刚度计算也最做出了相应的规定和参考。

My、φy分别为截面的屈服弯矩和屈服曲率

3、国外钢筋混凝土桥墩墩柱等效刚度的研究

对混凝土桥墩墩柱有效刚度的研究,国外学者也做了许多研究工作,不少成果已经被发表。

在受到外力的作用下,Mehanny (1999)用20个钢筋混凝土桥墩和1片钢筋混凝土桥梁结构做试验,得出的结果与以前的研究成果及设计规范相对比分析,得出桥梁墩柱结构的等效弯曲刚度和等效剪切刚度的计算公式(如下式)。[6]

其中在无弯矩情况下,P0是构件的轴心受到的强度

Panagiotakos和Fardis(2001)用以量化屈服点的位移代替量化刚度的方法来确定钢筋混凝土桥梁墩柱构件的等效刚度。Panagiotakos和Fardis以1000多个试验数据(以循环加载为主)为基础,经验公式是通过三个分项的钢筋混凝土桥梁墩柱构件的等效刚度回归出来的:桥梁墩柱构件常量的剪切刚度;屈服曲率时的弯曲刚度;因纵筋的拉伸应变进入节点或基础而导致的钢筋-混凝土粘结滑移刚度。一般比较典型桥梁墩柱构件,经计算对比分析,其等效刚度约为0.2EcIg。[7]

Elwood 和Eberhard (2006)按照以前的120个墩柱的试验数据以及结果,提出了关于弯曲效应及钢筋-混凝土粘结滑移效应的矩形钢筋混凝土墩等效刚度、考虑剪切效应的计算公式,桥梁墩柱构件的等效刚度为构件屈服点的割线刚度。[8]

其中当0.2 ≤ μ ≤ 0.5时,μ的取值用线性插值的方法进行计算,μ为轴压比。

M.J.N.Priestley和G.M.Calvi等(2007)运用结构动力学已经材料力学的相关原理,按照“直接基于位移设计法(DDBD)”,在最大位移峰值反应下,利用 “单自由度(SDOF)”性能设计,得出了桥墩墩柱构件的有效刚度计算公式(如下所示)。[9]

me是参与振动的有效质量;Te是单自由度振荡器的有效周期。

Haselton等(2008)]通过收集国内外大量的桥梁墩柱的试验数据和结果,得出墩柱等效刚度及初始刚度的计算公式,此计算公式中包含长细比、轴压比等参数,在此基础上对公式进行简化(如下式)[10]。

其中:

Berry等(2008)做大量的桥墩墩柱试验,然后根据桥梁墩柱构件的试验结果,标定了桥梁墩柱屈服点的等效刚度计算公式,其参数有长细比、纵筋率、轴压比等。[11]

为墩柱构件的长细比,ρl为桥梁墩柱的纵筋率

FEMA356(ASCE2000)中提到了钢筋混凝土柱构件的等效刚度的计算公式(如下式)。[12]

其中当μ的值在0.3到0.5范围之内时,按线性插值的方法进行计算。

CEN-Eurcode(1998)、Caltrans Seismic Design Cirteria(2006)也相应的规定了桥梁延性构件的有效截面抗弯刚度计算公式。

φy、My分别为截面的屈服曲率和屈服弯矩。

5、小结

桥梁结构在寿命期内,发生破坏性地震的概率一般是极小的,桥梁结构设计按照这种极端的荷载来设计就会不发生损伤或破坏,这是没有必要的。也是非常不经济的。在强地震作用下,桥梁结构其延性构件进入弹塑性变形阶段时,结构发生损伤,但利用延性抗震设计理念,一般不会发生倒塌、且震后是可以修复的。这一目标的实现是需要对桥梁的桥墩结构抗弯刚度进行充分的了解。根据这些概述能够对桥梁的桥墩结构抗弯刚度有了较深的理解,对国内外研究现状有充分的认识,对后期的桥梁桥墩柱刚度的计算以及桥梁延性计算有一定的参考意义。

参 考 文 献

[1] 钢筋混凝土小偏心受压构件的曲率、刚度和杆端转角. 同济大学科学技术情报组编印.1973-4

[2] 南京工学院工民建专业刚度裂缝科研小组.钢筋混凝土构件刚度和裂缝的计算.南京工学院学报土木工程专集. 1979

[3] 四川省建筑科学研究所.钢筋混凝土屋架考虑非弹性的试验分析及刚度计算.1979-12

[4] 郭磊、李建中、范立础. 桥梁结构抗震设计中截面刚度的取值分析.同济大学学报.2004

[5] 李永哲、阎贵平等. 钢筋混凝土桥墩刚度和强度折减系数确定.世界地震工程.2005

[6] Mehanny,S.S.F.Modeling and Assessment of Seismic Performance of Composite Frames with Reinforced Concrete Columns and Steel Beams. Dissertation. Department of Civil and Environmental Engineering, Stanford

University.1999

[7] Panagiotakos, T. B. and Fardis, M.N.Deformations

of Reinforced Concrete at Yielding and Ultimate.

ACI Structural Journal.2001.Vol. 98

[8] K.J. Elwood,M.O. Eberhard. Effective Stiffness of

Reinforced Concrete Columns.PEER Research

Digest 2006-1.2006

[9] M.J.N.Priestley,G.M.Calvi. Displacement-Based

Seismic Design of_Structures.IUSS.2007

[10] Curt B. Haselton, Abbie B. Liel, Sarah Taylor

Lange, and Gregory g.Beam-Column Element Model Calibrated for Predicting Flexural Response Leading to Global Collapse of RC Frame Buildings.PEER Research Report.University of California-Berkeley.May 2008

[11] Micheal P.Berry, Dawn E.Lehman, Laura N.Lowes.Lumped-Plasticity Models for Performance Simulation of bridge columns.ACI StructureJournal.2008.V.105,No.3.270-279

[12] American Society of Civil Engineers.FEMA 356: Prestandard and Commentary for theSeismic

第15篇

[关键词]刚度理论;工程结构设计

中图分类号:TU2文献标识码:A文章编号:2306-1499-(2014)11-0056-01

在结构设计的过程中,结构布置以及结构计算分析都属于比较重要的阶段,相关工作人员通常情况下都会注意到荷载数值以及生产数值的大小,重视重力概念,但是对于构建以及结构的抗变形能力关注程度不足,忽视了结构内部构件的内在联系以及相关刚度理念。但是在实际施工过程中,结构中力平衡以及变形等,都是从线刚度或者是构件之间的刚度大小上进行判断的,作为结构工程师必须对这方面提起足够的重视,全面理解刚度理论。

1.将刚度理念融入到设计中

建筑物的设计好坏,主要在于设计师对建筑刚度以及构件相对刚度的控制程度。设计人员在进行结构设计的时候,必须要对结构的布置以及构件截面两方面进行调整,调整的目的是寻找到一个比较合理的建筑结构刚度值。结构设计本质上的概念和规范都是围绕刚度进行的,本文将以高层结构为主要研究对象。楼层平面刚度属于无穷大结构,通过该结构可以得出测力构件内力。高层建筑的抗震结构属于一种刚性的结构,可以保证竖向构件在发生任何情况的是时候,承受到的水平力都是按照刚度进行分配的,这一点从模型以及真正的受力状态上都可以得到很好的体现。从这一角度出发进行设计,必然可以保证构建内力分析的正确性与准确性。与此相反,楼盖自身并不能形成无线刚度,楼层的大开洞口,就算是使用楼板变形计算程序对其进行计算,也不能保证竖向构件的内力。

侧向刚度的均匀连续变化结构的高度不会因为变形而产生突变。因为侧向刚度会产生均匀变化的现代高层建筑,整体上的变形曲线是比较光滑的,所以在建筑中的任何楼层位置都不会产生位移的突变,所以也就不会形成所谓的薄弱位置。这种建筑结构在建筑所在地区发生地震的时候,也不会发生建筑倒塌的情况,从而保证了住户自的人身安全,减少地震给建筑及生命财产带来的危害。但是侧向刚度会发生突变的高层建筑,在楼层发生突变的地方便会出现一个较为薄弱的环节,应力会比较集中,塑性变化量增大,所以这部分建筑会遭到地震的破坏。

结构主轴方向上的侧向刚度如果足够均衡,就可以对结构起到一个扭转的作用。主轴方向上的刚度均衡结构,如果多方向上的动力特性比较相近,则扭转效果不会太过明显,在发生地震或者是大风的时候,主轴的平动位置必然会占据上风,结构的变形比较简单,所以可以保证结构自身的安全性。在进行设计的时候,需要按照实际施工情况对抗震结构平面的长宽比进行比较,要保证建筑的侧面抗力构件分布足够均匀对称,并且所有的构件不可以分散。想要解决平面刚度突变,目前我国最为有效的方式就是设置一系列的抗震缝。在对高烈度区域的框架结构进行设计的时候,想要从根本上减少防震缝在发生碰撞时遭到的破坏,就必须要设置两道抗撞墙,并且这一方式的作用已经在实际工作中得到了有效的印证。

2.实际应用

在对建筑物的整体结构体系进行设计的时候,基本上随处都可以体现出刚度理论的应用。

在绝大部分人的印象当中,高层建筑之所以会出现,只可以代表这是一种比较新颖的建筑风格,但是实际上的情况却和这一观念有着比较明显的差别。高层建筑的高与宽的比例比较大,自身刚度较弱,但是设计人员是不可以通过降低建筑物的高度这一方式来提升建筑整体刚度的,那么就要借助其余楼与之进行连接,让单一的高层建筑物和别的建筑物形成一个整体,打造出一个全新连体的高层建筑。部分设计人员利用建筑物的这一特性,设计出了许多新颖的建筑。这一结构主要起到了稳定建筑物的作用,因为建筑物连体部分的刚度有着明显的提升,就会让建筑物整体的受力模式发生转变,从而提升建筑物的受力复杂程度,在这种情况下如果发生地震,地震给人们带来的伤害就会更大。刚度理论在工程结构设计中的实际应用主要体现在抗风抗震上,起初的刚度应用是从结构框架开始的,到后来不断的演变成剪力墙以及筒中筒或者是束筒结构等。近年来,建筑物的层数正在不断的增高,所以承受到的风力也越来越大,而且地震对建筑物的影响也越来越强烈,所以对建筑物的刚度要求也在不断的提升,所以近年来我国建筑物的刚度体系越来越大。

建筑的长宽比例以及高度与厚度的比例,从根本上体现出了设计时高层建筑对于刚度需求。高层建筑对于建筑结构单元平面上的长宽比以及竖向的高宽比都有比较明显的限制,其中体现的最为明显的就是建筑物在尺寸上的限制。刚度理论在板式构件当中也有比较明显的体现,矩形的平面扣板也可以按照刚度的不同,划分成单向楼板或者是双向楼板。但是在实际工作当中,两个方向的刚度在接近或者相近的时候,荷载便会进行双向传递,所以实际工作中,需要根据板的纵向或者是横向的刚度比,对其进行划分。

3.结束语

本文主要从刚度理论在建筑结构中的实际应用方面入手,先介绍了刚度理念的实际概念,将概念融入到实际施工中去,结合笔者自身的实际工作经验,对刚度理论在施工结构设计中的实际应用方式以及应用效果进行了简要分析,旨在为我国刚度理论与工程结构设计工作提供一份实际工作经验,给相关研究人员提供一份实际工作经验。

参考文献:

[1]陶敬华,远方,贾瑛.建筑信息模型(BIM)在海洋工程结构设计中的应用研究[J].土木建筑工程信息技术,2013,05(11):445-447.

[2]徐继祖.结构可靠度分析在近海工程结构设计中的应用[J].中国海上油气(工程),2013,02(11):145-146.

[3]光军.刚度理论在既有结构改造加固设计中的应用[J].第四届全国建筑结构技术交流会论文集(上),2013,22(09):177-178.