美章网 精品范文 抗浮设计论文范文

抗浮设计论文范文

前言:我们精心挑选了数篇优质抗浮设计论文文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。

抗浮设计论文

第1篇

由于泵房尺寸较大,埋置深度较大,且上部荷载较小,当地下水位较高时,抗浮设计往往是设计控制因素之一。目前,工程中较常用的抗浮方式有:自重抗浮、配重抗浮、锚固抗浮、抗浮桩等。可根据实际情况同时采用一种或多种抗浮方式。

(1)自重抗浮

自重抗浮荷载计算时不包括设备重、使用荷载及安装荷载。自重加大后,泵房体积也随之加大,浮力相应增加。因此自重抗浮只能在不具备其他抗浮条件或自重加大不多即可满足抗浮要求时采用。

(2)配重抗浮

配重抗浮也有一定的局限性。由于泵房埋于地下,常用的配重方法是在泵房底板外挑部分的填土,底板向外延伸会使支护范围加大,且当泵房较深时,基坑回填压实难度较大,不易满足设计要求。也可在泵房顶板增加配重,但会加大结构承载量,对抗震不利。

(3)锚固抗浮

锚固抗浮是一种有效的技术手段,锚杆灵活布置、锚固效率高、适应性较广,易于施工。在许多条件下优于自重抗浮和配重抗浮。由于抗浮锚杆的工作环境和受力特点,锚杆受拉后杆体周围灌浆开裂,使杆体极易受地下水侵蚀,影响其耐久性。同时,抗浮锚杆与底板的节点可能成为防水的薄弱环节。

(4)抗浮桩

抗浮桩是一种主动抗浮设计,前期施工费用较高,但后期维护简单,结构受力合理,不影响泵房的使用功能。当地下水位较高,泵房平面尺寸较大,基础埋置较深时多采用此种抗浮方法。此外,工程中还有其他抗浮方法。例如通过改变结构形式,泵房池壁与土体的黏结抗剪力抗浮。实际工程中,应根据泵房的尺寸大小,水位高低,埋置深度选用合理的抗浮方式,以达到设计要求。

2抗滑移、抗倾覆验算

当采用嵌固或锚固抗浮时,泵房周围填土较深且土面大体一致时,可不做抗滑移、抗倾覆验算。当泵房建造在软弱土层上,有可能出现连同地基土一起滑动而失去稳定时,尚应采用圆弧滑动条分法进行整体稳定验算。

3施工方法选择

当泵房埋深较浅,地下水位较低,且土质较好时,可选择开挖基坑。当泵房埋深较深,地下水位较高,且土质较差时,可选择沉井施工。基坑开挖较为简单,本文重点介绍沉井施工方法。沉井的施工方法对沉井的设计计算有着直接关系,应根据场地的地质条件结合施工条件决定。

(1)排水下沉

当地下水位不高,或是虽有地下水但沉井周边的土层渗水性不强,涌入井内的水量不大且排水不困难时,可采用排水下沉法,此种方法施工费用较低,工期较短。

(2)不排水下沉

在下沉深度范围内存在粉土、砂土或其他强透水层而排水下沉有可能造成流砂或补给水量很大而排水困难时,可采用不排水下沉。当沉井场地附近有已建建构筑物及其他设施,排水施工可能导致其沉降及倾斜而难以采取其他有效措施防止时,也可采用不排水下沉。

(3)分次下沉

根据沉井的高度,地基承载力、施工条件和设计需要,沉井可沿高度方向一次浇筑下沉,或分段浇筑一次下沉,或分段浇筑分次下沉。

4结构设计中应注意的问题

(1)池壁厚度的选择

当泵房较浅、采用开挖施工方法时,池壁厚度只要满足受力要求、防水要求即可。当泵房较深,采用沉井施工时,应优先考虑沉井依靠自重克服土层的摩擦力下沉,因此,池壁要有适当的厚度。反之,当池体过重时,下沉系数过大或地基承载力不足时,应适当减小池壁厚度。当地下水位较高时,沉井必须满足抗浮要求,因此依靠自重沉井的泵房各部分也要有适当的厚度。

(2)变形缝的设置

第2篇

关键词:构筑物抗浮设计

目前,在抗浮设计上,主要采用抗与放的方法。所谓抗,即是配重抗浮、锚固抗浮;所谓放,即是降水抗浮和设观察井抗浮。具体采用哪一种方法,尚应根据工程的具体情况而定,同时还应着重考虑对工程造价的影响。下面就各种抗浮方式进行探讨并做经济分析比较。

一.抗浮方式的探讨:

1.配重抗浮:小型水池一般不需要配重抗浮,因其池壁相距

较近,再加上底板向外突出部分上部的土重和壁板与土的摩擦力(规范未计入以策安全),抗浮安全系数很容易满足规范要求。

砼的缺点之一是自重大,但事物均有两面性,抗浮时自重越大越有利。配重抗浮一般有三种方法,一是在底板上部设低等级砼压重;二是设较厚的钢筋砼底板;三是在底板下部设低等级砼挂重。一、二种方法的优点是简单可靠,当构筑物的自身重度与浮力相差不大时,应尽量采用配重抗浮,对工程造价的影响小,投产后亦没有管理成本。但构筑物的自身重度与浮力相差较大时,本方法将会增加工程量使土建造价提高,原因是配重部分要扣除浮力,导致配重部分的厚度增大;较大的埋深也将增加挖方量和排水费用,同时也会增大基底压力,引起较大的地基变形。如采用底板上设低等级砼压重的方法,将会使壁板的计算长度H加大,而壁板根部的弯矩值与H是平方关系,这样会使壁板根部的弯矩值增长较快,弯矩值较大时,板厚和配筋也会相应增大;如采用较厚的钢筋砼底板的方法,其工程量与设低等级砼压重相差不多,壁板的弯矩值虽小,但底板的钢筋用量会有些许增加;如采用底板下设砼挂重的方法,壁板的弯矩值小,底板的钢筋用量也不会增加,但底板和挂重部分砼须用钢筋连接,施工比较麻烦,当地下水对钢筋和砼具有侵蚀性时,设砼挂重的方法须谨慎。

2.锚固抗浮:锚固抗浮一般有两种方法:

a)锚杆:锚杆是在底板和其下土层之间的拉杆,当底板下有坚硬土层且深度不大时,设锚杆不失为一种即简便又经济的方法;近年来,在饱和软粘土地基中,也有采用土锚技术的,也有采用短锚加扩大头技术的。锚杆的直径一般为150~180mm。锚杆抗浮有三个问题需要注意,一是受力问题,当构筑物内无水时,锚杆处于受拉状态,当构筑物满水时,锚杆又处于受压状态,锚杆的底端类似于桩端,锚杆在反复拉压状态下的工作性能有待进一步的实验研究;二是施工问题,锚杆的施工需有专门的机械,施工前要进行试验,同时,较细的锚杆在施工时有一定的难度,如何控制钢筋偏移,如何使灌浆饱满、如何避免断杆等都是施工难题,尤其是锚杆较长时,不如配重抗浮来得简便。三是适用性,当地下水对钢筋有侵蚀性时,细锚杆的耐久性问题不易解决,这将在一定程度上限制其适用性。

b)抗拔桩:抗拔桩利用桩侧摩阻力和自身重度来抵抗浮力,桩型可采用灌注桩或预制桩,桩径一般为400mm,也可采用方桩,桩距和桩长应通过计算确定,桩距不宜过大,否则会增加底板厚度,桩端最好能伸入相对较硬的土层。抗拔桩也有拉压受力问题,但其施工较简单,耐久性亦比锚杆容易得到保证。

3.降水抗浮:这是抗浮设计的另一条思路,即不硬抗,而采用放的方法。具体做法是在构筑物底板下设反滤层,在构筑物周围设降水井,降水井和反滤层间用盲沟相连,当构筑物因检修设备而需要放空时,可在降水井内抽水使地下水位降至底板下,从而保证构筑物的稳定。降水抗浮的关键问题是反滤层的设计,当土的颗粒较细时,应采取可靠措施防止土粒随地下水的涨落而进入反滤层,引起反滤层堵塞而失去作用。降水抗浮的优点是工程造价低,因采取了抗浮措施,构筑物的设计可按无地下水时考虑。当地下水位很高且地基土较软时,采取降水抗浮措施可大大降低工程造价。但降水抗浮也有其缺点,第一是可靠性,虽然构筑物在设计使用年限内放空检修的时间很短,但每年也有一二次,如反滤层被堵塞,则水位很难降至底板以下;第二,如果遇到非正常排空,将会发生构筑物上浮事故。当然,在排水工程中,可采取适当的措施,在非正常排空时使地下水自动进入构筑物内,提高构筑物的可靠度。

4.观察井抗浮:和降水抗浮相似,只是不设反滤层,利用地

下水的涨落安排构筑物放空检修的时间。方法也很简单,在构筑物周围设若干观察井,井内标示可放空检修的临界水位线,如在一个时期内地下水位低于临界水位,则可放空检修。应该讲,在地下水位涨落差较大的地区采用本方法,是所有抗浮方法中土建工程造价最低的。其缺点是检修时间不灵活,且有一定的管理成本,非正常排空亦有可能发生上浮事故。

二.经济分析比较:

例:某排水工程终沉池,内径40m,池净高5m,地下水位距池底板顶3.0m。抗浮方法分别为:1.配重抗浮(设较厚的钢筋砼底板);2.抗拔桩抗浮;3.降水抗浮;4.设观察井抗浮。其工程量分别为:

1.配重抗浮:

挖土方:2508m3;3.86×2508=9681元

素砼垫层C10:134m3;145×134=19430

钢筋砼底板C25:2904m3;460×2904=1335840

预应力砼池壁C40:190m3;899×190+40000=210810

2.抗拔桩抗浮:

挖土方:200m3;3.86×200=772

直径400mm沉管灌注桩,长12m:150根;548×1.51×150=123892

素砼垫层C10:134m3;145×134=19430

钢筋砼底板C25:594m3;460×594=273240

预应力砼池壁C40:190m3;899×190+40000=210810

3.降水抗浮:

挖土方:200m3;3.86×200=772

素砼垫层C10:134m3;145×134=19430

钢筋砼底板C25:413m3;501×413=206913

预应力砼池壁C40:190m3;899×190+40000=210810

反滤层:726m3;59.5×726=43197

降水井:4座;1521×4=6084

4.设观察井抗浮:

素砼垫层C10:134m3;145×134=19430

钢筋砼底板C25:413m3;558×413=230454

预应力砼池壁C40:190m3;899×190+40000=210810

观察井:3座;1521×3=4563

其土建工程造价(直接费)分别为:

1.配重抗浮:1575761元

2.抗拔桩抗浮:628144元

3.降水抗浮:487206元

4.设观察井抗浮:465257元

第3篇

康复医疗与临床医疗日益相互渗透。实践证明,在临床治疗的过程中,康复医疗的早期或适时介入能有效提高治疗效果并显著减少后遗症;另一方面,各类接受康复医疗的患者也离不开相应临床医疗的有力支持。因此,近年来临床医疗与康复医疗相互渗透的趋势越来越明显,康复设施设计理念越来越受到重视。

二、康复医疗阶段的划分

在上述背景下,为了对不同病情的患者提供更有针对性的康复医疗服务,从而达到改善康复效果和控制治疗成本的目的,当前一些发达国家已普遍将康复医疗划分为急性期、恢复期及维持期三个阶段。急性期康复主要面向急性病患者、手术后患者以及在灾害或事故中受伤人员。实践证明,在临床治疗的初期即适时介入急性期康复,不仅能提高康复效果及安全度、改善患者的生活品质、减少后遗症及医疗事故,而且能显著缩短住院期间从而削减医疗费用。对于运动器官、脑血管、心血管等疾病,若在急性期治疗过程中或手术后及时开展急性期康复训练,还可以有效预防肌肉萎缩、关节僵硬等废用综合症。恢复期康复主要面向病情稳定的恢复期患者,旨在通过恢复患者的日常生活活动能力(ADL)促进他们早日回归家庭与社会。维持期康复也称生活期康复,主要面向居家或居住在各类养老及疗养设施中的老人及慢性病患者。通过各类访问康复设施或通院康复设施(通常在社区内设置)来提供各种形式的在宅或通院康复医疗服务,旨在维持他们的身心机能与生活能力。值得一提的是,中国的康复医疗界近几年也认识到了明确划分康复治疗阶段的重要性。例如,在脑卒中的康复医疗中已率先成功实施了“三级康复”的模式,[1]大致分别对应于急性期、恢复期及维持期三个阶段,取得了良好的效果。可以预见,该模式今后将会在中国的康复医疗中得到进一步推广。康复医疗领域不同治疗阶段的特点无疑对各类康复设施的建设提出了更高的要求。从建筑设计的视点,康复设施不仅具有医院建筑的基本特征,更因其治疗对象、目标、方式方法的特殊性(表1),使得其建筑设计难以套用一般医院的做法。同时,考虑到不同疾病、不同治疗阶段的康复治疗所需的空间与环境相差极大,建筑师必须对病区与康复治疗室进行有针对性的处理。而中国现有的康复设施普遍存在着建设标准过低、专科特色不明显、平面布局方式单一等问题,难以满足上述要求。为此,本文通过对国外康复设施的案例分析来探讨基于治疗阶段的康复设施的设计理念与方法。

三、案例分析

现代康复医学起源于西欧和北美,在20世纪80年代后取得了巨大的进步。相较而言,当前美国在急性期康复领域处于领先地位,而日本则在恢复期及维持期康复领域颇具特色。因此,本文重点介绍和分析美国的急性期康复设施以及日本的恢复期与维持期康复设施案例。

1.急性期康复设施

通常急性期康复训练宜在综合医院的骨科、神经科、心血管科等病区展开。急性期康复训练初期要保持患者手足的正确位置并借助于设备或人力使之被动运动;待患者病情稳定后,宜在病室内进行坐姿训练与吞咽训练;如果患者已可离床,则可在病室内或病区走廊等适当的场所展开行走及ADL训练。因此急性期康复要求病室要有足够的空间。为满足患者从重症监护至急性期康复的各层次医护需求,美国在1998年提出了AcuityAdaptableRoom(即急性期适应病室,简称AAR)。如图2所示,AAR采用单人病室,面积通常在30m2以上,病室内划分为临床区、患者区、家属区、卫生间等区域,设计要点包括:临床区内设置各种急性期治疗设备,患者区内设置病床,家属区内设置沙发;病床的位置便于医护人员及家属观察,其周边预留足够的空间以便使用急性期康复设备,对患者进行抢救时,可将病床推至房间中央,使其四周临空以获得足够的作业空间;卫生间便于患者、家属及医护人员抵达,且有足够的面积展开ADL训练,为方便使用,洗面池与坐便器分设在卫生间入口两侧;病室外的走廊内设置分散式护理站及物品供应站,以便医护人员展开医护作业,走廊应有足够的宽度来展开行走训练(图3)。[2]目前中国医院的病室以多床室为主,床均建筑面积一般不足10m2,因此难以套用美国AAR的标准。为此,笔者提出了符合当前国情的可展开急性期康复训练的病室(图4),该病室的基本要求包括:多床病室的床均使用面积(不含卫生间)不宜小于10.8m2;病床的一侧宜留出1.5m以上的距离,以便患者在护理人员协助下换乘轮椅;为方便轮椅患者,病室内还应设置带扶手的薄型洗面池。除病区外,急性期康复训练室也必须满足相应的要求。以位于美国德克萨斯州的美国国家军队康复中心为例,该中心的康复训练室集成了假肢、机器人以及虚拟现实等领域的先进技术,可为截肢和烧伤士兵提供各类急性期康复训练。除作业疗法、运动疗法、假肢矫形等常规康复训练设备外,该康复中心还拥有300°进入式虚拟现实与步态分析仪等先进设备,以及室内冲浪、室内高架田径跑道、攀岩墙与障碍模拟等训练场地(图5)。

2.恢复期康复设施

急性期患者的病情稳定后将进入恢复期康复阶段。恢复期康复设施的设计应提供能够模拟家庭生活的治疗环境以促使患者早日回归社会,并有助于提高患者参与康复训练的主动性与积极性;同时,由于患者ADL不断改善且活动范围不断扩大,须确保患者安全。位于日本东京都涩谷区的初台康复医院,主要为结束了急性期治疗的脑梗塞及脑溢血患者提供恢复期康复训练。该医院为地上8层、地下2层,总建筑面积为1.3万m2,病床数为173床。医技部设在医院一层,二层为门诊部及康复部,三层以上为住院部。2012年,该医院的住院患者约600人次,平均住院时间为98天(患者入住该医院前,在急性期医院的平均住院时间为36天),回归家庭率达79%;此外,在该医院接受通院康复训练的患者超过了1100人次,医院还为600人次左右的居家患者提供了上门康复训练服务。[3]通常恢复期康复医院的门诊量较少,医技部中也仅设用于康复诊断的设备,康复部占据核心地位。以初台康复医院为例(图6),门诊部和医技部的面积分别只占总建筑面积的3.40%与2.69%;而康复部的建筑面积占总建筑面积的12.58%,由物理疗法区(图7)、作业疗法区(图8)、木工间、水疗间、ADL训练室以及言语疗法室构成;住院部由若干康复病区组成,占总建筑面积的66.18%,既是康复患者的生活场所,也是展开洗漱、如厕等日常生活训练的场所,因而床均病区面积大于一般医院。[3]为提高患者的日常生活活动能力,减少卧床不起情况发生,并帮助患者顺利回归家庭,初台康复医院的病区设计还具有下列特色:护士站采用了开放式设计(图9),可方便轮椅患者与护士交流;病室内设置书桌,供患者在住院期间进行自己的兴趣活动;每个病区设3个活动室及2个浴室,确保患者可充分展开各项康复训练;每个病区均设备餐间,可模拟赴餐厅就餐场景。为帮助患者尽快融入正常的社会生活,医院一层的休息厅中还设有咖啡屋和小商店等公共空间(图10)。

3.维持期康复设施

维持期康复设施的设计要点包括:借助通院及访问康复训练的方式,维持患者残存的身体机能;与社区周边的医疗、保健及福祉设施或组织展开有效的协作,维持并促进患者正常的社会生活。通院康复设施(图11)主要面向居家患者提供康复训练及专业的康复指导,主要职能包括进行患者的身体机能评定、为患者制定有针对性的康复训练方案、提供以运动疗法和日常生活训练为主的康复训练。访问康复训练主要面向一时难以适应居家生活的退院患者,通过专业人员的上门指导,可以帮助患者进行有效的居家康复训练从而增进他们的居家生活能力。为充分利用当地的社会资源,日本的维持期康复设施多与康复医院或老年设施结合设置。以位于日本福冈县北九州市的南小仓社区康复中心为例,该中心与当地的小仓康复医院和伸寿苑老年护理院共同组成了一个彼此相对独立又相互协作的社区康复设施群(图12),通过通院、访问等康复训练方式来维持患者的身体机能与社会生活。此外,该设施群还与社区内的诊所、介护保险事业所、当地社团保持着密切的联系与充分的协作。

结语

第4篇

【关键词】抗浮锚杆;水浮力;抗拔力;布置方式;注意事项

【工程概况】

笔者在深圳做的某工程为大底盘带多塔的结构。塔楼下的地下室由于塔楼自身的重量能够满足抗浮的要求,现着重讨论上部没塔楼的地下室的抗浮问题。本项目地下室的概貌及抗浮水位如图所示。现取中柱(8mX8.15m)进行讨论。

水浮力: 6x10=60KN/m2

负二层底板、地下一层及地下室顶板自重: 25x0.5+6+6.3=24.8KN/m2(由广厦软件中计算结果求得)

地下室顶板覆土自重:16x0.8=12.8KN/m2

地下室底板建筑做法自重:22x0.1=2.2N/m2

抗浮总重:24.8+12.8+2.2=39.8KN/m2

参考广东省标准《建筑地基基础设计规范》DBJ 15-31-2003第5.2.1条规定,地下室抗浮稳定性验算应满足式6.1.6的要求:

W/F≥1.05 (6.1.6)

所需抗浮力:1.05x60-39.8=23.2KN/m2

柱下独立基础(地下室侧壁位置的柱下基础除外)位置设锚杆抗浮:

当抗浮面积为: 8X8.15=65.2m2 此时基础下设锚杆抗浮所需抗拔力: 23.2X65.2=1512.64KN

取单根锚杆的抗拉承载力特征值为310KN,需锚杆根数:n=1512.6/310=4.9,取n=5

根据《岩土锚杆(索)技术规程》第7.4.1条:

单根锚杆需要钢筋面积:1.6X1.3X310X1000/400=1612mm2

(式中1.6为锚杆杆体安全系数,1.3为荷载分项系数),故选用3}28(As=1847mm2)

根据《广东省建筑地基基础设计规范》第11.2.2条,故采用3}32钢筋(As=2413mm2)

取锚杆孔径为D=150mm

根据《岩土锚杆(索)技术规程》第7.5.1条计算锚杆锚固长度:

根据《广东省建筑地基基础设计规范》第11.2.1条式11.2.1-3,

锚杆的有效锚固长度为:

式中f i为砂浆与第i层岩石间的粘结强度特征值,l为第i层岩体中的锚固长度,d为锚杆孔直径,Rt为单根锚杆的抗拔承载力特征值。

根据《建筑边坡工程技术规范》式7.2.3,锚杆锚固体与地层的锚固长度为:

根据《建筑边坡工程技术规范》式7.2.4,锚杆钢筋与锚固砂浆间所需的锚固长度为:

式中γo为边坡工程重要性系数,γQ为荷载分项系数,N为锚杆轴向拉力标准值,ξ3为钢筋与砂浆粘结工作条件系数,d为锚杆钢筋直径,f为钢筋与锚固砂浆间的粘结强度设计值,n为钢筋根数。

故取锚杆的有效锚固长度为:2.5m

抗浮锚杆承载力特征值估算:Fa=∑qsiuili=400x3.14x0.15x2.5=471KN>1.3x310=403KN (qsi为岩土体与锚固体粘结强度特征值)

锚杆的布置方式一般有集中点状布置、集中线状布置、面状均匀布置等方法。它们都有各自的有缺点:

1. 集中点状布置,此方法推荐用于坚硬岩。一般布置在柱下,此次的案例就是采用的这种方法。优点:可以充分利用上部结构传来的竖向力来平衡掉一部分水浮力;由于锚杆布置集中,对于地下室底板下的外防水施工也比较方便;对于个别锚杆承载力不足的情况,由于有较多的锚杆分担,有很强的抵抗力。缺点:要求锚固于坚硬岩体中,不适用于软岩与土体,破坏往往是锚固岩体的破坏;由于局部锚杆较密,锚杆施工不方便;地下室底板梁板配筋较大。

2. 面状均匀布置,此方法可用于所有情况。在地下室底板下均匀布置;优点:适用于所有土体和岩体;地下室底板梁板配筋较小。缺点:不能充分利用上部结构传来的竖向力来平衡掉一部分水浮力(个人认为考虑的话偏于不安全);对于个别锚杆承载力不足的情况,由于能分担的锚杆较少,此情况抵抗力差;由于锚杆布置相对分散,对于地下室底板下的外防水施工比较麻烦。

3. 集中线状布置,此方法推荐用于坚硬岩与较硬岩。一般布置于地下室底板梁下;优点:由于锚杆布置相对集中,对于地下室底板下的外防水施工也比较方便;对于个别锚杆承载力不足的情况,由于有较多的锚杆分担,有较强的抵抗力。缺点:不能充分利用上部结构传来的竖向力来平衡掉一部分水浮力(个人认为考虑的话偏于不安全,对于跨高比小于6的底板梁,可以适当考虑上部结构传来的竖向力来平衡掉一部分水浮力),要求锚固于较硬岩体中,不适用于软岩与土体;地下室底板板配筋较大。

注意事项:

1)集中点状布置,抗浮锚杆与岩石锚杆基础结合为优,需注意柱底弯矩对锚杆拉力的影响,特别是柱底弯矩较大的时候;

2)参考《建筑边坡工程技术规范 GB 50330-2002》,应选用永久性锚杆部分内容;

3)岩石情况(坚硬岩、较硬岩、较软岩、软岩、极软岩)应准确区分,可参考《建筑边坡工程技术规范 GB 50330-2002》表7.2.3-1注4;

4)锚杆抗拔承载力特征值应通过现场试验确定,可参考《建筑边坡工程技术规范 GB 50330-2002》附录C;

5)抗浮设计水位的确定应合理可靠,一般应由地质勘测单位提供,比较可靠和有说服力,应设置水位观测井,对于超出抗浮设计水位的情况应有应对措施;

6)锚杆抗拔承载力特征值现场试验时由于一般为单根锚杆加载,未考虑锚杆间距影响(附图一填充部分),特别是锚杆间距较为密集时的情况;当单根锚杆影响范围内的土体自重(附图二填充部分)大于锚杆拉力时,可以不考虑锚杆间距影响;

7)由于锚杆钢筋会穿过底板外防水,锚杆钢筋应有防水措施;

8)锚杆锚固体与(岩)土层的锚固长度应取有效锚固长度,由于基坑开挖会对底板下土体有一定扰动,特别是采用爆破开挖的基坑,一般要加300-500MM;

总结:

第5篇

【关键词】地下结构 结构上浮 抗浮设计 抗浮施工近年来,随着城市建设的发展,高层建筑基础埋置越来越深,同时作为车库、商场等功能的广场式建筑的纯地下室部分,裙房或相对独立的地下结构物等的开发和利用越来越多。地下结构物处于地面下土体中,由于土体的空隙及岩体的裂隙赋存有大量的地下水,地下水对埋置于土体中的地下结构会产生浮托力,当结构的抗浮力小于浮托力时将发生上拱或上浮失稳破坏,影响结构的正常使用。由此,地下结构物抗浮问题日益突出,如何从设计上解决地下结构物抗浮和在施工中避免发生地下结构上浮已经成为一个经常面临的问题。

1 建筑物抗浮失败造成的后果及原因

近年来,因抗浮失败而造成地下工程的破坏在国内多有发生,有的地下室底板隆起,导致底板破坏;有的地下建筑物整体浮起;有的地下室局部翘角,导致梁柱结点处开裂及底板破坏。这些事故均不同程度给建筑物造成永久性缺陷,须进行结构加固方可正常使用。综合分析这些地下结构物各种情况下的浮起,引起浮起的原因主要分为设计原因和施工原因两大类,概括起来有以下几点:

(1)设计对地下室受水浮力作用的机理认识不足,未进行抗浮验算;(2)抗浮计算参数中地下水位取值不当,盲目选用地质钻探资料中的场地地下水位,忽略了可能出现的最高值;(3)抗浮计算失误或抗浮措施不当;(4)对建筑物施工过程中的抗浮未给予足够重视,随意变更结构或停止地下降水等。

2 当前抗浮设计现状

工程设计中的抗浮设计问题,现行国家标准规范《岩土工程勘察规范》(GB50021-2009)、《建筑结构荷载规范》(GB50009-2012)和《全国民用建筑工程设计技术措施》(结构)中仅作了定性的描述,而在国家标准《建筑地基基础设计规范》(GB50007-2011)对简单浮力作用的抗浮设计给出按如下公式计算:

Gk/Nw,k≥Kw

Gk为建筑物自重和压重之和,

Nw,k为浮力作用值,

Kw为抗浮稳定安全系数,一般取1.05,

当计算结果建筑物不能满足抗浮稳定性安全要求时,应采用增加压重或设置抗浮构件(如抗拔桩)等措施。

抗浮设计的关键是浮力作用值的计算,根据阿基米德原理,物体在水中所受浮力大小等于物体排开水的体积,所以地下结构物的浮力作用主要取决于水位的取值,但埋于地基土的地下建筑物所受的浮力作用又不同于浸泡于水中的物体,浮力作用的大小受地基土透水性的影响。目前,在抗浮设计上一些手册、规范、文献中对浮力的计算提出了许多观点,设计单位在设计时也按照各自的理解进行设计,综合来说主流有以下几种:

(1)当地下建筑物埋于不透水层,周边填土为密实的不透水土时,地下结构物仅受水的侧压力,不产生浮力作用。

(2)基坑边填土的摩擦力不作为抗浮计算的一项因素,作为安全储备对待。

(3)地下水最高水位按以下原则确定:①按水文观测资料或历史水位记录,取历史最高水位。②场地有承压水且承压水与潜水有水力联系时,按承压水和潜水的混合最高水位计算。③最高水位不超过地下室顶板面标高。

(4)由于地下水的水压力在垂直方向上并非随深度增加而线性增加,不能简单按静水压力公式计算,根据地基土情况按0-50%进行适当折减。

从这些规范或手册中的规定可以看出,地下水浮力的作用相当复杂,影响因素很多,要准确确定地下水压力的大小很困难。且施工中不确定因素也比较多,如回填土的土质差别、回填的压实程度等均会影响水的浮力大小。因此,浮力的计算要综合考虑多方面因素,估计到将来变化的各种可能性并采取可靠的应对措施。

3 抗浮设计中应考虑的问题

3.1 浮力作用和抗浮力的计算

(1)地下结构物的浮力作用主要取决于水位的取值,正常情况下可按地勘部门提供的抗浮水位即按正常条件下水位变化范围的历史最高水位作为确定基础抗浮设计水位,因周边填土的密实性离散性比较大,地基土透水性的变化不易准确掌握,且紧临地下结构周边回填土因工作面的问题并不易夯填密实,因此,除有可靠的实验依据,地下水对结构物的浮力作用应采用阿基米德原理进行计算,不作折减。

(2)地下结构物抗浮力主要来源于结构物的自重、压重、抗浮构件的抗拔力以及基坑周边回填土与结构物之间的摩擦力等。对于结构物的自重、压重、抗浮构件的抗拔力等均能较准确的进行计算,应作为地下结构物的计算抗浮力。但对于基坑周边回填土与结构物之间的摩擦力,应作安全储备对待。因为正常条件下,地下结构物的浮力作用计算中未对建筑物因所处位置不同可能发生的各种突发因素如暴风雨、排水不畅、地表逸流、或施工不慎等因素造成的地下水位突然升高未充分考虑,可能会由于安全储备不足,造成地下水浮力超过结构物抗浮力使建筑物产生变形等破坏,因此,将基坑周边填土的摩擦力作为安全储备对待,以应对使用正常条件以外的突发因素。

(3)当地下建筑物埋于不透水层,周边填土为密实的不透水土时,一般认为地下结构物仅受水的侧压力,不产生浮力作用。对此种情况应慎重选择,因为建筑物与基坑之间的回填土很难做到无缝隙不透水,当有地下水通过回填土渗入到建筑物底板下时,将产生浮力作用,引起建筑物上浮。

3.2 抗浮力的安全储备

工程抗浮设计一般均是按照正常建设程序考虑,地质条件按照地勘单位提供的地勘报告确定,正常施工条件下,施工单位能严格执行工艺标准和施工质量验收规范并遵守验收程序,建设单位和监理单位均能履职到位。但实际施工过程中,受地质复杂性、施工人员技术水平,责任意识等影响往往出现管理上的偏差,实际工况与设计假定的条件有所偏差,此种情况下,如设计单位过度优化,预留的安全储备过小,则会造成结构局部发生变形,严重的造成整体结构上浮。另一方面,现阶段工程往往由于拆迁等因素影响或整体工程分期施工,对局部工程抗浮条件考虑不足,当后续工程不能及时跟进,不能提供足够的抗浮力可能造成前期工程不能正常使用或降水不能及时停止,增加成本,如业主单位人员疏忽,甚至按经验提前终止降水,也可能造成地下室上浮和结构损坏。

建设单位从经济考虑对设计进行变更,如减小基坑尺寸、缩小基础外挑尺寸、将回填材料私自变更等,取消地下室底板的抗浮回填层等均可能造成抗浮力的不足。

施工单位在施工过程中对基础的施工不认真,抗拔桩设计依据不准确,施工单位未按规定设计施工,基础底板钢筋绑扎不到位,基础梁截面不足,基础底板厚度不足等均可能造成地下室底板地浮力下的抗力不足,造成结构上浮、或防水底板表面开裂或上拱变形过大。

4 施工中应注意的问题

地下结构物上浮须有足够的浮力才能发生,若施工现场持续进行抽水并将地下水位控制在可接受的范围内,则地下室上浮将不可能发生。但地下室结构体施工过程中施工人员警戒心低,可能因疏忽或抽水意外停止,造成地下水位陡然上升而导致上浮,或遇暴雨,短期间雨量过大,排水系统无法排水,致使地表水四处窜流,并沿着地下室外墙及基坑周边到达基础底板面,短期间形成巨大的水浮力而造成结构体上浮,因此施工过程中,应做好基坑周边的排水措施,防止地表水流入基坑内,同时,在基坑内应预留必要的集水坑,设置相应的抽水设备,在遇紧急情况时可以基坑内的积水及时抽出,减小结构物受到的水浮力,第三,还要设置必要的发电设备,防止突况下断电,造成抽水设备不能正常运转。

5 结语

抗浮设计作为工程设计的一项重要内容,尤其对于地下结构空间大,地上层数少和地上层数多但地下为大底盘的的建筑物应作为重点设计,此类建筑最易发生因抗浮力不足而造成的结构物上浮、底板上拱及局部因浮力作用开裂变形破坏等事故,在设计中应对抗浮设计考虑全面,预留足够的抗浮储备。在施工中,施工单位也应重视抗浮措施的施工及施工过程的抗浮,采取有效的降、排水措施,严格按设计及施工规范施工,降水停止时及时观测,发现问题及时处理,基坑回填土应确保回填土类别符合设计要求,回填压实质量满足设计要求,以为结构物提供足够抗浮摩擦力。

参考文献:

[1]《岩土工程勘察规范》(GB50021-2009).

[2]《建筑结构荷载规范》(GB50009-2012).

[3]《全国民用建筑工程设计技术措施》(结构).

第6篇

关键词:地下室上浮;问题原因;预防措施;补救方法

中图分类号: U45文献标识码:A

一、前言

正常基础与地基之间是压力,当地下水汇聚到基坑中,使得基坑内有水此时就会存在浮力(F=γhA)问题,当上部荷载P<F(浮力)时就会发生地下室上浮现象。在使用或者施工过程期间,如果地下水汇聚到基坑中,使得基坑内有水,此时就存在浮力问题。同时各种土壤(粘土、沙土或高风化的岩石)只要有空隙形成联通,缝中的水形成水迳,水越积越多就会有水压力进而产生浮力,就很有可能因为浮力过大而导致地下室上浮。

二、危害性

从大量的例子中我得出了地下室上浮的三种形式;同时也从中概括总结了地下室上浮的损害。

1、局部抗浮失效,结构每个单元的重力都大于水浮力,多发生在地下室底板承载力不足处。质量分布均匀,层高较高,层数较多板较薄配筋较少。

2、局部整体抗浮失效,结构部分区域重力大于水浮力,部分区域小于水浮力,部分区域发生的上浮现象。

3、整体抗浮失效,结构任意单元的重力都小于水浮力,地下室水浮力使结构整体向上位移的现象。

不论那种抗浮问题,在这我简单的将其危害总结为四点

1、使用问题,柱子的倾斜过大、板起拱过大;裂缝产生严重漏水影响使用;隔墙等构筑物被挤裂挤碎等。

2、结构问题,梁柱等主要受力构件受到较为严重的破坏使其承载力降低;顶板有时候也会因为变形过大而出现结构性的裂缝等。

3、耐久性问题,裂缝导致混凝土碳化加快;钢筋的锈蚀也加快;这些都直接影响到地下室的适用寿命。

4、经济问题,只要出现了地下室上浮问题就需要补救。此时,鉴定加固的费用、延后投入使用或影响使用所带来的损失等就随之而来。

综上所述,找到导致地下室上浮问题的原因和补救措施就十分必要了。

三、原因分析

导致地下室出现上浮问题的原因是非常多的,在阅读的大量文献后本人进行了总结,目的是找出其中比较重要的和比较常见的原因供设计、施工、组织、监理等技术人员参考。

1、地下室地下空间发展不是很久。2、基础的持力层的复杂性。3、软件即电算设计的可靠性问题。4、锚杆、锚桩加固规范不统一等问题。5、环境等外在条件不可预见性。6、详勘报告的误导。7、设计上的问题。8、施工不当。监理要求不够及时严格。

综上所述,导致地下室上浮的原因多种多样,根据所搜集的实例资料、研究文献等,下表3.1是各种因素在总的所有因素中所占的比重。

表3.1各因素百分比

四、防治措施

防止产生地下室水浮力的措施可从大的方向概括为两大类:一种为抗力平衡方法;一种为浮力消除方法。抗力平衡法就是问了增大方向向下的力,顾名思义就是想方设法的通过增大上部结构物或者构筑物的重量来压住水浮力,亦或是通过下拉法(包括锚杆及抗拔桩等的下拉作用)来提供抗浮力。而消除浮力法是为了减小对地下室向上的力的作用,其主要就是做好排水减小水浮力。

(一)防止措施主要从以下五部分着手:

1、勘察。勘察单位一定要履行好自己的职责,对于自己所负责工程地区的地质条件在勘察过程中不但要把握好土层地质的特点,特别要勘明地下水的详细情况,弄清是否有暗流流径。同时地下水位的给顶关乎抗浮水位的选取,要确保严格按照现行规范给出地下水位高度。

2、设计。设计人员要综合考虑结构自身和地质勘察报告中场地地质及水文地质条件来决定基础类型。必须是有经验的设计人员来执行设计,才能准确的取定抗浮水位安全系数。

3、施工。大多施工单位或者负责人缺少对施工阶段本地自然条件与施工因素的思考,防水、排水措施设置不够完善;同时要有应急措施,防止突然气候、强降水的来临,做到有备无患;在一个要明确施工中停止降水的时间和阶段,严禁提早停止排水和降水。

4、监理。监理人员要履行好自己的职责,对于不按照正常工序的施工现象一定要叫停,要求其整改完善。

5、后期管理。后期管理可以设置溢水孔来防止突然降水和地下水的积聚;同时要定期检查地下室排水措施的使用情况,确保其处于可用状态。

(二)治理措施

1、抗浮锚杆方法。抗浮锚杆在地下室底板受到严重破坏时,此时的地板已经无法与锚杆进行最有效的连接,抗浮锚杆的作用不能得到完全发挥,此时不宜使用此法。

2、抗拔桩下拉法设计。抗浮桩尽量嵌入坚硬而埋藏较浅的岩石中,由于施工限制抗拔桩一般入岩不深,要进行桩底端处理,不能入岩的只能依靠摩阻力抗拔,此时需要增加桩的长度。要特别注意抗拔桩只能由人工挖孔或机械成孔的灌注桩。

3、摩擦抗浮法。土壤与地下结构物之间存在摩擦力,这种力量可以抵抗地下室的上浮。而该力的大小依土壤的侧压力及各土层的摩擦情况而定,但是这种侧压力的大小很难准确确定,所以它的可靠度不高,如需采用需要提高其可靠系数。若地下水不时的变动,这种方法的适用性就会受到很大程度的限制。

4、延伸基板法。延伸基板法是将地下室结构的基板向外延伸而形成翼板,由翼板承托覆土以抵抗上浮力。这种方法是相当有可以增大上部结构负重,但为了要延伸基板而形成翼板,开挖范围将因而加宽,土方和使用面积也会相应的加大,所以一般只适用于场地不受限制的规模较小的结构的抗浮,否则是不宜采用的。

5、补缝处理。先降水,代裂缝稳定后修补结构裂缝,渗水处裂缝处理应先做样板,确认治理效果较好时再继续施工。

6、排水处理。当地下室发生上浮问题后一般都要及时的进行临时处理。在地下室底板上钻孔使水流出以减小水压力;在地下室四周开挖若干集水井,持续降水。这种排水处理方法是典型的浮力消除法,可以起到立竿见影的效果,减小其进一步恶化的可能性,其抽水费用不高,且是最治本的方法。

7、加大荷载法:在地下室的内部或者地下室顶面加上土体或者其他材料荷载,来增大上部荷载的抗浮力左右。当无空间加载或者影响其他功能时就不宜使用了,因此此方法局限性较大,很多时候可能会影响结构的功能使用。

当在选择治理加固措施时,要综合考虑施工工艺,技术特点,适用范围和造价成本因地制宜的选择加固措施。

参考文献:

[1] 《建筑地基处理技术规范》--(JGJ79-2012):

[2] 《建筑地基基础设计规范》--(GB50007-2011):

[3] 张旷成,丘建金.关于抗浮设防水位及浮力计算问题的分析讨论[J].岩土工程技术。2007,21(1):15-20:

第7篇

关键词:上浮 抗拔桩 加固 方案

中图分类号:TU473.1 文献标识码:A 文章编号:1674-098X(2015)10(c)-0176-02

1 工程简介

该工程位于上海市闹市区,为一新开发的高档楼盘,所有的建筑均为高层住宅,其中地下车库的面积为3.6万m2,地下室为框架结构,柱距为8.1 m×8.1 m,地下室高度为4.4 m,顶板为梁板结构,板厚150 mm,上面设计覆土厚度为1.5 m,基础底板为筏板基础,底板厚度为500 mm,每个柱底有一柱墩,柱墩平面尺寸为4.0 m×4.0 m每根柱下有两根抗拔桩,每根抗拔桩的设计承载力为420 kN,顶板结构布置及桩的布置见图1、图2。

上海市2015年6月初,雨水特别集中,这段时间,雨水过后,地下水位最高处位于室外地面以下100 mm,基本上与室外地面持平,按照常规施工顺序若提前进行了地下室顶板覆土,则在上部重量与抗拔桩同时工作的前提下可以保证结构的安全。但是由于施工条件的限制,覆土不能够提前进行,因此,为了防止地下室上浮并为了保证抗拔桩的安全必须在施工中进行降水,但是总包单位没有估计到这段时间的雨水来势凶猛,没有及时进行降水,因此,大雨过后发现有局部区域出现了大范围上浮,最大达到400 mm,伴随着上浮出现了结构开裂、混凝土损伤、构件破坏等现象,属于重大的工程事故。(如图3)

2 原因分析及计算复核

(1)原因分析。

由于在高水位下未及时进行降水,同时由于地下室顶板的覆土没有进行,因此,在地下水浮力的作用下,由结构自重、抗拔桩的抗拔力作用不能够平衡水浮力的作用,因此,产生了地下室上浮的现象。

(2)计算复核:以下为未覆土时抗拔桩的计算复核。

①顶板:(抗拔工况)地库顶板(200 mm)自重: 25×0.20=5.0 kN/m2。

底板:地库底板(500 mm)自重:

25×0.50=12.5 kN/m2

梁、柱折算荷载:238.35 kN

②作用在地下室结构上的活载:

顶板活载:10.0 kN/m2 底板板面活载:2.5 kN/m2

③底板水浮力:(±0.000绝对标高:4.200 m)。

1)底板板底相对标高为:-6.700 m。

(1)抗浮计算取高水位(抗浮设防水位),高水位相当相对标高-0.800 m。

F浮k1=[-6.700-(-0.800)]×10=5.900×10=-59.0 kN/m2。

④每一根桩顶所受上拔力标准值:

kn

经过计算得出确实证实了抗拔桩所承受的拉力已经超出抗拔力设计值,这也是出现工程事故的原因。

3 针对出现的各种情况所采取的相应处理方案

由于建筑为高档住宅区并且位于闹市区,出现这种情况后业主、总包、设计单位、安全鉴定单位、加固单位等进行多次协商,制定的方案原则:尽量以最小的动静、最经济的方案达到最安全的目的。

(1)针对抗拔桩上浮的处理:由于此区域的抗拔桩上浮最大达到400 mm,理论上来说抗拔桩应该已经破坏了,由于技术原因若进行抗拔桩的检测需要耗费巨大的人力和物力,结果也不一定满意,因此,最终达到的共识是假定抗拔桩已经失效,通过增加结构自重的方案将重力与浮力相平衡,采取的方案是增加基础底板的厚度,由原500 mm厚度增加到1000 mm,经计算可以达到设计意图。

(2)针对梁柱节点已经破坏的处理方案:由于部分梁柱节点混凝土已经酥松并破坏,节点已经不能够承受外力,采取的方案是混凝土替换的方案,在替换之前先进行结构卸载,然后采用高强灌浆料进行灌注,保证节点的整体性。

(3)针对梁柱节点有缺陷的处理方案:对于没有破坏的节点,主要出现一些不规则裂纹的节点,采用整体外包钢板的处理方案,增加节点的整体性能,其中包括梁柱节点及柱脚的加固处理。

4 加固效果及结论

针对该工程出现的这种事故,经过采用该论文的加固措施,无论从加固效果及视觉效果均达到了各方的满意,施工速度很快,并且极大的节约了项目投资,加固以后上海又经历了几次大型降雨,均没有出现任何问题,并且覆土以后也没有出现结构的二次损伤,结果证明采用的方案是安全合理的。

5 结语

该工程采用多种加固手段对受损结构进行了加固,通过严格的计算及针对性的处理方案,使得工程事故得到了圆满的解决,该文中的加固方法及思路值得同行借鉴并参考。

参考文献

[1] 建筑抗震鉴定加固手册[M].北京:中国建筑工业出版社,2002.

第8篇

河南中级职称论文字数

每个刊物的字数都是不一样的,要是发省级刊物的话一般字数在2000字到3000字之间不等,一般多数在2500字左右

河南中级职称论文

轨道交通的轨道施工应用

摘 要:通过轨道的特征来介绍轨道 交通的施工流程及操作要点。

关键词:轨道交通;梯形轨道

1 前言

根据城市轨道交通的不断 发展,各大城市已进入到城市建设的,因为城市轨道交通关键在于城市居民区、商业区等繁华地段,因而需要满足可靠性高、成本低、维修少、振动低、噪音低、抗振性能高等,普通整体道床已经无法满足需求。

梯形轨枕轨道系统是由PC制纵梁和钢管制的横向联接杆构成的,形似扶梯,因此称之为梯形轨道,它是纵向轨枕的一种,具有既能够发挥轨枕本来的特性,大幅度提高荷载的分散能力,又可补充钢轨本身的刚性和质量的性能特点,可以说是轨枕的一种革新形式。

据统计,铁道的维护管理成本占总营运费的1/3,越是高速对轨道的整备条件的要求越高,梯形轨道系统通过改造车辆,轨道结构相互作用系统的动力特性,能够达到减少20%~30%的维护管理成本,这对促进经营改善起到很大作用。同时,车辆轨道结构相互作用系统动力特性的改善,能明显地减轻车辆轨道系统的冲击轮重。因此,在维护管理及环境问题的解决上有很大作用。

2 工法特点

梯子形轨道施工整体道床一次性成型,简化施工工艺,提高施工效率,每工日施工进度达到50m~75m。梯子形轨道施工后梯形轨枕能有效浮置,对其减振降噪性能有保障。

3 工艺原理

梯子形轨道施工采用“散铺法”施工工艺,施工前根据设计的轨道高度对梁面实际高程进行复核,当梁面高程不能满足轨道设计高度要求时,需要对桥面进行凿除处理。然后进行基底凿毛、清理工作,按照整体道床施工工艺进行铺轨基标测设,并用墨线在桥面上标记出轨道中心线、道床边线等,绑扎L形支座钢筋,然后吊装梯形轨枕就位,粘贴泡沫板,上扣件及钢轨,利用支承架调整轨道状态,再支设支座模板,检查轨道状态符合设计及规范要求后,利用混凝土输送泵进行支座混凝土一次性浇注,养生待混凝土强度满足要求后拆除模板,人工清除泡沫,从而形成浮置状态梯子形轨道,梯子形轨道施工断面。

4 施工操作要点

4.1 梁面高程、预埋筋的检查及梁面凿毛处理

在梯子形轨枕就位前完成梁面高程复核、预埋筋的位置和高度检查工作,若不符合要求要及时进行处理。梁面高程不能超过设计值2cm,对预埋钢筋高度、数量、位置也进行全面检查,对歪斜的钢筋要进行调直、锈蚀钢筋要进行除锈处理。为加强支座混凝土与桥面混凝土的有效结合,防止通车运营后支座混凝土在长期振动过程中与桥面剥离,对L形支座范围内桥面进行凿毛处理,凿毛点位间距为30~50m m,凿深5~10m m,凿毛后用高压水或高压风将基底面冲洗干净。

4.2 基线测设、放线

铺轨基标及加密基标的测设与普通高架道床相同,控制基标在直线地段每120m 设置一个;曲线地段每50m 设置一个;曲线起止点、缓圆点、圆缓点处各设置一个;加密基标在直线上每隔6m、曲线上每隔5m 设置一个;水准点间距宜为100m,标桩应与道床同级混凝土埋设牢固。另外根据梯形轨枕设计图纸利用墨线将L底座及轨枕位置标记在梁面上,梯形轨枕的编号、轨枕面标高也标记在对应位置处。

4.3 L形支座钢筋绑扎

支座钢筋采用基地集中下料,现场绑扎的施工形式,钢筋加工后集中存放,并将钢筋分类编号、做上明显标记,确保上料运输过程中钢筋种类不混乱。现场按图纸要求进行支座钢筋的绑扎,钢筋交接点用铁丝捆牢,钢筋铺设顺序为:底层、中间层、面层、板块端部,最后绑扎特殊部分加固钢筋,钢筋绑扎过程中严格按图纸要求设置好预埋管线。

4.4 梯形轨枕吊装、架设、调整

梯形轨枕吊装前,将WJ- 2 型扣件的橡胶垫板、铁垫板按要求安装在轨枕上。用起吊设备将梯形轨枕吊装至梁面对应位置上方,在梯形轨枕的凸形挡台吊装孔位置安装支架,移动轨枕使其基本就位,而后放置在梁面上。梯子形轨枕吊装时,其起吊点位四点,位置设在梯子形轨枕两端的连接钢管端部。轨枕就位后,可在梯形轨枕两端部的表面适当位置处,用红油漆做标记作为轨枕调整参照点,用千斤顶或专门工具调整轨枕的平面位置和高低,当达到要求后,将轨枕固定。

4.5 粘贴泡沫板

梯子形轨枕主要依靠减振垫及缓冲垫满足减振降噪作用,为保证施工完毕后的梯子形轨枕能与L形支座有效浮离,最大程度发挥梯子形轨道的减振降噪作用,在梯子形轨枕就位前,在梯子形轨枕底部(减振垫范围外) 用厚30mm 的泡沫板满贴,在梯子形轨枕外侧面(缓冲垫范围外) 用15mm 泡沫板满贴,泡沫板的粘贴效果直接影响到梯子形轨枕的减振效果,为保证泡沫板有效粘贴并防止施工过程中脱落,采用胶水先将泡沫板粘贴在轨枕上,然后再利用胶带进行绑扎加固,在浇筑混凝土前全面进行检查,防止泡沫板破碎和脱落。另外在粘贴泡沫板的时候注意泡沫板边缘与轨枕边缘平齐,粘贴的顺序是先粘贴底部的泡沫板,然后粘贴侧面的侧面的泡沫板。

4.6 钢轨及扣件安装

放置橡胶垫板I,将钢轨拨入铁垫板的承轨槽内。扣件组装时,钢轨内侧采用10号轨距垫,外侧采用8号轨距垫,安装弹条,按扣件扭矩要求拧紧T形螺栓。

4.7 轨道几何状态调整

钢轨及扣件安装完毕后,按照 《地下铁道工程施工及验收规范》要求对轨道几何状态进行测量和精调,注意不得使用轨枕支撑架的丝杠调整,使用千斤顶或其他专用工具进行调整,调整到位后将轨枕固定。

4.8立模板,浇筑混凝土

待钢轨精调完毕后,用高压水或高压风清洁梁面,立L形底座模板,进行混凝土的浇筑与养护,按《铁路混凝土与砌体工程施工规范》执行,另需注意以下事项:

从L 形底座的侧模上方浇筑。先浇筑 L 形底座水平部分,再浇筑垂直部分。浇筑时间间隔等要求按规范执行,并不得导致水平部分混凝土变形。

L形底座混凝土浇筑时,防止混凝土与梯形轨枕的减振垫之间出现空隙。

混凝土终凝后,及时松开扣件及接头夹板,以防止钢轨胀缩对混凝土造成损坏。混凝土浇注质量直接影响到梯子形轨道的减振效果及轨道状态,如果混凝土浇注振捣不密实,则梯子形轨枕减振垫与混凝土间出现空隙,直接影响到梯子形轨道的减振效果及轨道状态。

4.9 清除泡沫板

支座混凝土达到设计强度后,人工将轨枕底部及外侧面的泡沫板清除,从而使梯子形轨道依靠减振垫和缓冲垫浮置在L形支座之上。

5 结语

随着城市 经济和生活的 发展,人们观念的更新,我国的地铁建设也面临着新的发展。地铁车站内部装饰装修和城市综合开发将密切结合是必然的趋势。当然,要根据当时当地的具体情况和条件来确定其适当的规模。同时,创造出良好的地下环境和更具特色的 中国地铁车站建筑,将是我国建筑师为之奋斗的任务之一。

参考 文献:

[1] 铁道标准设计,北京地铁梯形轨道工程试验段考察报告.2006.

看了“河南中级职称论文字数”的人还看:

1.2017年中级职称论文字数

2.工程类中级职称论文字数要求

3.副高职称论文有字数要求吗

第9篇

关键词隧道上浮压载

中图分类号:U45文献标识码: A

Float treatment scheme for a tunnel engineering

YANG JIAN

(CHINA RAILWAY SIYUAN SURVEY AND DESIGN GROUP CO.,LTD,WUHAN 430063)

AbstractSome sections of the U-groove floated becase of the buoyancy when backfilled it, in the entrance of a new four-lane railway tunnel. As a matter of fact, this can seldom be seen in railway tunnel project. Coming with an example of the ralationship between tunnel structure and buoyancy in this paper, some treatment program should be proposed after considering the analysis of the construction, in order to furnish reference for similar projects.

Keywordstunnel; float; ballast

1工程概况

1.1隧道地貌及设计概况

某隧道位于城市境内,为避免铁路对机场导航台造成电磁等影响而修建;隧道内四线并行,全长3750m,其中进口U型段长940m(共21节),矩形段长2330m(共40节),出口U型段长480m(共11节)。

隧道穿越剥蚀残丘、丘间谷地及冲积平原区。进口地势较高,为第三系地层出露;洞身及出口为冲积平原区,地表主要为菜地、鱼塘,小河涌。

隧道以半径1600m圆曲线绕避机场,其余地段均为直线,隧道内设“Ⅴ”字坡。

隧道采用明挖法施工,基坑宽度29~33.4m,最大深度18.6m。

1.2上浮段(JK10~13节)地质及地形地貌概况

上浮段由地表向下依次为:硬塑状粉质黏土层(渗透系数1.618×10-5cm/s)、全风化泥质粉砂岩(砂岩)(渗透系数3.040×10-6cm/s)、强风化泥质粉砂岩(砂岩)、弱风化泥质粉砂岩(砂岩)。

地下水为贫水~弱富水,赋水性一般较差,地下水来源为大气降水、地表水入渗补给。

上浮段地面标高13.7~3.67m,地表纵向综合坡度1.4%,隧道设计内涝水位3.8m。

1.3上浮段(JK10~13节)设计情况

考虑隧道进口U型槽段地势较高,且地层以全~弱风化砂岩为主,透水能力弱,地表降水可以顺纵坡排放等因素,设计采取结构外设置排水系统控制水位的方案。

①地表降水处理

地表回填后设1%横坡,将雨水收集至两侧排水沟中沿纵向排放,雨棚施工后对雨棚屋檐下方地表采用C20混凝土地坪防冲刷,见图1。

图1地表排水横面图

②回填要求

结构两侧基坑回填应分层夯实,每层层厚不大于0.3m,左右对称回填,回填土要求密实度K≥0.9,回填后其抗渗系数不大于1x10-7cm/s,静止侧压力系数不大于0.55。

③外部排水系统设计

在主体结构两侧贴壁设置的外排水系统(由干砌片石盲沟+排水盲管外包土工布组成),表水及地下水渗入后,在一定标高位置收集渗入水,通过排水管向洞身地表低洼处排放。外部排水系统标高以地面标高5m进行控制,并以5‰的坡度向隧道进口方向延伸,直至隧道起点,以保证盲沟中渗水可以顺利排出地表,引入临近沟渠,见图2。

图2隧道外部排水细部图

④JK10~13节抗浮设计

地表排水顺畅及外部排水系统发挥作用后,JK10、JK11节结构自重可满足抗浮设计要求;JK12、JK13节根据控制水位采用自重+抗拔桩抗浮。施工期考虑基坑降水、排水,直至主体结构施工完成并满足抗浮要求。

2上浮情况说明

2.1上浮段施工情况

JK10~13节主体结构于2012年12月-2013年10月期间施工并回填完毕,见图3。

图3基坑回填情况

2.2JK10~13节上浮及结构开裂情况

2013年11月6日起,通过侧墙埋设的沉降观测点观测发现, JK11、JK12节主体结构有比较明显的上浮现象,JK10节、JK11节相邻处最大上浮11.2~13.7cm,JK11节、JK12节最大上浮10.1~14.5cm,上浮形成错台见图4。

图4上浮错台情况

上浮造成JK12节、JK13节相交处U型槽侧壁顶端挤裂,见图5。

图5侧壁顶挤裂情况

2.3上浮原因

U型槽施工完毕后,在槽外回填时未施工外部排水系统,回填料松散且包含建筑垃圾,导致槽外排水不畅,引起槽外周边地下水位局部升高。

3上浮处理方案

3.1排水泄压

在JK10~13节变形缝附近、近水沟底部位置设置钻孔进行排水泄压,结构处理完毕后泄水孔采用C40微膨胀细石混凝土进行封堵,封堵后对泄压孔范围涂刷水泥基结晶防水涂料。待水压稳定后对JK10~13节结构左右两侧进行同步分层卸载排水,卸载至原设计基坑底部,并在基坑四周辅以集水井降水,卸载过程注意保护主体结构,卸载后的地面及坑底应能保证雨水可以自排不淤积。

3.2加强监控量测

加密U形槽结构沉降监测频率,增加U形槽结构侧壁变形缝处位移观测点,布置纵向及横向沉降监测点,监测点布置间距5m,以掌握底板变形形态。

3.3洗砂作业

对上浮段底板钻孔洗砂作业,钻孔直径φ50mm,每节孔位布置见图6,顺序由中间向两边逐孔进行,单孔建议水压力0.05~0.1MPa,洗砂作业时必须在基坑两侧低点设置集水井,并配备污水泵,随时抽排结构底部冲洗出来的泥沙,并实时进行沉降位移量测,发现异常时必须立即停止冲洗。洗砂结束标准:当侧墙外底部流出清水,无泥沙带出时。

图6 每节钻孔布置图

3.4压载复位

根据监测的底板残留变形结果,对JK10~13节采用压载复位,压载采用条形荷载或局部点荷载进行,如沙袋或自卸车等,加载分区域进行,由上浮残存大处向上浮残存小处进行;压载按三级进行,每级加载值20kPa,每级压载时间不小于6小时,并实时监测沉降数据,观察结构变化,确定是否进行下一级加载。

3.5底板下低压充填注浆

由于结构上浮后隧底发生扰动,为确保运营期底板稳定,在压载复位完成以后,在加载条件下对底板底部进行低压充填注浆,注浆利用洗砂钻孔。注浆采用普通水泥单液浆,水灰比W: C=0.6:1~1:1,注浆压力宜取0.02~0.05Mpa,由底板中间向两侧边墙逐孔进行,注浆结束条件:注浆压力逐步升高至设计终压并继续注浆10min以上或临近孔出现返浆;注浆孔采用C40微膨胀细石混凝土进行封堵,封堵后对注浆孔范围涂刷水泥基结晶防水涂料。

3.6裂缝修补

对侧墙挤裂部分进行凿除重新浇筑,凿除剥离混凝土,并对新旧混凝土交界面进行清洗,充分湿润后,浇筑强度高一等级的混凝土,养护至规定强度;凿除剥离混凝土后如仍有裂缝,应先采用灌浆法对裂缝进行修补后再进行混凝土浇筑,灌浆材料采用水泥浆液或EAA补强防渗材料。

3.7补强结构

采取侧墙及底板植筋后形成矩形结构,然后对矩形结构进行回填压载,保证运营期抗浮安全。

4处理效果评价

对变形缝钻孔泄压时瞬间从孔内喷出约1m高水头,后随时间推移水头不断降低至底板面,截至2014年2月20日,JK10与JK11节相邻处残余上浮约1.53~3.67cm,JK11与JK12节相邻处累计上浮约2.92~3.98cm,目前正在进行后续上浮处理施工,根据量测情况判断,所有措施到位后,残余上浮量可以控制在能接受的范围内。

5结论及反思

上浮处理在工业与民用建筑行业内较为普遍,当发生地下结构上浮事故时,应首先尽快采取措施增加压重和降低地下水位减小浮力,停止上浮趋势,然后分析地下结构上浮是否造成结构的破坏,破坏的程度是否可以修复,并及时的实施加固措施。常见的上浮处理方法有加载、排水、洗砂等方法[1]。与工民建中的地下室上浮处理的洗砂作业不同,由于本次上浮的U型槽采用放坡开挖,洗砂作业在左右侧卸载后利用底板钻孔进行,冲洗进入隧底的泥沙为压载复位创造有利条件;洗砂作业与压载复位作业可以根据实际情况进行顺序调整或反复操作,达到消除上浮的目的。

隧道抗浮一般应按地面或内涝水位进行设计,当地形地势等条件许可时,可采用控制水位方案,但应考虑实际施工条件能否达到设计要求,并对施工工序提出严格要求;另外采用的控制水位方案应考虑到运营过程中可以方便进行检修、清淤,从而避免运营阶段因排水不畅造成结构上浮,影响运营安全。

参考文献

[1]陈飞铭. 地下室上浮破坏及处理措施研究:[硕士学位论文]. 重庆:重庆大学. 2004.

第10篇

【论文关键词】高层建筑; 应力释放;后浇带;微膨胀混凝土 ; 养护

中途分类号:[TU761.4]文献标示码:A 文章编号:

随着我国城市化进程的加快,出现越来越多的高层建筑。高层建筑的地下室工程中设置后浇带是工程施工中的一个关键环节,施工前应制定专项施工方案,必须根据设计、规范及工程具体实际情况,合理设置后浇带位置。做到有针对性地对地下室后浇带的施工处理,确保后浇带的施工质量。

1、工程概况蓬莱市新一百工程,总建筑总面积为29000m2,地上12层共26600m2,地下一层2400m2,筏板基础,基础埋深-6.5m;本工程地下室底板采用厚度为90cm的C35、P6抗渗混凝土,壁板为30cm的C40、P6抗渗的混凝土,地下室顶板为40cm厚的C35、P6抗渗的混凝土。地下室底扳、侧墙和顶板均设置横向两道后浇带,后浇带宽度为1000mm,位置在5轴、10轴成平行设置,后浇带总长度合计约为500m。底板与顶扳的钢筋均为双层双向,中间设有一道钢筋网片。后浇带位置的钢筋密集,该处位置的钢筋搭接长度为950mm,并有3mm厚的止水钢板。

2、后浇带的主要功能

2.1解决沉降。

高层建筑和裙房的结构及基础设计为整体,但在施工时用后浇带将两部分暂时断开,待主体结构施工完毕再浇注连接部分的混凝土,将高低层连为整体。

2.2减小温度收缩影响留出后浇带后,施工过程中混凝土可以自由收缩,从而大大减少了收缩应力。混凝土的抗拉强度可以大部分用来抵抗温度应力,提高结构抵抗温度变化的能力。

3. 后浇带的设置要求后浇带的设置应遵循“抗放兼备,以放为主”的设计原则。因为普通混凝土存在开裂问题,设置后浇缝的目的就是将大部分的约束应力释放,然后用膨胀混凝土填缝以抗衡残余应力。由于施工原因而需要设置后浇带时,应视工程具体情况而定,留设的位置应经设计单位认可。后浇带的间距应合理,矩形构筑物后浇带间距一般可设为30~40m,后浇带的宽度应考虑便于施工操作,并按结构构造要求而定,一般不少于800 mm,本工程后浇带宽度设置为1000mm。后浇带处的梁板受力钢筋必须贯通,不许断开。如果梁、板跨度不大,可一次配足钢筋;如果跨度较大,可按规定断开,在补齐混凝土前焊接好。后浇带在未浇注混凝土前不能将部分模板、支柱拆除,否则会导致梁板形成悬臂造成变形。

4、后浇带的施工

4.1模板支设根据分块图划分出的混凝土浇注施工层段支设模板(钢丝网模板),并严格按施工方案的要求进行。

4.2地下室顶板混凝土浇筑1)后浇带两侧的结构混凝土浇注厚度应严格按规范和施工方案进行,以免因浇注厚度较大造成钢丝网模板的侧压力增大而向外凸出,导致尺寸偏差。2)采用钢丝网模板的垂直施工缝,在混凝土浇注和振捣过程中,应特别注意分层浇注厚度和振捣器距钢丝网模板的距离。为防止混凝土振捣中水泥浆的严重流失,应限制振捣器与模板的距离。采用Φ50mm振捣器时间距≮40cm;采用Φ70mm振捣器时间距≮50cm。

4.3浇筑地下室顶板混凝土后垂直施工缝的处理1)对采用钢丝网模板的垂直施工缝,当混凝土达到初凝时(用手压混凝土表面能出现指纹),用压力水冲洗(水应呈雾状),清除浮浆、碎片并使冲洗部位露出骨料,同时将钢丝网片冲洗干净。混凝土终凝后将钢丝网拆除,立即用高压水再次冲洗施工缝表面。2)对木模板处的垂直施工缝,可用高压水冲毛,也可根据现场情况和规范要求,尽早拆模并及时用人工凿毛。

3)对于已硬化的混凝土表面,要使用凿毛机处理。4)对较严重的蜂窝或孔洞应进行修补。5)在后浇带混凝土浇筑前应用喷枪(用水和空气)清理表面。

4.4地下室底板后浇带的保护措施1)对于底板后浇带,在后浇带两端两侧墙处各增设临时挡水砖墙,其高度高于底板高度,墙壁两侧抹防水砂浆。2)为防止底板周围施工积水流进后浇带内,在后浇带两侧50cm宽处用砂浆做出宽5cm、高5~10cm的挡水带。3)后浇带施工缝处理完毕并清理干净后,顶部用木模板封盖,四周设临时栏杆围护,以免施工过程中污染钢筋、堆积垃圾。4)地下室外墙竖向后浇带的保护措施可采用砌砖保护地下室底板后浇带的施工质量直接影响本工程的防水效果,为此在底板、筏板砼浇筑完毕后,用九夹板封盖,并派人检查,以防杂物落入其中,在两侧砼浇筑60天后,用高一级掺12%UEA微膨胀剂的微膨胀混凝土浇筑密实,浇筑前应进行钢筋除锈,清除浮浆、碎石等杂物,并冲洗干净。

4.5地下室顶板后浇带混凝土的浇筑1)不同类型的后浇带混凝土的浇注时间不同。伸缩后浇带视先浇部分混凝土的收缩完成情况而定,一般为施工后42~60d;沉降后浇带宜在建筑物基本完成沉降后进行。在一些工程中,如果设计单位对后浇带的保留时间有特殊要求,应按设计要求进行保留。2)浇注后浇带混凝土前,用水冲洗施工缝,保持湿润24h,并排除混凝土表面的积水,在施工缝处铺一层与混凝土内砂浆成分相同的水泥砂浆。3)后浇带混凝土必须采用无收缩混凝土,可以采用膨胀水泥配制,也可用膨胀剂和普通水泥配制,混凝土的强度应提高一个等级,其配合比通过试验确定。宜掺入早强减水剂,且应认真配制,精心振捣。膨胀剂的掺量直接影响混凝土的质量,因此,膨胀剂的称量要由专人负责。所用膨胀剂和外加剂的品种,应根据工程性质和现场施工条件选择,并事先通过试验确定配合比,适当延长掺加膨胀剂的混凝土的搅拌时间,以使混凝土搅拌均匀。4)后浇带混凝土浇注后仍应浇水养护,养护时间≮28d。

4.6地下室底板、侧壁后浇带的施工地下室因为对防水有一定要求,所以后浇带的施工是一个非常关键的环节。在GB502082-2002《地下防水工程质量验收规范》中也有专门的要求。其中第4.1.9条规定:防水混凝土的施工缝、后浇带、穿墙管道、埋设件等设置和构造,均须符合设计要求,严禁有渗漏。该条为强制性条文。另外,4.7.5条对后浇带的防水措施也作了如下要求:1)后浇带应在其两侧混凝土龄期达到42d后再施工;2)后浇带的接缝处理应符合规范4.7.4条施工缝的防水施工的规定;3)后浇带应采用补偿收缩混凝土,其强度等级不得低于两侧混凝土;4)后浇带混凝土养护时间不得少于28d。在地下室后浇带的施工中必须严格按照规范规定的要求进行处理。

第11篇

关键词: 高层建筑; 基础设计; 基础选型; 分析方法

中图分类号: TU97 文献标识码: A 文章编号:

1 基础设计要点

任何建筑物基础设计前必须掌握足够的资料,这些资料包括两大部分: 一部分是地质资料,另一部分是有关上部结构资料。对这些资料的要求可根据需要而有所区别。对于高层建筑一般要求更详细的资料,在分析地质资料时应注意对地基类型进行判别并考虑可能发生的问题,要研究土层的分布,查明地下水及地面水的活动规律,调查拟建建筑物周围及地下的情况,在分析上部结构时应特别注意建筑物的重要性、建筑物体型的复杂程度和结构类型及其传力体系。任何一个成功的基础工程都必须能满足以下各项稳定性及变形要求:

1) 埋深应足以防止基础底面下的物质向侧面挤出,对单独基础及筏形基础尤为重要。

2) 埋深应在冻融及植物生长引起的季节性体积变化区以下。

3) 体系在抗倾覆、转动、滑动或防止土破坏( 抗剪强度破坏) 方面必须是安全的。

4) 体系对土中的有害物质所引起的锈蚀或腐蚀方面必须是安全的,在利用垃圾堆筑地时,这点尤为重要。

5) 体系应足以对付以后在场地或施工几何尺寸方面出现的某些变化,并在万一出现重大变化时能便于变更。

6) 从设置方法的角度看,基础应是经济的。

7) 地基总沉降量及沉降差应为基础构件和上部结构构件所容许。

8) 基础及其施工应符合环境保护标准的要求。

2 基础的选型

基础结构的形式很多。设计时应选择能适应上部结构使用、满足地基基础设计两项基本要求以及技术上合理的基础结构方案。作为整体结构之一的基础,其不可替代的功能决定了基础设计除需满足强度和上部结构的其他要求之外,还应满足上部结构对基础结构的强度、刚度和耐久性要求。合理选择基础形式是结构设计很重要的阶段,天然地基上的筏形基础比较经济,宜优先采用,另外依据地质勘察情况还可采用箱基、桩基或采取复合地基形式。基础是否发生倾斜是高层建筑是否安全的关键因素。高层建筑由于质心高、荷载大,对基础底面一般难免有偏心,故在沉降过程中,建筑物总重量对基础底面形心将产生新的倾覆力矩增量,而此倾覆力矩增量又产生新的倾斜增量,倾斜可能随之增长,直至地基变形稳定为止。因此,为减少基础产生倾斜,应尽量使结构竖向荷载重心与基础平面形心相重合,当偏心难以避免时,应对其偏心距加以限制。《高层建筑混凝土结构技术规程》中规定,在地基土比较均匀的条件下,箱形基础、筏形基础的基础平面形心宜与上部结构竖向永久荷载重心重合。当不能重合时,偏心距 e 宜符合式( 1) 要求:e ≤ 0. 1W / A ( 1)式中 W―――与偏心距方向一致的基础底面边缘抵抗距,m3;A―――基础底面积,m2。

3 基础的埋深

高层建筑基础必须有足够的埋置深度,这主要是考虑了以下几方面的因素:

1) 增大基础埋深可保证高层建筑在水平荷载( 风和地震荷载) 作用下的地基稳定性,减少建筑的整体倾斜,防止倾覆和滑移,利用土的侧限形成嵌固条件,保证高层建筑的稳定。

2) 由于基础增大埋深,可使地基的附加压力减小,且地基承载力的深度修正也加大,则可以提高地基的设计承载力,减少基础的沉降量。

3) 增大基础埋深,可使地下室外墙与土体之间的摩擦力和被动土压力增大,从而限制了基础在水平荷载作用下的摆动,使基础底面上反力分布趋于平缓。

4) 地震作用下结构的动力效应与基础埋置深度关系较大,增大埋深,可使阻尼增大,结构的地震反应减小,而且土质越软,埋置深度越大,地震反应减小的越多。因此增大埋深有利于建筑物抗震。实测表明,有地下室的建筑地震反应可降低 20% ~30%。在确定基础埋深时,应结合建筑物的高度、体型并综合考虑地质条件及使用功能等条件的影响。基础埋深需满足如下规定:

1) 天然及复合地基,宜取1H/15( H 为房屋总高度) 。

2) 桩基础不计桩长,宜取1H/18。

3) 基础的埋深对房屋造价、施工技术措施、工期以及保证房屋正常使用等都有很大的影响。基础埋置太深,会增加房屋的造价; 而埋置太浅,通常又不能保证房屋的稳定性。因此,基础设计时应根据相关规范及实际情况选择一个合理的埋置深度。当基础直接搁置在基岩上时,在满足地基承载力、稳定性要求及其他要求的前提下,基础埋深可适当放松。当地基可能产生滑移时,应采取有效的抗滑移措施。

4) 箱型基础的埋深还应考虑抗浮设计水位的影响。

4 高层建筑基础常用类型的选取及比较

1) 筏型基础。筏基是目前高层建筑中常见的一种基础形式。其选取条件如下: ①当基础持力层无法满足上部结构的容许变形及地基容许承载力要求时,采用筏基可以增大其基底面积从而提高基础承载力、减小基底变形; ②高层建筑在水平荷载( 如: 风荷载、地震荷载等) 的作用下,采取筏基可以提高整体结构的刚度和稳定。

2) 桩基础。桩基础是目前高层建筑中另一种常见的基础形式。其选取条件如下: ①当浅表土层地基承载力无法满足上部结构承载力要求,而符合承载力要求的持力层土层在较深处时,宜采用桩基; ②天然地基承载力和变形不能满足要求的高重建筑物,或者天然地基承载力基本满足要求、但沉降量过大,需利用桩基础减少其沉降的影响,或在使用上、生产上对沉降量要求比较严格的高层建筑物。

3) 柱下独基。独立基础主要适用于小高层框架结构,当地基承载力较大,地基土性质分布均匀,柱间倾斜变形较小时采用。同时为增强整体结构及基础的刚度和稳定性,在纵横方向设置连系梁,连系梁按偏拉、压构件进行计算。

其他基础形式如箱形基础、十字交叉钢筋混凝土条形基础、桩筏基础等,可根据各种影响因素的具体情况,合理地进行选择。

5 基础设计的注意事项

随着经济的发展高层建筑的数量及其形式的多样化、复杂化也随之增长,这势必给高层建筑基础设计带来若干问题和困难,以下为基础设计中常见的几个问题。

1) 不重视地基基础的设计等级。 《地基规范》3. 0. 1条规定,根据地基复杂程度、建筑物规模和功能特征等条件,将地基基础的设计统一分为三个等级。而在 3. 0. 2 条规定,根据高层建筑地基基础的设计等级同时考虑地基变形( 在长期荷载作用下) 对上部结构的影响,地基基础设计

须满足如下要求: ①所有建筑物的地基承载力设计须满足要求; ②属于甲、乙级设计等级的建筑,应进行地基变形验算; ③属于丙级的建筑有 《地基规范》规定的 5 种情况

之一时,应作变形验算。

2) 抗浮设计时不区分实际情况即进行抗浮验算: ①抗浮验算时上部结构永久荷载须乘以分项系数,分项系数可根据 《荷载规范》或当地地区标准取值,验算建筑物抗浮能力应满足:建筑物永久荷载水浮力≥1. 0,其中,永久荷载取标准值,永久荷载与水浮力的分项系数按 《荷载规范》或参照 《北京细则》取值。②当结构基础设计需要采取抗浮措施时,应按工程具体情况区别对待。当高层建筑主体基础与裙房地下结构空间连成整体,均采用桩基,可采取抗拔桩来解决抗浮问题; 当主体与裙房地下结构空间未连成整体,采用天然地基会产生沉降差,则抗浮常采取配重( 配重材料通常采用素混凝土,重度大于等于 30kN/m3钢渣混凝土或砂石料) 的方法。

3) 设置地下室对基础设计与整体结构的影响不了解。①高层建筑设置地下室除了能增加建筑物的使用空间功能( 如作停车库、设备机房等) 外,还会对地基基础和地面以上的整体结构的受力性能有很大的贡献。地下室深基坑的开挖,对天然地基或复合地基的基础能起到很大的卸载和补偿作用,从而减少了地基的附加压力,增强了地基承载力的计算值。②地下室周边后期夯实的回填土对埋深较大的地下室外圈混凝土墙施加了被动土压力的同时,还对外圈挡土墙产生摩阻力,使基础的稳定性得以增强。同时使基础板底反力平缓分布。根据结构设计经验,通常将地下室埋置深度不小于高层建筑总高度的 1/11~1/9时,可不考虑由于偏压引起的整体倾覆问题。所以,对于高层建筑的基础设计,必须加强对地下室周边回填土的质量要求和控制,土回填越密实,抗剪强度越高,提供的被动土压力也就越大,对基础的稳定越有保证。

结语:

随着高层建筑在我国的日益普遍,高层建筑基础作为高层建筑结构体系中的重要组成部分必然受到设计人员的重视。论文就高层建筑基础设计的重要性和基础设计前的准备内容、基础选型、基础埋深及常见基础类型的适用条件进行简单的分析介绍,并对基础设计过程中容易误解和忽视的内容进行介绍、总结,避免设计人员在基础设计过程中出现类似问题。

参考文献:

[1] 莫海鸿,杨小平. 基础工程 [M]. 北京: 中国建筑工业出版社,2003.

[2] JGJ3 -2002,高层建筑混凝土结构技术规程 [S].

[3] 张荐林. 中小高层建筑基础设计探讨 [J]. 甘肃科技,2002,( 3) .

[4] GB 50007 -2002,建筑地基基础设计规范 [S].

[5] 孙利辉. 高层建筑基础的设计选型与应用 [J]. 价值工程,2011,( 03) .

[6] 李国胜. 混凝土结构设计禁忌及实例( 第四版) [M]. 北京: 中国建筑工业出版社,2008.

第12篇

关键词:建筑;技术;施工

中图分类号:TU74 文献标识码:A 文章编号:

前言

随着城市建设的发展,越来越多的高层、超高层建筑不断建成,地下车库、地下用房等也随之增多,地下室渗漏现象也相当普遍,成为质量通病之一。因此,施工企业技术人员必须掌握和运用好地下室防水技术,使地下室必须具备良好的防水性能。

一、建筑地下室产生渗漏的几个因素

1、设计原因。首先,变形缝留设不合理。根据规范要求,对钢筋混凝土结构板墙最大变形缝间距规定为 20~45m之间,但实际中往往将范围放大 2 倍,甚至不留后浇带,而也不采取其他的技术措施,虽然给施工带来了方便,但也给渗漏留了隐患。

2、施工原因。变形缝设置处理不当。首先,要根据设计要求应设变形缝,如后浇缝,一般要经40~60d才能施工。工期延长,如果因基层清理或浇捣不好会留下渗漏隐患;再如沉降缝,一般要到主楼封顶后才能施工,这样工期更长;如施工不当也会留下渗漏隐患。其次,不平施工缝施工不当造成隐患。根据现行施工惯例,施工底板时外墙上返施工高度为30~50cm,再加设一道止水片,由于底版混凝土施工多采用商品混凝土,坍落度较大,外墙板混凝土如一次振捣密衬往往较差,二次振捣给施工管理上带来了一些困难,所以这一水平施工缝处理不当往往成为渗漏的隐患。再者,墙板施工缝处30cm 凸缝墙与底版一起在养护期完成了大部分干缩与冷缩,使新浇的墙板缝结合后收缩受到了下部约束,在30cm 凸缝以上易产生墙裂缝。第三,外墙混凝土养护不当造成开裂。造成混凝土裂缝的原因有多种因素,除荷载外缝的生成大多是外界因素影响所致,其中由于失水变化引起的干缩和由于温度变化引起的冷缩往往是混凝土产生裂缝的主要原因,所以养护不当会造成早期失水干裂及冷缩裂缝。

3、振捣施工原因造成的渗漏。由于施工操作马虎,混凝土振捣不密实而导致的蜂窝。首先,选用优化砂、石级配,控制砂率,使混凝土为富砂浆混凝土,从而加其密实度;其次,优化配合比,确保混凝土的后期强度,减少由于混凝土早期强度太高而产生的冷缩裂缝。第三,由于混凝土本身性能不良产生裂缝而影响其自身的抗渗性能。混凝土是一种非均质的多相复合材料,由固、液、气三相的成分组成,其中有许多大小不一、彼此连通的孔隙,孔隙和裂缝是造成混凝土渗漏的主要因素,这是混凝土本身的弊端,所以如何改善混凝土的性能、减少孔缝产生、增加其密实度是抗渗漏的关键所在。

二、建筑地下室防水工艺

1、做好地下室防水设计。首先,进行防水设计应明确建筑地下室防水工程的目的:确保地下水和滞留水不渗入室内,给予室内正常的生产、工作、生活和储藏环境。防水层保护好地下结构,不能让地下水浸泡钢筋混凝土结构。一旦结构渗水,会导致钢筋锈蚀、断截面减小、膨胀,混凝土裂缝增大、抗压强度减弱,建筑基础受损,建筑寿命降低,最终危及安全。其次,地下室防水设计必须遵循“防、排、截、堵相结合,刚柔相济,因地制宜、综合治理”的原则,努力达到防水可靠、经济 合理的目的。在设计前应充分掌握地下工程所在地及其附近地下水运动 规律 和状况(近期和远期),确定设计最高地下水位标高,同时结合地质、地形、地下工程结构、防水材料供应及当地施工条件等全面研究地下工程防水方案。地下钢筋混凝土外墙、底板均应采用抗渗混凝土,抗渗等级应根据防水混凝土的设计壁厚和地下水的最大水头比值。第三,独立式全地下室工程应做全封闭,附建式全地下室或半地下室防水设置,则应高出室外地平标高至±0.000m以上,卷材防水和涂膜防水层可在室外平坦处改用防水浆完成设防高度。第四,地下室最高水位高于地下室地面时,地下室设计应考虑整体钢筋混凝土结构,保证防水效果;在特殊要求下可采用架空地面和夹壁墙。地下室外防水层宜采用软保护层,如聚苯板或聚乙烯板等。

2、混凝土的泌水处理。大体积大流动性混凝土在浇筑和振捣中,上涌的泌水和浮浆会跟着混凝土坡面流到坑底,并随混凝土向前推进。在支模时,应在混凝土浇筑前进方向二侧模底部留孔排出泌水和浮浆。当混凝土坡脚接近尽端模板时,要立即改变混凝土浇筑方向,由尽端往回浇,另外加强二侧混凝土的浇筑,使最后混凝土的浇筑形成四面会合,这样泌水和浮浆可以集中排除。混凝土的表面处理。大体积泵送混凝土,排除泌水和浮浆后,表面仍有较厚的水泥浆,在浇完 4~5h 后,要用长括尺括平,在初凝前用滚筒来回碾压数遍,待接近终凝前,用木蟹再打磨一遍,使收水裂缝闭合。混凝土养护。大体积混凝土的内外温差大,必须做好养护工作。本工程浇筑时气温高达 26℃,只进行保湿养护。采用浇水养护并覆盖塑料薄膜,防止混凝土水份蒸发和表面脱水而产生干缩裂缝,养护时间不少于 14d。

3、刚性防水与涂膜防水要相结合。经多方实践,采用刚柔结合的防水方案,是行之有效的方案。开工时,先将漏水较严重的地方用防水宝堵住,将部分空鼓的地方去掉、凿毛并重新抹面、压实。然后整体工程又刮了一遍刚性防水层,再仔细检查一遍,无因何渗漏时,就做了一层聚氨酯防水,做这一层时,关键是将设备与混凝土预埋铁的根部做好加强处理,以防止设备震动破坏防水层。最后又做了一层 UEA砂浆保护面,这样做的目的是可以减少保护层的裂纹(也属于刚性防水层的一种),对于整个工程有益无害,修补之后的防水效果是非常明显的,彻底解决了这个地下室的渗漏问题。

4、防水混凝土的质量控制要准确计量。施工单位要进行严格的抗渗混凝土配制的专题试验,待合格后,按所确认的配合比进行配制,既使很采用掺外加剂法,还要采用粗,细骨料两级配配制混凝土,,以提高混凝土比重,增强其结构抗渗能力。另外,选择性能良好的膨胀剂,还必须选择有相应资质和能力的试验室进行配合比设计,进行配合比设计时的抗渗水压值应比设计值提高0.2Mpa,水泥用量≥300kg/m3,砂率宜为 35~45%,水灰比≤0.55,入泵坍落度不宜大于 140mm。重视混凝土浇捣的质量控制,严格按经过计后确定的方案进行浇捣,避免产生冷缝造成渗水通道。严格施工机具的选用和操作。重视混凝土的振捣环节,保证一个浇筑头(面)有一个振捣器,混凝土施工由后往前,而振捣则由前往后顺序进行施工作业,防止漏振。采用商品混凝土时必须考虑路途远近及道路运输状况,适当延长混凝土的初凝时间,避免浇筑过程中出现冷缝,并推迟水泥水化热峰值出现时间,减小温度裂缝。最后要说的是,地下混凝土结构模板不宜拆除过早,否则极易造成混凝土结构内伤,形成意想不到的渗水通道。防水混凝土宜延长带模养护时间,拆模后的竖向构件,如地下室侧壁等,应采用涂刷混凝土保护剂的方法进行养护。注重防水构造施工的质量控制。

三、结语

地下防水工程是一门综合性、实用性很强的工程技术,要求高,难度大,必须认真对待。现场要结合地下工程的工程造价、防水要求、防水材料性能、施工难度等因素进行全面分析,综合比较。在保证安全、质量可靠和经济合理的前提下,根据工程具体情况,确定防水设计和施工方案。

第13篇

关键词:空心楼盖,CBM管,施工质量,抗浮技术

 

1.CBM现浇混凝土空心楼盖施工技术特点

近年来,现浇混凝土空心楼盖施工技术的推广应用取得了长足的发展,已广泛地应用于商场、办公、教学、停车场、住宅等公共、住宅和工业建筑领域。

“现浇混凝土空心楼盖”是按照一定规则在现浇楼板中放置埋入式芯模,经现场浇筑混凝土而在楼板中形成内空腔的楼盖施工技术。论文参考网。该技术可有效地减轻楼盖自重,提升抗震性能,降低工程造价,缩短工期,同时具有提高净空空间利用率、隔音、保温、通风、采光性能好、楼面平板有利于房间灵活隔断等优点。

CBM自稳型高强芯模是由高分子材料制造的封闭筒体和夹持钢筋的支架组成,具有强度高、自重轻、自带固定支架的特点。CBM现浇混凝土空心楼盖施工技术正是利用这一特点,将CBM自稳型高强薄壁管(楼盖内模)固定在楼盖现浇板的上下层主筋之间(与梁筋保持一定的间距),按一定的方向进行排列并浇筑成形,使原实心楼盖变成空心楼盖,实现建筑绿色、环保、低碳的发展目标。

焦作市都市花园馨苑二标段的地下人防工程成功地应用了该项技术。

2.CBM现浇混凝土空心楼盖施工工艺流程

2.1 工程概况

焦作市都市花园馨苑二标段工程为框混结构,地下一层为人防工程,地上5.5层为住宅工程,总建筑面积24900M2,其中地下室部分采用CBM现浇混凝土空心楼盖施工技术,面积约为3852M2,采用直径250MM的芯模,长度1000MM和500MM二种规格。CBM现浇空心楼盖施工时间为2008年10~12月,混凝土强度等级为C30,混凝土量1316M3。

2.2 CBM现浇混凝土空心楼盖施工工艺流程

测量放线→搭设模脚支撑系统­­­→安装底模板→在模板上弹线,确定芯模的安装位置,底板钢筋及管线预埋的位置并弹好墨线→绑扎底板钢筋、设置钢筋保护层垫块→安装芯模模座和预埋管线→绑扎纵横肋的钢筋网片→底层钢筋验收→安装、固定芯模→绑扎面层钢筋、做好预留预埋→搭设施工架空便道、安装砼输送管→浇捣混凝土→混凝土养护、拆模。

2.3 CBM现浇混凝土空心楼盖施工的质量问题

⑴ 主要质量问题

CBM管有飞边、毛刺、蜂窝、贯通裂缝、纤维外露或破损现象;由于控制措施不严密或混凝土浇筑顺序、振捣时间等原因导致的CBM管水平位移、上浮、破损等。

⑵ CBM管上浮的质量问题分析

施工现场勘验发现:①初次浇注时由于经验不足,CBM芯模仅与板底钢筋进行绑扎,结果CBM芯模上浮严重超标,说明CBM芯模受到的上浮力很大,能把板底钢筋拉上来,单靠板内钢筋加固CBM芯模不能满足要求;②混凝土按照常规方式浇注,靠近梁边部位CBM芯模上浮幅度较小,板中上浮幅度较大,说明梁内混凝土及钢筋对CBM芯模上浮起到阻碍或约束作用;③每次混凝土摊铺厚度为整个板厚时,板底部混凝土不易振实,CBM芯模容易上浮,说明板浇注应分层成型;④一旦某振点出现过振情况,则CBM芯模也会上浮,说明操作工人振捣控制也很重要。

由此可见,CBM芯模固定不牢固是造成CBM芯模上浮的最主要因素,混凝土浇注顺序不当,每次摊铺厚度过大,操作工人振捣方式不对也是造成CBM芯模上浮的主要因素。

3.CBM现浇混凝土空心楼盖质量控制措施

常见的CBM管位移有水平位移和上浮两种,其中以上浮最为常见,是影响CBM现浇混凝土空心楼盖施工质量的主要因素,是本工程施工的重点、难点,其质量控制技术是该工艺施工的核心技术。

3.1 支撑体系及定位措施

⑴ 在暗梁钢筋和楼盖底层钢筋安装完毕后,钢卷尺测量实际铺设CBM管的空间尺寸,分隔点用石笔在梁筋上划线,排管时用铁丝调直,待一个柱网排定后,用定型模卡卡定后进行点焊固定。为了确保CBM高强芯模在砼浇注过程中不上浮,需用10#铁丝每间隔1000mm,扣在底层钢筋交叉点并穿过模板锚固在钢管上。

⑵ 在芯模的安放过程中,应采取技术措施保证其位置准确和整体顺直,以保证空心板肋间及上、下板混凝土的几何尺寸。芯模安放时底部宜用混凝土垫块或撑筋垫起,管间肋部在钢筋网片上焊横向短钢筋,或U型钓钩,间距在1000mm左右,以确保芯模的净距,CBM芯模之间的净距应不小于50mm。芯模安放整体顺直度和端头顺直度(指芯模端面设计有横肋时)控制偏差为2.5/1000,最大不超过15mm。

⑶ 芯模安放过程中要随时铺设架板,对钢筋、芯模成品进行保护,严禁直接踩踏。当板面筋未绑扎之前发生芯模损坏,应予全部撤换。

⑷ 当芯模安放符合设计要求后,采取抗浮技术措施。为了防止芯模移动或上浮,应设置抗浮点,做法见图1。

3.2 混凝土浇筑顺序控制

先浇注梁,再浇注板,由板四周逐步向板跨中延伸。板中混凝土浇注顺序应沿CBM芯模纵轴线单向进行,不宜沿垂直CBM芯模纵轴作多点围合式浇注。本工程采用的是商品混凝土,泵管下料时,冲击力较大,为防止混凝土侧压力将CBM芯模挤倒,利用混凝土的自流性,采用混凝土斜向挤混凝土的方式推行前进,避免泵管内的混凝土直接冲击CBM芯模,造成CBM芯模移位。

3.3 混凝土振捣控制

⑵ 施工便道搭设:混凝土输送在楼面搭设专门的架空150mm的施工便道,运输道下铺设彩条布防止浇捣过程中的二次污染。

⑶ 混凝土振捣:①梁内混凝土用50mm振动棒振捣。②板内混凝土分2次浇注:第一次浇至板肋2/3处,此时混凝土塌落度控制在160~180mm,用30mm振动棒仔细振实,振点间距25cm;第二次浇至设计高程,塌落度控制在200~220mm,并注意必须在上次浇筑的混凝土在初凝之前完成。论文参考网。用振动棒振实后,用平板振动器沿CBM芯模纵横向振平,每个振点时间控制在3s左右,不可久置于同一地方振动,否则混凝土会挤入CBM芯模底部,导致局部CBM芯模上浮,更不得将振动器直接接触CBM芯模进行振捣,以免振破CBM芯模。

⑷ 砼布料、振捣同步进行:混凝土布料时应在芯模板的两侧应均匀下料,相对振捣。施工时宜采用3CM的震动棒。见图3。

3.4其他质量控制措施

⑴ 安装预留预埋:预埋水平管线应根据管径大小尽量布置在暗梁处或管肋间。当水平管线、电线盒等与芯模无法避开时,应将芯模断开进行避让(见图4)。遇管线交叉或特别集中处,可换用小直径芯模安放予以避让。

⑵ 板上层钢筋:按照常规进行绑扎,在钢筋运输至作业平面时,应尽量将钢筋摆放在梁上,避免直接冲压空心管造成空心管损坏。板上层钢筋高度靠安装马凳来控制。论文参考网。

⑶ 芯模破损的处理:施工过程中发生空心管的破损,原则上应更换。也可对破损处用胶带进行封补,填塞,孔洞较大的可在孔内塞入塑料布、水泥包装袋等对钢筋、混凝土无害的材料,再进行封补。修补的标准为混凝土水泥浆不进入管内。

3. 5 质量控制措施效果

通过以上质量控制措施的落实,并在混凝土浇捣过程中对CBM芯模加固体系、CBM芯模上浮情况实时监控,使用专门设计定做的带有刻度的40cm长8#铁丝,随时对已成型楼板混凝土进行跟踪检测,CBM管的上浮率控制在3%(板厚)以内,平均上浮高度为5~8mm,楼板混凝土厚度及平整度均控制在规范允许范围内。模板拆除后混凝土表面平整,光滑,观感质量较好(图5所示)。

图5 无梁楼盖整体效果

4.结语

现浇混凝土空心楼板技术克服了传统预制混凝土空心楼板整体性差、跨度小、楼板出现裂缝、漏水,隔音不好等诸多不利因素。由于整体浇筑,无缝隙,整体性受力非常好,在使用上隔音效果非常明显。另外,现浇整体空心板技术,可以减轻楼板自重,比原来传统的预制空心板,在跨度方面有重大突破。在8~15m跨度内完全不用预应力技术,降低工程成本,加快施工进度。

本工程于2009年10月竣工验收合格,并获得了焦作市优质结构工程。整个地下室空间宽敞明亮,视线通畅;经测量、检验,现浇空心楼盖无肉眼可见裂缝,变形符合规范要求,得到设计、建设、监理等项目参与方的认同,并吸引了河南省建筑业各方面技术人员、专家学者前来工地参观考察。

参考文献

1. 邱则有著.现浇混凝土空心楼盖[M].中国建筑工业出版社,2007.

2. 现浇混凝土空心楼盖结构技术规程(CECS175-2004)[S].

3. 混凝土结构工程施工质量验收规范(GB50204-2002)[S].

第14篇

关键词:建筑住宅;地下车库;设计要点

中图分类号:F287文献标识码: A

一、车道宽度的设计

由于设计人员对国家规范中各类车道宽度的规定不熟悉或是理解不够使车道宽度设计不合理,尺寸偏大人无形中增加了车库面积。例如有的项目双车道宽度设计为8米,单车道宽度设计为5米。根据《汽车库建筑设计规范》的要求停放小型车的汽车库双车道宽为5.5米、单车道宽度为3.0米。大量的实例显示:地下车库每个停车位的面积为27-35平方米人防地下车库每个停车位的面积也仅为40平方米;车道如果设计过宽会使得每个停车位的面积达到55-60平方米。

避免这一问题的产生要求设计人员应熟练掌握国家规范的相关数据要求在方案设计时按照规范要求,选择合理的车道及出入口的宽度。

二、车库出入口数量的确定

在设计时将仅需设一个单车道出入口的地下车库设计成一个双车道出入口;或是能设一个双车道和一个单车道出入口的却设计成了两个双车道。

地下车库出入口需要的面积大,且与车库停车数量及城市道路交通环境休戚相关,设计上存在一定的难度。要求设计人员熟知规范能够合理的确定出入口的数量及宽度要求。根据国家规范的要求,结合本地区地下车库交评的规定对地下车库出入口的数量要求进行明确如下表。地下车库出入口数量规定详下表:

地下车库出入口的地面位置如想达到与基地外部道路连接顺畅,与基地内车行、人行路网无交叉干扰。宜按照车辆管理“右行右出”的原则确定出入口位置尽量减少交叉。车库出入口的坡道终点面向城市道路时其与城市道路的规划红线距离不应小于7.5 m;平行城市道路或与城市道路斜交时出入口应后退不小于5m。车库出入口应有良好的视线在距出入口边线2m处作视点的120。范围内至边线外7.5 m以上不应有遮挡视线障碍物.如图1所示。

三、转弯半径的设计

很多设计人员误将国家规定的小型汽车的最小转弯半径6米理解为是车道的最小内径导致车道的内径过大浪费了车库的面积。

国家规定的汽车最小转弯半径是指汽车回转时汽车的前轮外侧循圆曲线行走轨迹的半径。汽车最小转弯半径与环形车道内半径的关系详图2所示。

从图2中可看出小型车的最小转弯半径r:为6米时,环形车道内半径r2应小于6米;根据《汽车库建筑设计规范》第4.1.10条的计算公式,可算出小型汽车环形车道最小内半径取4.0-4.2米即可。

四、车库排水的设计

地下车库由于其特殊的埋深在使用中易产生渗水、积水;同时设有自动喷水灭火系统的地下车库为了在自动喷水灭火系统启动后有组织收集、排放喷淋水池需设排水。现常用的排水方式有:暗沟排水系统和地漏排水系统。

暗沟排水系统的排水沟一般宽300mm,最小深度不小250 mm,形式如图3所示,并有不小0.5%的坡度坡向集水并盖板可采用铸铁盖板。这种排水系统清扫方便,盖板容易引起不平整影响车辆通行。由于地下车库面积大排水沟往往遍布整个地面其设置的位置不恰当时会造成排水沟经常受到车轮碾压,缩短沟盖的使用寿命,增加维修成本。设计中排水沟尽量避开车道而布置在停车位的尾部这样可大大减少轮压情况能够延长其盖板的使用耐久性,如图4所示。

五、地下车库防火设计

地下车库每个防火分区的最大允许建筑面积为2000平方米,当设有自动灭火系统时其最大允许建筑面积为4000平方米。应注意设有自动灭火系统的设备用房、非机动车库每个防火分区的面积为1000平方米。当地下车库中同时设有设备用房、非机动车库等其它功能时汽车库与设备用房、非机动车库等其它功能应分别单独设置防火分区。

同一时间内汽车库的人数超过25人时其直通地面的人员安全出口不应少于两个。汽车库内最远工作地点至楼梯间的距离不应超过45米投有自动灭火系统时其距离不应超过60米。汽车库室内疏散楼梯应设置封闭楼梯间楼梯宽度不应小1.1米。

六、抗震要求及个别参数

《建筑抗震设计规范》GB50011-2010中对地下车库抗震等级要求:当地下室顶板作为嵌固部位时,地下一层以下抗震构造措施的抗震等级应与上部结构相同,地下一层以下可逐层降低,但不应低于四级。无上部结构时可根据情况采用三级或四级。规范规定对于满足抗震措施的一些地下建筑,可不进行地震作用计算,这要求建模计算时根据规范要求选择是否考虑抗震计算。其次周期折减系数的取值应慎重,应根据规范并分析实际情况采用。地下车库作为框架架构,根据《高层建筑混凝土技术规程》要求,周期折减系数可取0.6-0.7。条文说明中,框架中的砌体是指砖砌体。周期折减系数主要是考虑填充墙对结构刚度的加强,造成地震力放大,所以是否考虑周期折减要看填充墙对结构刚度是否有影响,影响多少。地下车库为大空间框架结构,基本没有墙体,即使有也是少量填充墙,对结构刚度影响很小,所以周期折减系数可取0.9-1.0。

七、抗浮验算

按规范规定地下车库应满足抗浮要求,但是对于地下水位比较高的地区,抗浮很难满足要求。以邯郸市某工程为例:地下水位在自然地坪下2.4米,地面覆土1.3米;地下车库共两层,负一层层高3.8米,负二层层高3.6米,筏板600mm厚。水头差=0.6+3.6+3.8+1.3-2.4=6.9m,水浮力=6.9X10=69KN/m²。结构为普通梁板结构,经统计梁板自重及恒荷载+覆土荷载=52KN/m²,不满足《建筑地基基础设计规范》GB50007-2011的5.4.3条规定。可采取的措施有:增加配重和设置抗拔锚桩(杆)。设置抗拔锚桩(杆)会使施工周期增加1-2个月,建设方要求工期紧,不能采用。按筏板上增加600厚钢渣混凝土(容重45KN/m³),配重0.6x45=27KN/m²,能满足抗浮验算,但是钢渣混凝土费用很高。后经过论证,将结构形式由普通梁板结构改为无梁楼盖结构,满足抗浮要求。无梁楼盖结构取消主次梁,做400mm厚大板,这一做法有以下几个优点:

1)取消主梁后室内净空加高,可以减小楼层高度,因而地下室埋深可以减小,水浮力随之减小;

2)大板400mm厚,起到增加配重的作用;

3)不需要额外增加配重和抗拔锚桩(杆),经济合理。

结束语

综上所述,加强规范条文和汽车运行规律的研究理解,对汽车库的设计是很有帮助的。只有彻底的掌握了它,才能运用自如。

参考文献

[1]刘义.住宅地下车库设计要点浅谈[J].中华民居(下旬刊),2013,07:89.

[2]葛炎晨.多层地下车库结构造价优化的若干因素分析[D].安徽建筑大学,2014.

第15篇

关键词: 水下储油罐;油气置换;稳定性

Abstract: In order to decrease the cost of ocean oil storage,this paper purposed a new oil storage of underwater oil storage tank and oil/gas replacement method. The structure and technics of the underwater oil tank were discribed. The structure strength and stability is validated to meet the requirement.Finally, the application of underwater storage tanks in marginal oil fields and the research component is listed.

Key words: oil storage tank; oil/gas replacement; stability

中图分类号:TE976 文献标识码:A文章编号:

目前油田开发中油气集输主要是利用具备油气处理及存储的浮式设施如FPSO及半潜式平台。浮式生产设施受到海上风浪的巨大作用力,无论是海上结构还是其系泊系统造价高昂,而且随着水深的增加,技术难度越来越高,设施造价急剧升高。但是海底储油由于储油系统位于水面以下,与火源、雷电隔离,降低了燃爆风险。在海况恶劣时,不必关井停产。

目前水下储油主要有两种形式:一种为倒盘形海底油罐平台,另一种带有防波墙的重力式平台,重力式平台海底设置混凝土海底油罐。重力式平台规模大、投资高,且储量变化引起地基应力变化大,不适用于边际油田。水下储油罐可以节省昂贵的平台建造费用,而且罐容不受限制,具备巨大的储油能力。

1 水下储油罐的工作原理

水下储油罐包括主罐体、进出油管路、进排气管路和进排水管路,还需要有一个装有高压氮气的储气罐。此装置利用油气置换,气体可以压缩的工作原理。

结构建造完成后利用浮力拖拉到工作地点,在罐体中注入海水,沉入水下。完成安装后,排出罐体中的海水并同时打开储气罐阀门,利用压力差罐体中就会达到充满氮气的状态;当进行储油时,依靠油压通过注油管路将原油注入罐内,氮气将逐步压缩到储气罐;当原油输出时,利用泵系统抽吸原油,氮气将自动充填空间。当需要移位时,在罐体内充满氮气可使储油罐体起浮。

图1-1 水下储油罐示意图

1. 主罐体 2.进油管路 3.出油管路 4.进排气管路 5.储气罐 6.进排水口

2水下储油罐的结构设计

2.1 结构设计

结构如图2-1所示,由储油筒、底座、连接结构及吸力桩四部分组成,设计罐容为2000方,结构总重约为875吨。储油筒由外壁、中壁、内壁三层组成,通过筋板进行连接,如图2-2所示。

图2-1 结构整体模型

图2-2 结构内部图

在结构在位后,对外壁及中壁间的夹层进行灌水泥浆处理,一是为了加强结构强度,二是为了抵抗浮力。

2.2 结构稳定性分析

针对结构在位时,罐内充满氮气或原油时的情况进行分析。(单位:KN)

表2-1结构荷载列表

罐内物质 结构重量 水泥浆重量 内胆中液体重量 环境荷载 浮力

氮气 8750 19960 0 6760 40700

满油 8750 19960 17000 6760 40700

表2-2 单桩承载力校核

极限承载力 最大承载力 安全系数(1.5)

抗压 38762 2235 17.34

抗拔 5113 3298 1.55

抗滑 7871 1127 6.98

从表2-2可以得出,结构的稳定性满足要求的。

2.3 结构强度分析

当筒内充满氮气时,储油罐受到水压时的工况为最危险工况,以此工况并进行建模校核。图2-3有限元模型,图2-4为边界条件及荷载,图2-5为应力示意图。从计算结果可以得出,结构强度满足要求。

图2-3 有限元模型图2-4 边界条件及荷载

图2-5 结构的应力示意图

3 水下储油罐的相关工艺

3.1 加热保温

如图3-1所示,结构分为6层(由外至内):外壁-水泥浆-中壁-保温层-内壁-加热层;保温层拟采用聚安酯材料,加热层采用电阻丝加热或电伴热带加热。

图3-1 内部结构示意图

3.2 管线布置

储油罐内部管线如图3-2和3-3所示,排气口与氮气口均设置在罐顶部,进排水口设置在罐体最低点,而进/出油口均设置在两侧,每个舱室内均有单独的进出油管路,由一个总阀门控制。每个舱室均配有单独的氮气储罐。

图3-2内部管线剖面示意图

图3-3内部管线布置示意图

4 在边际油田的优势及应用

水下储油罐作为一种新的海洋储油装置有如下优势:

1)处于海底,所受环境力小,结构强度要求低;

2)可移动,可实现标准化;

3)处于水面以下,燃爆风险低。

水下储油罐的应用模式如图4-1所示,自升式井口平台采出油气后在平台上进行油气分析,然后将原油通过软管直接储存到水下储油罐。生产区设置单点系泊装置,原油外输软管接到该系泊装置上,穿梭油轮可停靠于此以实现原油转运。

图4-1自升式井口平台 +海底储油罐+系泊系统+穿梭油轮

储油罐的结构相对比较成熟,但管道、保温加热等工艺及监测系统仍需进一步的深化研究。

参考文献:

[1]余萍,冯玉华.水下储油方式[J].油气田地面工程,2007,26(3):18-19

[2]徐松森.油水隔离置换水下储油技术探讨[J].航海工程,2008,37(4):62-65

[3]丁忠军,徐松森等.水下储油保温监控系统研究.海洋工程,2009,27(1):101-105

[4] 赵雅芝,全燮等.水下贮油技术――“油水置换”工艺模拟试验[J].中国海洋平台,1999(1):18-21

精品推荐