美章网 精品范文 应用数学论文范文

应用数学论文范文

前言:我们精心挑选了数篇优质应用数学论文文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。

应用数学论文

第1篇

教师在教学过程中如果利用学具加强直观演示,学生自己动手,从实践活动中得出的结论,那么学生会很容易接受,并且记忆深刻。学具操作活动既能培养学生学习数学的兴趣,又能发展学生的智能。

比如,在学习“长方体和正方体的认识”这一节内容时,课前,我让学生在家里找长方体和正方体的各种实物并观察,如牙膏盒、药品盒等。上课时,让学生先利用学具中长方体的框架的拼插材料,插出一个长方体的框架,然后摸一摸感觉一下哪是长方体的面、棱、顶点。认识了长方体的面、棱、顶点之后再分小组,认真观察仔细数一数,说一说长方体面、棱、顶点的特点,从而认识长方体、正方体的特点,找出了他们的相同点和不同点。课堂上,学生一改过去死气沉沉的气氛,争先恐后发表自己的意见。最后,让学生根据长方体和正方体的特点自己利用长方体和正方体学具中的方格纸,通过剪、拼、贴方法做长方体和正方体的纸盒。这样,让学生动手操作,充分调动了学生的学习积极性,提高了学习兴趣,牢固地掌握了长方体和正方体的特征,为后面学习长方体和正方体的表面积与体积打下了很好的基础。

二、善用学具,使学生体验成功的快乐

新的课程改革,把关注学生的情绪生活和情感体验提到了非常重要的位置上,教学过程应该成为学生一种愉悦的情绪生活和积极的情感体验。这一切,都必须为我们教师所关注。形式新颖,活泼有实效的学具对孩子有较强的吸引力,一、巧用学具,激发学生学习兴趣数学是一门科学,它的许多定义、公式都是前人经过多次实践、实验推理总结出来的。教师在教学过程中如果利用能引起学生的关注,使学生在不断的动手操作中消除枯燥的情绪,体验成功的快乐。

例如,学生在初步认识长方形、三角形、平行四边形、圆等几何图形之后,活动课上,我要求学生利用这些几何图形折折、剪剪、拼拼、画画,拼出“美丽的图画”。这一环节,既发展了学生的形象思维,又培养了学生的实践能力,特别是通过拼出多种图画,鼓励学生求异、求新,培养学生的创新意识。同时,学生也体验到了学习的快乐。

三、会用学具,促进学生思维的发展

苏霍姆林斯基曾说过:“手和脑之间有着千丝万缕的联系,手使脑得到发展,使它更明智,脑使手得到发展,使它变成思维的工具和境子。”在教学中,教师适时地让学生进行动手操作学具活动,把动手活动与大脑的思维活动结合起来,学生的动手能力增强了,思维能力也提高了。

如我设计过这样的一个题:“一个长方形截去一个角,剩下几个角?”学生刚开始的答案几乎完全相同:三个角。于是,在课堂教学中,我让学生拿出事先准备好的长方形纸和小剪刀,动动手,试试看,验证一下自己的结论。学生操作完后,我再问学生这个问题,学生发生争论,有的说剩下五个角,有的说剩下四个角,有的说剩下三个角。我让持三种不同意见的同学们演示。最后学生总结出:剪的方法不同,可以剩下五个角,可以剩下四个角,还可以剩下三个角的不同答案。这样,学生边思考边操作,并且学生在操作中探索,在探索中创新,智力潜能得到开发,动手操作能力得到培养,学生的主动性、创造性也得到发展。

四、用好学具,将课程难点化抽象为形象

小学生正处于从形象思维向逻辑思维的过渡时期,在教学过程中,加强学具直观演示,学生动手操作,增强感性认识,使学生在头脑中形成鲜明的表象,帮助学生对抽象知识的理解。

比如,在教学数学第十册“长方体正方体的体积”时,对于“讲一个长方体竖着切两刀,长方体的表面积会增加几个面”这样抽象的问题,通过学具操作,学生就能很快理解了。教学过程中,我要求学生亲自动手,将可拆分的长方体竖着分开,学生发现,长方体的表面积增加了两个面,再继续将其中一个小长方体竖着分开,长方体的表面积最终会增加几个面的答案学生迎刃而解。学生通过学具的操作,把抽象的知识具体化,学生也能寻求到此类抽象知识的解题规律,学具使用的价值也得到了充分的体现。

第2篇

一、审题。

由于应用题叙述的生活化语言与数学语言的差别,加上冗长、抽象的特点,学生对理解题意往往产生困难。对此,可采用“缩写”、“改写”的方法帮助理解。“缩写”即是把与解题有关的已知量与未知量从题中分化出来,“去粗取精”、“去伪存真”、重新构建,使句式简单,数量关系趋于明朗;“改写”即把应用题的生活化叙述改为更贴近四则运算意义的数学叙述,使学生在学习四则运算后形成的认知结构纳入新的知识结构并予以同化,形成新的认知结构。

二、析题。

这是解答应用题的关键一步。首先要让学生学会用实物演示、学具操作、画线段图或示意图等辅助手段,使数量关系更直观地显示出来,减缓思维坡度;其次要引导学生掌握基本的分析法和综合法。分析法的思维方向是逆向思维--执果索因。即从最后问题想起:“要求出这个问题,必须要知道哪两个条件?”通过一步步的逆推分析,把未知量变成两个已知量相互之间的依存关系(即通过已知量之间的某种运算能得出所需的未知量);综合法的思维方向是正向思维--由因导果。即从已知条件出发,由两个已知量和它们之间的关系导出一个必然结果。依此法,在基本数量关系的支配下一步一步前进,直至最后求出问题。第三,在学生基本掌握常用分析方法的基础上,逐步简缩思维过程,要求学生直接说出条件与问题之间的桥梁,同时逐步从不同角度去分析数量关系,拓展解题思路,拓宽思维广度。

三、解题。

要做到“一看二算三查”:看列式与思路是否一致,数据是否抄错,算式有无利于简算的特点;算要按照四则运算的顺序进行,锻炼口算能力和速算能力;查指检查结果是否准确,是否符合题意、符合常理。在有条理的计算中培养学生思维的严密性和灵活性。

四、论题。

通过审、析、解三步,教学已知一段落,但不能停留在此。还要让学生学会论题,把思维训练推向新的境界。这部分训练包括:较完整、条理地叙述分析过程;计算时叙述每步计算的意义;变换题目的叙述方法;改变应用题的条件或问题并作出相应解答;把问题与算式搭配起来;根据算式补充相应的条件或问题;判断多余条件;补充条件或问题并作出相应解答。

第3篇

一、概念教学中的比较

概念是对事物本质属性的反映,它既是思维的基础,又是思维的“细胞”,是正确推理和判断的依据。小学数学中概念描述较抽象,小学生学习概念普遍存在一定难度,但许多概念之间有着密切联系,若在概念教学中充分运用比较,便能使学生准确、牢固地掌握数学概念。

1.引入概念时的比较。

在引入一个新的数学概念之前,教师首先要分析清楚这个概念是建立在哪些已学的数学概念基础上,然后从复习旧概念的过程中,自然地引出新概念,使学生明确新旧概念之间的区别与联系,为准确理解新概念打下坚实的基矗

2.巩固概念时的比较。

学了一个新的数学概念后,为使学生巩固所学的概念,教师应引导学生把所学的概念与一些相关的易混淆的概念进行比较,达到正确理解概念实质的目的。

3.深化、应用概念时的比较。

掌握数学概念的目的是为了运用所学概念解决实际问题,而运用概念的过程又是深化理解概念的过程,可使学生更深刻地理解概念的含义。

二、应用题教学中的比较

应用题教学,最有利于培养学生的思维能力和分析问题、解决问题的能力。而应用题教学中充分运用比较法,能使学生在比较中理解数量关系,在比较中掌握解题方法。

1.简单应用题与复合应用题比较。

任何一道复合应用题都是由若干道相关的简单应用题复合而成的。在教复合应用题时,先让学生做若干道与之相关的简单应用题,然后引导学生将这些简单的应用题合并成复合应用题,再比较简单应用题与复合应用题的联系与区别,使学生很自然地掌握解答复合应用题的关键,并把复合应用题分成若干道简单应用题。这样就有效地提高了解答应用题的能力。

2.互逆关系应用题的比较。

有许多应用题,它们之间的数量关系具有互逆的特点。比较它们的解题思路,明确它们之间的相互联系,可使各个零碎的知识串成线、联成网,从而构建起完整的知识结构。

第4篇

鼓励教学法是“以人为本”的教学方法。马斯洛的需求五层次理论(基本生活需求——安全感——归属感——地位与尊重——自我实现)告诉我们,每个人都渴望着能得到别人的认可与赞美,渴望自我的人生价值能够得到实现。托尔斯泰也曾就此形象地说过:“激励能使人产生巨大的精神力量,是促使他人创造奇迹的催化剂和导火线。”正处在青春发育期的中学生,虽然性格处于敏感的叛逆期,但他们同样也渴望着得到老师对自我的认可与赏识,从而达到自我实现的目标。因此,从人本关怀的角度讲,在教学中多采取鼓励的方法,是符合人的心理特点的,容易被学生所接受。

运用鼓励教学法,也是增强农村中学数学课吸引力的一种有效方式。不容否认的是,农村中学数学教育目前面临着一种困境。即大部分学生对这门功课感觉学习困难,缺乏起码的学习兴趣。但是,作为一门基础课程,数学教育对于引导学生形成正确的数学观、世界观和人生价值观都发挥着不容忽视的作用。要促使学生重视数学课的学习,教条的说教或冰冷的批评,事实已证明难以奏效。相反,通过不断地鼓励,潜移默化地引导其喜欢数学课,却不失为一个行之有效地好办法。

在日常的教学实践中,我主要采取了以下三种方式来对学生进行鼓励:少批评,多肯定,培养其学习的兴趣与激情;多当众表扬,满足其自我实现的心理需求;鼓励其开动脑筋主动思考问题,培养创新能力。这些鼓励方式的实行,在教学实践中取得了较好的效果。

少批评,多肯定,培养其学习的兴趣与激情。学生都是朝着教师鼓励的方向发展的,而批评则有损学生自信心的树立,进而缺乏学习的兴趣。数学课程由于其独特的知识体系,又稍显枯燥,多数学生普遍感到数学课不好学,存在一定的畏难情绪,甚至失去学习信心,考试成绩不理想。在这种情况下,我很少去批评学生做的不好,而是尽可能地肯定他们已取得的成绩,挖掘他们在学习中的“闪光点”,表扬其与以往相比有进步的地方(哪怕是不起眼的一点小进步)。通过抓“闪光点”,暗示他们都可以通过努力学习学好数学课,从而帮助其树立自信心,克服畏难情绪,培养出学习的乐趣与激情。一位女生原来数学成绩很差,我担任该班的数学教学,第一次数学检测是全班最后一名。我平时上课看见该同学上课很认真,就叫她起来回答问题,在我的不断鼓励下,她逐渐对数学课有了兴趣,学习数学认真、努力。二个月后,他的数学考试检测居然及格了,在全班属于中等成绩。这个学生高兴地跳了起来:“原来我也可以学好数学课,真是太棒了!”这就是教师鼓励的魅力所在,它激发了学生学习的热情,使从被动学习转变为主动学习,从消极学习转变为积极学习。这种学习观念的转变,也将对学生整个的学习生活产生深远的影响。

多当众表扬,满足学生自我实现的心理。为了给学生创造一种自我实现的环境,在教学实践中我非常注意利用课堂提问的机会,当众表扬学生。具体的做法是根据学生成绩优异的差别,有针对性地让学生回答一些难易程度不同的问题。比如一节数学课上一些基本概念,直接应用本节课知识这类比较简单的问题,我会选择学习基础较差一些的学生回答。而数学知识综合应用这类较难的问题,则会让学习基础较好的学生回答。回答正确的,我毫不吝啬地予以当堂表扬;回答不正确的,也不批评,而是引导其认真分析错误出现的原因,并对其勇于回答问题的表现进行表扬。在提问时,我还注意语气亲切,表扬诚恳,发自内心,使学生感到教师是真诚地关心他们的。提问的难度也是循序渐进,逐步提高,以学生通过思考能回答为宜。使他们既不觉得老师是特意挑选容易的问题让他们回答,又使他们通过回答提问获得学习的成就感,使他们更进一步地爱上数学课。

第5篇

(一)将生活问题带入课堂

数学与学生的生活有着很密切的联系,也是学生学好其他各理科科目的重要基础,现在的新高考中也对于学生应用数学知识解决生活问题有着要求。因此在平时的教学中要注意将生活问题带入到应用题的教学中。

例如在教学基本不等式的时候引入这样的一个题目“某种汽车,购车费是10万元,每年使用的保险费、养路费、汽油费约为0.9万元,年维修费第一年是0.2万元,以后逐年递增0.2万元。问这种汽车使用多少年时,它的年平均费用是多少?”现在买车的人比较多,这种题与学生的生活有着密切的关系,不仅仅能够激发学生们的学习兴趣,同时还能够给让学生们知道数学知识对于解决生活中的问题十分有效。

例如在教学概率的时候引入这样的一个问题:“‘三个臭皮匠顶个诸葛亮’是对大众智慧的一种肯定,但是可以用数学知识来证明其中所蕴含的数学机智吗?”然后带着学生学习概率相关知识,课后让学生自己去证明其中所蕴含的数学机智,并思考生活中是否还有更多的类似的例子。

(二)帮助学生扫清语言障碍

很多学生在解应用题时出错都是因为语言理解能力不足的情况,因此,在平时的教学过程中要把帮助学生解决语言障碍问题作为一项重要的项目。首先要让学生在面对应用题的时候能够给保持冷静,能够有一个清醒的头脑对题目进行分析。其次是让学生学会理清题目中的主次关系。新高考中的应用题包含了数量关系、情景设置等,就像是一个“五脏俱全”的小短文,因此学生必须学会有目的的对题目进行分析,分析清楚其中所要考察的知识点,已知条件等。最后是帮助学生扫除专业术语障碍。近年来的高考应用题中经常出现各种各样的专业术语和生活术语,这些专业术语和生活术语中有很多都是学生所不了解的。但是很多时候这些术语对解题没有什么影响,因此要让学生学会解题的时候不能够试图“全线突破”,而应该是“重点攻破”。

(三)加强学生的数学建模能力

将生活问题引入到课堂中是为了让学生能够对数学学习产生兴趣,让学生能够认识到数学对于生活的重要性,同时也是为了让学生对于考试中所出现的与生活相关的问题不在感到陌生、恐惧。帮助学生解决语言障碍是为了让学生能够更加准确的把握题意。但是最关键的还是要让学生在理解题意的基础上将各种文字语言、符号语言、图标语言等转换为数学语言。数学建模是将现实世界中的实际问题加以提炼,抽象为数学模型,求出模型的解,验证模型的合理性,并用该数学模型所提供的解答来解释现实问题。因此,必须要加强学生数学建模的能力的培养。

培养学生的数学建模能力可以从以下几个方面入手。第一是以教学内容与学科交叉点为切入点,培养学生的数学角膜能力。教师在教学的时候要从课本内容出发,与实际进行联系,以教材为载体,从而提高学生的数学建模能力。教师要鼓励学生大胆的提出自己的构想。第二是以社会生活为切入点,培养学生的建模能力。前面已经提到过要将生活问题带入课堂,那么何不利用生活问题为切入点来对学生的数学建模能力进行培养呢?以生活问题为切入点可以有效的激发出学生的学习兴趣,如下例:

例:建筑学中窗户面积与房间面积之比称为采光率,采光率越高,房间越明亮.试问现将窗户与房间同时增大相同的面积,则房间变亮还是变暗?

分析这道题比较简单,但是却具有一定的代表性。解此题时,学生必须要从题中弄动什么是采光率,然后进行解题。将窗户的面积设为a,房间面积设为b,增大的面积为m,原采光率为 ,窗户与房间同时增加面积m后的采光率为 ,问题的本质是将原采光率与面积增大后的采光率进行对比,以此来判断房间是变亮还是变暗。建立数学模型已知a、b、m都是正数,且a<b,比较 与 的大小。

第6篇

一.引导学生感受数学的应用价值

在传统的小学数学教学中,教师很少讲知识的来源和实际应用,即使是应用题教学,也只是把事先编好的现成的题目出示给学生,学生只是根据几个必需的条件套用解答应用题的方法和步骤,却不知道解决某一问题需要处理哪些信息和数据,更没有领悟到数学对于这一问题所具有的独特意义。因此在数学教学中,首先应引导学生感受数学的应用价值。其具体做法是:

1.利用生活素材进行教学,使学生认清数学知识的实用性

数学知识的应用是广泛的,大至宏观的天体运动,小至微观的质子、中子的研究,都离不开数学知识,甚至某些学科的生命力也取决于对数学知识的应用程度。马克思曾指出:“一门学科只有成功地应用了数学时,才真正达到了完善的地步”。生活中充满着数学,作为数学教师,我们更要善于从学生的生活中抽象出数学问题,使学生感到数学就在自己的身边,认清数学知识的实用性,从而产生兴趣。

比如教第九册“三角形的认识”一课,我就从学生生活中熟悉的红领巾、自行车车架、电线杆架、桥架等引出三角形,再让学生通过推拉等实践活动认识三角形的稳定性,并运用它来解决一些实际生活问题,如修补摇晃的椅子,学生会马上想到应用刚学过的“三角形稳定性”,给椅子加上木档子形成三角形,从而使椅子稳当起来。这样使学生学得容易且印象深刻,达到事半功倍的效果。在实际生活中,数、形随处可见,无处不有。教师应根据教学的实际,让学生把所学知识和周围的生活环境相联系,帮助他们在形成知识、技能的同时,感受数学应用范围的广泛。

2.收集应用事例,加深学生对数学应用的理解与体会

随着科学技术的飞速发展,数学的发展涉及的领域越来越广泛。数字化的家电系列,宇航工程、临床医学、市场的调查与预测、气象学……无处不体现数学的广泛应用。让学生搜集这些信息,既可以帮助学生了解数学的发展,体会数学的价值,激发学生学好数学的勇气与信心,更可以帮助学生领悟数学知识的应用过程。例如:在统计的初步认识教学中,学生搜集了自家几个月用水的情况,通过收集、描述、分析数据(人口的多少、老人和孩子等诸多因素)的过程,得出了自家用水是否合理的判断,并做出今后用水情况的决策。既渗透了环保教育,又使学生感受到数学知识的应用。

二.引导学生寻找数学问题

引导学生寻找数学问题,是学生探索数学价值、培养数学应用意识的最基本的前提和条件。试想如果学生不会寻找数学问题,就不可能做到很好地应用所学的知识解决问题,这样,学生数学应用意识的培养就可能成为一句空话。那么,在小学数学教学中,怎样引导学生学会寻找数学问题呢?

1.引导学生从日常生活中寻找数学问题

罗杰斯认为:“倘若要使学生全身心地投入学习活动,那就必须让学生面对他们个人有意义的或有关的问题。但我们的教育正在力图把学生与生活所有的现实隔绝开来,这种隔绝对意义学习构成一种障碍。然而我们希望让学生成为一个自由的和负责的个体的话,就得让他们直接面对各种现实问题。”日常生活中有大量的数学问题,结合数学内容选择一些简单的问题加以分析、解决,这对从小培养学生的数学应用意识和数学观念尤为重要,同时也促进学生进一步理解所学的内容。

如在三年级学生认识长方形的周长之后,我是这样做的:让三四个学生为一组,量一量教室内门框、窗框、镜框等长方形的长与宽,并设计一下做这些物品需多少材料。最好再给每种不同的材料标上单价,让他们计算一下,选择怎样的材料,用什么方案,可以既经济实惠,又满足需要。

又如,在四年级学生学习了面积之后,有相当一部分的学生对面积的认识只停留在教师所教的范围内,离开这个范围就一问三不知。如他们知道家庭居住的面积是若干平方米(这是从家长那里知道的),但问他们这一数据是根据什么得出的,他们都摇头说不知道。这就需要教师的引导。在学生认识面积后,我组织学生先讨论这样一个问题:“居住面积的大小是根据什么条件确定的”,接着布置一道作业题,让学生回家动手测量自己居室的面积。这时学生就要考虑房间的形状,要求出面积就必须测量哪几条边,怎样测量,用什么单位,怎样计算,是否取近似值等等。更为重要的是通过这些活动,让学生有解决数学问题的意识,并能解决一些简单问题。

2.指导学生从数学内部寻找数学问题

数学内部充满着各种问题,虽然通过前人的多年努力,已经解决了很多问题,但是学生学习作为再次创造的过程,仍有一个不断探究、解决新问题的过程。在数学内部,学生接触最多的问题是解答习题,而解答习题是解决问题的一种特殊形式。教师可以从问题的角度出发,指导学生对问题正确加以理解,明确已知的条件和要达到的目标,作出合理的假设,寻求通向目标的可能途径,确定最优的解决方案。要使学生从中养成习惯,形成技能,并迁移到其他方面,使他们拥有问题解决的意识,提高思维水平。

例如:计算12345+23456.这是一道多位数的加法,学生计算后,教师可以改变题目的形式,出题“CROSS+ROADS=DANGER,已知O=2,S=3,求其他字母各代表几(不同的字母代表不同的数字)”。这显然为学生创设了一个问题解决的情景。因为解答用字母来表示两个加数的加法,对他们来说是一个没有遇到过的问题,而且解此题时学生不仅要具有加法知识,还须具备假设和推理能力。

三.引导学生运用数学知识解决实际问题

在数学教学中,教师不仅要引导学生从生活实际引出数学知识的学习,而且还要引导学生善于把课堂中书本上所学的知识应用到实际生活中去,把所学的知识和思维方法迁移到解决实际问题中来,形成解决具体实际问题的有效策略和能力,以适应社会发展的需要。那么,教师可以从哪些方面去引导学生运用所学的数学知识解决实际问题呢?

1.引导学生联系生活实际解决数学问题

小学生经过课堂学习能够解决一些简单的实际问题,但是这些实际问题已经经过数学处理,各种条件与问题都比较明显,然而实际生活中的问题并非如此容易,因此要多联系生活实际,从学生遇到的疑惑、矛盾入手,引出新知识的实际问题或情境。

在学生学习了长方形和正方形的周长与面积后,我设计了这样一个练习:把学生带到学校大操场的一块空地上,让学生在这块空地上设计一个面积是30平方米的花坛,可以有多种设计方案。学生对这道题积极性十分高,他们几人一组,一边测量一边设计,显得十分投入,最后竟设计出十几种图形优美、很有创意的花坛。在这一活动中,教师把教学过程看作问题解决过程,在教学时有意识地创设问题情景。学生在解决这一问题时,先要对长方形和正方形面积公式这一知识重新进行组合,有一个新的认识,然后要对分割法、平移法、面积相加减等方法进行选择,看哪些方法更适合于设计,方式得到扩展。这样,在设计过程中,既解决了沉重的基础知识复习(长方形面积公式的计算),有拓宽了长方形的知识(计算简单的组合图形),更为重要的是,在设计中,不同层次的学生都获得了一次难得的实践锻炼的机会,强化了学生的应用意识。

2.引导学生积极参与家庭中的数学实践活动

数学来源于实践,又服务于实践。在学生的生活中,大部分时间是与父母一起生活的,家里面的一切建设都是离不开数学应用的。让学生参与其中,无疑对培养学生的数学应用意识是大有好处的。教师要引导学生积极参与家庭中的实践活动,这个工作可分两方面进行:一方面要求学生积极参与其中;另一方面要联系家长配合老师,大胆让学生参与进来。比如:让学生参与家庭管理活动。让他们回家了解家里一周的油、粮、副食、水、电、气等基本生活的各项开支情况,再将搜集的数据在老师的指导下加以整理,并提出有关的问题:你家一周共需开支多少钱?照这样计算,一个月的基本开支是多少?家里每月的收入是多少?家里每月的结余是多少?如果家里要购置一台800元左右的热水器,根据家里每月的结余,几个月后可以买一台?通过这些实践活动,促使学生从家庭这一特殊的情境中发现数学问题,让学生以大众化、生活化的方式反映数学的思维方式,使学生在朴素的问题情境中,通过搜集、交流、分析、整理、运用,逐步养成良好的数学思维习惯,培养和强化数学的应用意识,让学生在应用中感受数学创造的乐趣,增进学生学好数学的信心。

3.引导学生采用灵活多样的方法解决数学问题

在教学中,教师要联系生活实际,调动学生的知识储备和生活经验,积极的开展智力活动,采用灵活多样的方法来解决数学问题。比如针对下面的生活实例:两位老师带46名学生去公园游玩,公园门票成人每张10元,儿童每张5元,公园还规定购买50张以上儿童票可以实行八折优惠,让学生想一想怎样买票比较合算?根据以上提供的信息,教师可引导学生设计几种方案:第一种方案是一般学生都能想到的,根据有46名儿童和儿童票5元这两个信息,可以得到买票所要付的钱是5×46=230元;第二种方案可以引导学生这样思考:题目告诉了购买50张以上儿童票就可以实行八折优惠,如果多买4张儿童票,再打八折,所付的钱是否少一些呢?老师要求学生实际算一算:用5×50×0.8=200元。通过计算,学生发现,多买4张儿童票,看起来好像要多给钱,但由于可以享受八折优惠,最终还是只付200元,比第一种方案要少付30元,两种方案相比,学生都愿意采用第二种方案解决问题。通过这样的教学,学生的思维会逐步变得深刻而灵活,既提高了学习技能,有增加了智慧和才干。

当然,小学生的数学应用意识的培养、提高和发展,并非一朝一夕的事,也绝非靠讲几节数学应用专题课所能解决的,不要期望在一两次的解决问题中就能培养起学生的数学应用意识;也不要认为简单的数学问题(包括生活中的问题)对学生的数学应用意识培养毫无帮助,它需要较长的时间,教师在适当的时机有意识地启发学生的应用意识,经历渗透、反复、交叉、逐级递进、螺旋上升、不断深化的过程。使学生的应用意识逐步由不自觉或无目的状态,进而发展成为有意识有目的的应用。总之,通过各种载体增强学生的数学应用意识,有效地激发学生将数学知识应用于实践的积极性,加大学生体验成功的频率,提高他们利用数学解决问题的能力,达到“学以致用”的目的,促进学生数学素质的提高。

参考文献:

⑴施方良.《学习论》.北京:人民教育出版社,1994。421

⑵李佐锋、周淑芬.《小学数学教师知识扩展》.东北师范大学出版社2001.9

第7篇

一.引导学生感受数学的应用价值

在传统的小学数学教学中,教师很少讲知识的来源和实际应用,即使是应用题教学,也只是把事先编好的现成的题目出示给学生,学生只是根据几个必需的条件套用解答应用题的方法和步骤,却不知道解决某一问题需要处理哪些信息和数据,更没有领悟到数学对于这一问题所具有的独特意义。因此在数学教学中,首先应引导学生感受数学的应用价值。其具体做法是:

1.利用生活素材进行教学,使学生认清数学知识的实用性

数学知识的应用是广泛的,大至宏观的天体运动,小至微观的质子、中子的研究,都离不开数学知识,甚至某些学科的生命力也取决于对数学知识的应用程度。马克思曾指出:“一门学科只有成功地应用了数学时,才真正达到了完善的地步”。生活中充满着数学,作为数学教师,我们更要善于从学生的生活中抽象出数学问题,使学生感到数学就在自己的身边,认清数学知识的实用性,从而产生兴趣。

比如教第九册“三角形的认识”一课,我就从学生生活中熟悉的红领巾、自行车车架、电线杆架、桥架等引出三角形,再让学生通过推拉等实践活动认识三角形的稳定性,并运用它来解决一些实际生活问题,如修补摇晃的椅子,学生会马上想到应用刚学过的“三角形稳定性”,给椅子加上木档子形成三角形,从而使椅子稳当起来。这样使学生学得容易且印象深刻,达到事半功倍的效果。在实际生活中,数、形随处可见,无处不有。教师应根据教学的实际,让学生把所学知识和周围的生活环境相联系,帮助他们在形成知识、技能的同时,感受数学应用范围的广泛。

2.收集应用事例,加深学生对数学应用的理解与体会

随着科学技术的飞速发展,数学的发展涉及的领域越来越广泛。数字化的家电系列,宇航工程、临床医学、市场的调查与预测、气象学……无处不体现数学的广泛应用。让学生搜集这些信息,既可以帮助学生了解数学的发展,体会数学的价值,激发学生学好数学的勇气与信心,更可以帮助学生领悟数学知识的应用过程。例如:在统计的初步认识教学中,学生搜集了自家几个月用水的情况,通过收集、描述、分析数据(人口的多少、老人和孩子等诸多因素)的过程,得出了自家用水是否合理的判断,并做出今后用水情况的决策。既渗透了环保教育,又使学生感受到数学知识的应用。

二.引导学生寻找数学问题

引导学生寻找数学问题,是学生探索数学价值、培养数学应用意识的最基本的前提和条件。试想如果学生不会寻找数学问题,就不可能做到很好地应用所学的知识解决问题,这样,学生数学应用意识的培养就可能成为一句空话。那么,在小学数学教学中,怎样引导学生学会寻找数学问题呢?

1.引导学生从日常生活中寻找数学问题

罗杰斯认为:“倘若要使学生全身心地投入学习活动,那就必须让学生面对他们个人有意义的或有关的问题。但我们的教育正在力图把学生与生活所有的现实隔绝开来,这种隔绝对意义学习构成一种障碍。然而我们希望让学生成为一个自由的和负责的个体的话,就得让他们直接面对各种现实问题。”日常生活中有大量的数学问题,结合数学内容选择一些简单的问题加以分析、解决,这对从小培养学生的数学应用意识和数学观念尤为重要,同时也促进学生进一步理解所学的内容。

如在三年级学生认识长方形的周长之后,我是这样做的:让三四个学生为一组,量一量教室内门框、窗框、镜框等长方形的长与宽,并设计一下做这些物品需多少材料。最好再给每种不同的材料标上单价,让他们计算一下,选择怎样的材料,用什么方案,可以既经济实惠,又满足需要。

又如,在四年级学生学习了面积之后,有相当一部分的学生对面积的认识只停留在教师所教的范围内,离开这个范围就一问三不知。如他们知道家庭居住的面积是若干平方米(这是从家长那里知道的),但问他们这一数据是根据什么得出的,他们都摇头说不知道。这就需要教师的引导。在学生认识面积后,我组织学生先讨论这样一个问题:“居住面积的大小是根据什么条件确定的”,接着布置一道作业题,让学生回家动手测量自己居室的面积。这时学生就要考虑房间的形状,要求出面积就必须测量哪几条边,怎样测量,用什么单位,怎样计算,是否取近似值等等。更为重要的是通过这些活动,让学生有解决数学问题的意识,并能解决一些简单问题。

2.指导学生从数学内部寻找数学问题

数学内部充满着各种问题,虽然通过前人的多年努力,已经解决了很多问题,但是学生学习作为再次创造的过程,仍有一个不断探究、解决新问题的过程。在数学内部,学生接触最多的问题是解答习题,而解答习题是解决问题的一种特殊形式。教师可以从问题的角度出发,指导学生对问题正确加以理解,明确已知的条件和要达到的目标,作出合理的假设,寻求通向目标的可能途径,确定最优的解决方案。要使学生从中养成习惯,形成技能,并迁移到其他方面,使他们拥有问题解决的意识,提高思维水平。

例如:计算12345+23456.这是一道多位数的加法,学生计算后,教师可以改变题目的形式,出题“CROSS+ROADS=DANGER,已知O=2,S=3,求其他字母各代表几(不同的字母代表不同的数字)”。这显然为学生创设了一个问题解决的情景。因为解答用字母来表示两个加数的加法,对他们来说是一个没有遇到过的问题,而且解此题时学生不仅要具有加法知识,还须具备假设和推理能力。

三.引导学生运用数学知识解决实际问题

在数学教学中,教师不仅要引导学生从生活实际引出数学知识的学习,而且还要引导学生善于把课堂中书本上所学的知识应用到实际生活中去,把所学的知识和思维方法迁移到解决实际问题中来,形成解决具体实际问题的有效策略和能力,以适应社会发展的需要。那么,教师可以从哪些方面去引导学生运用所学的数学知识解决实际问题呢?

1.引导学生联系生活实际解决数学问题

小学生经过课堂学习能够解决一些简单的实际问题,但是这些实际问题已经经过数学处理,各种条件与问题都比较明显,然而实际生活中的问题并非如此容易,因此要多联系生活实际,从学生遇到的疑惑、矛盾入手,引出新知识的实际问题或情境。

在学生学习了长方形和正方形的周长与面积后,我设计了这样一个练习:把学生带到学校大操场的一块空地上,让学生在这块空地上设计一个面积是30平方米的花坛,可以有多种设计方案。学生对这道题积极性十分高,他们几人一组,一边测量一边设计,显得十分投入,最后竟设计出十几种图形优美、很有创意的花坛。在这一活动中,教师把教学过程看作问题解决过程,在教学时有意识地创设问题情景。学生在解决这一问题时,先要对长方形和正方形面积公式这一知识重新进行组合,有一个新的认识,然后要对分割法、平移法、面积相加减等方法进行选择,看哪些方法更适合于设计,方式得到扩展。这样,在设计过程中,既解决了沉重的基础知识复习(长方形面积公式的计算),有拓宽了长方形的知识(计算简单的组合图形),更为重要的是,在设计中,不同层次的学生都获得了一次难得的实践锻炼的机会,强化了学生的应用意识。

2.引导学生积极参与家庭中的数学实践活动

数学来源于实践,又服务于实践。在学生的生活中,大部分时间是与父母一起生活的,家里面的一切建设都是离不开数学应用的。让学生参与其中,无疑对培养学生的数学应用意识是大有好处的。教师要引导学生积极参与家庭中的实践活动,这个工作可分两方面进行:一方面要求学生积极参与其中;另一方面要联系家长配合老师,大胆让学生参与进来。比如:让学生参与家庭管理活动。让他们回家了解家里一周的油、粮、副食、水、电、气等基本生活的各项开支情况,再将搜集的数据在老师的指导下加以整理,并提出有关的问题:你家一周共需开支多少钱?照这样计算,一个月的基本开支是多少?家里每月的收入是多少?家里每月的结余是多少?如果家里要购置一台800元左右的热水器,根据家里每月的结余,几个月后可以买一台?通过这些实践活动,促使学生从家庭这一特殊的情境中发现数学问题,让学生以大众化、生活化的方式反映数学的思维方式,使学生在朴素的问题情境中,通过搜集、交流、分析、整理、运用,逐步养成良好的数学思维习惯,培养和强化数学的应用意识,让学生在应用中感受数学创造的乐趣,增进学生学好数学的信心。

3.引导学生采用灵活多样的方法解决数学问题

在教学中,教师要联系生活实际,调动学生的知识储备和生活经验,积极的开展智力活动,采用灵活多样的方法来解决数学问题。比如针对下面的生活实例:两位老师带46名学生去公园游玩,公园门票成人每张10元,儿童每张5元,公园还规定购买50张以上儿童票可以实行八折优惠,让学生想一想怎样买票比较合算?根据以上提供的信息,教师可引导学生设计几种方案:第一种方案是一般学生都能想到的,根据有46名儿童和儿童票5元这两个信息,可以得到买票所要付的钱是5×46=230元;第二种方案可以引导学生这样思考:题目告诉了购买50张以上儿童票就可以实行八折优惠,如果多买4张儿童票,再打八折,所付的钱是否少一些呢?老师要求学生实际算一算:用5×50×0.8=200元。通过计算,学生发现,多买4张儿童票,看起来好像要多给钱,但由于可以享受八折优惠,最终还是只付200元,比第一种方案要少付30元,两种方案相比,学生都愿意采用第二种方案解决问题。通过这样的教学,学生的思维会逐步变得深刻而灵活,既提高了学习技能,有增加了智慧和才干。

当然,小学生的数学应用意识的培养、提高和发展,并非一朝一夕的事,也绝非靠讲几节数学应用专题课所能解决的,不要期望在一两次的解决问题中就能培养起学生的数学应用意识;也不要认为简单的数学问题(包括生活中的问题)对学生的数学应用意识培养毫无帮助,它需要较长的时间,教师在适当的时机有意识地启发学生的应用意识,经历渗透、反复、交叉、逐级递进、螺旋上升、不断深化的过程。使学生的应用意识逐步由不自觉或无目的状态,进而发展成为有意识有目的的应用。总之,通过各种载体增强学生的数学应用意识,有效地激发学生将数学知识应用于实践的积极性,加大学生体验成功的频率,提高他们利用数学解决问题的能力,达到“学以致用”的目的,促进学生数学素质的提高。

参考文献:

⑴施方良.《学习论》.北京:人民教育出版社,1994。421

⑵李佐锋、周淑芬.《小学数学教师知识扩展》.东北师范大学出版社2001.9

第8篇

数学概括是一种特殊的概括,这是由数学学科的特点所决定的。数学概括是在数学符号、数量和空间关系、数学对象和运算等方面的概括。它具有以下显著的特点:

1.数学研究对象本身已是概括的产物我们知道,数学的研究对象是客观世界的数量关系和空间形式。它取自于客观世界,但却不是现实中的真正原型,而是从现实世界中概括出来的数学模型--事物中的纯数量关系和空间形式。例如自然数、点、线、面等原始概念,就是从现实世界中概括出来的。

2.数学概括具有层次性

数学概括是在概括基础上所进行的再概括,数学是从原始概念开始,在此基础上进行新的抽象,从而得到概括程度更高的新概念。在数学中往往要进行一系列地、逐级地概括,由此可得到概括水平越来越高的概念、法则和方法。这恰是数学在抽象思维方面具有相对封闭性的原因所在。正如德国数学家汉克尔的生动描述:“在大多数的学科里,一代人的建筑为下一代人所拆毁,一个人的创造被另一个人所破坏,唯独数学,每一代人都在这古老的大厦上添加一层楼。”这表明数学的发展表现为明显的概括性质:它的每一次发展都把原来的数学作为某种特例包含在新的数学中去。例如数系的扩张;中学里对三角函数的概括;从数列极限到函数极限的概括。从定理内容上也可体会出数学概括的层次性,例如数学归纳法定理。

3.数学概括用数学语言来表述

数学概括的表述使用了特殊的语言体系--特定的符号体系--数学语言体系。而且这种表述形式贯穿于数学概括过程的始终。我们知道,语言是思维的载体。自然语言虽然可在一定程度上来表达数学,但却不能达到完美精确的程度,因此数学工作者在自然语言的基础上创造出了数学语言--数学有的形式化符号体系。它是人类自然语言的进一步概括。有了数学语言,数学研究的思维过程和结果就可精确简练地表出。

二、数学概括在数学学习中的作用

学生的数学学习,主要表现为数学知识、数学能力和数学思维活动的学习。

而所有这些学习都是以数学概括为基础,都离不开数学概括能力的支持与辅佐。

在此仅以数学能力的学习为例。中学数学教学大纲明确指出:“通过数学教学,要培养学生具有正确迅速的运算能力,逻辑思维能力和空间想象能力,从而逐步培养运用数学分析和解决实际问题的能力。”

在运算能力方面,欲达“正确迅速”目的,就需在各类运算中概括出相应的运算规律,将其归纳为一般形式。

数学概括在培养学生逻辑思维能力方面的作用也十分重要。逻辑思维是人类揭示客观世界的本质和规律的极其重要的思维活动,它几乎渗透到人类获取所有理论和新认识的每一过程,而数学则是体现逻辑最彻底的一门学科。学生在学习中遵循着数学的逻辑规律,他们从最基储最简单的数学概念出发,在这些基本概念的基础上进行概括,得到概括程度更高的新概念。例如:在初中,仅研究0°-360°间角的三角函数,到了高中,通过角概念的推广和弧度制的引入,概括出任意角三角函数,并从集合和映射的观点出发加以研究。即在数学思想方法上也采用了概括性更强的更一般的方法--集合和映射的思想方法。由上述各例可看出,学生逻辑思维能力的形成和发展离不开数学概括,数学概括不仅影响着学生逻辑思维的形成和发展,而且决定着学生逻辑思维的水平和质量,概括水平越高,其逻辑思维的能力就越强。

第9篇

2,动手操作,强化应用意识。学生能否发现和提出有价值的数学问题是其数学应用意识强弱的重要标志。例如,当学生推导出“圆柱的体积”公式后,可创设一个实践的机会,让学生以小组为单位,应用所学知识,解决日常生活中用过的圆柱形饮料瓶、茶叶筒、饼干盒等物体的体积问题。要求体积,必须知道圆柱体的底面半径和高。高比较好测量,如何测量底面半径呢?学生根据自己的思维方式寻求解决问题的策略,展示了各自的智慧:有的直接用直尺量出圆柱体的底面直径,再求出半径;有的把圆柱形物体用力往作业纸上一压拿开后,测量出印在本子上圆的直径,再求出半径;有的用小绳围绕圆柱体一周,用尺子量出绳子周长,再求出半径;有的直接在圆柱体上画一点,再把圆柱体在作业本上滚动一周,量出作业本上两点间的距离(也是周长),再求出半径。通过这类实践性活动,让生活问题数学化,学生不仅感受到生活中处处有数学,强化了数学应用意识。

3,通过社会调查,提高应用意识。我们组织学生以小组为单位,自己设计、开展社会调查活动。他们走上街头、走进邮政所、派出所,走访叔叔、阿姨,了解发现数学编码的广泛应用性:如号码“122”表示交通事故报警、“12315”表示消费者投诉热线;身份证号码的前面1至6位都是表示出生地,第7到14位表达的信息都是出生日期;邮政编码反映了收件人居住地的相关信息;手机号120到133指联通用户,134到139指移动用户;公交车是按照线路进行编号简单好记;自己学籍号表示的信息等等。学生经过调查实践,内化了现代化社会数字中所蕴含的信息、数学编码的实际应用价值,还切实地感受到数学与生活的联系,学到了多方位的综合性知识,获得知识层面和智慧层面的“双赢”。

培养数学应用意识作为数学知识内化的载体,是一个复杂多维的连续递进的过程,需要那种“随风潜入夜,润物细无声”的潜移默化的教育,激发学生学习的主动性,强化其内化的动力,使之在获得对数学理解的同时智慧得到发展,涉及的不仅仅是教学方法问题,而且也是数学教学理念的重要改变。

第10篇

信息技术、信息技术教育、教育科研、整合等是信息技术与学科教学整合研究中的常用学术名词。正确理解它们的内涵、联系与相关点,有助于从理论的高度认识到,信息技术与学科教学整合研究是与学校整体教学改革紧密相关的,从而确保学校从实际情况出发,全面规划、实施围绕以整合为中心的改革框架,把整合研究作为学校的特色,跨越式发展的突破口,作为一种提高教学质量和效益的实实在在的行动。

1.1信息技术。信息技术是教育信息化进程中的核心内容,按国际上流行说法,信息技术是指:应用信息科学的原理和方法对信息进行获取、传输、处理和应用的技术,它是覆盖了微电子技术、计算机技术、通讯技术和传感技术而成为的一门综合技术和方法体系。在中小学教育实践活动中,一般指以多媒体计算机技术和网络技术为主的现代信息技术。

1.2信息技术作为学习对象。信息技术作为学习对象,它是中学生一门必修课程。教育部在中小学信息技术课程指导纲要中规定:2001年底前,全国普通高级中学和大中城市的初级中学都要开设信息技术课,经济比较发达地区的初级中学,最迟于2003学年开设信息技术必修课程,初中不得少于68课时,高中70-140课时。信息技术知识也是教师继续教育的重要内容,但教师与学生要求掌握知识的侧重面不同,教师重在为自己的教育教学服务。

1.3信息技术作为工具手段。信息技术作为工具手段,它与学科教学的整合是课堂教学模式改革的发展方向。未来的课堂教学方式发展趋势将由目前的“以教为主”变为“以教为辅”,以学生运用各种信息技术手段获取知识和能力为主的“人本主义”教学方式。

1.4信息技术作为新文化。信息技术作为新文化,由此产生的道德、安全、犯罪等等都是全新的不容忽视的问题。教师进行信息技术与学科教学整合研究时,要充分认识到信息技术这种新文化的特殊性,它给人类带来文明的同时,也带来了糟粕和垃圾。新《中小学信息技术课程指导纲要(试行)》任务别指出:“教育学生正确认识和理解与信息技术相关的文化、伦理和社会等问题,负责任地使用信息技术。”加强信息技术法制的观念和网络伦理道德观念,提高对假、丑、恶的分辨能力,把网络法制教育和网络道德教育等作为学校德育教育,融入其他学科教学整合中,也是研究不容忽视的重要内容之一。

2.信息技术在数学中的运用。

2.1创设问题冲突,激发学习兴趣。《数学课程标准》指出:学生的数学学习,应当是现实的、有趣的、富有挑战性的。中学生大多活泼、好动,有意注意时间比较短,喜欢多变、宽松的教学环境。静态的文字、课本及教师的口语则满足不了学生比较活跃的心理需求,他们在安静的教室里,往往找不到自己的位置,认为老师是演员,自己是观众、是旁观者。因此,思想容易开小差,使教学达不到理想的效果。而多媒体计算机通过声、像、动画等学生喜闻乐见的形式,以其新颖性、艺术性吸引学生的注意力,为学生创设符合学生心理特点的教学情境,不断地给学生以新的刺激,使学生的大脑始终保持兴奋状态,激发了学生强烈的学习欲望,增强了学习兴趣。美国心理学家布鲁纳说:“学习最好的刺激是对所学学科的兴趣。”学生一旦对数学产生兴趣,将达到乐此不疲、废寝忘食的地步,他们会克服一切困难,充满信心的学习数学,学好数学,变“要我学”为“我要学”。

2.2发挥媒体优势,提高教学效率。教育的根本目的是实现人的个性发展。在课堂教学中,要使每个学生都要最大限度地发挥自己的潜能,单凭板书、讲解、操作的方式是很难做到的。多媒体计算机以其速度快、储存量大、易操作等优点,为教学过程的最优化提供了强有力的支持。

2.3减缓思维难度,突破教学难点。以计算机为代表的现代化教学手段,是人脑的延伸。它具有极为丰富的表现力,能根据教学需要将教学内容实现大与小、远与近、静与动、快与慢、整与散、虚与实之间的相互转换,生动地再现事物的发生、发展的过程,从而克服了人类感官的局限性。扩大了学生的认知时空,缩短了学生的认识过程。通过向学生展开丰富的、典型的、具体的经验和感性材料,突出观察点,揭示现象的内在联系,引导学生深入思考,减少思维的困难;丰富学生的联想,减少学生联想的困难;建立正确的空间观念,培养了学生思维的灵活性、深刻性和创造性,提高学生的解题速度和解题正确率。中学数学知识的教学,尤其是几何知识的教学,由于学生的知识水平较低,因此教师不能用严谨、科学的推理讲解清楚,必须通过学生自己去感知体会,因此,有些知识的理解学生还是比较困难,容易产生思维障碍。例如,“圆面积公式的推导”、“圆柱体积公式的推导”。这时,运用课件演示,利用它的直观性强、可无限分割的优势展现知识的发生、转变过程,突破思维障碍,会起到事半功倍的效果。

2.4启迪想象思维,提供创新空间。课标指出:数学教学的主要目标之一就是培养学生的抽象思维能力。数学是研究现实世界的空间形式和数量关系的科学。中学阶段由于刚刚接触立体图形,空间想象能力较差,运用现代媒体手段,充分挖掘教材,有利于丰富表象,引发联想,启发思维,化繁为简,化难为易,启迪学生进行全方位、立体的思维,展开想象的翅膀。总之,多媒体的运用能丰富课堂教学的形式,突破教学难点,加大课堂教学的容量。这样,充分运用多媒体课件辅助教学的优势,为学生提供丰富的感性材料,化静为动,化抽象为具体,激发学生学习的积极性,调动学生多种感官参与活动的主动性,使学生学习的积极性和主动性得到充分的发挥。做到了融基础性、科学性、直观性、实践性于一体,真正做到了追求最优化的教学效果。随着现代信息技术的不断发展和普及,随着网络教学的逐渐完善,数学教学的明天会更加辉煌、更加灿烂。

第11篇

信息技术、信息技术教育、教育科研、整合等是信息技术与学科教学整合研究中的常用学术名词。正确理解它们的内涵、联系与相关点,有助于从理论的高度认识到,信息技术与学科教学整合研究是与学校整体教学改革紧密相关的,从而确保学校从实际情况出发,全面规划、实施围绕以整合为中心的改革框架,把整合研究作为学校的特色,跨越式发展的突破口,作为一种提高教学质量和效益的实实在在的行动。

1.1信息技术。信息技术是教育信息化进程中的核心内容,按国际上流行说法,信息技术是指:应用信息科学的原理和方法对信息进行获取、传输、处理和应用的技术,它是覆盖了微电子技术、计算机技术、通讯技术和传感技术而成为的一门综合技术和方法体系。在中小学教育实践活动中,一般指以多媒体计算机技术和网络技术为主的现代信息技术。

1.2信息技术作为学习对象。信息技术作为学习对象,它是中学生一门必修课程。教育部在中小学信息技术课程指导纲要中规定:2001年底前,全国普通高级中学和大中城市的初级中学都要开设信息技术课,经济比较发达地区的初级中学,最迟于2003学年开设信息技术必修课程,初中不得少于68课时,高中70-140课时。信息技术知识也是教师继续教育的重要内容,但教师与学生要求掌握知识的侧重面不同,教师重在为自己的教育教学服务。

1.3信息技术作为工具手段。信息技术作为工具手段,它与学科教学的整合是课堂教学模式改革的发展方向。未来的课堂教学方式发展趋势将由目前的“以教为主”变为“以教为辅”,以学生运用各种信息技术手段获取知识和能力为主的“人本主义”教学方式。

1.4信息技术作为新文化。信息技术作为新文化,由此产生的道德、安全、犯罪等等都是全新的不容忽视的问题。教师进行信息技术与学科教学整合研究时,要充分认识到信息技术这种新文化的特殊性,它给人类带来文明的同时,也带来了糟粕和垃圾。新《中小学信息技术课程指导纲要(试行)》任务别指出:“教育学生正确认识和理解与信息技术相关的文化、伦理和社会等问题,负责任地使用信息技术。”加强信息技术法制的观念和网络伦理道德观念,提高对假、丑、恶的分辨能力,把网络法制教育和网络道德教育等作为学校德育教育,融入其他学科教学整合中,也是研究不容忽视的重要内容之一。

2.信息技术在数学中的运用。

2.1创设问题冲突,激发学习兴趣。《数学课程标准》指出:学生的数学学习,应当是现实的、有趣的、富有挑战性的。中学生大多活泼、好动,有意注意时间比较短,喜欢多变、宽松的教学环境。静态的文字、课本及教师的口语则满足不了学生比较活跃的心理需求,他们在安静的教室里,往往找不到自己的位置,认为老师是演员,自己是观众、是旁观者。因此,思想容易开小差,使教学达不到理想的效果。而多媒体计算机通过声、像、动画等学生喜闻乐见的形式,以其新颖性、艺术性吸引学生的注意力,为学生创设符合学生心理特点的教学情境,不断地给学生以新的刺激,使学生的大脑始终保持兴奋状态,激发了学生强烈的学习欲望,增强了学习兴趣。美国心理学家布鲁纳说:“学习最好的刺激是对所学学科的兴趣。”学生一旦对数学产生兴趣,将达到乐此不疲、废寝忘食的地步,他们会克服一切困难,充满信心的学习数学,学好数学,变“要我学”为“我要学”。

2.2发挥媒体优势,提高教学效率。教育的根本目的是实现人的个性发展。在课堂教学中,要使每个学生都要最大限度地发挥自己的潜能,单凭板书、讲解、操作的方式是很难做到的。多媒体计算机以其速度快、储存量大、易操作等优点,为教学过程的最优化提供了强有力的支持。

2.3减缓思维难度,突破教学难点。以计算机为代表的现代化教学手段,是人脑的延伸。它具有极为丰富的表现力,能根据教学需要将教学内容实现大与小、远与近、静与动、快与慢、整与散、虚与实之间的相互转换,生动地再现事物的发生、发展的过程,从而克服了人类感官的局限性。扩大了学生的认知时空,缩短了学生的认识过程。通过向学生展开丰富的、典型的、具体的经验和感性材料,突出观察点,揭示现象的内在联系,引导学生深入思考,减少思维的困难;丰富学生的联想,减少学生联想的困难;建立正确的空间观念,培养了学生思维的灵活性、深刻性和创造性,提高学生的解题速度和解题正确率。中学数学知识的教学,尤其是几何知识的教学,由于学生的知识水平较低,因此教师不能用严谨、科学的推理讲解清楚,必须通过学生自己去感知体会,因此,有些知识的理解学生还是比较困难,容易产生思维障碍。例如,“圆面积公式的推导”、“圆柱体积公式的推导”。这时,运用课件演示,利用它的直观性强、可无限分割的优势展现知识的发生、转变过程,突破思维障碍,会起到事半功倍的效果。

2.4启迪想象思维,提供创新空间。课标指出:数学教学的主要目标之一就是培养学生的抽象思维能力。数学是研究现实世界的空间形式和数量关系的科学。中学阶段由于刚刚接触立体图形,空间想象能力较差,运用现代媒体手段,充分挖掘教材,有利于丰富表象,引发联想,启发思维,化繁为简,化难为易,启迪学生进行全方位、立体的思维,展开想象的翅膀。总之,多媒体的运用能丰富课堂教学的形式,突破教学难点,加大课堂教学的容量。这样,充分运用多媒体课件辅助教学的优势,为学生提供丰富的感性材料,化静为动,化抽象为具体,激发学生学习的积极性,调动学生多种感官参与活动的主动性,使学生学习的积极性和主动性得到充分的发挥。做到了融基础性、科学性、直观性、实践性于一体,真正做到了追求最优化的教学效果。随着现代信息技术的不断发展和普及,随着网络教学的逐渐完善,数学教学的明天会更加辉煌、更加灿烂。

第12篇

在初中数学的教学中一直将应用题的教学当做一个难点,而中考中也一直变换题型,对之常考不衰。应用题不仅是一个让学生能够和生活联系起来的纽带,更是为学生在数学的知识积累和数学的应用方面打开了一个窗口,能够更好地提升学生数学应用意识和综合素质。应用题的教学一方面担负着锻炼学生逻辑思维能力的重大任务,另一方面担负着数学知识在生活中的应用、与生活中事物的结合。经过长期的应用题的训练和讲解,能够让学生的数学水平得到长足的进步,能够通过应用题创设的题境和丰富多变的内容来激起学生学习数学的热情,激发学生研究数学的积极性,使学生理解数学就是我们身边生活中的知识,能够通过数学应用题来进一步理解生活。例如,很多学生不理解商店或者是超市中打折的意思,而我们通过数学应用题的讲解,就能够让学生知道打折究竟是什么意思。经过这样的教学就可以让学生知道原来数学和生活距离这么近,让学生知道数学就在我们的身边,让学生知道数学不是干巴巴的枯燥知识。应用题教学的过程中要注重它的综合性,因为同一道题能够同时对多个内容进行考察,所以学生在解题的时候能够复习多个已经学过的知识点,能够进一步锻炼学生运用数学知识的灵活性,能够培养学生一题多解的解题思想方法,让学生养成一体多方面多角度考虑问题的习惯,培养学生的发散思维和创新能力,增强学生的自信和学习数学知识的兴趣。

二、当前初中数学应用题教学中存在的问题

虽然课改在全国范围内开展,但是我们初中数学应用题教学仍然存在许多问题,下面就笔者这几年的观察和实践,来进行具体的分析。

(一)学生没有足够的解决问题的经验

我们许多教师受传统数学教学模式和教学观念的长期影响,在日常进行数学教学的时候经常会将课堂讲解重点放在数学基本知识、基本概念定理的教授上,让数学知识远离学生的生活范围和活动范围,让许多学生不能够把数学和社会、生活、校园联系起来,使得数学内容知识的学习和学生的社会生活严重脱离,最终导致的结果是学生很难对数学学习产生兴趣,感觉数学知识和数学内容特别枯燥无味,学生的学习质量和数学成绩也就不会很好。但是我们静下心来想一想就会明白,数学课本中的内容都是起源于生活实际,是社会生活中实际问题的高度概括,数学离不开生活,生活也离不开数学。因为长期对数学应用题不够重视,讲解不透彻、不深入,让学生很难养成良好的解决数学应用题的思维习惯,很难培养起良好的解决数学应用题的方法和方式,不能积累足够的解决数学应用题的相关经验,也就不能进行科学合理的反思,不能在遇到应用题时有着明确清晰的解题思路。

(二)在进行初中数学应用题教学时教师没有注重科学的教法

现在我们要求在课堂上要将学生当成是主体,教师要起到引导作用,但是长期受到传统教学因素的影响,在讲解应用题的时候教师不注重科学的教法,只是在课堂上单调地讲解,学生在下面被动地听,使得课堂沉闷无味,学生的学习积极性和学习效率都极为低下,最终让学生对数学学习产生不了兴趣,没有主动性。我们要看到初中数学应用题具有题型多、内容丰富、形式多变的特点,这样安排能够最大程度地符合当前阶段学生的年龄特征、性格特点、学习特性,虽然这些应用题含有一定的规律,但是任何一个却又具有自己的特点,教师需要应用科学的教学方法,吸引学生的注意力,培养学生合理的解题思路,提高学生参与的积极性,使学生对应用题教学产生兴趣,进而可以提高学生的成绩和整节课的教学效率,培养学生的综合能力。

三、初中数学应用题教学具体策略研究

(一)营造和谐融洽气氛的教学课堂

根据初中数学应用题具有题型多、内容丰富、形式多变的特点,我们要努力营造一种充满和谐融洽气氛的教学课堂,能够让学生感觉到轻松自由,可以让学生感觉到自己的主体地位。教师在数学应用题教授的过程中,要加强师生之间的互动,多给学生发言的机会,让学生讲解自己的看法,教师进行适当科学的点拨。教师的课堂用语不要太生硬,要能够多接近学生的语言,要能够符合学生年龄阶段的特点。要对初中数学应用题多进行筛选,选择那些接近学生生活,能够被学生理解,可以让学生和数学更加接近的题型,尽量激发学生学习的热情,让学生不由自主地参与到课堂中来,提高学生学习的积极性。

(二)课堂上尽量体现出学生的主体地位

要打破传统的课堂教学模式,实行新的课改模式,就需要加强和重视学生的主体地位。主体地位要从多方面来进行体现,从初中数学应用题的选择、应用题的讲解方法,到学生的接受能力、课堂表现、参与程度,都要一一重视起来。教师要做好自己的引导工作,要带领学习科学分析应用题的逻辑,研究其解题思路,并根据学生上课的接受学习程度来决定对应用题的拓展和加深。作为新时期的教师一定要改变过去那种让学生被动接受知识的现象,要使学生能够主动地探寻知识、主动地渴求知识,要让学生成为学习的主人、知识的主人。

(三)注重锻炼学生分析问题的能力

第13篇

关键词:小学数学 应用题 教学策略

中图分类号:G623.5 文献标识码: C 文章编号:1672-1578(2014)4-0216-01

《数学课程标准》(实验稿)在总体目标中指出:要使学生体会数学与自然及人类社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心,这是进行应用题教学改革的指导思想。在小学数学应用题的教学中,应培养学生独立审题,分析题意,总结经验的好习惯。同时还应该让学生通过自已和别人的解题的经验,形成属于自已的解题模式,同时要让学生懂得“问题从生活中来,也要应用到生活中去。”让学生觉得自已所学的知识,有所用,这才是解决问题教学的最终目的。

1 应用题教学要创设学生熟悉的问题情境

《数学课程标准》里面明确地指出:“数学教学要紧密联系学生的生活实际,从学生的生活经验和已有知识出发,创设生动有趣的情境。”提出问题,解决问题应以创设问题情境为开端,所以创设问题情境是“解决问题”教学过程的重要环节。学生一般都爱听故事,如果教师是位有心人,将比较具有研究价值的数学题改编成一则生动有趣的故事,把题目孕育在这一则故事中,学生就会充满兴趣地走入这个故事,主动去解决迎刃而来的问题,并且在整个参与过程中学生能始终保持着一种饱满而愉快的心情。如:笔者在四年级讲一道“一辆面包车和一辆大客车同时从A城出发到B城,两城相距600千米。面包车每时行70千米,大客车每时行60千米,面包车中途停车检修2时,哪辆车先到达目的地?”的行程应用题时,先让学生讲乌龟和兔子赛跑的故事。因为学生对这个故事非常熟悉,也百听不厌。讲完后笔者问:“谁先到?”学生齐答:“乌龟先到。”又问:“乌龟跑得慢,兔子跑得快,为什么乌龟反而先到?”学生则答:“兔子太骄傲了,中途它睡了觉,耽误了时间,当然乌龟先到啦!”虽然只是一个简单的故事,却对本节课的教学起到了不可替代的作用。

2 指导学生认真审题并感知题意

审题是解答应用题的首要环节,这是解体过程中的感知阶段,其目的是为了理解题意,获取解题的必要素材,既了解情节,已知条件和问题。在教学应用题时,笔者会尽可能留给学生充裕的审题时间。考试后让他们自己计算试卷中应用题因审题不认真而失去的分数,让他们体会认真审题的重要性。在教学中只有认真审题才能感知题意,所以要把审题方法、方向作为重点加以强化,这样就能形成学生自觉的审题意识。看到一道应用题首先从题目整体上去感知,迅速准确地分辨出题目中的条件和问题,再通过题目里的文字初步了解所包含的意思来进一步理解题意;再从题目的整体去感知,去掉与问题条件无关的内容,把自己的思维集中到已知条件和所求问题的因果关系上。另外,要教给学生审题的方法。要求学生默读题目时,要做到不多读或少读一个字。读过后要五看:一看以知条件,二看所求问题,三看重点字词,四看单位,五看括号内的提示或要求。还要求学生边看,边把重点词语做上记号。看过后还要想:如看到“多”要想谁大,谁小;看到“倍”要想谁是一倍数。这样通过读、看、想,把题目真正看懂,真正弄清楚,再分析列式,对于数量关系比较复杂或隐蔽的应用题,更要加强审题指导,可以要求学生画线段图或用关系式方法。

3 教给学生解答应用题的策略

教给学生解题的思考方法是解题策略的中心内容,也是教学一般复合应用题的关键所在,因为只有让学生学会分析思考、解应用题时才有路可循,才能比较顺利地探索出解题的途径,学生的思维发展才能终身受益,解题的思维过程才能清晰地展现出来,可见,解答应用题选择合适的思考办法至关重要,教学时,教师经常对学生进行这样的训练,学生就会按照一定的思路展开分析,解题的准确率也就会慢慢提高。美国著名数学家哈尔莫斯说过:“问题是数学的心脏。”学习数学离不开解题,历来解题就被公认为是数学学习中最富有特征的一项活动。解题能力的高低很大程度上取决于解题策略的掌握,而解题策略的中心内容就是教会学生学会思考,掌握解决问题的策略,把要解的问题化归为已经解过的问题,解决问题能力的提高主要依靠正确的思维策略和解题方法,思维策略是提高问题解决能力的关键,也是现代教育研究的重要内容。《新课程标准》指出:形成解决问题的一些基本策略,体验解决问题策略的多样性,发展实践能力和创新精神。教学中应尊重每一个学生的个性特征,允许不同的学生从不同角度认识问题,采用不同的方式表达自己的想法,用不同的知识与方法解决问题。鼓励解决问题策略的多样化,是因材施教、促进每一个学生充分发展的有效途径。

4 培养学生合作交流共同解决问题的能力

在《数学课程标准》中指出:有效的数学学习过程不能单纯的依靠记忆与模仿,动手实践、自主探索与合作交流是学生学习的重要方式。教师应向学生提供充分的从事数学活动和交流的机会,帮助学生在自主探索中真正理解和掌握基本的数学知识、技能、数学思想和方法,同时获得广泛的数学活动经验。如:在教学“求一个数比另一个数多几的应用题”时,学生们用摆实物、画线段图、比纸条等多种方式来理解数量关系,建立自己的解题思路。互相交流想法时,有的学生没有用“同样多”、“分成两部分”等字眼,却拿了一根长纸条和一根短纸条,对齐一头做比较,从长的上去掉这一块(与短的同样多的部分),剩下的就是多的,所以用减法计算。”这样的表述?虽然不那么准确、完整,但可以看出他对求相差数的实质是理解了。教师的肯定会使其他同学活跃起来从而使学生在不断吸取别人表达方式的基础上,用流畅、清楚的语言建立起合理的理解思路。

参考文献:

第14篇

教育家苏霍姆林斯基说过:“把知识加以运用,使学生感到知识是一种使人变得崇高起来的力量,这是兴趣的重要来源。”[2]《数学课程标准》也指出:“数学教学要体现生活性。人人学有价值的数学。”数学来源于生活,还要应用于生活。数学课堂联系生活,教师善于引导学生已有的生活经验来理解数学知识的真正含义,这样,既可加深对课堂知识的理解,激发学生兴趣,又能使学生体验到数学就在生活实践之中,体验到数学的价值。因此,在数学教学中,要尽可能组织学生实践,让学生亲身体会生活中的数学知识。例如,在教“简单的统计”时,我结合家庭用水、电、煤气生活实际,要求学生收集自己家庭每月所用的数据,加以分类整理,填写在统计表里,来反映实际情况。再如,在“圆锥的体积”教学中,我结合学生常见的用卷笔刀削圆柱形的铅笔的现象,让学生仔细观察铅笔变化,然后提出圆柱和圆锥变化的问题:被削的这段铅笔前后分别是什么形状?前后体积发生了什么变化?变小了以后的同锥体与原本这段圆柱体的底面积、高、体积分别有什么关系?这样的教学,让学生认识到生活中处处有数学,使学生积极主动投入到学习数学之中,真切感受到数学存在于生活之中,数学与生活同在,感受到数学的真谛与价值。

2亲历实践——体验学习的手段

让学生实践操作,体验“做数学”。教和学都要以“做”为中心。“做”就是让学生动手操作,在操作中体验数学。动手操作是小学生认识事物的重要手段,让学生在动手中获得直接经验,通过亲身体验来感受发现问题、获取知识的快乐。因此,教师在教学过程中应充分让学生动手、动口、动脑,在活动中学习新知。通过实践活动,使学生获得大量的感性知识有助于提高学生的学习兴趣,激发求知欲。例如,二年级要进行《表内乘法》的整理和复习,我组织了一次《数学在我们的游玩中》的实践活动。教师可以出示游乐园的价格表后问学生,你想玩哪些项目?根据你的玩法,算一算,一共要多少钱?由于方案不同,计算的结果不是唯一的。有位学生说想玩转马两次,碰碰车两次,自控飞机两次,一共要3x2+4x2+6x2=26(元)。另一位学生马上站起来回答,我也可以这样玩,但我只要付16元就够了,因为我可以和另一个同学一起坐碰碰车和自控飞机。紧接着,我要求学生每人用一张30元的游园券设计出游玩方案。学生通过小组讨论,提出10种方案,从而打开了学生狭隘的思维空间,让他们了解到同一个问题可以有多种解决方法,体验到解决问题策略的多样性。这种实践性教学,大大地提高了学生的发散思维能力和创造思维能力。

3经历“错误”——体验学习的需求

在课堂教学中,对于教师提问的问题,学生的回答难免出现不同的错误,这些错误在体验学习中也是很宝贵的,通过这些不同错误,教师可以首先让学生解释形成答案的来龙去脉,让学生充分发表自己的见解,倾听别人的想法,要允许学生“争辩”,然后,教师对这些错误进行逐个分析、归纳,认真总结“错误”究竟有哪些,各类“错误”之间究竟有什么联系,其产生的主要原因是什么。这样,教师既摸清了学生对问题认识不清的根源所在,学生也从老师的点拨中得到启发,加深了知识的理解。也就是说,学生经历“错误”体验,达到教师和学生的互动交流,学生更能体验到“错误”的感慨和成功的愉悦。例如在教学第十册《求平均数》时,课本有一道习题:“先锋号机帆船出海捕鱼,上半月出海13天,共捕鱼805天;下半月出海14天,每天捕鱼64吨,这条船平均每天捕鱼多少吨?”有的学生对这道题列式为805÷13+64,而有的同学列式为(805+14×64)÷(13+14)。显然,第一种列式是错误的。那么为什么会出现这样的错误呢?我就让认为第一种列式的同学阐述自己的原因,其实,他们错误地认为上半月的平均每天捕鱼数和下半月的平均每天捕鱼数相加,就是这条船这个月每天的捕鱼数。然后,我根据这些“错误”进行纠正,并让学生讨论。在学生获得“错误”的体验后,通过小组讨论得到的结果,往往比老师灌输给他们的“答案”更有说服力,学生对此类题目印象更深。

总之,体验数学需要教师引导学生积极主动地参与学习过程,正如《数学课程标准》指出:“义务教育阶段的数学课程,要强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,”[3]由此可见,在数学教学中,教师应该让学生亲身经历数学概念、结论的形成过程,使数学学习成为一个体验过程。在这一过程中,使学生体验学数学的乐趣,培养学生数学素养,应该是我们的目标。

参考文献

[1]廖志凌.浅谈新理念下的小学数学课堂教学[J].小学教学参考,2007,(12)

[2]张术芝.在小学数学教学中培养学生的创新意识[J].希望月报(上半月),2007,(03)

[3]劳素华.浅谈小学数学教学中的学“问”[J].厦门教育学院学报,2007,(02)

第15篇

解答应用题的过程,其实就是分析、推导、综合数量关系,由已知求出未知的过程。应用题的解答不仅要综合运用小学数学中的概念、性质、意义、法则、公式等基础知识,还要具有分析、判断、推理、综合等思维能力。所以,应用题教学不但可以巩固知识,而且有利于培养学生初步的逻辑思维能力。那么,如何进行应用题教学呢?为此,笔者经过不断探索与实践,精心设计了应用题七环教学法,收到了可观的教学效果。

应用题七环教学法是在心理学理论和《数学课程标准》的指导下,根据应用题的特点,从应用题生活化的角度,针对应用题在小学中的地位,对应用题给师生带来的困惑进行不断的探索与研究得出的。它以学生为主体,以加强思维训练、发展学生思维为重点,着眼于提高学生灵活解决实际问题的能力。其基本环节是:导读思说记找研。现分述如下:

1、导

导,即导入新课,是老师有机连接各个环节的桥梁。其目的是为学生探究新知识指明方向,激发学生学习的积极性,把学生的注意力集中于新知识上,使学生全身心地投入学习。导的水平如何,将直接影响教学的成败。因此,对这一环节的教学,教师千万不可小觑,要引起高度的重视,不仅要让导的内容与新知识紧密联系在一起,使其有利于学生进行迁移类推,而且要密切联系学生实际和现实生活,使学生感到既容易学,又有趣;既有用,又有价值。为此,教学中,教师要注意导的方式,或者从学生的实际生活进行启发,或者充分使用学具、教具进行设疑,或者运用课件,充分发挥多媒体的优势吸引学生,或者环环相扣,以旧引新。总之,不论运用什么方式,只要能达到导的目的,导得自然,一般来说,都是可取而有效的导入方式。

2、读

读,指读题目,是应用题教学的重要环节,是学生自己感知信息数据的过程。读,看起来是非常简单的事,其实,要把应用题读通、读透,还是比较困难的。有的学生之所以做错,其实主要原因之一就是由于读题时走马观花,没有读懂。“书读百遍,其义自见。”应用题也不例外。甚至可以这么说:“与其让学生抄题目,不如让学生多读题目。”这当中的道理,就像让学生抄不认识的字一样,不论抄多少遍,学生还是同样不认识、不理解。

读,要讲究一定的方式。在小学,大多数的学生读题时都不注意停顿,语感非常差,使得数学意识低下,因而理解不透题意。教学中教师要给学生以读的指导:可以朗读,可以默读;可以个人读,也可以分组读;还可以全班齐读,形式不拘一格。此外,还要注意读的语速。通常情况下,语速以稍慢为佳,以能准确感知信息数据及问题为标准。因此,读的时候一定要全面、仔细,既不加字也不减字,对于较深的题目,甚至要咬文嚼字。这样不仅能提高学生的数学意识,而且也使学生的感知能力得到了培养,同时也提高了学生捕捉信息数据的能力,为学生理解题意奠定了初步的基石。

3、思

思,指学生读题后,思考题目中的已知条件和问题该如何表述,该把哪个量看作单位“1”,如何用线段图描述题目,题目中有什么样的数量关系,可以用什么方法来解答等,是培养学生思维能力的中心环节。学生思得如何,主要是看教师是否根据学生的经历和思维水平,合理而充分利用可用的教学资源,使学生思维现实化。只要是上数学的老师,都很清楚地知道,一些学生,尤其是学困生,在掌握数学知识时,往往感到困难重重,其中重要的原因就是他们在解题过程中缺乏思维活动的自觉性与周密性。因此,教学中教师要加强引导,切实做好学生的引导者,设法调动学生的大脑器官。不但要留给学生充分思考的余地,使学生主动而积极地产生遐想,引发思维的火花,而且要关注每一个学生的思维活动,为学生提供独立思考的机会,对学生负责。切忌以教师的说讲来代替学生的思,力求“实现不同的人在数学上都得到不同程度的发展”。

4、说

说,指学生用语言对自己的思考进行表达,属于口头动脑,是对题目的再理解,是最积极的思维表现。“人的思维,尤其是抽象思维,与言语密不可分。”“言语使思维更凝缩。”“语言是思维的工具,人们利用它进行各种思维活动。”可见,语言能促进思维的发展。说也是教师了解学生思维水平的重要手段。教师评价学生爱动脑筋,勤于思考,智商高等,主要就是从学生平时说的积极性这一角度来进行评价的。所以在教学过程中,教师要重视说的训练,尤其是学困生,更应该激发他们说的欲望,使他们不仅仅是想说,而且是要说;给他们一个说的舞台,让他们充分表现自己,体验到成功的快乐。因此,说的时候应尽可能采用个人说的方式进行,以便更好地了解学生。此外,还要要重视说的依据,也就是根据什么来说的。只有把依据弄得一清二楚,学生才能明白应用题是如何体现基础知识点的,才能判断自己思的结果是否正确。这样不仅能让学生更好地掌握和运用基础知识,加深对应用题的理解,学会思的方法,而且能使学生正确认识自己,建立自信。

5、记

记,指将学生说的内容简单明了地写下来。就条件和问题来说,记的实质是对原题进行删节、组装、制作的过程,是对原题的一种精加工。就整个这一环节来说,记的目的是变复杂为简单,加深记忆,强化理解,以便于学生观察、分析和综合运用。常言道:好记性不如烂笔头。学生通过“读”“思”“说”的训练后,得到的材料往往是零乱的,因而运用时常常丢三落四。在现实生活中,应用题也并非要像书上那样详细地写出来,而只需要进行简单地记载即可。记,还是学生概括能力的表现之一。通过观察记的内容是否完整简洁,可以看出学生提练语言的水平。因此,教师有必要培养学生记的能力,尤其是较复杂的应用题,记就更有必要了。

记,最好在草稿本上进行,当然,如果觉得有必要,也可以在作业本上进行,但一定要注意题目中具有隐蔽性的那种条件,记的时候应当把缺省部分写出来。

例如:“一个儿童体内所含的水分有28千克,占体重的4/5。这个儿童的体重是多少千克?”在这道题中,“占体重的4/5”是一个缺省条件,应该把缺省的部分“水分”补出来,记为“水分占体重的4/5”只有这样,才能为学生扫清第一道障碍。

6、找

找,指学生根据已知条件和问题,找出题目的突破口和单位“1”等,进而找出题目中的数量关系(等量关系),属于分析的过程。

突破口一般是一个比较难理解的句子,是学生理解题的拦路虎,通常是带比、分数或几倍等的语句。教师应当设法使学生找出这种句子进行理解。单位“1”是用来衡量的量,一般是紧接分数或几倍前的那个量;有比时,通常是相比的几个合起来的总量;或者就是题目中的总路程、总工作量等。总的说来,和谁进行比较,谁就是单位“1”。单位“1”是学生解答应用题的基础之一。学生是否找准单位“1”,常常影响解题的对错。因此,教学中,教师要要引导学生弄清用来比较的量,教给学生识别比较量的方法,以便找出单位“1”的量。值得注意的是有的题目中存在着两个甚至三个单位“1”,解题时要注意单位“1”的统一。数量关系是应用题的灵魂,是学生解答应用题的前提和根本,也是学生解答应用题最大的困难。数学教学不仅要使学生了解人类关于数学方面的文化遗产,学到一定的数学知识,还要使学生学会用知识来认识事物,解决实际问题。因此,教师不仅要使学生能获取数学基础知识,而且要重视培养学生的数学意识和从具体题目中找数量关系的能力。只有找到正确无误的数量关系,才能根据数量关系进行正确的解答。

找数量关系的方法有三种:

①对已知条件和问题逐一找;

②对已知条件和问题综合找;

③明确单位“1”,画线段图找。画线段图时,一般是先任意画一条线段来表示单位“1”的量,然后确定应该分的段数……单位“1”的量画好了,再画其他的量。

例如:“一条裤子的价格是75元,是一件上衣的2/3。一件上衣多少元?”在这道题中,“是一件上衣的2/3”是一个缺省条件,是题目的突破口,应注意理解;应该把“上衣”看作单位“1”。学生这样理解后,自然能找出“裤子单价=上衣单价×2/3”这一数量关系,或者画出下面的线段图,找出数量关系。

7、研

研,指学生根据信息数据,利用找到的基本数量关系及某一条件或问题,研究出其他的数量关系,也就是从不同的角度进行思考,灵活运用后学知识,尝试多种多样化的解题方法,是解题思维的拓展,能培养学生思维的灵活性。其具体做法可以是利用加减乘除各部分间的关系对数量关系进行变式,也可以是对题目中能进行转换说法的条件(多数是带几倍分数或比的条件)进行换说法,也就是运用多种方法表达所学知识,)3找出新的数量关系进行解答。

例如:“一个农场计划在100公顷的地里播种大豆和玉米。播种面积的比是3:2。两种作物各播种多少公顷?”本题中有一个明显的数量关系:“大豆面积玉米面积=100”利用加法各部分间的关系,可以得到两个数量关系:“大豆面积=100-玉米面积”和“玉米面积=100-大豆面积”。题目中的关键句是“播种面积的比是3:2”,也是一个缺省条件,补完整就是“大豆面积与玉米面积的比是3:2,即,大豆面积:玉米面积=3:2。对这一条件进行换说训练,又可以得到以下说法和理解:

①玉米面积:大豆面积=2:3

②大豆面积是玉米面积的3/2(豆=玉×3/2;玉为单位“1”)

③玉米面积是大豆面积的2/3(玉=豆×2/3;豆为单位“1”)

④大豆面积比玉米面积多1/2〈豆=玉玉×1/2;豆=玉×(11/2);玉为单位“1”〉

⑤玉米面积比大豆面积少1/3<玉=豆-豆×1/3;玉=豆×(1-1/3);豆为单位“1”>

⑥大豆面积3份,玉米面积2份,共5份。

又如:“一张课桌比一把椅子贵10元,如椅子的单价是课桌的3/5。课桌、椅子各是多少元?”本题中的“椅子的单价是课桌的3/5”这一条件也可以理解为“椅子单价:课桌单价=3:5”这样又可以像上一例一样进行探究,从而找出多种多样的数量关系,这样不仅加深了理解,丰富了解法,更有助于发展学生的思维。