前言:我们精心挑选了数篇优质数学问题论文文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。
[关键词]:创新教育、创新意识、创新思维、创新能力和个性发展
创新教育是由于知识经济时代的到来,为培养大批具有创新能力的人才,以适应全球综合国力竞争的需要,而提出的新的教育观念。它是素质教育的灵魂,实施创新教育是实施素质教育的关键,那么在中学数学中如何实施创新教育?怎样把学生引入创造的宫殿,使学生发挥创造才能?我们可以从培养学生的创新意识、创新思维、创新能力和促进学生的个性发展等四个方面入手。
一、激发学生的创新意识
创新意识,就是不墨守成规,思想活跃,具有对新异事物的敏感和强烈的好奇心,以及旺盛的求知欲。其次表现为强烈的开拓进取精神及自信心。因此在教学中教师要培养学生的创新意识,克服思维定势的干扰,激发学生思维的灵活性、开拓性和创造性。
例1、设是正数,证明:
证明一:因为对任意都成立
即对任意都成立
故判别式小于零,
所以
函数和方程思想是中学数学重要的思想方法之一,在不等式教学中巧妙地融合函数与方程的思想解题,使学生潜移默化中克服思维定势,领会不等式、方程与函数之间的转化,激发学生思维的灵活性。
证明二:构造向量
,,而即
所以成立
利用向量和三角函数等工具,巧妙地构造出所证明的不等式的空间向量模型,使学生在学会用几何方法解决代数问题的过程中领会数学方法的多样性,从而激发学生的好奇心和求知欲。
二、培养学生的创新思维
创新思维就是通过教育教学活动训练学生的聚合思维能力,特别是发散思维能力,以及二者相互结合、灵活运用的能力。创新思维是整个创新活动的关键,创新教育必须着力于这种可贵的思维品质,它具有五个明显的特征,即积极性、敏锐的观察力、创造性的想象、独特的知识结构用活跃的灵感,这种创新思维能保证学生顺利解决问题、高水平地掌握知识,并能把知识广泛地运用到学习新知识的过程中,使学习活动顺利完成。
例2、已知实数满足,求证:
证明一:(利用均值不等式)
故
证明二、(构造函数)因为,
所以
构造函数:
故
证明三:(利用直线与圆的位置关系)本题等价于:实数,满足和,求的最小值。
显然的最小值是圆心(-2,-2)到直线的距离
即
故
教师恰当的启发,通过这三种方法层层深入,使学生更深刻地理解函数、方程、不等式之间的联系,使学生的思维由单一型转变为多角度发散型,显得积极灵活,从而培养学生创新思维。
三、提高学生的创新能力
美国奥斯本创立的创造学的基本原则是:人人皆有创造力,创造力水平可经训练提高。创新能力的培养,主要是把学习的思想和方法介绍给学生,使他们掌握创新的钥匙,开启一扇问题之门。在教学过程中强调的是发现知识的过程,创造性解决问题的方法和探究精神,而不是简单地获得结果。
例3、求证:
证明:左边可变形为
可看成点到点A(1,1)的距离
可看成点到点B(5,2)的距离
因而本题等价于:点P是X轴上的任一点,求最小值
点A(1,1)关于X轴的对称点的坐标为(1,-1)
所以
故成立
如果按常规方法来解本题,过程非常烦长,但观察不等式的特点,再结合两点间距离公式来解就非常简单,因此,在解题教学时,若启发学生从多角度、多渠道进行广泛的联想,则能得到许多构思巧妙、简捷有效的解题方法,而且还能加深学生对知识的理解,有利于激发学生分析问题和解决问题的创新能力。
四、促进学生的个性发展
关键词:数学情境教学创设创设问题
Abstract:Mathematicsteachingsituation’sestablishment,isreferstomathematicsteachingpresentstothecoursecontentusesthespecificmethod,achievesstimulatesthestudenttoassociate,theimaginationonowninitiative,positivelythethoughtthatobtainssomekindandthenewstudycontentrelatedimageorthethoughtachievement;Orcausesthestudenttohavesomekindofemotionexperience.Theconstructionprinciplebelievedthatthestudyistheknowledgeacquisitionprocess,theknowledgeisnotteachesthroughtheteacherobtains,butisthelearnerundercertainsituation,withtheaidofotherperson’shelp,usestheessentialstudymaterial,obtainsthroughthemeaningfulconstructionway.
keyword:Mathematicssituationteachingestablishmentestablishmentquestion
前言
《数学课程标准》也提出:数学学习“不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发”,这充分说明数学教学中创设问题情境的重要性。那么,在创设数学情境时要注意哪些问题呢?笔者结合自己的教学实践,认为以下几个方面是值得教学者注意的:
一、“问渠哪得清如许,为有源头活水来”——引入情境要注重趣味性,以激发学生兴趣
心理学认为,学生只有对所学的知识产生兴趣,才会爱学,才能以最大限度的热情投入到学习中去。因此,在教学中,教师要善于挖掘教材,积极创设生动有趣的问题情境来帮助学生学习,培养学生对数学的兴趣。
案例1:七年级下《游戏的公平与不公平》导入
师:今天,老师和大家做一个抢“30”的游戏,这个游戏在两个人之间完成,规则如下:第一个人先说“1”或“2”,第二个人要接着往下说一个或两个数,然后又轮到第一个人,再接着往下说一个或两个数,这样两人反复轮流,每次每人说一个或两个数都可以,但是不可以连说三个数。说到30为止。谁先抢到30,谁就获胜。谁来和老师比一比?
生1:老师,我来!
……
生2:老师,我和您比一比!
……
生2:老师,再来一次,我不相信我赢不了您!
……
(一连几个学生都输了,学生心有不甘。老师又和一个学生耳语了几句。)
师:我收了个徒弟,谁愿意和我的徒弟比一比?
(又一轮比赛开始了,终于有学生发现了赢游戏的窍门)
生3:老师,您这个游戏不公平。
师:为什么?
……
此例中,游戏不仅激发了学生的好胜心,也调动了学生的学习热情,使学生自然而然地进入了学习。引入情境除了可引用游戏外,还可以是趣味性较强的名人轶事、历史故事、数学趣题等。事实证明,贴近学生生活实际的、趣味性较强的情境,能很好地吸引学生的注意,最大程度地激发学生的学习欲望,培养学生学习兴趣。
二、“不愤不启,不悱不发”——情境创设应注重引发学生的认知冲突,激发学生内在需要
情境的设计必须以引起学生的认知冲突为基点才能引起学生的学习需要。教师根据新学知识,方法特点及学生已有的认知结构,设计一个包含新知识、新方法或新思维的新问题情境(旧知识,旧方法或习惯思维不能解决的),学生运用旧知识、旧方法、习惯思维于新问题情境时便会产生认知冲突,由此产生疑问和急需找到解决方法的内在需要。在这种需要的驱使下,教师展开教学,则能收到事半功倍的教学效果。
案例2:《因式分解》的引入
先用多媒体演示酸奶中乳酸菌杆的营养,介绍活性乳酸杆菌在0℃~7℃的环境中存活是静止的,但随着温度的升高,乳酸菌会快速死亡。然后请学生思考下面问题:每升酸奶在0℃~7℃时含有活性乳酸杆菌220个,在10℃时活性乳酸杆菌死亡了217个,在12℃时又死亡了219个,那么此时活性乳酸杆菌还剩多少个?请列出算式,并化简结果。
此例中,学生很容易列出算式220-217-219,呈现出较高的成就感,但怎么化简呢?学生不知所措。显然,这是三个整数的减法,可以把三个乘方先算出来,再相减,但这样做不合题意,学生处在一个知其可为,但不知如何为的境地。此时,认知冲突已被引发,学生有了急需找到解决方法的内在需要。这时,教师告诉学生,学习了《因式分解》后,我们就能很方便地解决这个问题;而悬念的设置,无疑激发了学生的求知欲,为本节课的学习创设了良好的情绪状态。
三、“纸上得来终觉浅,绝知此事要躬行”——围绕问题动手实验也是一种情境
建构主义认为,动手实践与其他数学学习方式的合理配置和有效融合能够营造一种丰富多样的数学学习情境,而这种情境可以让学生初步体验将要学习的数学知识,为理解数学知识做好准备,为发现数学原理提供帮助,并且能够为学生提供与数学有着直接的和重要作用的经验,以及情感性的支持。
案例3:在讲授等腰三角形性质的时候,有的老师设计了这样的一个情境:让学生做出一张等腰三角形的半透明的纸片(如图),每个同学的等腰三角形的大小和形状可以不一样,把纸片对折,让两腰重合在一起,你发现什么现象?请你尽可能多地写出结论。
学生通过动手操作、观察、思考和交流写出了如下结论:
1.等腰三角形是轴对称图形;
2.∠B=∠C;
3.BD=CD,即AD为底边上的中线
4.∠ADB=∠ADC=90。,即AD为底边上的高;
5.∠BAD=∠CAD,即AD为顶角平分线。
本例中,教师为学生提供了一个可感知,可操作,可体验的情境,既激发了学生的学习兴趣,又使抽象的数学知识蕴于简单的实验之中,促进了学生的认知理解。又如,在讲授《旋转的特征》时,可让学生动手操作,从而得出“图形的旋转是由旋转中心、旋转角度和旋转方向所决定”的结论。总之,教师应尽可能的为学生创设动手实验情境,让学生“学中做”,“做中学”,培养他们的动手能力和创新精神,让他们在体验和感悟中成长。
四、“逐层以深入,循序而渐进”——探究
性教学中的情境设计要注重递进性
探究性教学中,教师一般都需要创设出多个情境,这些情境根据教学需要,在不同的时间以不同的方式呈现出来。由于探究性学习在总体上应呈现由简单到复杂、由低级到高级的螺旋式上升发展趋势,这就要求创设的多个情境之间呈递进关系,要体现出层次性——既要防止步距过小,探究起来缺乏难度和挑战性;也要防止步距过大,导致经验获得不足,探究脱节。
案例4:探索《勾股定理》(直角三角形三边的关系)
情境1:让学生观察动画,讲述我国科学家曾向太空发射勾股图试图与外星人沟通的故事;讲述2002年,国际数学家大会采用弦图作为会标。设问:它为什么会有如此大的魅力?它蕴涵着怎样迷人的奥秘呢?
情境2:用几何画板作一个直角三角形ABC(∠C=90°),量一量两条直角边,斜边的长度;改变直角边或斜边的长度,再量一量。多进行几次,并完成表格。你能发现什么规律?
情境3:展示格点图(1),图中的三个正方形之间存在怎么的关系?由此你能得出直角三角形三边关系吗?
情境4:展示格点图(2),图中的三个正方形之间存在怎样的关系?由此你能得出直角三角形三边关系吗?
情境5:请学生拿出准备好的四个完全相同的直角三角形,拼成一个正方形(不得有地方重合),你能根据面积与恒等式的知识得到直角三角形的三边关系吗?
此例中,情境1为引入情境,作用是提出研究对象,将学生注意导向新课的学习,同时激发学生好奇心和学习兴趣。情境2是通过量一量的方法,获取数据,并对数据中可能的数量关系进行猜测。情境3,情境4是对情境2的猜测结果进行验证,后者相对前者,更具一般性和更高的思维要求。情境5是对猜测结果的数学证明,也是对由前面情境所得知识的归纳和肯定。这一系列情境环环相扣,层层深入,引导学生完成探究,最终建构起直角三角形三边关系。事实证明,探究过程中递进性的情境链的设计,能给学生综合应用观察、操作、猜测、思考、讨论、验证等多种活动的机会,极大地激发了学生的求知欲,丰富了学生的感知性,很好地培养了学生自主探究能力和创造性思维。
五、“运用之妙,存乎一心”——情境创设应追求高效益
情境的功能可体现为引入与过渡,吸引与调节,支持与促进。作为教学者,应使情境的功能得到最大化的体现,即在注重情境有效性时,更要追求情境的高效益,以使课堂教学达到教学过程与方法的最优化,提高教学效果,促进学生可持续发展。
案例:错题的妙用
(分式的加减讲完后,开始练习。其中一题为:++
。老师请三位学生板演,其中生1,生2过程完整,结果正确。生3出现了问题)
生3:原式=
(显然错了。老师开始点评生3练习,学生轰笑)
师:错在哪里呢?
生4:原来的分母没有了。
生5:把分式方程的变形(去分母)搬到解计算题上了。“张冠李戴”!
(生3眼睛不再看着黑板,低下了头)
师:很好!生3由于粗心,把分式的加减当方程来解了。解法虽然错了,但是可以给我们一个启示,若将此题去掉分母来解,则其解法简洁快捷。因此,我们能否考虑利用解分式方程的方法来解它?
(生3的头慢慢抬了起来)
(学生讨论,一个新颖的方法出来了)
解:设
去分母得,
解得:A=
学生:真巧妙!
师:确实,生3的解法错了,但他这种“用方程的思想解分式计算题”,却是一种寻求简便的思想,是将自己思维的真实展示,给了我们有益的启示。
(生3笑了,脸上荡漾着自信)
“成功的教学所需要的不是强制,而是激发学生的兴趣。”(托尔斯泰语)我国古代大教育家孔子也曾说过:“知之者不如好之者,好之者不如乐之者。”?只有“好之”“乐之”才能有高涨的学习热情和强烈的求知欲望,才能以学为乐。而学生的兴趣源自于具体情境,课堂教学又是激发学生学习兴趣、实施主体教育的主阵地。在课堂教学中,教师如何结合本区域实际情况创设各种有效情境激发学生的学习兴趣呢?下面,我就结合自己这几年来的教学实践,谈谈在课堂教学中的几点尝试。
一、创设自由、宽松、民主、和谐的课堂氛围,激发学习兴趣
陶行知说过:“惟独从心里发出来的,才能达到心的深处。”因此,平等、和谐、信任的师生关系,自由、宽松、民主、融洽的课堂气氛是唤起学生学习兴趣并促其主动学习的基础,也是实现主体性参与教学的前提。在课堂教学中,努力创造自由、宽松、民主、平等、和谐、乐学、互相信任、心情愉悦的课堂氛围,使学生的个性潜能得到释放,学生才能把精力放在学习上,愉快的学习,积极主动地探索。对学困生和潜能生更要关注,多与他们沟通,不挖苦、不歧视,用真情关心、爱护他们,使他们真正感受到老师的爱,减少他们因学业成绩不理想而造成精神上的沉重压力,善于发现他们的闪光点,以促其建立自信,变“要我学”为“我要学”,积极主动的参与学习。
二、创设问题情境,引发学习兴趣
学生探究的主动性往往来自一个好的问题情境,一个好的问题情境,也常常有“一石激起千层浪”的效果,使学生感到心奋,能主动地参与,自主地探究。所以在以问题为中心的小学数学课堂教学模式的研究中,人们已经有了“创设情境”是学生提出数学问题的前提的研究,而且模式的问世指日可待。
思维总是由问题引起的,学生学习的过程就是发现问题、分析问题、解决问题的过程,有价值的问题才能使学生的思维处于主动积极、愉快地获取知识的活跃状态。因此,我们可以根据学生的心理特点和学科的知识特点,采取恰当的方法创设问题情境,使学习变被动为主动。使教学内容更具有真实性、趣味性、问题性、开放性,让学生置身于逼真的问题情境中,体验数学学习与实际生活的联系,学生也会品尝到用所学知识解释生活现象以及解决实际问题的乐趣,感受到借助数学的思想方法,会真正体会到学习数学的乐趣。
三、情境的创设要为新旧知识的衔接创造条件
认知心理学认为,学生在学习某一新的数学知识之前应该有一个相对稳定的认知结构,这个结构往往距新知还有一段距离,即或就是一步之差,教学也要要求找准新旧知识的衔接点,设计恰当的内容,充当新旧知识链结的“亚目标”,前苏联心理学家维果茨基把这个“亚目标”叫做学生学习的“最近发展区”。这样,不仅可以为学生知识的有效链结创造条件,为实现新知的内化打下坚实的基础,同时还可以,为知识的过渡给人以自然顺利的美感。数学知识前后连接紧密,无理方程要去掉根号化为有理方程;有理方程中的分式方程要去掉分母化为整式方程;整式方程中的高次方程要降次为一次方程或二次方程;多元方程要消元化为一元方程。
四、根据耳聋学生年级和年龄特点,唤起学习兴趣
高年级的聋生注意时间长,耐力较持久,自控力也较好,思维呈连续性,学习积极性高,许多有攻坚、显示自己聪明才智的心理。在教学中要有技巧,在教学中充分利用学生的好奇心。在教学中善于制造悬念,适当的沉默或等待,恰当的比喻,敏锐的洞察力都将聋生的注意力吸引到教学中来,并有益于学生思维的动化。运用直观教具教学。聋哑学生的思维还处于形象思维阶段,抽象逻辑思维能力差。以感性材料为起点,贯彻抽象与具体相结合的原则,充分利用图片模具、多媒体、声、光、灯等直观教具进行生动形象具体的演示,丰富学生的感性认识,使学生在观察、分析、判断联想的过程中开拓思路,加深理解。活泼好动是聋生的特点,教师在教学中应尽可能创造条件,让学生动手操作,使枯燥的学习变为具体有趣的东西,在实践活动中尝到探索知识的乐趣。
五、创设竞争性情境,调动学习兴趣
国内外的大量研究表明,在学生学习知识的过程中,适当开展一些合理的学习竞赛活动是必要的,也是有益的。布鲁纳就在他的发现学习理论中强调,学习的最好动机是对所学材料的兴趣,是奖励、竞争之类的外在刺激。因此,教学中,我们可适当创设竞争情境,引入竞争教学模式,为学生创造展示自我、表现自我的机会,激发学习兴趣。如在做练习时,我们可以设计形式多样的竞争:把竞争带入课堂,利用学生自尊心、自我表现欲、荣誉感强,好胜不服输的心理特点,在教师的引导调动下便可为课堂教学创设一种适合学生的竞争气氛,有效地提高学生的学习兴趣。学生在竞争中大脑处于高度兴奋状态,精神高度集中,在不知不觉中学到不少有用的知识,并受到正确的数学思想方法的熏陶,有力地提高了学生的学习兴趣。
学生在学习中重要的心理特征就是希望老师发现自己的优点并得到激励与肯定。在教学中,我们应多给学生一些成功的体验:如课堂上让他们提出一个问题,或是解决一个问题,或会做一道计算题时等对他们做出适当的表扬和鼓励,或是作业批语中多一些鼓励,多一些喝彩这样帮助学生认识自我,建立自信,让他们在积极参与中体验成功带来的喜悦,增强自信心。