前言:我们精心挑选了数篇优质光谱技术论文文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。
样品:根据市场上黄酒中糖、酸的主要成分及其相互比例配制糖-酸混合溶液,从而模拟酸度对黄酒糖度的影响。配制比例如下:葡萄糖:异麦芽糖:麦芽糖:果糖:蔗糖:乳糖=72:12:7:3:3:3;乙酸:乳酸=40:60。再根据绍兴黄酒检测中心所提供135个的黄酒样品中的糖度分布情况(15g/L~40g/L)、酸度分布情况(3g/L~7g/L),分别配制糖度为15、17.5、20、22.5、25、27.5、30、32.5、35、37.5、40g/L,酸度为3、3.5、4、4.5、5g/L、5.5、6、6.5、7g/L混合溶液,共计99个不同样品。将配制好的溶液使其混合均匀后,快速用DT81261移液枪抽取样品对其进行光谱扫描。仪器设备:美国Nicolet公司的Nexus870傅里叶变换红外光谱仪、InGaAs探测器、1mm光程石英比色皿。溶剂:采用蒸馏水排除其他杂质对结果的影响。溶质:葡萄糖、麦芽糖、异麦芽糖、果糖、蔗糖、乳糖、乙酸、乳酸均为分析纯。以空气为参比,选用光程为1mm的石英比色皿,谱范围为800~2500nm,分辨率为8cm-1,扫描次数为64。
2结果与讨论
2.1一维近红外吸收图谱分析
由于酸度浓度梯度变化较小,光谱受其他因素的影响导致光谱不能明显的体现出光谱随酸度的变化情况,因此在9个浓度中挑选3%、5%、7%与0%光谱做比较,其近二维红外光谱如图1所示。从图1可以看出,在1650~1850nm区间光谱有微小的变化,在1794nm处的特征峰吸光度随酸度浓度的增加而增加。陈斌[11]通过研究6%的醋酸、6%的葡萄糖、6%的醋酸和6%的葡萄糖的混合溶液的近红外光谱分析,发现醋酸和葡萄糖的混合溶液的光谱曲线并不是理论上的两条原溶液的叠加,与原溶液相比在1250~1850nm的峰和谷的形状都发生了较为明显的变化。为了排除水在1450nm处对糖的强烈影响,因此选择1650~1850nm波段作为分析对象。
2.2二阶导数近红外谱图分析
由于原始近二维红外光谱分辨率太低,很难通过光谱了解酸度对混合糖度的影响。因此计算其光谱的二阶导数,从而增强光谱的分辨率。通过波段分析酸对糖的影响,结果见图2。从图2的二阶导数光谱图中可以看出有1818nm、1823nm、1834nm、1839nm、1845nm6个波长处明显的受酸度浓度改变而变化的特征峰。而在1650~1800nm波段范围内,出现了很多类似较小的特征峰。说明该波段受酸度的影响特征峰较多,但影响较弱。因此,重点通过1800~1850nm波段分析酸对糖的影响。从图2还可以看出,在1823nm、1834nm、1845nm处均形成了波谷,说明这些波长均由糖所引起。不含酸的混合糖溶液在1818nm、1839nm处出现波峰。而酸-糖混合溶液在这些波段处出现波谷。说明该波长处酸与糖发生了相互作用。根据特征峰的变化大小可知,结果受酸度变化敏感程度强弱:λ1845>λ1839>λ1818>λ1823>λ1834。
2.3二维相关图谱分析
进行二维相关分析有两个作用,一能鉴别出各谱峰的归属,二能分析酸对糖溶液的影响以及相互作用[5]。酸-糖共混物的同步交叉峰存在以下关系,[(糖),(糖)]>0;[(酸),(酸)]>0;[(糖),(酸)]<0;[(酸),(糖)]<0,可以利用这个规律鉴别出各个谱峰的归属;在二维相关光谱中,空白为正峰,阴影为负峰。将对酸度变化较为敏感的1800~1850nm波段进行二维光谱分析,从而分析酸对糖影响以及它们之间的相互作用。图4(a)和(b)为1800~1850nm范围内酸度含量从3%增至7%的二维同步,异步相关光谱图。在图4(a)中出现了1818nm、1823nm、1834nm、1839nm、1845nm较强的自相关峰,其大小表明该波长处吸收强度随酸度变化的敏感程度。这与在二阶导数中分析的结论是一致的。在(1845,1839)、(1845,1823)、(1834,1827)、(1827,1823)、(1837,1818)处出现较强的正交叉峰;在(1843,1839)、(1837,1834)出现较强的负交叉峰。由于1823nm、1834nm、1845归属于糖。根据近红外光谱解析实用指南[12]可知:1839nm、1827nm、1823nm、1834nm、1845nm归属于糖中的O-H伸缩振动和C-O伸缩振动的组合频,1843nm、1837nm、1818nm吸收峰归属于酸中的O-H伸缩振动和C-O伸缩振动的组合频。表1列出二维光谱分析相关峰的归属和各吸收峰的变化顺序。从表1可以看出,在1800~1850nm范围内随着酸度的增加,各波长的响应顺序为:λ1843>λ1839>λ1845>λ1823>λ1827>λ1834>λ1837>λ1818。从中可以看出酸对糖的影响主要来自酸的O-H、C-O分别和糖的O-H、C-O形成的氢键。2.4酸对糖度模型的影响从模型角度出发考虑酸对糖的影响,以99个样品作为样品集,分批次将不同酸度下的11个不同糖度的混合溶液作为预测集。按照近红外原理,RSD<10%,RPD>3,则模型预测效果理想[13-14]。如表2所示,9组不同酸度下的糖度模型效果均理想,且可以看出除了酸度为3%的预测集外,其他预测集的SEP随酸度从3.5%到7%增大而增大,模型效果指标RPD、RSD从165、0.0017变成61、0.0047,模型预测效果变差。酸度为3%预测集的预测效果异常,可能由于酸度为3%的预测集处于浓度分布边缘,相似样本较少所导致。
3结论
【关键词】中药黄连饮片;活性成分;检测;光谱成像
文章编号:1004-7484(2013)-11-6864-01
中药饮片是在中药理论的指导下,根据辨证施治和调配制剂的实际需要,对中药材进行一定的加工炮制而形成的产品。由此可以看出中药材的质量也就决定了中药饮片质量的优劣,而中药饮片的质量对临床中药制剂的质量和药效也起着决定性作用。但长期以来国缺乏对中药饮片的质量标准和控制等有效的法律法规。因此,中药饮片质量的检测和控制对于保证中药疗效和广大人民安全使用中药有着非常重要的意义。基于此论文对中药黄连片活性成分进行了检测,现将分析报道如下。
1中药黄连饮片活性成分的检测方法及过程分析
1.1中药黄连饮片活性成分的检测方法分析中药黄连为毛莨科植物黄连、三角叶黄连或云连的干燥根茎,黄连的主要活性成分有小檗碱、黄连碱、甲基黄连碱等,具有清热燥湿、泻火解毒等功效[1]。由于其主要活性成分多数具有荧光,所以采用荧光光谱成像技术对黄连饮片进行检测。光谱成像技术是一门新兴的技术,是传统的二维光学成像技术和光谱技术有机结合的产物[2]。另外,这种技术还集中了光学、光电子学、电子学、信息处理学、计算机科学等领域的先进技术。光谱成像技术运用范围很广,可以进行图像采集、显示、处理和分析解释等[3]。中药黄连饮片活性成分分布的检测主要是通过光谱成像技术构建中药黄连饮片是我光谱成像指纹图谱,从而实现黄连饮片的活性成分空间分布检测,这种检测方法不仅科学,而且可靠、准确。检测结果可以为入药部位选择及饮片质量的评价提供依据。
1.2中药黄连饮片活性成分的检测过程分析在进行实际检测时要先调节系统接收端的高度,以保证达到最大的空间分辨率。然后根据药物的特点设置系统中的参数,主要包括光谱分辨率参数、范围参数和接收器曝光时间参数等,这些参数会根据不同的药品做不同的调整。中药黄连饮片活性成分分布的检测时这些参数的范围是光谱分辨率参数5nm、范围参数480-680nm、接收器曝光时间参数800ms。接着将被检测物品放置到载物台上,要注意调整紫外光源和载物台的相对位置,使其均匀激发显示出若干个狭窄的光谱带。最后用计算机专用软件对检测所得到的数据图像进行处理。2中药黄连饮片活性成分的检测数据分析
中药黄连根部有皮层、木质部、髓部三个部位,这三个部位是可以直接通过肉眼观察到的,但是看不到的是这三个部位中所含有的活性成分是不相同的,甚至存在很大的差异。这种特性的判别只有通过实验才能得出,用光谱成像技术分别在三个人工选取10×10像素的小区域内对这三个部位的活性成分进行检测发现三个部位的光谱曲线存在明显的差异[4],其光谱曲线平均值如下图所示(图1)。木质部、髓部和韧皮部的峰形和峰位相似显示性较大,而峰面积却存在较大的差异。通过对光谱图像的重构和分类处理,可以清晰地看出中药黄连各部分的活性成分的空间分布状况。统计三个部位中的像素所占面积的对比情况,结果显示,木质部、髓部、皮层各自占的总面积分别为30.3%、18.5%、51.5%。由此可以看出,中药黄连饮片中的主要活性成分在木质部中含量最高、其次是髓部、皮层中的含量最低[5]。3中药黄连饮片活性成分的检测结果讨论
论文对中药黄连饮片活性成分检测的目的是为了观察了解中药黄连饮片中活性成分的分布,有效的对其药用部位进行质量评价。论文以中药黄连饮片为研究对象,结合中药鉴定学与分析化学知识,运用光谱成像分析技术对中药黄连饮片活性成分进行检测。通过对中药黄连饮片活性成分的检测数据的分析,可以看出中药黄连饮片不同组织结构中活性成分的分布差异性比较明显,而且这也直接决定着入药部位的如何选择,但目前中药入药部位的选择主要通过经验来判断的,这对药效的发挥及药品质量的控制都是非常不利的。论文运用荧光光谱成像分析技术对黄连饮片的活性成分进行了检测,实验结果显示可以通过分析黄连饮片不同组织部位的光谱特征,运用主成分分析法确定检品活性成分的空间分布。同时,还可以进一步通过图像分割,获得饮片各组织结构的空间分布及其活性成分的相对含量,这些数据都可以为入药部位的质量控制提供依据。4结语
通过论文的研究发现黄连饮片根茎的不同部位中所含的活性成分量存在一定的差异,其中木质部中含量最高、皮层中的含量最低。同时,论文还可检测出不同部位像素所占的空间面积比例,有效的检测出活性成分具体的分布情况。这些数据不仅有利于确定黄连饮片的主要药效成分,而且可以为其入药提供科学依据。最后,希望论文的研究为相关工作者及研究人员提供借鉴和参考。参考文献
[1]赵静,庞其昌,马骥,等.中药黄连饮片活性成分分布的检测研究[J].光谱学与光谱分析,2012,31(6):1692-1697.
[2]李彩虹,周克元.黄连活性成分的作用及机制研究进展[J].时珍国医药,2010,21(2):466-470.
[3]Youn MJ,SO HS,Cho HJ,et al.Berberine a natural product combined with cisplatin enhanced apoptosis through a mitochondria caspase mediated pathway in HeLa cell[J].Biol Pharm Bull,2011,31(5):789.
英文名称:Spectroscopy and Spectral Analysis
主管单位:中国科学技术协会
主办单位:中国光学学会
出版周期:月刊
出版地址:北京市
语
种:中文
开
本:大16开
国际刊号:1000-0593
国内刊号:11-2200/O4
邮发代号:82-68
发行范围:国内外统一发行
创刊时间:1981
期刊收录:
CA 化学文摘(美)(2009)
SA 科学文摘(英)(2009)
SCI 科学引文索引(美)(2009)
CBST 科学技术文献速报(日)(2009)
Pж(AJ) 文摘杂志(俄)(2009)
EI 工程索引(美)(2009)
中国科学引文数据库(CSCD―2008)
核心期刊:
中文核心期刊(2008)
中文核心期刊(2004)
中文核心期刊(2000)
中文核心期刊(1996)
中文核心期刊(1992)
期刊荣誉:
联系方式
期刊简介