前言:我们精心挑选了数篇优质数字信号处理论文文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。
另外一类是需要用复杂算法对大量数据进行处理的应用,例如声纳探测和地震探测等,也需要用DSP器件。该类设备的批量一般较小、算法要求苛刻、产品很大而且很复杂。所以设计工程师在选择处理器时会尽量选择性能最佳、易于开发并支持多处理器的DSP器件。有时,设计工程师更喜欢选用现成的开发板来开发系统而不是从零开始硬件和软件设计,同时可以采用现成的功能库文件开发应用软件。
在实际设计时应根据具体的应用选择合适的DSP。不同的DSP有不同的特点,适用于不同的应用,在选择时可以遵循以下要点。
算法格式
DSP的算法有多种。绝大多数的DSP处理器使用定点算法,数字表示为整数或-1.0到+1.0之间的小数形式。有些处理器采用浮点算法,数据表示成尾数加指数的形式:尾数×2指数。
浮点算法是一种较复杂的常规算法,利用浮点数据可以实现大的数据动态范围(这个动态范围可以用最大和最小数的比值来表示)。浮点DSP在应用中,设计工程师不用关心动态范围和精度一类的问题。浮点DSP比定点DSP更容易编程,但是成本和功耗高。
由于成本和功耗的原因,一般批量产品选用定点DSP。编程和算法设计人员通过分析或仿真来确定所需要的动态范围和精度。如果要求易于开发,而且动态范围很宽、精度很高,可以考虑采用浮点DSP。
也可以在采用定点DSP的条件下由软件实现浮点计算,但是这样的软件程序会占用大量处理器时间,因而很少使用。有效的办法是“块浮点”,利用该方法将具有相同指数,而尾数不同的一组数据作为数据块进行处理。“块浮点”处理通常用软件来实现。
数据宽度
所有浮点DSP的字宽为32位,而定点DSP的字宽一般为16位,也有24位和20位的DSP,如摩托罗拉的DSP563XX系列和Zoran公司的ZR3800X系列。由于字宽与DSP的外部尺寸、管脚数量以及需要的存储器的大小等有很大的关系,所以字宽的长短直接影响到器件的成本。字宽越宽则尺寸越大,管脚越多,存储器要求也越大,成本相应地增大。在满足设计要求的条件下,要尽量选用小字宽的DSP以减小成本。
在关于定点和浮点的选择时,可以权衡字宽和开发复杂度之间的关系。例如,通过将指令组合连用,一个16位字宽的DSP器件也可以实现32位字宽双精度算法(当然双精度算法比单精度算法慢得多)。如果单精度能满足绝大多数的计算要求,而仅少量代码需要双精度,这种方法也可行,但如果大多数的计算要求精度很高,则需要选用较大字宽的处理器。
请注意,绝大多数DSP器件的指令字和数据字的宽度一样,也有一些不一样,如ADI(模拟器件公司)的ADSP-21XX系列的数据字为16位而指令字为24位。
DSP的速度
处理器是否符合设计要求,关键在于是否满足速度要求。测试处理器的速度有很多方法,最基本的是测量处理器的指令周期,即处理器执行最快指令所需要的时间。指令周期的倒数除以一百万,再乘以每个周期执行的指令数,结果即为处理器的最高速率,单位为每秒百万条指令MIPS。
但是指令执行时间并不能表明处理器的真正性能,不同的处理器在单个指令完成的任务量不一样,单纯地比较指令执行时间并不能公正地区别性能的差异。现在一些新的DSP采用超长指令字(VLIW)架构,在这种架构中,单个周期时间内可以实现多条指令,而每个指令所实现的任务比传统DSP少,因此相对VLIW和通用DSP器件而言,比较MIPS的大小时会产生误导作用。
即使在传统DSP之间比较MIPS大小也具有一定的片面性。例如,某些处理器允许在单个指令中同时对几位一起进行移位,而有些DSP的一个指令只能对单个数据位移位;有些DSP可以进行与正在执行的ALU指令无关的数据的并行处理(在执行指令的同时加载操作数),而另外有些DSP只能支持与正在执行的ALU指令有关的数据并行处理;有些新的DSP允许在单个指令内定义两个MAC。因此仅仅进行MIPS比较并不能准确得出处理器的性能。
解决上述问题的方法之一是采用一个基本的操作(而不是指令)作为标准来比较处理器的性能。常用到的是MAC操作,但是MAC操作时间不能提供比较DSP性能差异的足够信息,在绝大多数DSP中,MAC操作仅在单个指令周期内实现,其MAC时间等于指令周期时间,如上所述,某些DSP在单个MAC周期内处理的任务比其它DSP多。MAC时间并不能反映诸如循环操作等的性能,而这种操作在所有的应用中都会用到。
最通用的办法是定义一套标准例程,比较在不同DSP上的执行速度。这种例程可能是一个算法的“核心”功能,如FIR或IIR滤波器等,也可以是整个或部分应用程序(如语音编码器)。图1为使用BDTI公司的工具测试的几款DSP器件性能。
在比较DSP处理器的速度时要注意其所标榜的MOPS(百万次操作每秒)和MFLOPS(百万次浮点操作每秒)参数,因为不同的厂商对“操作”的理解不一样,指标的意义也不一样。例如,某些处理器能同时进行浮点乘法操作和浮点加法操作,因而标榜其产品的MFLOPS为MIPS的两倍。
其次,在比较处理器时钟速率时,DSP的输入时钟可能与其指令速率一样,也可能是指令速率的两倍到四倍,不同的处理器可能不一样。另外,许多DSP具有时钟倍频器或锁相环,可以使用外部低频时钟产生片上所需的高频时钟信号。
存储器管理
DSP的性能受其对存储器子系统的管理能力的影响。如前所述,MAC和其它一些信号处理功能是DSP器件信号处理的基本能力,快速MAC执行能力要求在每个指令周期从存储器读取一个指令字和两个数据字。有多种方法实现这种读取,包括多接口存储器(允许在每个指令周期内对存储器多次访问)、分离指令和数据存储器(“哈佛”结构及其派生类)以及指令缓存(允许从缓存读取指令而不是存储器,从而将存储器空闲出来用作数据读取)。图2和图3显示了哈佛存储器结构与很多微控制器采用的“冯·诺曼”结构的差别。
另外要注意所支持的存储器空间的大小。许多定点DSP的主要目标市场是嵌入式应用系统,在这种应用中存储器一般较小,所以这种DSP器件具有小到中等片上存储器(4K到64K字左右),备有窄的外部数据总线。另外,绝大多数定点DSP的地址总线小于或等于16位,因而可外接的存储器空间受到限制。一些浮点DSP的片上存储器很小,甚至没有,但外部数据总线宽。例如TI公司的TMS320C30只有6K片上存储器,外部总线为24位,13位外部地址总线。而ADI的ADSP2-21060具有4Mb的片上存储器,可以多种方式划分为程序存储器和数据存储器。
选择DSP时,需要根据具体应用对存储空间大小以及对外部总线的要求来选择。
开发的简便性
对不同的应用来说,对开发简便性的要求不一样。对于研究和样机的开发,一般要求系统工具能便于开发。而如果公司在开发下一代手机产品,成本是最重要的因素,只要能降低最终产品的成本,一般他们愿意承受很烦琐的开发,采用复杂的开发工具(当然如果大大延迟了产品上市的时间则是另一回事)。
因此选择DSP时需要考虑的因素有软件开发工具(包括汇编、链接、仿真、调试、编译、代码库以及实时操作系统等部分)、硬件工具(开发板和仿真机)和高级工具(例如基于框图的代码生成环境)。利用这些工具的设计过程如图4所示。
选择DSP器件时常有如何实现编程的问题。一般设计工程师选择汇编语言或高级语言(如C或Ada),或两者相结合的办法。现在大部分的DSP程序采用汇编语言,由于编译器产生的汇编代码一般未经最优化,需要手动进行程序优化,降低程序代码大小和使流程更合理,进一步加快程序的执行速度。这样的工作对于消费类电子产品很有意义,因为通过代码的优化能弥补DSP性能的不足。
使用高级语言编译器的设计工程师会发现,浮点DSP编译器的执行效果比定点DSP好,这有几个原因:首先,多数的高级语言本身并不支持小数算法;其次,浮点处理器一般比定点处理器具有更规则的指令,指令限制少,更适合编译器处理;第三,由于浮点处理器支持更大的存储器,能提供足够的空间。编译器产生的代码一般比手动生成的代码更大。
不管是用高级语言还是汇编语言实现编程,都必须注意调试和硬件仿真工具的使用,因为很大一部分的开发时间会花在这里。几乎所有的生产商都提供指令集仿真器,在硬件完成之前,采用指令集仿真器对软件调试很有帮助。如果所用的是高级语言,对高级语言调试器功能进行评估很重要,包括能否与模拟机和/或硬件仿真器一起运行等性能。
大多数DSP销售商提供硬件仿真工具,现在许多处理器具有片上调试/仿真功能,通过采用IEEE1149.1JTAG标准的串行接口访问。该串行接口允许基于扫描的仿真,即程序员通过该接口加载断点,然后通过扫描处理器内部寄存器来查看处理器到达断点后寄存器的内容并进行修改。
很多的生产商都可以提供现成的DSP开发系统板。在硬件没有开发完成之前可用开发板实现软件实时运行调试,这样可以提高最终产品的可制造性。对于一些小批量系统甚至可以用开发板作为最终产品电路板。
支持多处理器
在某些数据计算量很大的应用中,经常要求使用多个DSP处理器。在这种情况下,多处理器互连和互连性能(关于相互间通信流量、开销和时间延迟)成为重要的考虑因素。如ADI的ADSP-2106X系列提供了简化多处理器系统设计的专用硬件。
电源管理和功耗
DSP器件越来越多地应用在便携式产品中,在这些应用中功耗是一个重要的考虑因素,因而DSP生产商尽量在产品内部加入电源管理并降低工作电压以减小系统的功耗。在某些DSP器件中的电源管理功能包括:a.降低工作电压:许多生产商提供低电压DSP版本(3.3V,2.5V,或1.8V),这种处理器在相同的时钟下功耗远远低于5V供电的同类产品。
b.“休眠”或“空闲”模式:绝大多数处理器具有关断处理器部分时钟的功能,降低功耗。在某些情况下,非屏蔽的中断信号可以将处理器从“休眠”模式下恢复,而在另外一些情况下,只有设定的几个外部中断才能唤醒处理器。有些处理器可以提供不同省电功能和时延的多个“休眠”模式。
c.可编程时钟分频器:某些DSP允许在软件控制下改变处理器时钟,以便在某个特定任务时使用最低时钟频率来降低功耗。
d.控制:一些DSP器件允许程序停止系统未用到的电路的工作。
不管电源管理特性怎么样,设计工程师要获得优秀的省电设计很困难,因为DSP的功耗随所执行的指令不同而不同。多数生产商所提供的功耗指标为典型值或最大值,而TI公司给出的指标是一个例外,该公司的应用实例中详细地说明了在执行不同指令和不同配置下的功耗。
成本因素
在满足设计要求条件下要尽量使用低成本DSP,即使这种DSP编程难度很大而且灵活性差。在处理器系列中,越便宜的处理器功能越少,片上存储器也越小,性能也比价格高的处理器差。
封装不同的DSP器件价格也存在差别。例如,PQFP和TQFP封装比PGA封装便宜得多。
在考虑到成本时要切记两点。首先,处理器的价格在持续下跌;第二点,价格还依赖于批量,如10,000片的单价可能会比1,000片的单价便宜很多。
摘要:数字信号处理(DSP)系统由于受运算速度的限制,其实时性在相当的时间内远不如模拟信号处理系统。从80年代至今的十多年中,DSP芯片在运算速度、运算精度、制造工艺、芯片成本、体积、工作电压、重量和功耗方面取得了划时代的发展,开发工具和手段不断完善。DSP芯片有着非常快的运算速度,使许多基于DSP芯片的实时数字信号处理系统得以实现。目前,DSP芯片已应用在通信、自动控制、航天航空及医疗领域,取得了相当的成果。在载人航天领域,基于DSP芯片的技术具有广阔的应用前景。
TheDevelopmentandApplicationsofDigitalSignalProcessing(DSP)-chip
Abstract:Duetothelimitationofoperationspeed,realtimeperformanceofdigitalsignalprocessing(DSP)systemisfarfromthatofanalogsignalprocessingsystemindecadesago.Sinceearly80’s,DSPchipshavebeengreatlyimprovedinthefollowingaspects:operationspeed,computationprecision,fabricationtechnics,cost,chipvolume,operationalpowersupplyvoltage,weightandpowerconsumption.Furthermore,developmenttoolsandmethodshavebeendevelopedgreatly.ModernDSPchipscanbeoperatedveryfast,whichmaketheimplementationofmanyDSPbasedsignalprocessingsystempossible.NowDSPchipshavebeenwidelyappliedsuccessfullyincommunication,automaticcontrol,aerospaceandmedicine.DSPbasedtechnologyhasverypromisingfutureinmannedspaceflightarea.
Keywords:digitalsignalprocessing(DSP);chip;development;application
数字信号处理作为信号和信息处理的一个分支学科,已渗透到科学研究、技术开发、工业生产、国防和国民经济的各个领域,取得了丰硕的成果。对信号在时域及变换域的特性进行分析、处理,能使我们对信号的特性和本质有更清楚的认识和理解,得到我们需要的信号形式,提高信息的利用程度,进而在更广和更深层次上获取信息。数字信号处理系统的优越性表现为:1.灵活性好:当处理方法和参数发生变化时,处理系统只需通过改变软件设计以适应相应的变化。2.精度高:信号处理系统可以通过A/D变换的位数、处理器的字长和适当的算法满足精度要求。3.可靠性好:处理系统受环境温度、湿度,噪声及电磁场的干扰所造成的影响较小。4.可大规模集成:随着半导体集成电路技术的发展,数字电路的集成度可以作得很高,具有体积小、功耗小、产品一致性好等优点。
然而,数字信号处理系统由于受到运算速度的限制,其实时性在相当长的时间内远不如模拟信号处理系统,使得数字信号处理系统的应用受到了极大的限制和制约。自70年代末80年代初DSP(数字信号处理)芯片诞生以来,这种情况得到了极大的改善。DSP芯片,也称数字信号处理器,是一种特别适合进行数字信号处理运算的微处理器。DSP芯片的出现和发展,促进数字信号处理技术的提高,许多新系统、新算法应运而生,其应用领域不断拓展。目前,DSP芯片已广泛应用于通信、自动控制、航天航空、军事、医疗等领域。
DSP芯片的发展
70年代末80年代初,AMI公司的S2811芯片,Intel公司的2902芯片的诞生标志着DSP芯片的开端。随着半导体集成电路的飞速发展,高速实时数字信号处理技术的要求和数字信号处理应用领域的不断延伸,在80年代初至今的十几年中,DSP芯片取得了划时代的发展。从运算速度看,MAC(乘法并累加)时间已从80年代的400ns降低到40ns以下,数据处理能力提高了几十倍。MIPS(每秒执行百万条指令)从80年代初的5MIPS增加到现在的40MIPS以上。DSP芯片内部关键部件乘法器从80年代初的占模片区的40%左右下降到小于5%,片内RAM增加了一个数量级以上。从制造工艺看,80年代初采用4μm的NMOS工艺而现在则采用亚微米CMOS工艺,DSP芯片的引脚数目从80年代初最多64个增加到现在的200个以上,引脚数量的增多使得芯片应用的灵活性增加,使外部存储器的扩展和各个处理器间的通信更为方便。和早期的DSP芯片相比,现在的DSP芯片有浮点和定点两种数据格式,浮点DSP芯片能进行浮点运算,使运算精度极大提高。DSP芯片的成本、体积、工作电压、重量和功耗较早期的DSP芯片有了很大程度的下降。在DSP开发系统方面,软件和硬件开发工具不断完善。目前某些芯片具有相应的集成开发环境,它支持断点的设置和程序存储器、数据存储器和DMA的访问及程序的单部运行和跟踪等,并可以采用高级语言编程,有些厂家和一些软件开发商为DSP应用软件的开发准备了通用的函数库及各种算法子程序和各种接口程序,这使得应用软件开发更为方便,开发时间大大缩短,因而提高了产品开发的效率。
目前各厂商生产的DSP芯片有:TI公司的TMS320系列、AD公司的ADSP系列、AT&T公司的DSPX系列、Motolora公司的MC系列、Zoran公司的ZR系列、Inmos公司的IMSA系列、NEC公司的PD系列等。
通用DSP芯片的特点1.在一个周期内可完成一次乘法和一次累加。
2.采用哈佛结构,程序和数据空间分开,可以同时访问指令和数据。
3.片内有快速RAM,通常可以通过独立的数据总线在两块中同时访问。
4.具有低开销或无开销循环及跳转硬件支持。
5.快速中断处理和硬件I/O支持。
6.具有在单周期内操作的多个硬件地址产生器。
7.可以并行执行多个操作。
8.支持流水线操作,取指、译码和执行等操作可以重叠进行。
DSP芯片的应用
随着DSP芯片性能的不断改善,用DSP芯片构造数字信号处理系统作信号的实时处理已成为当今和未来数字信号处理技术发展的一个热点。随着各个DSP芯片生产厂家研制的投入,DSP芯片的生产技术不断更新,产量增大,成本和售价大幅度下降,这使得DSP芯片应用的范围不断扩大,现在DSP芯片的应用遍及电子学及与其相关的各个领域。
典型应用(1)通用信号处理:卷积,相关,FFT,Hilbert变换,自适应滤波,谱分析,波形生成等。(2)通信:高速调制/解调器,编/译码器,自适应均衡器,仿真,蜂房网移动电话,回声/噪声对消,传真,电话会议,扩频通信,数据加密和压缩等。(3)语音信号处理:语音识别,语音合成,文字变声音,语音矢量编码等。(4)图形图像信号处理:二、三维图形变换及处理,机器人视觉,电子地图,图像增强与识别,图像压缩和传输,动画,桌面出版系统等。(5)自动控制:机器人控制,发动机控制,自动驾驶,声控等。(6)仪器仪表:函数发生,数据采集,航空风洞测试等。(7)消费电子:数字电视,数字声乐合成,玩具与游戏,数字应答机等。
在医学电子学方面的应用如同其它数字图像处理一样,DSP芯片已在医学图像处理,医学图像重构等领域,如CT、核磁成象技术等方面得到了广泛的应用,已取得了令人满意的效果。在助听,电子耳涡等方面也取得了相当的进展(文献[1,2])。国内、外也有关于脑电、心电、心音和肌电信号处理方面基于DSP芯片系统的报道(文献[4~7]),我们对1996年以前国外生物医学工程的部分核心期刊,如IEEETransactionsonBiomedicalEngineering,ComputersandBiomedicalResearch等核心期刊进行检索,有关基于DSP芯片处理系统的报道很少。对国内生物医学工程的核心期刊,如《中国医疗器械杂志》、《中国生物医学工程杂志》、《生物医学工程学杂志》和《中国生物医学工程学报》等刊物进行检索,未见有关基于DSP芯片系统方面的报道。对我所的光盘数据库进行检索,未见有关在航天医学方面应用的报告。
我们认为在生理信号处理领域基于DSP芯片的技术可以解决我们在实际工作中遇到的某些问题,如当生理信号数据量很大(如脑电,肌电等)且处理算法相对复杂时,现有的微机在实时采样、处理、存储和显示方面往往不能满足实际应用要求,而基于DSP芯片的高速处理单元和微机构成主从系统可以较好地解决这类问题。
载人航天领域中信号传输带宽的限制需要对生理数据进行实时压缩;大型实验中对庞大的数据进行实时处理依赖于数字处理系统的构成;载人航天中对数据处理精度,可靠性要求以及功耗、工作电压、体积、重量等方面的限制需要我们在构造处理系统中选择性能优良的芯片。我们认为将DSP技术应用于载人航天领域具有十分重要的意义。
结束语
以DSP芯片为核心构造的数字信号处理系统,可集数据采集、传输、存储和高速实时处理为一体,能充分体现数字信号处理系统的优越性,能很好地满足载人航天领域设备测量精度、可靠性、信道带宽、功耗、工作电压和重量等方面的要求。目前,DSP芯片正在向高性能、高集成化及低成本的方向发展,各种各类通用及专用的新型DSP芯片在不断推出,应用技术和开发手段在不断完善。这样为实时数字信号处理的应用——尤其是在载人航天领域中的应用提供了更为广阔的空间。我们有理由相信,DSP芯片进一步的发展和应用将会对载人航天信号处理领域产生深远的影响。
[参考文献]
[1]李小华,李雪琳,徐俊荣.基于DSP的数字助听器的研究.95年生物电子学[C],医学传感器等联合学术会议文集,北京,1995:438~439
[2]候刚,徐俊荣.用于植入式多道电子耳涡的一种数字实时语音特征分析系统的研究[M].生物医学工程前沿,合肥:中国科技大学出版社,1993:471~476
[3]邱澄宇,何宏彬.用于心电信号数据压缩的数字信号处理器[M].生物医学工程前沿,合肥:中国科技大学出版社,1993:463~466
[4]VijayaKrishnaG,PrasadSS,PatilKM.ANewDSP-BasedMultichannelEMGAcquisitionandAnalysisSystem[J].ComputersAndBiomedicalReserch,1996,29:395~406
关键词:二维信号处理
一、随着集成电路的运算速度更快,集成度更高,就有可能耐复杂目益增加均一些多维数字信号处理。
所它在最近才开始出现的一个新领域。尽管如此,多维信号处埋仍然对以下一些间提了解决的办法,这些问题是:计算机辅动断层成术(CAT),即综合来自不同方向的X射线的投影,以重建人体某一部分的三维图,源声纳阵列的设计及通过人造卫星地球资源。多维数字信号处理除具有许多引人注目和浅显易行的应用之外,它还具有坚卖的数学基础,这不仅使我们能了解它的实现情况,而且当新问题出现时,也当及时解决。
典型的信号处理任务就是把信息从一种信号传递到另一种信号上,例如,可将一张照片加以扫描、抽样,并将共存储在计算机的存储器中,在这种情况下,信息是从可变的银粒密度转换戌可见光束,再变成电的波形,最后变戍数字的序列,随后该数字序列用。磁盘上磁畴的排列来表示CAT扫描器是一个比较复杂,经过处理,最后显赤射线管(CRT)的荧光屏上或胶片上。数字处理能增加信息,但可以重新排列信息,使观察者能更方便地理解它.观察者不必观看多个不同测面的投影而可直接观察截面图。
人们感兴趣的是信号所包含的信息,而不管信号本身是什么形式。也许可以概括地说,信号处理涉及两个基本任务一一信息的重新排列和信息的压缩。
二、数字信号处理涉及到用数的序列表示的信号的处理,而多维数字信号处理则涉罚用多维阵列表示的信号的处理,例如对同时从几个传感器所接收的抽样图像和抽样的时间波形的处理。由于信号是因而它可以用数字硬件处理,同时可以将信号处理的运算规定为算法。
促使人们采用数字方法的是不言而喻的。数字方法既有效灵活。我们可以用数字系统使其有自适应性并易于重新组合。可以很方便地把数字算法由一个厂商的设备上转换到另一个厂商的设备上去,或者把专用数字硬件来实现。同样,数字算法也可用来处理作为时间函数或空间信号,数字算法自然地和逻辑算符如模式分类相联系。数字信号能够长时间无差错地存储。对很多种应用而言,数字方法Ⅸ其它方法更为简单,对另外一些应用,则可能根本不存在其他方法。多维信号处理是不同于一维信号处理,想在多维序列上实现的多运算,例如抽样、滤波和交换等,用于一维序列,然而,严格芯说,我们不得不说多终信号处理与一维信弓有很大差别的。
信号处理与一维信号处理还是有很大差别的,这是由三个因素造成的;(l)二维通常比一维问题包含的数据量大得多;(2)处理多维系统在数些上不如处理一维系统那样完备;(3)多维信号处理有更多的自由度,这给系统设计音以一维情况中无法比拟的灵活性。虽然所有递归数字滤波器都是用差分方程实现的,一维情况下差分方程是全有序的,而在多维情况下差分方程仅是部分有序的,冈而就存在着灵活性,在一维情况小,离散传里旰变换CDET)可以用快速傅里叶变换CEPT)算法来计算,而在多维情况下,有多且每一个OFT又可用多种AFT算法来计算。在一维情况下,我们可以调整速率。而且也可以调整抽排列。从另一方面来说,多维多项式不能进行因式分解,而一维多项式是可以进行因式分解的。因而在多维情况下,我们不能论及孤立的极,气、孤立的零点及孤立的根。所以,多维信号处理与一维信号处理有相当大的差别。在20世纪60年代初期,用数字系统来模仿模拟系统的想法,使得一维数字信号处毫的各种方法得到了发展。这样,仿照模拟系统理论,创立了许多离散系统理论。随后,当数字系统可以很好地模仿模拟系统时,人们认识到数字系统同时也可以完成更多的功能。由丁这种认识及数字硬件工艺的有力推动,数字信号处理得到了发展,而且现今很多通用的方法,已成为数字方法所特有的,没有与其等效的模拟方法,在发展多维数字信号处理时,可观察到同一发展趋向。因为没有连续时间的(或模拟的)二维系统理论可以仿效,因而最初的二维系统是以一维系统为基础的,80年代后期,多数二维信号处理都是用可分的二维系统。可分的二维系统与用于二维数据的一维系统几乎没有差别。随后,发展了独特的多维算法,该算法相当于一维算法的逻辑推理。这是一段失败的时期,由干许多二维应用要求数据量很大,且IT缺少二维多项式太分解理论,很多一维方法不能很好地推广到二维上来。我们现在正处于认识的萌芽时代。计算机工业以其部件的小型化和价格日趋低廉而有助于我们解决数据量问题。尽管我们总是受限于数学问题,但仍然认识到,多维系统也给了我们新的自由度。以上这些,使得该领域既富于挑战性又无穷乐趣,电子信息技术的结合之软件结台,传统产业中可用电产信息技术的地方,仍然可以在生产或很低的条件下使用人力或传统机械。电予信息技术应到限制,在不同领域和不同水平有各种原因,但烂有一个共大原因是缺乏认识。没有认识,便没有应层。
事实上,在一维和二维信号处理理论之间有实质性的差别,而在二维和更高维之间,除了计算上的复杂世方耐差异之外,似乎差别较小。
参考文献:
[1]吴云韬,廖桂生,田孝华.一种波达方向、频率联合估计快速算法[J]电波科学学报,2003,(04).
[2]吕铁军,王河,肖先赐.利用改进遗传算法的DOA估计[J]电波科学学报,2000,(04)
[3]刘全,雍玲,魏急波.二维虚拟ESPRIT算法的改进[J]国防科技大学学报,2002,(03).
[4]吕泽均,肖先赐.一种冲击噪声环境中的二维DOA估计新方法[J]电子与信息学报,2004,(03).
[5]金梁,殷勤业,李盈.时频子空间拟合波达方向估计[J]电子学报,2001,(01).
[6]金梁,殷勤业.时空DOA矩阵方法的分析与推广[J]电子学报,2001,(03).
关键词:数字信号;信号处理;DSP
1.数字信号处理的概念
数字信号处理是用数字计算机对离散信号或将模拟信号离散化后进行处理的现代信号处理技术,自身有其独特的计算方法和理论。数字信号处理是当前发展相当迅速的一种技术,无线通讯,多媒体技术,网络等都是基于数字信号处理算法的。
数字信号处理器(DSP)是为进行数字信号处理而设计的微处理器。数字信号处理器是同数字信号处理技术一同发展起来的。它针对数字信号处理的应用采用了专用的硬件设计结构。
微处理器的发展经历了单板计算机、单片计算机的历程,DSP则是一种高性能的片上微计算机系统。它除了利用大量的新技术、新结构来大幅度改善芯片性能外,还把内存、接口、外设、事件管理器等集成在一个芯片上,成为一个功能强大的片上系统(SOC)。DSP的产生和发展,得益于数字信号处理理论及计算机、电子技术的飞速进步。
2.数字信号处理器模拟的实现
计算机系统本身是一个非常复杂的系统,要使用软件来模拟每个晶体管或每个门电路各个方面的行为特征几乎是不可能的。人们简化系统复杂程度的常用办法是对系统按层次进行抽象,体系结构就是对计算机系统在结构层次上的简化。然而,体系结构层次上的计算机系统依然很复杂,开发其软件模拟器也因此而十分困难。通常的做法是,在已存在的模拟器基础上进行二次开发或改进,使其适应自己的要求。
在任何数字信号处理中,当涉及硬件实现时,都会遇到一个很普遍的问题:一般要处理的原始信号序列长度是非常长的,但受物理设备条件所限,每次(比如一个时钟周期内)输入给数字信号处理相关硬件(如DSP)的必定是有限长度的采样后的数字序列,也就是说要对原有长序列进行一次截断。显然,截断后的短序列相比于原有未截断的长序列的信号属性必然要发生变化。比如截取高斯白噪声的一段,其截断后的序列的均值和方差等统计特性相对于原有白噪声序列肯定会有变化。这种由于截断而引起的序列性能下降显然会导致后续的DSP等硬件设备中数字信号处理性能的下降。
3.DSP硬件结构分析
在当前信息化、数字化进程中,信号作为信息的传输和处理对象,逐渐由模拟信号变成数字信号。信息化的基础是数字化,而数字化的核心技术之一就是数字信号处理。数字信号处理技术已成为人们日益关注的并得到迅速发展的前沿技术。DSP作为一种特别适合于进行数字信号处理运算的微处理器,凭借其独特的硬件结构和出色的数字信号处理能力,广泛应用于通讯、语言识别、图像处理、自动控制等领域。
3.1 DSP的主要特点及其硬件要求
数字信号处理是指将模拟信号通过采样进行数字化后的信号进行分析、处理、它侧重于理论、算法及软件实现。数字信号处理算法具有如下一些主要的特点:信号处理算法运算量大,要求速度快;信号处理算法通常需要执行大量的乘累加运算;信号处理算法常具有某些特定模式;信号处理算法大部分处理时间花在执行相对小循环的操作上;信号处理要求专门的接口。
从一开始,DSP的结构就是针对DSP算法模型进行构造的,几乎所有的DSP都包含有DSP算法的特征。因此,数字信号处理的上述特点要求DSP必须是专门设计的。
3.2多总线,多处理单元结构
DSP芯片采用了哈佛结构,它分别设置程序存储和数据存储空间,使用专用的程序总线和地址总线。CPU可以同时访问程序和数据,大大提高了处理速度。所谓的改进哈佛结构,体现在如下几点:
1)允许数据存放在程序存储器中,并可以被算术指令直接使用。但程序和数据不能同时读取,多数访问存储器的指令需要两个执行周期。
2)将指令存储在高速缓存中,无须从数据/程序存储器读取,可以节约一个指令周期。
3)改进存储器块结构,允许在一个周期内同时读取一条指令和两个操作数。
使用两类(程序总线、数据总线)六组总线。包括程序地址总线、程序读总线、数据写地址总线、数据读地址总线、数据写总线、数据读总线。配合哈佛机构,大大提高了系统速度。
DSP内部一般都包括多个处理单元,如ALU、乘法器、辅助算术单元等。它们都可在单独的一个指令周期内执行完计算和操作任务,而且往往同时完成。这种结构特别适合于滤波器的设计,如FIR和IIR。这种多处理单元结构还表现为在将一些特殊的算法作成硬件,如典型的FFT的位翻转寻址和流水FIR滤波算法的循环寻址等。而且大部分DSP具有零消耗循环控制的专门硬件,使得处理器不用花时间测试循环计数器的值就能执行一组指令的循环,硬件完成循环跳转和循环计数器的衰减。
3.4 DSP结构改进
过去的DSP结构设计主要是面向计算密集型的应用,而对控制密集型支持得不够。而现实应用中很多场合需要信号处理和精确控制的有效结合,如数字蜂窝电话,它要有监控和语言音处理的工作。现代的DSP将采用DSP/MCU的混合结构,在保证计算能力优先的前提下,通过快速的现场切换、多执行部件并行执行等方式,加强控制类操作的处理能力。将MCU核集成到DSP核中,或者从整体上对DSP进行重新设计,使之兼有DSP和MCU的功能。
另外,为解决速度、功耗、可编程之间的矛盾,我们提出了一种新型的计算方式,它结合了现有微处理器和DSP的时间计算方式以及ASIC、FPGA解决方案的空间计算方式。这种可重构DSP处理器的关键是它能同时进行时间和空间计算。它由一个计算元件互相连接的二维阵列构成,每个阵列都有各自的逻辑单元和本地寄存器。连接这些计算元件的可编程连线借以对阵列的数据流架构动态重构,从而可根据运行的具体任务而对其进行优化。
参考文献:
关键词:《数字信号处理》;教学方法;Matlab;多媒体教学
中图分类号:G642.41 文献标志码:A 文章编号:1674-9324(2013)37-0057-03
《数字信号处理》是电子信息类专业重要的专业基础课,它是将信号以数字方式表示并处理的理论和技术。它的任务是使学生获得数字信号处理方面的基础理论、基本算法和DSP软硬件开发的基本技能,培养学生分析问题和解决问题的能力。
《数字信号处理》一般是在大三的第一个学期或第二学期开课,它的先修课程是信号与系统,学生掌握了连续信号与系统的时域、频域及复频域分析方法,进一步掌握和了解数字信号与系统的分析方法,特别是数字滤波的设计以及在MATLAB中的实现。教师在教学过程中,需要把凝聚在课本上的知识、方法、技能深入浅出地传授给学生。同时,为了提高教学效果,教师需要善于抓重点,知识结构层次要分明,对不同的学生,要因材施教。针对这门课程的应用性、创新性、实践性等特点,以及数字信号处理本身的飞速发展,需要对教学大纲的内容进行修改和完善,在不动摇基本理论、基本概念、以及基本分析和设计方法的前提下,优化理论知识结构,加强实验操作技能训练,特别是诸如数字滤波器设计等综合能力的训练。
另外,利用多媒体教学手段和校园网络数字化平台的建设为教学提供新的活力,从而使课堂教学内容更加丰富,增加上课信息量的传递。在课时不断压缩的情况下,提高学生的主观积极性,从而使教学质量和教学效率得以提高。具体可从以下几个方面进行改进。
一、多种教学手段结合使用
1.《数字信号处理》是一门实践性和理论性都很强的专业课,在教学过程中,为提高学生学习的积极性,采取理论教学和实验实训教学相结合的教学方法,使学生真正做到学以致用。传统的理论教学,是以灌输式方法为主要方式进行教学的,为了赶学习进度,老师整堂课都是不断地讲解,这样使学生的积极性得不到充分发挥。为充分发挥学生的主观能动性,应采用启发式教学方式,即老师讲解只占课堂时间的40%,学生和老师的互动(如例题与习题的解答)占30%,课堂上现场实验操作与仿真占30%。通过对基本原理知识的讲解、习题的解答、以及实物仿真操作训练,使学生在掌握基本理论知识的基础上,学会分析和解决问题的方法、能力,同时也调动同学的主动参与意识,让学生亲自享受到自己的学习成果,真正发挥教学相长优势。
2.开展黑板板书、网络资源共享和多媒体课件教学相结合的多形式授课方式。对《数字信号处理》中一些基本定理和基本结论,如DFT的性质,FFT算法原理等,需要利用黑板板书进行推导和证明,让学生一步步沿着老师的思路得以理解和说明;而对于一些需要图示举例、演示、以及形象理解的知识点,如循环移位、循环卷积等,可通过多媒体(声音、图像、视频、动画等多种形式)形象生动的教学方式进行互动教学;而对于课后的习题、相关背景知识的介绍以及课堂内容的扩展部分,则充分利用校园网络教学平台,建立《数字信号处理》课程的主页,上传相关课程资源,建立答疑和讨论空间。
3.将数字信号处理、Matlab语言以及DSP技术有机地结合起来,使同学们在学习了有关信号处理的理论知识后,通过算法语言进行软件仿真,并在DSP硬件平台上得以实现。这样,学生在学习过程中能将所学的知识融会贯通,并将基础课、专业基础课和专业课有机地关联起来,使学生摆脱大学各课程独立性的错误观念,从而提高教学质量。
二、理论算法与工程实践紧密结合
1.实验教学是培养学生理论联系实际,提高自身基本操作技能的重要手段,是培养与就业结合的适用型人才不可缺少的重要部分。在完成了课堂的理论教学内容的学习后,要想真正做到学以致用,学生就必须进行实验学习和训练,把课本中学到的知识用到实际的设计和工程中。实验项目是以工程案例为背景,如:用FFT对信号作频谱分析、人体心电图信号的噪声处理、数字信号处理在双音多频拨号系统中的应用等,充分发挥学生的主观能动性。实验训练可加深学生对所学课本知识及原理的理解,同时也培养了学生独立分析问题能力,提高编程设计和调试的基本技能,增强学生的动手能力。
2.加强课程设计中数字信号处理与DSP技术的紧密结合。学生灵活运用所学的数字信号课程知识,通过对一个较小的数字信号处理去应用系统的设计与开发,如语音信号的滤波、语音信号频谱分析、电力系统的谐波分析等。在课程设计尾声阶段,教师现场检查学生设计的硬件和软件调试结果,根据学生完成课程设计任务的情况,以评分细则依据公平、客观地评价学生成绩。学生通过某个工程案例的设计、调试和撰写设计报告,掌握信号处理算法设计和DSP软硬件设计的完整过程,学会Matlab和DSP开发坏境的操作、程序编写与调试。对学生进行信号处理方面的工程综合训练,训练学生的综合设计能力、程序设计及调试能力和产品设计的创新能力,培养学生运用所学的理论知识独立地解决实际问题的能力。为学生发挥创造思维能力、解决实际问题提供了广阔的设计舞台。
3.着力培养学生创新实践能力。进行基于DSP处理器的信号处理系统软硬件设计培训,并与全国大学生电子设计竞赛结合,培养学生创新精神及工程设计实践能力。课程由教师讲授、学生课外自学、竞赛实战题目制作、论文写作、题目测试点评等环节组成。
三、现代教育技术的应用
1.让学生通过先进的网络技术学习国外著名大学的相关数字信号处理课程的一些相关知识,同时学习国外课程综合大作业的考核方式,鼓励同学利用业余时间选择合适的课题,利用所学的知识提出问题、分析问题并解决问题,最后写出综合报告,真正做到学以致用。
2.设置不同理论层次和不同知识模块的课程班。在基本要求不降低的条件下,把Matlab仿真语言引入课程中,使学生以一种生动形象的方式练习学到的理论知识,深刻领会基本概念和基本原理。实践课上,分别开设了软件实验项目(以Matlab语言仿真为主的软件实验)、硬件实验项目(以DSP开发为主的硬件实验)以及软硬结合的综合实验(Matlab语软件仿真和DSP硬件开发)等几个层次,保证不同基础的同学能有更好的选择。
四、改革课程的考核方式
改革课程考核方式中的单一性以及先教授再考核的传统方式,变笔试考核为理论考核和设计实践考核的结合,采取边教授边考核的办法。
《数字信号处理》课程教学内容多、时间短,除离散信号与系统的时域、频域、复频域分析外,还重点阐述了数字滤波器设计等综合性知识,这些都需要学生了解、掌握并能利用MATLAB进行仿真试验。要在课堂教学中完成教学大纲要求的基本知识点的训练和应用有一定难度,教学任务很重。如何在有限的教学时间内完成基本教学内容,又兼顾该门课程的专业性、综合性及工程实践性,同时又能考核学生对专业难点、横纵向知识点的逻辑掌握是核心关键的问题。为解决课程教学中的矛盾,在课程考核中,带领学生把部分课堂搬到具体的实际设计中,让学生亲历课程中的理论内容和实际的结合,由此轻松记忆教学中的难点和重点。再从学生“教”和“学”的过程中,解决教学中专业性、综合性及实践性的问题,同时亦可解决时间短、教学内容多的问题。《数字信号处理》是综合性和理论知识特别是数学知识很强的课程,该课程前小半部分的内容已在前修的《信号与系统》中涉及过。但《数字信号处理》是以时域离散信号为处理对象,与连续信号与系统中的计算方法大相径庭。例如,《信号与系统》中大量用到了积分,而在数字信号处理中就是迭分(累加求和),信号与系统中的微分,在数字信号处理中就变为差分等,很多学生很难一下子转变观念。此外,《数字信号处理》中的DFT、DTFT、FFT三者变换之间的联系和区别更是难中之难。
该课程传统的考核办法常常是先讲授所有的知识点再统一综合考核——闭卷考试。这种方法虽能在最后的考试成绩中反映学生对该课程某些难点和重点知识的掌握,却忽略了《数字信号处理》知识多样性的特点,特别是实际设计部分。因此,在考核时,只顾及所谓的“重点、难点”而舍弃“综合性、多样性”是不够完善的。我们应该每讲解一个独立知识点就进行及时的考核检验,这种边讲授边考核的方式既能更好地检验每位学生对小知识点掌握的深度,又不影响该知识点与整个课程的联系。
参考文献:
[1]张丽丽,贾亮.“数字信号处理”课程教学的改革与实践[J].中国电力教育,2012,(34):70-76.
[2]蓝会立,廖凤依,文家燕.“数字信号处理”课程教学改革与实践[J].中国电力教育,2012,(3):86-87.
【关键词】数字信号处理基础 实践环节 考核方式 网络建设
【中图分类号】G642 【文献标识码】A 【文章编号】1006-9682(2011)05-0016-02
【Abstract】According to the characteristic of the course of digital signal processing, the innovation of the teaching, such as the contents, the methods, and the exam of teaching, network construction and improvement are presented in this paper. Facts have shown that this method has achieved a better teaching effect, it not only stimulate students to explore, but also and enhance the enthusiasm of the students’ comprehensive quality and designed.
【Key words】Digital signal processing Practice The exam of teaching Network construction
一、引 言
随着计算机和信息学科的飞速发展,“数字信号处理”已成为一门重要的高新技术学科,是理论与实践、原理与应用紧密结合的课程。目前数字信号处理课程已成为大多数电子、计算机、通信等相关专业的主干课程。但是该课程内容多、学时少,偏重理论与公式的推导,缺乏可视化的直观表现,学生从纯数学的角度学习,理解抽象,普遍反映课程难学、内容枯燥、不会应用。如何在有限的时间内提高教学质量,使实践和理论两个方面的教学和谐统一,是值得探索的。因此,为了提高教学质量,我们注重对其物理意义和实际应用的讲解,并适当使用多媒体与具有计算功能和绘图功能的Matlab相结合的教学方式,将抽象的数学以可视化的形式展示给学生,让学生更易理解抽象的概念。
二、教学方法与实践改革的探讨
针对数字信号处理的学科特点和教学现状,在现有教学工作的基础上,提出以下教学方案:
1.合理选择教材,尝试双语教学。
选择一本内容和形式都好的教材是进行课程改革的基础和关键。我们采用清华大学程佩青编著的《数字信号处理教程》。在教授过程中,尝试采用双语教学模式,以帮助学生更多的了解英语专业词汇,为阅读英文资料奠定基础。
2.合理安排教学内容
该课程经过多次修订教学大纲,逐步完善教学内容体系,加强基础能力和实践动手能力的培养,把与该课程相关的新技术及热点研究课程及时充实到教学中,同时加强教学内容与工程实际的联系,使学生更好地掌握技术原理,提高自主学习的热情。
深入研究符合现代教育理念的教学方法,采用多元化的教学手段,丰富教学过程。注重以学生为主体的参与式教学,结合多媒体教学图像对感官的刺激,运动互动式、讨论式等多种教学方式,充分调动学生参与课堂教学活动的热情。引导学生进行研究式学习,培养创新意识和能力。利用网络电子资源、网上答疑等信息化教学手段,提高学习效率。
3.实践环节改革
数字信号处理课程与实践密切相关,只通过理论教学难以使学生理解数字信号处理的原理。实践教学环节可以弥补学生对理论知识的感性认识不足的缺陷,建立理论联系实际的概念,是培养学生分析解决问题能力、创新意识、实践技能和提高综合素质最有效的途径。通过实践教学,可以锻炼学生的动手能力,培养学生的研究方法和钻研精神。
Matlab是美国Math Works公司开发的用于概念设计、算法开发、建模仿真、实时实现的理想的集成环境。特别是它具有数字信号处理软件包,可很方便地进行数字信号处理方面的有关运算和系统设计、仿真,极大地提高了设计的效率。将其用于数字信号处理课程当中,通过加入一些综合性、设计性实验,不仅把理论知识与实际应用联系起来,更有利于培养独立思考、综合运用知识的能力,还可以锻炼协作意识。
在实验教学任务的制定和实施上,在加强基础实验的同时,增设综合性、设计性实验项目或课程设计,用以训练学生综合分析问题和解决问题的能力。以信号频谱分析及IIR数字滤波器的设计这一综合实验为例,实验指导书给出基本步骤:首先采集语音信号,对采集的语音信号进行采样并混进加性噪声,然后用FFT进行频谱分析,根据含噪信号的频谱,用双线性变换法设计相应的IIR数字滤波器进行滤波,得出滤波前后的频谱,分析信号的变化。具体实施和调试由学生借助Matlab实现。
另外,在设置设计内容时,鼓励学生自拟设计题目。如将数字信号处理课程中的FIR滤波器设计、音频信号处理课程中的音频信号采集与回收通过DSP硬件平台实现,对软件实验利用Matlab语言和DSP汇编语言实现算法仿真或设计,硬件实验通过实验平成。这些课程设计培养了学生的工程实践能力。总之,在教学过程强调理论与实践并重,促进理论与实践紧密结合。
4.创新作业形式、考核方法和手段
目前的考核方式只是对课堂教学的“检查”,缺乏实践和创造性的内容,不能适应素质教育的要求。我们将卷面考试与实验情况以及撰写有关课程内容的小论文相结合,将传统的单一考试方式改为多种模式相结合的形式。考核内容除保留原来基本概念和知识点的问答计算外,增加一些对实践问题的分析、判断及解决方法,加强对实验结果分析的考察,促使学生深入思考和分析问题。这样既可以更好的检验学生的综合能力和创新能力,又能将学生的学习重点从应试转移到应用上。
5.建立和完善教学网站
学校在网络建设上的投入使得数字信号处理基础课程的网络资源建设取得了跨越式的发展。在学校的网页上,提供了本门课程的所有教学资源,包括教学大纲、教学日历、教案、课件、学习指导与习题解答、实验内容等,供学生自主学习参考。此外,还设置网上测试、在线答疑和在线交流等,利于与学生的互动和沟通。
三、评价与思考
经过近两年的教改探索,基本已形成理论与实践并重的教学新体系,在提升实践教学地位的同时,激发了学生探索的积极性,学生的综合素质和专业应用能力得到较大提升。
但是由于受到课时数的限制,一些较多的、较大的实践教学内容无法实施,学生的应用能力培养受到一定影响。因此,应根据具体需要,适当的增加课时数,以便能更好的达到预期目标。
四、结束语
本文结合我校应用型人才培养的教学目标,依托河南工业大学《测控技术与仪器专业信号类课程的多元化实践教学改革》项目,针对信号类课程教学面临的共性问题,从理论、实践与考核方式等方面探讨了教学方法的改革。经过几年的探索,这种教学模式取得了较好的教学效果,提升了学生综合应用素质和核心竞争力。
参考文献
1 金海红等.“数字信号处理课程”的改革探索与实践[J].科技资讯,2010(33)
2 李灯熬、张海燕、王华奎.“数字信号处理”课程教学改革与实践[J].研究与探讨,2010(8)
3 张利红、周子昂.高校信号与系统教学改革探讨[J].周口师范学院学报,2010(5)
论文摘要:信号是传递信息的媒介,信号处理涉及信息的提取。
随着集成电路的运算速度更快,集成度更高,就有可能耐复杂目益增加均一些多维数字信号处理。所它在最近才开始出现的一个新领域。尽管如此,多维信号处埋仍然对以下一些间提了解决的办法,这些问题是:计算机辅动断层成术(CAT),即综合来自不同方向的X射线的投影,以重建人体某一部分的三维图,源声纳阵列的设计及通过人造卫星地球资源。多维数字信号处理除具有许多引人注目和浅显易行的应用之外,它还具有坚卖的数学基础.,这不仅使我们能了解它的实现情况,而且当新问题出现时,也当及时解决。
典型的信号处理任务就是把信息从一种信号传递到另一种信号上,例如,可将一张照片加以扫描、抽样,并将共存储在计算机的存储器中,在这种情况下,信息是从可变的银粒密度转换戌可见光束,再变成电的波形,最后变戍数字的序列,随后该数字序列用。磁盘上磁畴的排列来表示CAT扫描器是一个比较复杂,经过处理,最后显赤射线管(CRT)的荧光屏上或胶片上。数字处理能增加信息,但可以重新排列信息,使观察者能更方便地理解它.观察者不必观看多个不同测面的投影而可直接观察截面图。、
人们感兴趣的是信号所包含的信息,而不管信号本身是什么形式。也许可以概括地说,信号处理涉及两个基本任务一一信息的重新排列和信息的压缩。
数字信号处理涉及到用数的序列表示的信号的处理,而多维数字信号处理则涉罚用多维阵列表示的信号的处理,例如对同时从几个传感器所接收的抽样图像和抽样的时间波形的处理。由于信号是因而它可以用数字硬件处理,同时可以将信号处理的运算规定为算法。
促使人们采用数字方法的是不言而喻的。数字方法既有效灵活。我们可以用数字系统使其有自适应性并易于重新组合。可以很方便地把数字算法由一个厂商的设备上转换到另一个厂商的设备上去,或者把专用数字硬件来实现。同样,数字算法也可用来处理作为时间函数或空间信号,数字算法自然地和逻辑算符如模式分类相联系。数字信号能够长时间无差错地存储。对很多种应用而言,数字方法Ⅸ其它方法更为简单,对另外一些应用,则可能根本不存在其他方法。多维信号处理是不同于一维信号处理,想在多维序列上实现的多运算,例如抽样、滤波和交换等,用于一维序列,然而,严格芯说,我们不得不说多终信号处理与一维信弓有很大差别的。
信号处理与一维信号处理还是有很大差别的,这是由三个因素造成的;(l)二维通常比一维问题包含的数据量大得多;(2)处理多维系统在数些上不如处理一维系统那样完备;(3)多维信号处理有更多的自由度,这给系统设计音以一维情况中无法比拟的灵活性。虽然所有递归数字滤波器都是用差分方程实现的,一维情况下差分方程是全有序的,而在多维情况下差分方程仅是部分有序的,冈而就存在着灵活性,在一维情况小,离散传里旰变换CDET)可以用快速傅里叶变换CEPT)算法来计算,而在多维情况下,有多且每一个OFT又可用多种AFT算法来计算。在一维情况下,我们可以调整速率。而且也可以调整抽排列。从另一方面来说,多维多项式不能进行因式分解,而一维多项式是可以进行因式分解的。因而在多维情况下,我们不能论及孤立的极,气、孤立的零点及孤立的根。所以,多维信号处理与一维信号处理有相当大的差别。在20世纪60年代初期,用数字系统来模仿模拟系统的想法,使得一维数字信号处毫的各种方法得到了发展。这样,仿照模拟系统理论,创立了许多离散系统理论.随后,当数字系统可以很好地模仿模拟系统时,人们认识到数字系统同时也可以完成更多的功能。由丁这种认识及数字硬件工艺的有力推动,数字信号处理得到了发展,而且现今很多通用的方法,已成为数字方法所特有的,没有与其等效的模拟方法,在发展多维数字信号处理时,可观察到同一发展趋向。因为没有连续时间的(或模拟的)二维系统理论可以仿效,因而最初的二维系统是以一维系统为基础的,80年代后期,多数二维信号处理都是用可分的二维系统。可分的二维系统与用于二维数据的一维系统几乎没有差别。随后,发展了独特的多维算法,该算法相当于一维算法的逻辑推理。这是一段失败的时期,由干许多二维应用要求数据量很大,且iT缺少二淮多项式太分解理论,很多一维方法不能很好地推广到二维上来。我们现在正处于认识的萌芽时代。计算机工业以其部件的小型化和价格日趋低廉而有助于我们解决数据量问题。尽管我们总是受限于数学问题,但仍然认识到,多维系统也给了我们新的自由度。以上这些,使得该领域既富于挑战性又无穷乐趣,电子信息技术的结合之软件结台,传统产业中可用电产信息技术的地方,仍然可以在生产或很低的条件下使用人力或传统机械。电予信息技术应到限制,在不同领域和不同水平有各种原因,但烂有一个共大原因是缺乏认识。没有认识,便没有应层。
事实上,在一维和二维信号处理理论之间有实质性的差别,而在二维和更高维之间,除了计算上的复杂世方耐差异之外,似乎差别较小。
参考文献
[1] 吴云韬,廖桂生,田孝华. 一种波达方向、频率联合估计快速算法[J]电波科学学报, 2003,(04) .
[2] 吕铁军,王河,肖先赐. 利用改进遗传算法的DOA估计[J]电波科学学报, 2000,(04)
[3] 刘全,雍玲,魏急波. 二维虚拟ESPRIT算法的改进[J]国防科技大学学报, 2002,(03) .
[4] 吕泽均,肖先赐. 一种冲击噪声环境中的二维DOA估计新方法[J]电子与信息学报, 2004,(03) .
[5] 金梁,殷勤业,李盈. 时频子空间拟合波达方向估计[J]电子学报, 2001,(01) .
[6] 金梁,殷勤业. 时空DOA矩阵方法的分析与推广[J]电子学报, 2001,(03) .
关键词:DSP;FFT算法
Abstract: the fast Fourier transform (FFT) technique is the core of digital signal processing technology, it has widely used in various fields of digital signal processing, has long been an important research subject. In this paper, the author expounds the summary of FFT, discussed the mathematic theory principle and fast Fourier transform algorithm.
Key words: DSP; FFT algorithm
中图分类号:TN911.7文献标识码:A
引言
近些年来,数字信号处理技术得到了迅速的发展,特别是随着微计算机和超大规模集成电路的飞跃发展,数字信号处理技术亦得到了更大的发展,并且广泛地应用到了国民经济的各行各业,如雷达、声纳、通信、语音处理、图像处理、地震信号处理、生物医学电子学、数字音频和视频设备、电子测量仪器、噪声控制、电力系统的谐波分析、振动分析和故障诊断等方面,取得了突出的成就。
快速傅立叶变换(FFT)技术是数字信号处理中的核心技术,它己广泛应用于数字信号处理的各个领域。
1. 快速傅立叶变换(FFT)的概述
快速傅立叶变换(FFT)是离散傅立叶变换的快速算法,它利用旋转因子W的周期性及对称性,使N点DFT的乘法计算量由N2次降为N/2㏒2N次,以N=1024点为例,计算量仅为原来的4.88%。因此人们公认这一重要发现的问世是数字信号处理发展史上的一个重大的转折点,也可以称之为一个里程碑。以此为契机,加之超大规模集成电路和计算机的飞速发展,使得数字信号处理的理论在过去的40年中获得了飞速的发展,并广泛用于众多的技术领域。总的来说,这40年中FFT的发展方向有两个:
一是针对N等于2的整数次幂的算法,如基2算法、基4算法、分裂基算法等;
一个是N不等于2的整数次幂的算法,它与第一类算法在理论上有着根本的差别,是建立在下标映射和数论上的一套完全新颖的算法。
由于N不等于2的整数次幂的算法编程较为困难,而且数据长度受到较大的限制,实际的应用也比较少,所以本论文只讨论N等于2的整数次幂的算法。
2. 快速傅立叶变换数学理论原理
2.1离散傅立叶变换原理
离散傅立叶变换(DFT)开辟了频域离散化的道路,使得数字信号处理也可以在频域采用数字运算方法进行,它可以作为一种数学工具来描述离散信号的时域与频域表示的关系,大大增加了数字信号处理的灵活性,特别是它的多种快速算法,使得信号的实时处理和设备的简化得以实现,所以离散傅立叶变换不仅在理论上有重要意义,而且在各种数字信号处理中起着核心的作用。
一维傅立叶变换中,设Xn是长为N的复序列,其DFT定义为:
2.2快速傅立叶变换原理
FFT的基本思想在于,将原有的N点序列分解成两个或更多的较短序列,这些较短序列的DFT可重新组合成元序列的DFT,而总的运算次数却比直接的DFT运算少的多,从而达到提高速度的目的。这种分解基本上可分为两类:一类是时间序列X (n)进行逐次分解,称为按时间抽取算法;另一类是将傅立叶变换序列X(k)进行分解,称为按频率抽取算法。
3. 快速傅立叶变换(FFT)数学算法
3.1 基2算法的讨论
(1)级的概念
将N点DFT先分成两个N/2点DFT,再是四个N/4点DFT,进而八个N/8点DFT,N/2个两点DFT。每分一次,成为一“级”运算。因为M=㏒2N,所以N点DFT可分成M级,如图1所示.图中从左到右,依次为m=0级,m=1级,…,m=M-1级。
图1:8点FFT时间抽取算法流程图
(2)蝶形单元
在图1中由于运算形状结构的几何形状像似蝴蝶,故成“蝶型运算单元”,在第m级,有:
p,q是参与本蝶形单元运算的上、下节点的序号,只参与第m级这一个蝶形单元的运算,其输出在第m+1级。每一级运算都含有N/2个蝶形单元,每一个蝶形单元又只需要一次复数乘法,两次复数加法,所以,完成M=Log2N级运算共需要MN/2次复数乘和MN次复数加法。
在第m级,上、下节点q,p之间的距离为
(3)“组”的概念
每一级的N/2个蝶形单元可以分成若千组,每一组有着相同的结构以及牙护因子分布。如m=0级分成了四组,m=1级分成了两组m=M-1分成了一组。因此,可以得出,第m级的组数是N/2m+1,m=0,1,…,M-l
(4)Wr 因子的分布
从每一级Wr因子分布的规律:
m=0级,Wr2,r=0
m=1级,Wr4,r=0,1
…
m=M-1级,WrN,r=0,1, …, N/2-1
3.2基4算法的讨论
令N=4M,对N点DFT可按如下方式作频率抽取:
分别令k=4r,k=4r+2,k=4r+1,k=4r+3,r=0,l,…,N/4-1.有:
一个16点的DFT分成四个四点的DFT,FFT运算只需要两级,基4FFT
算法的基本单元仅有一个纯虚数一j需要做乘法运算。由于基4算法使得FFT运算的级数减少一半,所需的乘法运算量也相应减少。
结语
笔者谈论了快速傅立叶变换(FFT)数学算法,由于自己的水平和篇幅有限,还有许多不足之处,比如:对FFT算法的硬件平台设计、实序列FFT算法等没有讨论到,在今后工作中笔者将继续努力。
参考文献:
【关键词】数字信号处理 教学改革 学习兴趣 探索性实验
【中图分类号】G642 【文献标识码】A 【文章编号】2095-3089(2015)06-0023-02
“数字信号处理”课程是电子类学科和专业的一门重要专业基础课,涉及知识面广泛,如信号与系统、信号处理、通信等,课程内容抽象,理论性强,概念多,学习难度较大,加上先修课程的学习的好坏也影响到本课程的学习。这些因素导致学生难以在有限的教学时间内掌握好本门课程的内容,学习的畏难情绪增加,学习效果随之下降,导致逐渐丧失学习信心和学习热情[2]。如何培养并保持学生的学习兴趣,充分发挥学生的学习主动性是数字信号处理课程教学中需要面对的一个重要问题。因此对传统的教学方法进行改进,采用多种教学方式激发学生的学习兴趣,取得了较好的教学效果。
一、多种教学手段结合激发学习兴趣
传统的课堂教学方式采用黑板板书方式,其优点是师生互动直接,可以自由控制时间,学生在老师板书的过程中有足够的时间理解和思考,跟进老师思路的压力较小,适合公式推导、例题讲解等内容的教学。但是板书方式形式单调,不适合对抽象的概念和复杂的过程的讲解,而且,数字信号处理课程本来每堂课内容多,全采用板书讲授方式将很难完成教学任务,加快速度则有些重要难以讲到,久之影响教学效果。同时,本课程涉及信号流图(如FFT流程图等)、滤波器设计内容中的频谱图及设计的结果,如果板书出来将占用珍贵的课堂时间。因此仅用黑板板书的方式显然并不合适。投影教学方式的优点是形象生动,尤其是有的复杂过程可采用动画形式展现,学生容易理解,且传递的信息量丰富。但长久的盯着亮的屏幕容易造成视觉疲劳,快速的翻页也会造成部分学生跟不上进度,一堂课下来感觉很累。因此,在课堂教学中,宜采用板书、多媒体教学相结合的授课方式,充分发挥各自教学方式的优点。公式推导、例题讲解等可采用板书方式,抽象的概念和理论、复杂的处理过程等则采用MATLAB仿真进行演示或采用动画形式展现。多媒体课件宜做得精炼,防止出现大幅的内容叙述。由于抽象概念的形象解释有助于学生的理解,学习兴趣也随之提高。比如在讲解长信号的线性卷积时,牵涉到重叠相加法、重叠保留法两种方法,可采用板书和投影教学相结合的方式进行讲解。先提出问题:两个长度相当的信号的线性卷积可以利用FFT进行快速卷积,但若一个信号很长甚至是无限长时如何实现快速卷积?让学生进行讨论。再使用板书方式推导出长信号的分段卷积式,对分段卷积结果如何处理则采用MATLAB仿真来演示和验证这一过程。通过MATLAB仿真,长信号的快速卷积就形象的展现出来,学生易于理解了,枯燥的定义和概念也变得生动起来,原本复杂的过程变得简单而容易接受,有利于知识的理解和掌握,也激发了学生的学习兴趣。
二、改进教学方法,激发学生学习兴趣
“数字信号处理”理论知识多,学习起来枯燥。但是,如果学生认识到所学的知识有用会激发他们的学习兴趣。因此,应加大应用性内容的教学,让学生参与到相关的实践活动中有助于提高学生的学习热情。
1.课程设计提升学习兴趣
课程设计是综合性实践教学环节,完成课程设计需要综合应用所学知识,包括查阅资料、方案设计、方案实施、结果分析、方案改进等。实施计划过程中遇到的困难和障碍构成了学生渴望以挑战的问题,正是这些问题激励学生积极思考并寻找解决问题的办法,在此过程中学习的积极性得以充分发挥。一般而言,学生在接到课程设计的任务后,需要对设计课题进行分析,确定完成此设计需要用到的知识,这些知识可能是已经学习过的,也有未学习过的。学生通过查阅相关资料后,综合所学的知识、技能,明确需解决的问题和达到的目标,并形成解决问题的技术方法。
比如在FFT的教学中,给定课程设计要求“语音信号的频谱分析”,要求综合运用数字信号处理的理论知识对语音信号进行频谱分析并对语音信号进行处理。在此课程设计中,要求学生掌握Windows 环境下语音信号采集方法,掌握用 MATLAB对信号进行分析和处理的编程方法,设计算法和应用程序,对结果进行分析,撰写总结和报告等。学生通过理论推导得出相应结论,利用MATLAB作为编程工具实现语音信号的谱分析和滤波。在设计的完成过程中互相交流学习心得,共同探讨出现的新问题,培养获取知识与解决问题的能力。与此同时,学习过程中获得的成就感激发了他们的学习热情,并培养了勇于探索开拓进取的学习精神。
在教学中,课程设计的题目可以由教师指定,由学生选择,如语音信号卷积的实现、图像信号的滤波等;也可以在教师指导下学生自己选择。学生通过参与数字信号处理的课程设计,加深了对“数字信号处理”理论的理解,提高了学习的热情,巩固了学生数字信号处理的基础知识,增强了学习兴趣。
2.探索性实验激发学习兴趣
探索性实验是指人们从事开创性的研究工作时,为探寻未知事物或现象的性质以及规律所进行的实践活动。它对培养学生的观察能力、思维能力、探索精神以及良好的学习方法具有重要意义。
目前数字信号处理课程配备的实验大多是验证性实验,旨在对所学知识进行验证,如快速傅里叶变换(FFT)、RIR滤波器设计、IIR滤波器设计等,学生只是使用MATLAB 对教材或实验指导书上的实验进行验证,对实验结论也是验证与所学的知识是否一致,遇到不一致的往往知其然不知其所以然,难以结合教材内容进行深入分析。实验过程中遇到的问题也很难独立思考和解决。因此,实验设计仅让学生懂得实验的基本过程及仅仅验证教材上的内容是不够的,更重要的是培养学生的分析和思考问题能力。探索性实验将使得学生在实验过程中通过自己的观察、思考得出结论,不仅能启迪思维,培养科学精神和创新能力,更能激发学习兴趣。探索性实验内容可由教师提出,学生依据实验课题内容查阅资料,设计实验方案,最终完成实验并撰写实验报告。如卷积在信号去噪处理中的应用,就可以采用高斯模板对被污染的图像进行卷积以去除噪声(二维卷积),或对一段被噪声污染的歌曲进行卷积运算去除噪声(一维卷积)。通过探索性实验的开展,改变了传统实验的单调性,调动了学生的主动性,提高学生的学习热情。将验证性实验与探索性相结合,不仅有助于知识的掌握和能力的培养,还培养了学生科学素养,对激发学生的学习兴趣具有积极意义。
3.建立有利于激发学习热情的考核方法
作为一门重要的专业基础课,学生很在乎自己学习成绩,设计一套好的评价考核方法能最大限度的激发学生的学习热情,变被动学习为主动学习。为全面考查学生课堂学习、课外学习、课程设计及探索性实验效果,需设计闭卷考试、实验考核、课程设计考核及平时综合考核的全面考核方式。闭卷考试主要考核基本概念、基本原理等理论知识,实验考核主要考查学生的实验技能及分析和解决问题的能力;课程设计考核主要考察获取知识与解决问题的能力,同时鼓励学生依据学习内容撰写小论文,并建立相应的加分制度。
三、结语
“数字信号处理”的特点是理论性强,公式多,比较枯燥难学,学生容易提不起兴趣。兴趣是最好的老师,是构成学习心理的最活跃的因素。为了达到较好的教学效果,教学实践中,我们改进传统的教学方法,在课堂教学中采用多种教学手段结合激发学习兴趣,并从课程设计、探索性实验及建立有利于激发学生学习热情的考核方法几个方面着手, 激发学习热情,促进学生以研究的态度进行学习,在学习中获得的成就感激发了学生求知欲和学习兴趣,这些措施的实施取得了良好的教学效果。
参考文献:
[1]程佩青.数字信号处理教程(第三版)[M].北京:清华大学出版社,2012.
[2]任淑萍,王欣峰.“数字信号处理”的优化教学研究[J].电力学报,2008,23(3):255-257.
[3]刘永红,王娜,刘琚.“数字信号处理”课程学习兴趣的培养[J].电气电子教学学报,2014,36(2):9-11.
[4]马永奎,高玉龙,张佳岩,张中兆.“数字信号处理”课程设计导向型教学初探[J].电气电子教学学报,2012,34(4):96-97.
[5]郭建涛.“数字信号处理”课程的Matlab教学研究[J].电气电子教学学报,2010,32(3):117-119.
[6]胡居荣,曹宁.基于MATLAB的数字信号处理研究型教学的探索[J].中国电力教育,2008(121):67-69.
关键词:数字信号处理;课程规范化建设;教学实践
中图分类号:G420 文献标志码:A 文章编号:1674-9324(2017)27-0134-02
一、引言
“数字信号处理”课程是测试计量技术及信息工程类的专业基础平台课程,同时也是许多相关专业硕士研究生的入学考试或后续课程,在高校理工培养计划中占有重要的地位。
课程中涉及的基本原理和公式推导较多,需要“高等数学”、“信号与系统”等多门先修课程的学习,内容比较抽象,教学难度相对较大,该课程成为学生普遍反映的“头疼课”,课题组教师多年来一直在寻找多种切实可行的教学方法及教学手段并开拓提高学生学习兴趣的方法,取得了一定的效果,在此基础上,借深化课程改革以及专业综合认证的契机,结合自己的教学实践,提出数字信号处理课程的规范化建设。
二、修订课程大纲
针对授课专业学生的知识体系和应用需要,进一步修订与完善课程大纲,重点体现为教学目标的明确化与具体化,课程的教学目标与相关毕业要求有对应关系,指明要使学生能够具备何种能力。教学过程围绕如何达到教学目标组织教学,课程的教学内容体现对教学目标的支撑,考核方式要验证对教学目标的达成。
三、教学模式改革
传统教学采用多媒体+板书的授课方式,由于课程内容抽象、公式烦琐,课堂教学具有一定难度,学生在学习过程中比较困难,一些定理、公式往往不能完全理解,加上学时压缩导致授课速度加快,对一些需要深入讨论的知识点不能一一详尽分析探讨。多媒体课件的辅助使用能对理解抽象概念起到一定作用,但由于缺乏自主训练,被动接受导致学生仍不能深层次的理解内容的本质,效果的改善不是特别明显。本次教学模式改革宗旨是避免传统、单一的课堂知识讲授,以“让学生动脑思考、动手训练,促进知识到能力转化”为目的,设计以能力培养为主的教学环节。
这一教学改革方向,具体从修订课程大纲、教学模式改革、课程考核方式改革和规范考核报告等几个方面制定教学改革建设的方案和措施:
1.针对授课专业学生的知识体系和应用需要,调整教学内容和方向,增加教学实践环节,完备数字信号处理课程体系,包括完善教学体系、修订教学大纲、实验大纲和授课日历等。
2.针对传统课程考核试卷成绩权重过高,容易造成学生平时不重视、考前突击的应试局面,提出多元化考核方式,改变以往以卷面考试为主要评测标准的做法,将学生在课程学习全过程中的表现均纳入考核范畴,建立注重过程和综合能力的课程考核机制。
3.规范课程考核报告,在完成传统成绩分析的基础上,考核报告围绕对课程目标的达成与毕业能力的达成来量化,并根据达成度结果提出持续改进措施,形成教学过程的闭环结构,不断改善教学效果和学生的学习效果。
4.深入开展教学方法研究与实践,撰写有关教学方法、教学改革等教学理论研究论文。
四、课程考核方式改革
我校“数字信号处理”总学时为40,其中理论36学时,实验4学时。传统考核方式为结课考试占80%,平时成绩20%。由于结课考试权重过高,容易造成学生平时不重视,通过考前突击应付考试的局面,陷入应试教育的误区。本次课程考核方式改革的思路是丰富考核形式,建立基于过程的综合考试方式,注重对知识应用能力、实践能力、解决问题能力和创新能力的考核。课程考核应全面检查教学内容完成情况,并且结合课程的教学目标,考查所要达成的毕业能力。图1给出了课程考核构成示意图。
1.结课考试。结课考试各考题对应相应的课程目标,包括概念理解、理论计算、工程问题分析与设计,全面考察学生掌握知识情况。
2.项目作业。项目作业是实现理论与实践相结合的重要环节,以团队方式实施,原则每组3―4人,学生团队自我组织和协调关系,通过分工合作、交流讨论的方式完成相应任务,每组提交研究报告一份。报告需针对各个问题的提出解决方案,包括查了哪些资料、做了哪些尝试、尝试的效果、遇到的问题、问题的解决方法、遗留的问题、遗留问题的原因分析、方法的改进创新等,不限于以上各点。项目作业将以答辩的形式进行验收,答辩结束后,学生需及r上交项目研究报告和PPT。报告内容的完整度与答辩过程分析问题的深入程度及解决问题方法的正确性、新颖性作为成绩评定的依据。
3.实验考核。根据学生的实验预习、实验纪律、实验动手能力及实验报告结果,进行综合评定。
4.平时成绩。平时成绩包括作业成绩和课堂表现和讨论课成绩。作业成绩依据作业的实际得分计算。课堂表现的量化依据是随堂回答问题和讨论课环节学生的参与度、对问题的思辨能力与拓展能力。讨论课成绩依据学生资料查阅、知识熟练运用及体会、PPT制作等综合评分。
考核方式的多元化改变了以往以卷面考试为主要评测标准的做法,将学生在课程学习全过程中的表现均纳入考核范畴,建立了注重过程和综合能力的课程考核机制。
五、课程考核报告规范化
此次课程改革的一个重要环节是考核分析报告的规范化,报告由总表和附表两部分组成。总表与传统的试卷分析类似,包括课程的基本信息,如开课学期、班级、任课教师等,以及考核各环节的比重和成绩分布情况。附表构成如表1。
其中,课程目标和毕业要求由教学大纲给出。考核报告围绕对课程目标的达成与毕业能力的达成来量化,并根据达成度结果提出持续改进措施,形成教学过程的闭环结构。
六、结语
本文针对“数字信号处理”的课程特点,提出了课程规范化建设方案。从大纲修订、教学模式与考核方式的改革、考核分析报告的完善等几个方面阐述了具体实施办法。通过教改使教师有意识的提高自己的知识水平、道德素养和业务能力,加强教师团队建设,本次改革已在本专业试用一学期,结果表明,该门课程的规范化建设激发了学生的学习d趣,提高了学生自主学习的能力,改变消极被动的学习习惯,变被动为主动,通过对考核分析报告中达成度的结果进行持续改进,必然会使教学质量得到进一步提高。
参考文献:
[1]胡广书.数字信号处理-理论算法与实现[M].北京:清华大学出版社,2003.
[2]谢平,王娜,林洪彬.信号处理原理及应用[M].北京:机械工业出版社,2009.
[3]刘永红,王娜.“数字信号处理”课程学习兴趣的培养[J].电气电子教学学报,2014,36(2):9-11.
关键词:数字信号处理—DSP;DSP;教学内容;CCS;嵌入式
中图分类号:G642.4 文献标识码:A 文章编号:1009-3044(2013)30-6862-02
1 概述
DSP往往有两方面的含义,一方面指Digital Signal Processing,即数字信号处理,另一方面则指Digital Signal Processor,即数字信号处理器。《数字信号处理—DSP》课程主要讲授的是DSP处理器的知识,涉及到的DSP就是指数字信号处理器。在当今的数字化时代背景下,DSP技术的地位尤为突显。因为数字化的基础就是数字信号处理,而数字信号处理的任务,特别是实时处理的任务,主要是由通用的或专用的DSP处理器来完成的[1]。目前,DSP已成为通信、计算机、消费类电子产品等领域的基础器件,被誉为信息社会革命的旗手。甚至有业内人士预言,DSP将是未来集成电路中发展最快的电子产品,并成为电子产品更新换代的决定因素,它将彻底变革人们的工作、学习和生活方式。
2 《数字信号处理—DSP》课程的开设目的及教学现状
2.1 开设目的
《数字信号处理—DSP》课程是作为我院计算机科学与技术专业嵌入式方向学生三年级第二学期的专业方向选修课来开设的。目前,嵌入式系统方向的发展是非常迅速的,我国也缺少大量的这方面的专业人才。为了紧密联系市场需求,丰富学生的选择,我院设置了嵌入式方向供学生选择。在传统的嵌入式应用中,分别采用通用微处理器(或微控制器)和DSP内核来执行通用功能与信号处理算法。因此,开设《数字信号处理—DSP》课程可以帮助计算机科学与技术专业的学生填补DSP处理器方面知识的空白,也为今后从事嵌入式系统方向的工作奠定宽阔的基础。
2.2教学现状
从2009级学生开始,我们已经完成了两次《数字信号处理—DSP》课程的教学。由于我们的学生大都不太喜欢计算机硬件方面的学习和钻研,而本课程又偏重对DSP芯片的原理讲解和应用,因此,选修的人数并不多,所需的先修课程基础知识的积累也相对薄弱。此外,这个时间恰逢一部分学生准备考研、一部分学生实训就业的敏感时期,因此学生学习兴趣不高,缺勤现象严重,即使坐在教室里也不一定是在听课。所以DSP技术这门课程,要想激起学生的学习兴趣,在短暂的时间内,使学生掌握它的精髓,就需要不断的进行研究探索,找出一种最适合这门课程的教学方法。
3 《数字信号处理—DSP》课程的教学内容
3.1 理论授课内容
本课程初次授课时选用了电子科技大学彭启琮老师主编的《DSP技术的发展与应用》作为教材,系统地介绍数字信号处理的基本思想和优越性,对目前国内外最为流行的德州仪器C2000,C5000,C6000系列处理器硬件结构与软件结构做了详细描述。讨论了DSP的集成开发环境与工具。在算法方面,涉及了常用的数字信号处理算法。工程实现方面讨论了DSP系统中最常见的硬件基本电路以及软件设计调试等工程问题。但由于所授内容主要围绕TMS320C54X系列芯片展开,和我们的实验环境及设备存在一定的差距,因此后期重新调整了教学内容。主要以TI公司的TMS320F2812系列芯片为描述对象,以应用系统设计为主线,系统地介绍了DSP技术的基础知识;典型的DSP芯片,TMS320F2812的体系结构、原理和指令系统;其次介绍了汇编语言开发工具、汇编程序设计和应用程序开发实例;然后从应用的角度介绍了DSP芯片的片内外设应用和DSP系统的硬件设计,并通过几个应用系统设计实例介绍了DSP芯片的开发过程。
3.2 实验内容
为了更好地将理论和实践相结合,使学生在短期内熟悉DSP处理器的结构和应用。在实验环节我们也设计了不同的实验项目:
1)CCS开发工具的使用。TI公司的DSP处理器在市场上占据主导地位,而CCS则是TI公司提供的DSP开发工具,因此,要学好和用好TI公司的DSP处理器就必须先掌握CCS的基本使用。所以在这个实验项目中我们要求学生掌握CCS的基本操作方法以及一些高级工具的使用。
2)基于DSP处理器的实验。例如DSP芯片存储器(包括片内和片外) 配置及验证实验。
3)基于DSP系统的实验。包括中断处理、定时器使用、A/D和D/A转换实验。
4)DSP片内外设实验。包括GPIO管脚使用、McBSP串口实验等。
5)DSP算法实验。包括FIR和IIR滤波器实验,FFT实验等。
6)DSP综合应用实验。包括电机控制、交通灯控制等实验。
上述实验根据学生的能力,要求完成最基本的部分,其余可以作为学生自由选择的项目。此外,通过实验室开放的环节,帮助那些对研究DSP处理器应用开发感兴趣的同学进一步掌握相关知识,完成更高难度的设计。
4 《数字信号处理—DSP》课程教学中存在的问题和改进的措施
4.1 存在的问题
《数字信号处理—DSP》课程的综合性和实践性都比较强,而传统的教学往往存在重理论轻实践的现象,加之学院本身缺乏工科背景的支持,在教学中难免存在这样那样的问题。集中起来包括两方面。
1)课程内容丰富,对教师和学生的要求都比较高。一方面教师要在有限的学时内讲授大量对学生来讲完全陌生的内容,在教学内容安排和学时分配以及教学方法的选择上都对教师提出了挑战。另一方面,学生学习DSP不仅要掌握它的硬件结构,还要学习汇编软件编程,要求学生基础知识扎实。这样一来,学生普遍存在畏难情绪,影响了学习的效果。
2)缺乏真正的实践场所和机会。我们目前的实验教学还是停留在实验室环境下,无法给学生提供更广阔的平台去练习,将相关课程的知识糅合到一起,这样一来知识的学习就显得系统性不强。
4.2 改进的措施
1)合理选择教学内容和方法,大胆进行改革和探索。在教学内容上,根据学生的特点和教学目标及给定的课时数,对教学内容本身的深度、广度进行适当裁剪,以学生能顺利接受新知识为准。在教学方法上,加强案例教学法等新方法的应用。
2)以电子设计大赛为契机,以毕业设计为导向,有意识的引导学生进行创新性实验和综合性实验的练习。此外,积极为学生联系相应的实践实训基地,帮助他们进一步明确所学知识的用处,培养学生对课程的兴趣。
5 结论
随着数字信号处理技术的不断发展,DSP处理器的应用将会更加的普及。《数字信号处理—DSP》作为一门综合性强、内容多、实践性强的专业方向选修课程,它的作用也会越来越重要。因此,这门课程“教什么,怎么教,学什么,如何学,如何用”都将是今后相当长的时期内我们反复探索和研究的问题,相信通过不懈的努力,我们一定能够让这门课程取得满意的教学效果。
参考文献:
[1] 彭启琮,李玉柏,管庆.DSP 技术的发展与应用[M].北京:高等教育出版社,2002.
[2] 周云松.DSP原理与应用课程教学研究与实践[J].福建电脑,2005(12):159-161.
关键词:工程教育;数字信号处理;多元化教学
中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2014)22-0212-02
字信号处理是一门基础性很强的课程,信号与系统是它的先修课程,通信原理是它的拓展课程,该课程集数学、计算机和电子学为一体,是一门交叉学科。在数字信号处理课程中,既涉及基础理论和算法,还涉及硬件电路,覆盖面很广。对该课程的讲授也不能仅仅采用理论教学的方法,尤其是在工程教育的背景下,对学生的要求越来越高。基于工程教育背景,本论文以创新人才培养为目标,探索数字信号处理有效的教学方法和教学手段,培养学生分析问题和解决问题的能力。通过对教学方法的改革,将教学的指导思想变为以学生为主,改变学生传统的学习方式,充分调动学生学习的积极性,激发学生的学习兴趣,提高工程设计能力,为数字信号处理及其相关课程的改革提供参考和借鉴。
1.调整课程教学目标,强调工程素养及创新精神和实践能力的培养。根据学校本科生培目标的要求,在教学中要以加强基础、重视实践、增强能力、提高素质为目标,课程体系要分层次、多模块,即涉及基本技能培养有包含创新能力的培养。
2.调整教学理念。数字信号处理课程的教学理念应该是针对不同的教学内容,采用多种教学方式相结合,通过启发的方式,调动学生学习的积极性和主动性,激发学生学习的兴趣和能力,逐步提高学生独立分析、解决问题的能力,为今后的学习和工作打下基础。
3.改革教学方法。多种教学手段相融合,构建多元化、立体化教学模式。因为数字信号处理课程内容很抽象,理论性很强,传统的教学方式是教师的讲授式教学,学生往往处于被动接受的地位,这样就抑制了学生的学习主动性。为了改变这一现状,需要针对不同的教学内容,采用多种教学方式相结合的多元式教学模式,引导学生参与教学活动,变学生的被动学习为主动学习。①讲授式教学,对于课程中那些基础性较强,理论性较强的内容,学生难以理解,需要老师进行透彻的分析和细致的讲解。在教学过程中,教师要注意启发和引导学生,而不是全盘灌输,要注意教学的生动性,用生动的案例来吸引学生。②研讨式教学,采用研讨式教学方法,教师需要针对不同的教学内容和教学目标要求,精心思考,提出难度适中符合逻辑的问题,使学生能和同伴之间通过积极的讨论交流,达到自主学习的目的。研讨的内容以教材为主,辅以周围的生活实际,教学环境轻松自由,充分调动学生的学习积极性,鼓励他们自由表达,提出问题,对问题进行探讨,让学生通过这种研讨式的方式将所学的知识应用于解决实际的问题。③启发式教学,在教师主持下,为学生创设一个良好的学习氛围,调动其学习知识的积极性、主动性和创造性,引导学生对学习能够举一反三,激励学生的学习兴趣,促进学生的自学能力、分析和解决问题的能力、创新和组织能力的发展。④网络环境下的自主学习与协作学习,充分利用网络的信息开放性,构建多媒体化的协作、自主学习情境。数字信号处理课程网站主要有下面几个特点:一是较为丰富的教学资源,选编和收集国内外与课程内容有关的多媒体素材等,向学习者提供丰富的学习资源。二是相对灵活的网络交流,网站不仅实现了本课程的各个方面资源的表达共享,还通过服务器端程序的编制,实现一个的交流平台BBS。通过在线交流,学生老师实现远程交互,反馈信息。三是灵活的信息呈现,网站综合运用图片、多格式文本FTP系统等各种技术,把课程的资料以丰富多彩的形式呈现给学生。
4.完善教学文件。在教材建设方面,密切联系本学科和交叉学科的国内外最新发展动态,在参考国内外优秀教材的基础上编写适合本专业培养方案的《数字信号处理》教材,辅之以MIT大学等一些在数字信号处理教学中有重要影响的高校教材,并在现代信号处理、MATLAB辅助信号处理、DSP原理与应用等方面配合指定了大量教学参考书,使学生学习目的和发展方向明确化。同时提供相应的CAI课件、网络课程,以逐步形成立体化多媒体化的教材体系。
5.教学手段改革。教学手段上改变传统的粉笔式教学,逐步辅以图片、幻灯、录像、投影、CAI课件等多媒体信息,让抽象的原理能够以形象实用的方式高效地展现。
6.考试改革。启发式、探究式、讨论式、参与式等多元化教学的同时,也要改革考试方式。考试方法从某种意义上来说,是引导学生学习的指挥棒,这根指挥棒的运用是否得当,对学生学习能力的培养将产生很大的影响。在考核方式上,可以采用开卷、闭卷等多种形式。注重学生的日常知识积累、检测学生的综合设计能力。在考核内容上,注重学生的分析和综合能力,在强调考核知识的综合应用、基本概念以及基本内容的同时加大分析与综合型试题的比重,并有10%的拓展、创新题。这样,可以在保证试卷适用于大部分学生的同时,也拉开了成绩的分布,能够较为客观地考核学生的学习状况。评价形式多元化,既有分数,也有评语;既有课内,也有课外。可以让学生参与课程考核的评价方案,让他们及时了解自己在自我构建知识体系的过程中取得的成绩和进展,使考核评价成为一个继续学习的过程,充分体现学生在自主学习中的主题地位。
7.提高教师素质,打造教学和科研团队。多元化教学方法的改革需要教师有充足的知识储备,以应对学生可能提出的很多问题,所以教师要加强理论知识学习,增加理论知识储备与应用能力,不断完善自己的知识结构与智力结构。需要建立一支在素质上具备良好的职业道德和高尚的思想境界、具备现代教育理念、掌握现代教育技术、具备较强创新精神的教学科研能力的教师队伍。
通过工程教育背景下实施数字信号处理多元化教学方法的改革与实践,构建了新的课程体系,从整体上对“数字信号处理”课程内容进行了整合和优化,初步建立信号处理多元化教学新模式,将多种教学手段和方式相结合,取得良好的教学效果。
参考文献:
[1]赵春晖,董宇艳.“差异化教育与人才竞争优势”[J].黑龙江高教研究,2008,(7):92-94.
[2]赵春晖,张朝柱,杨莘元.多媒体教学课件的设计与制作[J].哈尔滨工程大学学报(教育科学版),2006,(3):26-31.
[3][美]奥本海姆,著.信号与系统[M].刘树棠,译.西安交通大学出版社,2000.
[4]程佩青.数字信号处理(第二版)[M].北京:清华大学出版社,2001.
[5]陈曦.信号与系统和数字信号处理的相关度分析[J].高等函授学报(自然科学版),2006,19(4):41-44.
“信号与系统”和“数字信号处理”课程中有关离散信号与系统分析,以及Z变换等部分内容缺乏统一性、完整性和系统性。两门课程虽然都是对信号和系统进行讲解,却没有形成有机的整体,在教学过程中经常存在配合不好的现象。而在课程开设时,学校为了课程各自体系的完整,出现授课的重复性和不相关性等问题,对学生系统掌握连续和离散信号与系统的分析人为制造了障碍。两门课程都具有理论性过强,不易理解,而实际应用较少的特点。厚厚的教材、大量的数学公式及推导过程、众多需要理解和掌握的知识点,加大了学习的难度,使学生在学习过程中形成畏惧心理,又对后续课程的学习丧失兴趣和信心。另外,课程缺乏“新鲜元素”,绝大多数教材没有介绍信号最新的技术和发展趋势,教师在授课时也会因为课时问题而忽略这部分信息,以至于使部分学生认为学习“信号与系统”课程和“数字信号处理”课程缺乏实用性,降低了学生学习的兴趣和动力。正是课程在设置时存在的这些问题,在某种意义上给教师授课和学生学习带来一定困难。针对这些问题,论文将结合本院课程体系现状,分析这两门课程优化整合的思路。
宿迁学院课程体系现状
在本院电子信息工程专业,“信号与系统”课程开设在本科第四学期,“数字信号处理”开设在第五学期,经过长达两个月的假期,学生对很多内容产生遗忘的现状,这就为“数字信号处理”的学习带来困难。因此,“数字信号处理”课程的前几章主要涉及离散信号与系统的时域分析以及Z变换,这部分内容实际在前面课程已经讲授过。文献[5]的作者结合其专业的具体情况,经过3年的对比教学,得出在“数字信号处理”课程的开始前,以8个学时来复习“信号与系统”课程的基本概念和理论是最佳的教学方式的结论。然而,本院电子信息工程专业的教学计划中,“信号与系统”理论50学时、实验10学时,“数字信号处理”理论40学时、实验5学时,这两门课程的学时较少。由于“信号与系统”课程教学内容多,而课时偏少,在一个学期将本该70课时左右的课程压缩到50课时,具有很大难度。因此,把离散部分的许多基本内容留给后续课程讲解,如离散信号与系统的时域与Z域分析这部分内容主要放置在“数字信号处理”中讲解,将有限的课时用于连续信号与系统的分析讲解,这更有利于提高课时利用率。另外,结合课程特点,为了促进学生对理论知识的理解和掌握,本院将一定数量的习题课改为学生课后习题,并结合课程考核以督促学生独立认真完成,通过这种做法,将有限课时用于课程内容讲授和师生互动。
课堂教学方式和方法
1.启发式教学
这两门课程都具有自身内容抽象,仅凭想象难以理解的特点,教师照本宣科将使学生感到烦躁,丧失学习兴趣,在具体教学中运用了以下教学方法:第一,采用“类比”的方法。教师根据“信号与系统”特有的对称特性,按连续时间信号与系统的分析方法,采用类比方法分析离散时间信号与系统。在傅里叶变换的基本性质和拉氏变换的基本性质等的讲解中也采用了该方法;第二,课堂教学尽可能体现“提出问题、分析问题和解决问题”这个过程。在教学中教师通过问题来启发、引导学生积极思考和分析问题,尽量让学生在实践中解决问题,使学生在课程学习过程中逐渐提高学习的兴趣和能力。
2.传统教学与现代电教法的结合
传统教学主要以教师板书,学生记笔记为主,虽然具有思路详细、公式定理推导严谨的优点,但这种“满堂灌”的教学方式在增加教师劳动强度的同时,沉闷的课堂气氛也降低了学生学习的兴趣。现代电教法在授课时虽然能有“声”有“色”,但是过多的感官刺激也会使学生麻痹,另外,电教法在课堂教学中普遍存在信息容量大的问题,相比传统教学法,学生需要接收更多信息,如果课后学生未及时复习整理,将会出现课堂热闹,下课作业困难,学生考试成绩不理想的现象。传统教学与现代电教法为主的教学模式各有优缺点,在教学中扮演着各自不同的角色,教师取长补短、灵活应用不同的教学方法,才能改善授课效果。因此在教学过程中,笔者根据课程的特征灵活应用多种教学方法,如以电教法为主,传统教学为辅的教学模式,以提高教师授课效率和学生学习兴趣。电教法可以分为“多媒体教学”以及“网络教学”两种模式。多媒体教学主要指教师课堂授课使用多媒体辅助教学,这要求备课时准备课件。图文并茂的视觉演示为抽象概念的讲解提供了方便,另外多媒体教学还可以增加较多的应用示例,拓宽学生的知识面,提高学生的学习兴趣。但这种教学方式也存在一些缺点,如过多的视觉冲击会造成学生视觉疲劳。为了弥补传统教学模式与多媒体教学手段的局限性,本院正在积极建设“信号与系统”网络课程。课程网站为学生自主学习创造了条件,提供了帮助和指导。教师将课程教学大纲和学习要求、教学课件、习题、模拟试题及实验教学等资源放置在课程网站上,可以方便学生自学。而网络课程中的在线交流模块,方便了教师对学生进行教学指导和答疑,加强了师生之间的交流,提高了学生学习的兴趣。当然教师应该引导和督促学生访问课程网站,积极利用丰富的学习资源。比如将传统的纸质作业上网,要求学生登录自己的帐号,完成规定数量的习题并实时由系统打分,在课程考察时将这部分成绩纳入期末成绩。网络课程可以克服传统教学对教学时间、教学地点的限制,促进教学质量的提高。
实践教学
实践教学可以使学生对信号及信息处理领域有一个全面的认识,因此实践教学是至关重要的一个教学环节,合理安排实践教学对课程的学习很重要。本课程的实验教学可以结合Matlab 软件应用安排编程练习。目前,这种做法已取得国内、外广大任课教师的共识。[4]本院这两门课程实验主要采用Matlab软件仿真的方式,主要由验证性实验和综合设计性实验组成。验证性实验是为了培养学生的实验动手能力和数据处理等其它技能。比如在“信号与系统”的验证性实验中,设计了用Matlab软件实现常见连续和离散信号,通过这个实验,学生可以初步了解使用Matlab软件编程实现一些简单函数的方法,为后继设计性和验证性实验打下基础。在进行了一定数量的验证性实验之后,就可以进行综合性实验。综合设计性实验要求学生根据实验要求编写程序,获取仿真结果,并对结果进行分析总结,并完成相应思考题。这能够培养学生分析、解决问题的能力,提高学生设计的能力。
结论
关键词:语音增强 语音信号 语音质量
1、前言
语音信号处理的出现是随着信息技术的迅猛发展而出现的。现在人类逐步步入信息化社会,用现代化的手段研究语音处理技术能更有效地产生、传输、存储、获取和应用语音信息。语音信号处理是以语音语言学和数字信号处理为基础而形成的一门涉及面很广的综合性学科,与心理、生理学、计算机科学、通信与信息科学以及模式识别和人工智能等学科有很密切的联系。
2、语音信号处理的目的、研究内容及应用
语音信号处理是研究用数字信号处理技术来对语音信号进行处理的一门学科。语音信号处理的目的有两个:一是要通过处理得到一些反映语音信号重要特征的语音参数,来高效的传输或储存语音信号信息;二是要通过处理某种运算来达到某种用途的要求,如人工合成出语音、辨识出说话者、识别出讲话的内容等等。
语音信号处理的理论核心研究包括紧密结合的两个方面:一方面是从语音的产生和感知来对其进行研究,该研究与语音、语言学、认知科学、心理、生理学等学科密不可分。另一方面是将语音作为一种信号来进行处理,包括传统的数字信号处理技术以及一些新的应用于语音信号的处理方法和技术。
语音信号处理的应用有语音编码、语音合成、语音识别、说话人识别和语种辨识、语音信号中的情感信息处理以及语音增强等。在本文中着重讨论的是语音增强。语音增强是一种当语音通信系统的输入或输出信号受到噪声干扰时提高系统性能的技术。其主要目的是从带噪语音中提取出尽可能纯净的原始语音。
3、语音增强
3.1 噪声特性及带噪语音模型
语音在通信过程中会受到各种噪声干扰。主要的干扰方式可分为在语音源处的干扰,在语音信号传输过程中的干扰和接听端的干扰。而根据噪声的特性可将噪声按如下方式划分。噪声分为乘性噪声和加性噪声,由于乘性噪声与加性噪声相比更不容易分析,故常将乘性噪声转化为加性噪声进行处理。加性噪声可分为周期性噪声、冲激噪声、宽带噪声和语音干扰。
(1)周期性噪声
周期性噪声有很多离散的窄谱峰,来源于发动机等周期性运转的机械。该噪声引起的问题可通过功率谱发现,并通过滤波和变换技术去除。
(2)冲激噪声
冲激噪声的时域波形中有突然出现的窄脉冲,通常是由放电引起的。可通过将带噪信号的平均值限定一个阀值,信号幅度超过该阀值时就判为冲激噪声并将其滤除。
(3)宽带噪声
宽带噪声和语音信号在时域和频域上完全重叠,通常认为是高斯白噪声。消除它是很困难的。它的来源有热噪声、气流噪声和各种随机噪声等,量化噪声也可视为宽带噪声。
(4)语音干扰
人耳有惊人的在两个以上讲话环境中分辨出所需的声音的能力,该能力来源于人耳的双耳输入效应。当多个语音叠合在一起时,会使双耳信号消失,就产生了语音干扰,无法获取所需的语音信号。
由上可看出,噪声破坏了语音信号原有的声学特征和模型参数,模糊了不同语音之间的差别,使语音质量下降,可懂度降低。强的噪声还会使人产生听觉疲劳。不仅如此,强噪声环境还对讲话人产生影响,使讲话人改变在安静环境或低噪音环境中的发声方式,从而改变了语音的特征参数,对语音识别系统有很大的影响。因此进行语音增强很有必要。
本文研究的是宽带噪声干扰,带噪语音模型为:
y(n)=s(n)+d(n) (3.1.1)
这里s(n)和d(n)分别代表纯净语音和干扰噪声。图3.1为其示意图:
除此之外,还做如下假设:
1.噪声是局部平稳的。局部平稳是指一段带噪语音中的噪声具有和语音段开始前那段噪声相同的统计特性,且在整个语音段中保持不变。即可以根据语音开始前的那段噪声来估计语音中所叠加的噪声统计特性。
2.噪声与语音统计独立或不相关。
3.只有带噪语音可以利用,没有其他参考信号。
3.2 人耳的感知特性
(1)人耳对声波频率高低的感觉与实际频率的高低不呈线性关系,而是近似为对数关系。
(2)人耳对声强的感觉很灵敏,且有很大的动态范围,对频率的分辨能力也受到声强的影响,过强或者太弱的声音都会导致对频率的分辨力降低。
(3)人耳对语音信号的幅度较为敏感,对相位不敏感。
(4)人耳还有掩蔽效应,就是会产生一个声音由于另外一个声音的出现而导致该声音能被感知的阀值提高的现象。
(5)人耳除了可感受声音的强度、音调、音色和空间方位外,还可以在两人以上的讲话环境中分辨出所需要的声音,这种分辨能力是人体内部语音理解机制具有的一种感知能力。人耳的这种分辨语音的能力与人的双耳输入效应有关,成为“鸡尾酒会效应”。
语音增强的最终效果度量是人耳的主观感觉,所以在语音增强中可以利用人耳感知特性来减少运算代价。
3.3 语音增强技术的发展
实际语音一般都是带噪信号,为从带噪信号中获取尽可能纯净的语音信号,减少噪声干扰,就要进行语音增强。而完全除噪是不现实的,故语音增强的目标是减少听者的疲劳感,改善语音质量,提高语音可懂度;对语音处理系统(识别器、声码器、手机)而言是提高系统的识别率和抗干扰能力。
语音增强方法的研究始于20世纪70年代中期。随着数字信号处理理论的成熟,语音增强发展成为语音信号处理领域的一个重要分支。1978年,Lim和Oppenheim提出了语音增强的维纳滤波方法。1979年,Boll提出了谱相减方法来抑制噪声。1980年,Maulay和Malpass提出了软判决噪声抑制方法。1984年,Ephraim和Malah提出了基于MMSE短时谱幅度估计的语音增强方法。1987年,Paliwal把卡尔曼滤波引入到语音增强领域。在近30年的研究中,各种语音增强方法不断被提出,它奠定了语音增强理论的基础并使之逐渐走向成熟。近年来随着VLSI技术的发展和高速DSP芯片的出现,语音增强方法逐渐走向使用,同时出现了新的增强方法。
目前比较流行的语音增强算法主要有以下几种:
(1)噪声对消法
该方法是根据在时域或频域中,直接从带噪语音中将噪声分量减去的方法实现的。该方法的最大特点是需要采用背景信号作为参考信号,参考信号准确与否直接决定该方法的性能。在采集背景噪声时,往往采用自适应滤波技术,以便使参考信号尽可能接近带噪语音中的噪声分量。
(2)谐波增强法
由于语音中的浊音具有明显的周期性,这种周期性反映到频域中则为一系列分别对应基频(基音)及其谐波的一个个峰值分量,这些频率分量占据了语音的大部分能量,可利用这种周期性来进行语音增强,采用梳状滤波器来提取基音及其谐波分量,抑制其他周期性噪声和非周期的宽带噪声。由于语音是时变的,语音的基音周期也是不断变化的,能否准确地估计出基音周期以及能否及时跟踪基音变化,是这种基于谐波增强法的关键。
(3)基于语音生成模型的增强算法
语音的发声过程可以建模为一个线性时变滤波器。对不同类型的语音采用不同的激励源。在语音的生成模型中,应用最广泛的是全极点模型。基于语音生成模型可以得到一系列的语音增强算法,比如时变参数维纳滤波及卡尔曼滤波方法。维纳滤波的背景噪声白化效果很好,卡尔曼滤波能有效消除有色噪声。但基于语音生成模型的增强方法运算两比较大,系统性能也有利于进一步提高。
(4)基于短时谱估计的增强算法
基于语音短时谱估计的增强算法种类很多,如谱相减法、维纳滤波法、最小均方误差法等。该类方法具有适应信噪比范围大、方法简单、易于实时处理等优点。尽管该方法研究比较早,但还是有很强的生命力,成为应用最广泛的语音增强方法。本文主要是讨论这一类的增强算法。基于短时谱估计的算法主要是基于短时谱幅度的估计,这是由于人耳对语音的相位的感觉不敏感,故将估计的对象放在短时谱幅度上。
(5)基于小波分解的增强算法
小波分解法是随着小波分解这一新的数学分析工具的发展而发展起来的,同时它又结合了谱相减法的一些基本原理。
(6)基于听觉屏蔽的增强算法
听觉屏蔽法是利用人耳的听觉特性的一种增强算法。人耳可以在强噪声的干扰下分辨出需要聆听的信号,也可以在多个说话者同时发声时分别将他们提取出来。正是由于以上这些原因,人们对听觉屏蔽法寄予了厚望,有理由相信,随着人们对人耳特性了解的加深,听觉屏蔽法会更深入的发展。
在以上的六种增强算法中,噪声对消法、谐波增强法、基于语音生成模型的增强算法以及基于短时谱估计的增强算法都有了一段发展历史了,而这之中,基于短时谱估计的增强算法中的谱相减法及其改进形式是最常用的,这是因为它的运算量较小,容易实时实现,而且增强效果也较好。就近几年的发展趋势而言,小波分析法和听觉屏蔽法是人们的研究热点。人们对小波分解法的兴趣是与小波分解有关的,因为人们对小波的研究还是比较新的,随着人们对小波分解研究的深入,自然也会导致对小波分解增强算法研究的深入。听觉屏蔽法是随着人们对人耳听觉系统的认识发展而发展起来的。目前人们对它的研究还处于初级阶段。另外,人们也在尝试将人工智能、隐形马尔科夫模型、神经网络和粒子滤波器等理论用于语音增强,但目前尚未取得实质性的进展。
4、结束语
由于噪声的来源众多,随应用场合而异,特性各不相同,这就增加了语音增强的复杂性。而且语音增强不仅仅是一个数字信号处理技术方面的问题,还涉及到人的听觉感知和语音学,所以是一个很复杂的技术。要想一劳永逸地设计出一种算法来解决所有的噪声是不现实的。可以尝试从其它领域成功的经验和思想,来拓宽语音增强的研究思路。
参考文献:
[1]杨行峻,迟惠生.语音信号数字处理[M].北京:电子工业大学出版社,1995:385-411第一版.
[2]陈亚勇等.MATLAB信号处理详解[M].北京:人民邮电出版社,2001:245-250第一版.
[3]姚天任,孙洪.现代语音信号处理[M].武汉:华中理工大学出版社,1999:19-44第一版.
[4]赵力.语音信号处理[M].北京.机械工业出版社,2003:271-283第一版.
[5]商敏红.实环境下的语音增强算法研究[D].东南大学硕士学位论文.分类汇号:TN911.22,UDC:621.38,2006-9-24.
[6]姚峰英.语音增强系统的研究和实现[D].中国科学院博士学位研究生学位论文.分类.号:TN912/TN470,2001-5[2]陈亚勇等.MATLAB信号处理详解.北京:人民邮电出版社,2001:245-250第一版.
[7]孙晶.语音增强算法研究.吉林大学硕士学位论文[D].论文分类号:R318,2003-9.
[8] S.F.Boll,Suppression of Acoustic Noise in Speech Using Spectral Subtraction,IEEE Trans.Acousics,Speech,and Signal Processing,April 1979,vol.ASSP-27,no.2:113-120.
[9] H.G.Hirsh,Estimation of noise spectrum and its application to SNR estimation and speech enhancement,Technical Report TR-93-012,International Computer Science Institute, Berkeley,USA,1993.
16位单片机/DSC成创意之源
纵观此次竞赛,主要有以下两个特点:
首先,充分体现了竞赛的主题:创意,从“芯”开始。
很多作品具有新意,既有传统项目的创新,例如无线火车临近报警及铁轨监控系统,汽车的组合仪表、‘发动机控制等;更有涉及当今前沿领域的热门话题,诸如医疗电子、汽车组合仪表、电动汽车(第一名)、生物电子(第三名)、LED和太阳能照明(专项奖)、空气污染监测、锂电池管理等。
整个竞赛的项目五花八门,涉及了16位单片机可覆盖的三大主流应用:工业控制领域、汽车电子和消费电子。项目中有国家863课题,更有丰富的仪器仪表、安防、便携式产品、鼠标应用等。
参赛项目有的实用性强,有的理论性强,各有千秋。论文的内容也很有创意,获奖论文的电路和所附程序清楚、有特色,不是一般从网站上可下载到的。
其次,电机控制类应用非常多,仅获奖作品中此类就占半壁江山。这是由于Microchipl6位单片机/DSC(数字信号控制器)比较适合电机控制,它们的数据总线扩展为16位,MCU加入了RTC、DMA、CRC等强大外设;DSC还加入了DSP(数字信号处理)功能,因此在控制算法和数字信号处理方面具有优势。
例如,第一名作品涉及到前沿的电动汽车的电机控制,以dsPIC30F4011(属于DSC)为主控芯片,设计出一套性能可靠、成本较低的无刷直流电机驱动系统。DSC与MOSFET元件构成低压大功率无刷直流电机的驱动系统是一个较为经济的方案。该项目在国内属于领先技术,因为进口的电机及控制器功率可以做到5KW左右,而此项目的功率为15KW,实现难度比较大。
跳出8、1 6、32位的界定
16位单片机/DSC有时被认为笼罩在8位和32位MCU的阴影下,业界重视不够。但是作为商业公司,一定要选择满足性能要求的最低价格的芯片。因此工程师在芯片选型时,要跳出8、16、32位的框子,根据需要选芯片,无论是8、16还是32位,只要满足需要即可。为此,Microchip等公司填平了8、16、32位之间的鸿沟,实现了无缝兼容。