美章网 精品范文 光纤通信论文范文

光纤通信论文范文

前言:我们精心挑选了数篇优质光纤通信论文文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。

光纤通信论文

第1篇

(一)普通光纤

普通单模光纤是最常用的一种光纤。随着光通信系统的发展,光中继距离和单一波长信道容量增大,G.652.A光纤的性能还有可能进一步优化,表现在1550rim区的低衰减系数没有得到充分的利用和光纤的最低衰减系数和零色散点不在同一区域。符合ITUTG.654规定的截止波长位移单模光纤和符合G.653规定的色散位移单模光纤实现了这样的改进。

(二)核心网光缆

我国已在干线(包括国家干线、省内干线和区内干线)上全面采用光缆,其中多模光纤已被淘汰,全部采用单模光纤,包括G.652光纤和G.655光纤。G.653光纤虽然在我国曾经采用过,但今后不会再发展。G.654光纤因其不能很大幅度地增加光纤系统容量,它在我国的陆地光缆中没有使用过。干线光缆中采用分立的光纤,不采用光纤带。干线光缆主要用于室外,在这些光缆中,曾经使用过的紧套层绞式和骨架式结构,目前已停止使用。

(三)接入网光缆

接入网中的光缆距离短,分支多,分插频繁,为了增加网的容量,通常是增加光纤芯数。特别是在市内管道中,由于管道内径有限,在增加光纤芯数的同时增加光缆的光纤集装密度、减小光缆直径和重量,是很重要的。接入网使用G.652普通单模光纤和G.652.C低水峰单模光纤。低水峰单模光纤适合于密集波分复用,目前在我国已有少量的使用。

(四)室内光缆

室内光缆往往需要同时用于话音、数据和视频信号的传输。并目还可能用于遥测与传感器。国际电工委员会(IEC)在光缆分类中所指的室内光缆,笔者认为至少应包括局内光缆和综合布线用光缆两大部分。局用光缆布放在中心局或其他电信机房内,布放紧密有序和位置相对固定。综合布线光缆布放在用户端的室内,主要由用户使用,因此对其易损性应比局用光缆有更严格的考虑。

(五)电力线路中的通信光缆

光纤是介电质,光缆也可作成全介质,完全无金属。这样的全介质光缆将是电力系统最理想的通信线路。用于电力线杆路敷设的全介质光缆有两种结构:即全介质自承式(ADSS)结构和用于架空地线上的缠绕式结构。ADSS光缆因其可以单独布放,适应范围广,在当前我国电力输电系统改造中得到了广泛的应用。ADSS光缆在国内的近期需求量较大,是目前的一种热门产品。

二、光纤通信技术的发展趋势

对光纤通信而言,超高速度、超大容量和超长距离传输一直是人们追求的目标,而全光网络也是人们不懈追求的梦想。

(一)超大容量、超长距离传输技术波分复用技术极大地提高了光纤传输系统的传输容量,在未来跨海光传输系统中有广阔的应用前景。近年来波分复用系统发展迅猛,目前1.6Tbit/的WDM系统已经大量商用,同时全光传输距离也在大幅扩展。提高传输容量的另一种途径是采用光时分复用(OTDM)技术,与WDM通过增加单根光纤中传输的信道数来提高其传输容量不同,OTDM技术是通过提高单信道速率来提高传输容量,其实现的单信道最高速率达640Gbit/s。

仅靠OTDM和WDM来提高光通信系统的容量毕竟有限,可以把多个OTDM信号进行波分复用,从而大幅提高传输容量。偏振复用(PDM)技术可以明显减弱相邻信道的相互作用。由于归零(RZ)编码信号在超高速通信系统中占空较小,降低了对色散管理分布的要求,且RZ编码方式对光纤的非线性和偏振模色散(PMD)的适应能力较强,因此现在的超大容量WDM/OTDM通信系统基本上都采用RZ编码传输方式。WDM/OTDM混合传输系统需要解决的关键技术基本上都包括在OTDM和WDM通信系统的关键技术中。

(二)光孤子通信。光孤子是一种特殊的ps数量级的超短光脉冲,由于它在光纤的反常色散区,群速度色散和非线性效应相互平衡,因而经过光纤长距离传输后,波形和速度都保持不变。光孤子通信就是利用光孤子作为载体实现长距离无畸变的通信,在零误码的情况下信息传递可达万里之遥。

光孤子技术未来的前景是:在传输速度方面采用超长距离的高速通信,时域和频域的超短脉冲控制技术以及超短脉冲的产生和应用技术使现行速率10~20Gbit/s提高到100Gbit/s以上;在增大传输距离方面采用重定时、整形、再生技术和减少ASE,光学滤波使传输距离提高到100000km以上;在高性能EDFA方面是获得低噪声高输出EDFA。当然实际的光孤子通信仍然存在许多技术难题,但目前已取得的突破性进展使人们相信,光孤子通信在超长距离、高速、大容量的全光通信中,尤其在海底光通信系统中,有着光明的发展前景。

(三)全光网络。未来的高速通信网将是全光网。全光网是光纤通信技术发展的最高阶段,也是理想阶段。传统的光网络实现了节点间的全光化,但在网络结点处仍采用电器件,限制了目前通信网干线总容量的进一步提高,因此真正的全光网已成为一个非常重要的课题。

全光网络以光节点代替电节点,节点之间也是全光化,信息始终以光的形式进行传输与交换,交换机对用户信息的处理不再按比特进行,而是根据其波长来决定路由。

目前,全光网络的发展仍处于初期阶段,但它已显示出了良好的发展前景。从发展趋势上看,形成一个真正的、以WDM技术与光交换技术为主的光网络层,建立纯粹的全光网络,消除电光瓶颈已成为未来光通信发展的必然趋势,更是未来信息网络的核心,也是通信技术发展的最高级别,更是理想级别。

三、结语

光通信技术作为信息技术的重要支撑平台,在未来信息社会中将起到重要作用。虽然经历了全球光通信的“冬天”但今后光通信市场仍然将呈现上升趋势。从现代通信的发展趋势来看,光纤通信也将成为未来通信发展的主流。人们期望的真正的全光网络的时代也会在不远的将来到来。

参考文献:

[1]辛化梅、李忠,论光纤通信技术的现状及发展[J].山东师范大学学报(自然科学版),2003,(04)

[2]毛谦,我国光纤通信技术发展的现状和前景[J].电信科学,2006,(8).

[3]王磊、裴丽,光纤通信的发展现状和未来[J].中国科技信息,2006,(4):59-60.

第2篇

光纤通信是一种以光线为传媒的通信方式,它主要利用光波实现信息的传送。光纤通信技术最基本的系统组成有三大板块,主要有:光的发射、接受和光纤传输。该通信系统可以单独进行数字信号或者模拟信号的传输,也可以进行类似于多媒体信息和话音图像多种不同类别的信号的混合传输。光纤通信的基本特征如下。1.1宽频带,大容量在光纤通信技术中,光纤可容纳的传输带宽高达50000GHz。光源的调制方式、调制特性以及光纤的色散特性确定了光纤通信技术系统的容许频带。比如说,有一些单波长光纤的通信系统,通常使用的是密集波的分复用等复杂一些的技术,从而避免通信设备存在瓶颈效应等电子问题,促使光纤宽带发挥积极的效应,增加光纤传输的信息量。1.2抗干扰光纤通信有一个特别好的优点,就是它拥有极强的抗电磁干扰能力。由于光纤通信的主要制作原料——石英,具有极强的绝缘性、抗腐蚀性,所以光纤通信具有极强的抗干扰能力。光纤通信也不会受到电离成的变化、太阳黑子的活动和雷电等电磁干扰,更不会在意人为释放电磁的影响,石英为光纤通信技术带来了巨大的优势。光纤的质量轻、体积小,既能有效节省空间又能保证安装方便。而且,制作光纤的原始材料来源丰富,成本低廉,温度稳定度高、稳定性能好,所以使用寿命一般都很长。光纤通信优势明显,促成了光纤通信技术在现代生活中的广泛应用,并且这个应用过的范围还在不断的拓展。

2光纤通信技术发展特点

2.1扩大了单一波长传输的容量

当今社会仅单一波长传输的容量就高达40Gbit/s,并且相关部门在这个基础上已经开始研究160Gbit/s的传输技术。在研究40Gbit/s以上的传输技术时,应该对光纤的PMD做出具体的要求。2002年,美国优先在LTU-TSG15会议中提出了将新的光纤类别引入40Gbit/s系统的倡议。并且认为在PMD传输中一些问题有待探讨。我们坚信在不久的将来,举世瞩目的专门的40Gbit/s的光纤类型将会出现。

2.2超长距离的传输

在传输网络的骨干中,理想的传输形式莫过于无中继的传输。迄今为止,一部分公司正在采用的技术是色散齐理,它能够实现:最短2000千米至最长5000千米的无电中继类型的传输。另一部分公司正在不断改进,提升完善光纤指标,应用拉曼光,放大光传输距离的延长。

2.3适应DWDM运用

普遍应用的是32×DWDM系统,64×和32×10Gbit/s的系统正在研发中,已经取得了不小的进展。DWDM技术得到了广泛的应用,各研究机构必须加强光纤非线性标准的严格控制。最新推出的ITU-T技术很好地针对光纤制定了测试方法标准,完成了非线性属性的标准。明确非线性的测试指标,提出有效面积的相应指标,尤其要完善光纤的非线性的特性。

3光纤通信发展现状

3.1普通光纤发展现状

我们最常见的光纤就是普通光纤。光通信技术的进步,系统逐步发展,单一波长信息容量和光中继距离的加大G652光纤的性能产生了进一步提升的可能,表现在不同的区域,一种符合ITUTG654规定截止波长的单模光纤,还有符合G653规定的单模光纤,做出了发展性完善。

3.2核心网发展现状

我国的几大干线已经全面地采用了光缆,多模的光纤遭到合理淘汰,全面实施单模光纤。常用的有G652和G655两种光纤。G653在我国初步使用后,今后不会继续发展。G654也因为不能实现该种通信方式系统容量的大幅度增加,因此从来没有使用到我国陆地光缆中。干线光缆主要在室外,多数使用分立光纤,这些光缆中的旧式结构已经停用。

3.3接入网光缆发展现状

接入网的光缆具有分支多、距离短、分差频繁等特点,通常通过增多光纤芯数的方法来增加网容量。由于市内管道的管道内径一定,结合光纤的芯数增多和集装密度的增大减轻光缆重量,缩小光缆直径十分重要。接入网通常采用的是G652单模光纤或者是G652C低水峰的单模光纤。后者在我国只有少量投入使用。

3.4室内光缆发展现状

室内光缆通常需要能够满足不同的要求,具备多种功能。比如说数据、话音以及视频信号的传送,还可能在遥控和传感器中得到应用。IEC的电缆分类中,指出了室内光缆。它至少要包括两大部分,即局内光缆与综合布线。综合布线的光缆一般布放在室内的用户端,主要用途就是供用户使用,因此必须要全面考虑到它的易损性。局用光缆主要布放在中心局以及其他各类电信机房内,布放的位置相对固定。

3.5通信光缆在电力线路内

光纤只是一种介电质,光缆却可以是一种全介质,而且是完全无金属的。这种全介质的光缆将会成为电力系统中最理想的线路。在电线杆的敷设中普遍应用两种全介质光缆的两种主要结构:一种是用于架空地线的缠绕式的结构,另一种是全介质自承式的结构。因为全介质自承式的结构可以单独地布放,适应范围广,在我国当下的电力系统改造过程中得到了广泛实施。国内已经生成许多种类达到市场要求的ADSS光缆,但是在其产品的结构和性能等方面还需要更进一步的完善。

4光纤通信的主要应用形式

在光纤通信的各种应用形式中,最普遍最常见的就是电子公文。当代社会的信息化逐渐发达,网络用户需求不断上涨,无纸化办公成为一种时尚。这就出现了电子公文。

4.1电子公文与纸质公文的共性和差别

纸质办公是一种传统的办公模式,在历经了多年的传承之后,在为人们传递信息的同时也暴露出了许多的问题,类似于容易流失,耗费资源,流转较慢等。电子公文的产生就有了很大的区别。虽然两者都是信息流传的载体,但是电子公文具有显而易见的优越性。现代化信息社会必须有无纸化,在此基础上朝着网络化、信息化、科学化、自动化、智能化的趋势快速发展。

4.2电子公文的必要性

传统观念认为电子公文要应用计算机操作,十分不便,更加依赖于直观的纸质公文,但是纸质公文存在严重的资源浪费、信息遗失和字迹模糊等缺陷,所以,电子公文代替纸质公文始终是必然的趋势。相对于纸质公文在日常工作中的收文登记,承办传阅过程中对手工以及腿功的依赖,以及在领导外出时,公文传递的不便,电子公文只需要一台电脑和一根网线就能够轻松地解决问题,而且保证省时省力,可复制,可粘贴,可备份,超值又有效。利用空间小,保存时间久,受外界因素影响小。

4.3电子公文技术问题

电子公文要想能够实现无纸化的办公条件,必须依靠人们的共同努力,制造出一套良好的、完善的、实用的管理制度,保证电子公文的高效性和安全性,避免公文的非法泄露。电子公文是信息传播的载体,是传递讯息的渠道,随着现代化办公水平的提高,电子公文的质量也必须精益求精。所以,必须明确电子公文的几项专业技术,抓住进步的空间。电子公文不能满足于现有的硬件配置。在软件设计方面存在功能上、安全性、操作中的缺陷。实际应用过程中,计算机操作人员的技术掌握和应用能力不到位。软件的后续升级不及时,其他软件系统的兼容性存在问题。

5光纤通信的发展与展望

就光纤通信的具体应用的详细分析,让我们更好地了解了光纤通信技术。光纤通信技术已经成为现代化信息时代的必要性存在。现在从关键点回复到光纤通信的全局考虑,光纤通信的未来发展趋势十分可观。可发展的趋势涉及很多领域,下面就让我们进入深入详细的探讨。

5.1光网络智能化

光网络智能化的实现是在光纤通信技术当中十分关键的研发方向,在光纤通信技术将近40年的发展历程中,传输一直占据着主要地位,成为光通信技术的干线。伴随着计算机技术的连续进步和发展,完美地将通信技术与计算机技术结合起来,促使网络技术发生更高层次的发展和进步。现代光网络在实现传输的同时,结合了连续控制技术、自动发现能力和更加完善实用的保护和恢复功能系统,真正实现了光网络的智能化。

5.2全光网络

全光网络是光纤通信技术在发展过程中的最高层次,是光线技术发展到顶端的最理想阶段,也是未来通信网络将要发展成为的最终目标,也就是说未来的通信网络就是属于全光的时代。原始的全光网络对于实现节点处的全光化虽然是可操作的,但是在各网络节点处采用的仍然是电器件,这就会阻碍光纤通信容量的稳步提升,所以,全光网络就是光纤通信网络不断发展的终极目标。

5.3光器件集成化

在光电子器件发展的过程中,追求的就是光器件集成化的真正实现。考虑到全光通信网络实现过程中的关键点,器件的集成十分重要,器件的集成更是全光网络通信技术的核心技术。将检测器、激光器、调制器和其他类型的集成芯片集成到一个芯片中才能完成光子集成芯片的制造。这些集成是通过往不同材料的各种薄膜介质表层上的连续沉积来实现的,主要应用的材料有磷化铟和砷化铟镓等等。这是一种十分复杂的技术,但是由于传统互联网接入技术有限,接入带宽不足,以及现代互联网多媒体的发展需求,单纯地通过改良设备来扩大宽带,提高速度的做法是很不现实的,我们必须实现光器件的集成,从而保证光纤通信的发展核心坚固扎实。

6结语

第3篇

光波分复用(WavelengthDivisionMultiplexing,WDM)技术是在一根光纤中同时同时多个波长的光载波信号,而每个光载波可以通过FDM或TDM方式,各自承载多路模拟或多路数字信号。其基本原理是在发送端将不同波长的光信号组合起来(复用),并耦合到光缆线路上的同一根光纤中进行传输,在接收端又将这些组合在一起的不同波长的信号分开(解复用),并作进一步处理,恢复出原信号后送入不同的终端。因此将此项技术称为光波长分割复用,简称光波分复用技术。

WDM技术对网络的扩容升级,发展宽带业务,挖掘光纤带宽能力,实现超高速通信等均具有十分重要的意义,尤其是加上掺铒光纤放大器(EDFA)的WDM对现代信息网络更具有强大的吸引力。

二、WDM系统的基本构成

WDM系统的基本构成主要分双纤单向传输和单纤双向传输两种方式。单向WDM是指所有光通路同时在一根光纤上沿同一方向传送,在发送端将载有各种信息的具有不同波长的已调光信号通过光延长用器组合在一起,并在一根光纤中单向传输,由于各信号是通过不同波长的光携带的,所以彼此间不会混淆,在接收端通过光的复用器将不同波长的光信号分开,完成多路光信号的传输,而反方向则通过另一根光纤传送。双向WDM是指光通路在一要光纤上同时向两个不同的方向传输,所用的波长相互分开,以实现彼此双方全双工的通信联络。目前单向的WDM系统在开发和应用方面都比较广泛,而双向WDM由于在设计和应用时受各通道干扰、光反射影响、双向通路间的隔离和串话等因素的影响,目前实际应用较少。

三、双纤单向WDM系统的组成

以双纤单向WDM系统为例,一般而言,WDM系统主要由以下5部分组成:光发射机、光中继放大器、光接收机、光监控信道和网络管理系统。

1.光发射机

光发射机是WDM系统的核心,除了对WDM系统中发射激光器的中心波长有特殊的要求外,还应根据WDM系统的不同应用(主要是传输光纤的类型和传输距离)来选择具有一定色度色散容量的发射机。在发送端首先将来自终端设备输出的光信号利用光转发器把非特定波长的光信号转换成具有稳定的特定波长的信号,再利用合波器合成多通路光信号,通过光功率放大器(BA)放大输出。

2.光中继放大器

经过长距离(80~120km)光纤传输后,需要对光信号进行光中继放大,目前使用的光放大器多数为掺铒光纤光放大器(EDFA)。在WDM系统中必须采用增益平坦技术,使EDFA对不同波长的光信号具有相同的放大增益,并保证光信道的增益竞争不影响传输性能。

3.光接收机

在接收端,光前置放大器(PA)放大经传输而衰减的主信道信号,采用分波器从主信道光信号中分出特定波长的光信道,接收机不但要满足对光信号灵敏度、过载功率等参数的要求,还要能承受一定光噪声的信号,要有足够的电带宽性能。

4.光监控信道

光监控信道的主要功能是监控系统内各信道的传输情况。在发送端插入本节点产生的波长为λs(1550nm)的光监控信号,与主信道的光信号合波输出。在接收端,将接收到的光信号分波,分别输出λs(1550nm)波长的光监控信号和业务信道光信号。帧同步字节、公务字节和网管使用的开销字节都是通过光监控信道来传递的。

5.网络管理系统

网络管理系统通过光监控信道传送开销字节到其他节点或接收来自其他节点的开销字节对WDM系统进行管理,实现配置管理、故障管理、性能管理、安全管理等功能。

四、光波分复用器和解复用器

在整个WDM系统中,光波分复用器和解复用器是WDM技术中的关键部件,其性能的优劣对系统的传输质量具有决定性作用。将不同光源波长的信号结合在一起经一根传输光纤输出的器件称为复用器;反之,将同一传输光纤送来的多波长信号分解为个别波长分别输出的器件称为解复用器。从原理上说,该器件是互易(双向可逆)的,即只要将解复用器的输出端和输入端反过来使用,就是复用器。光波分复用器性能指标主要有接入损耗和串扰,要求损耗及频偏要小,接入损耗要小于1.0~2.5db,信道间的串扰小,隔离度大,不同波长信号间影响小。

在目前实际应用的WDM系统中,主要有光栅型光波分复用器和介质膜滤波器型光波分复用器。

1.光栅型光波分复用器

闪耀光栅是在一块能够透射或反射的平面上刻划平等且等距的槽痕,其刻槽具有小阶梯似的形状。当含有多波长的光信号通过光栅产生衍射时,不同波长成分的光信号将以不同的角度射出。当光纤中的光信号经透镜以平行光束射向闪耀光栅时,由于光栅的衍射作用,不同波长的光信号以方向略有差异的各种平行光返回透镜传输,再经透镜聚焦后,以一定规律分别注入输出光纤,从而将不同波长的光信号分别以不同的光纤传输,达到解复用的目的。根据互易原理,将光波分复用输入和输出互换即可达到复用的目的。

2.介质膜滤波器型光波分复用器

目前WDM系统工作在1550nm波长区段内,用8,16或更多个波长,在一对光纤上(也可用单光纤)构成光通信系统。其波长与光纤损耗的关系见图4。每个波长之间为1.6nm、0.8nm或更窄的间隔,对应200GHz、100GHz或更窄的带宽。

五、WDM技术的主要特点

1.充分利用光纤的巨大带宽资源,使一根光纤的传输容量比单波长传输增加几倍到几十倍,从而增加光纤的传输容量,降低成本,具有很大的应用价值和经济价值。

2.由于WDM技术中使用的各波长相互独立,因而可以传输特性完全不同的信号,完成各种信号的综合和分离,实现多媒体信号混合传输。

3.由于许多通信都采用全双式方式,因此采用WDM技术可节省大量线路投资。

4.根据需要,WDM技术可以有很多应用形式,如长途干线网、广播式分配网络,多路多地局域网等,因此对网络应用十分重要。

5.随着传输速率不断提高,许多光电器件的响应速度明显不足,使用WDM技术可以降低对一些器件在性能上的极高要求,同时又可实现大容量传输。

6.利用WDM技术选路,实现网络交换和恢复。

第4篇

光纤通信的诞生与发展是电信史上的一次重要革命。光纤从提出理论到技术实现和今天的高速光纤通信也不过几十年的时间。从国外的发展历程我们可以看出,20世纪60年代中期,所研制的最好的光纤损耗在400分贝以上,1966年英国标准电信研究所高锟及Hockham从理论上预言光纤损耗可降至20分贝/千米以下,日本于1969年研制出第一根通信用光纤损耗为100分贝/千米,1970年康宁公司(Corning)采用“粉末法”先后获得了损耗低于20分贝/千米和4分贝/千米的低损耗石英光纤,1974年贝尔实验室(Bell)采用改进的化学汽相沉积法制出性能优于康宁公司的光纤产品。到1979年,掺锗石英光纤在1.55千米处的损耗已经降到0.2分贝/千米,这一数值已经十分接近由Rayleigh散射所决定的石英光纤理论损耗极限。

目前国内光纤光缆的生产能力过剩,供大于求。特种光纤如FTTH用光纤仍需进口,但总量不大,国内生产光纤光缆价格与国际市场没有差别,成本无法再降,已经是零利润,在国际市场没有太强竞争力,出口量很小。二十年来的光技术的两个主要发展,WDM和PON,这两个已经相对比较成熟。多业务传输发展平台两个方面,一方面是更有效承载以太网业务、数据业务,另一方面是向业务方面发展。AS0N的现状是目前的系统只是在设备中,或是在网络中实现了一些功能,但是一些核心作用还没有达到。

二、光纤通信技术的趋势及展望

目前在光通信领域有几个发展热点即超高速传输系统、超大容量WDM系统、光传送联网技术、新一代的光纤、IPoverOptical以及光接入网技术。

(一)向超高速系统的发展

目前10Gbps系统已开始大批量装备网络,主要在北美,在欧洲、日本和澳大利亚也已开始大量应用。但是,10Gbps系统对于光缆极化模色散比较敏感,而已经铺设的光缆并不一定都能满足开通和使用10Gbps系统的要求,需要实际测试,验证合格后才能安装开通。它的比较现实的出路是转向光的复用方式。光复用方式有很多种,但目前只有波分复用(WDM)方式进入了大规模商用阶段,而其它方式尚处于试验研究阶段。

(二)向超大容量WDM系统的演进

采用电的时分复用系统的扩容潜力已尽,然而光纤的200nm可用带宽资源仅仅利用率低于1%,还有99%的资源尚待发掘。如果将多个发送波长适当错开的光源信号同时在一级光纤上传送,则可大大增加光纤的信息传输容量,这就是波分复用(WDM)的基本思路。基于WDM应用的巨大好处及近几年来技术上的重大突破和市场的驱动,波分复用系统发展十分迅速。目前全球实际铺设的WDM系统已超过3000个,而实用化系统的最大容量已达320Gbps(2×16×10Gbps),美国朗讯公司已宣布将推出80个波长的WDM系统,其总容量可达200Gbps(80×2.5Gbps)或400Gbps(40×10Gbps)。实验室的最高水平则已达到2.6Tbps(13×20Gbps)。预计不久的将来,实用化系统的容量即可达到1Tbps的水平。

(三)实现光联网

上述实用化的波分复用系统技术尽管具有巨大的传输容量,但基本上是以点到点通信为基础的系统,其灵活性和可靠性还不够理想。如果在光路上也能实现类似SDH在电路上的分插功能和交叉连接功能的话,无疑将增加新一层的威力。根据这一基本思路,光光联网既可以实现超大容量光网络和网络扩展性、重构性、透明性,又允许网络的节点数和业务量的不断增长、互连任何系统和不同制式的信号。

由于光联网具有潜在的巨大优势,美欧日等发达国家投入了大量的人力、物力和财力进行预研,特别是美国国防部预研局(DARPA)资助了一系列光联网项目。光联网已经成为继SDH电联网以后的又一新的光通信发展。建设一个最大透明的、高度灵活的和超大容量的国家骨干光网络,不仅可以为未来的国家信息基础设施(NJJ)奠定一个坚实的物理基础,而且也对我国下一世纪的信息产业和国民经济的腾飞以及国家的安全有极其重要的战略意义。

(四)开发新代的光纤

传统的G.652单模光纤在适应上述超高速长距离传送网络的发展需要方面已暴露出力不从心的态势,开发新型光纤已成为开发下一代网络基础设施的重要组成部分。目前,为了适应干线网和城域网的不同发展需要,已出现了两种不同的新型光纤,即非零色散光(G.655光纤)和无水吸收峰光纤(全波光纤)。其中,全波光纤将是以后开发的重点,也是现在研究的热点。从长远来看,BPON技术无可争议地将是未来宽带接入技术的发展方向,但从当前技术发展、成本及应用需求的实际状况看,它距离实现广泛应用于电信接入网络这一最终目标还会有一个较长的发展过程。

(五)IPoverSDH与IpoverOptical

以lP业务为主的数据业务是当前世界信息业发展的主要推动力,因而能否有效地支持JP业务已成为新技术能否有长远技术寿命的标志。目前,ATM和SDH均能支持lP,分别称为IPoverATM和IPoverSDH两者各有千秋。但从长远看,当IP业务量逐渐增加,需要高于2.4吉位每秒的链路容量时,则有可能最终会省掉中间的SDH层,IP直接在光路上跑,形成十分简单统一的IP网结构(IPoverOptical)。三种IP传送技术都将在电信网发展的不同时期和网络的不同部分发挥自己应有的历史作用。但从面向未来的视角看。IPoverOptical将是最具长远生命力的技术。特别是随着IP业务逐渐成为网络的主导业务后,这种对JP业务最理想的传送技术将会成为未来网络特别是骨干网的主导传送技术。

(六)解决全网瓶颈的手段一光接入网

近几年,网络的核心部分发生了翻天覆地的变化,无论是交换,还是传输都己更新了好几代。不久,网络的这一部分将成为全数字化的、软件主宰和控制的、高度集成和智能化的网络,而另一方面,现存的接入网仍然是被双绞线铜线主宰的(90%以上)、原始落后的模拟系统。两者在技术上存在巨大的反差,制约全网的进一步发展。为了能从根本上彻底解决这一问题,必须大力发展光接入网技术。因为光接入网有以下几个优点:(1)减少维护管理费用和故障率;(2)配合本地网络结构的调整,减少节点,扩大覆盖;(3)充分利用光纤化所带来的一系列好处;(4)建设透明光网络,迎接多媒体时代。

参考文献:

[1]赵兴富,现代光纤通信技术的发展与趋势.电力系统通信[J].2005(11):27-28.

[2]韦乐平,光纤通信技术的发展与展望.电信技术[J].2006(11):13-17.

第5篇

光纤通信系统主要包括接收、发射以及基本光纤传输系统,详见图1。二、矿山通信(一)矿山通信的现状自二十世纪80年代中期以来,世界各大厂商就推出了多种标准。到目前为止,在50多种国际标准中有十几种常用的。例如工业以太网、基金会现场总线(FF)等。现场总线的传输介质有很多种,主要有视频监控支持信号线、人员定位支持双绞线、环境监测支持双绞线、光缆、通信联络支持无线通信等。这些业务都有向以太网兼容发展的趋势。例如基于工业以太网的各种监测系统,基于WIFI通信的信息传输系统,其中WIFI的使用范围和发展尤为迅速且日益壮大。

二、矿山通信的制约因素

矿山通信企业的特点主要是设备更新速度慢、建设时间长等。由于每个时期的通信设备都一起运行,所以会有信息孤岛现象的问题存在。且其内部系统有不少不同来源的信息。例如矿山系统和外部环境间有信息流动和交换的现象,其中包括矿产品销售、人力供应、电力供应等。这类信息相互制约、相互影响。矿山井下施工建设中,由于井下结构复杂、空间狭小、接收不到信号等因素,急需先进的矿山通信技术,以便在施工过程中能准确、及时的传输信息,为优化方案提供参考的依据。

三、光纤通信与矿山通信系统建设的实际应用

(一)矿区网络连接系统中的应用

光纤的高宽带、低成本等特点能满足矿山信息传输日益增长的需求[2]。国家已经制定了光缆使用的相关标准,很多矿山企业也投入生产使用。目前一些普通光缆线、架空地线复合光缆以及阻燃光缆等都被矿山企业利用,以连接各矿山建筑设施和采矿点。这类光缆的使用大大提高了施工的便捷性和线路的稳定性,同时还能有效节约施工建设的成本。因为增加光纤芯数并对光纤价格的影响不大,所以在需要光纤芯数的基础上再适当预留一点,以免日后需要时能及时提供,以满足业务多样性的需求。由于光纤通信技术具有一致性传输系统介质的特点,所以,现代矿山通信系统的建设中,可以将光纤以太网作为介质,其传输距离远,损耗低,承载力强,其接入方法即介质转换,光纤两端都是光猫,从光猫出来有的需要接入光端转换设备,把光纤带的光信号转换成网线携带的数字信号,有些光猫集成的转换功能,可以直接转换输出数字信号。利用光纤线路构建一个矿山骨干通信网,再加入无线设备和该通信网配合使用,为矿区提供无线设备或有线光缆的双重信息传输和接收口。图2矿业光纤以太网结构模型例如,某矿业根据矿区的实际情况,经过建设和相关系统的整合,建立了光纤以太网,该组网可以全面覆盖整个矿区的建筑。其中工业环网的整个线路连接选用变电所、两个大车间以及办公楼,矿区的地表到井下被全部覆盖;其分支线路覆盖了所有生活区域。光缆可以传输人员定位、电力调度、视频监测、环境监测、有线电视等业务数据,实现一条光缆线的多种业务同时使用,既节约施工费用又节约工程建设的成本。关于该矿山企业的光纤以太网的构建结构见图2。将光纤通信技术运用到矿山企业工程中,建设完整的光纤骨干网,为各种业务传输信息数据,以解决数据传输过程中的链路问题。

(二)矿区电力中的应用

当前,矿山电力系统中很多自动化设备只应用于漏电保护、防爆开关和配电网等相关功能,它们之间没有互相连接的网络系统,都是单独运行的状态。矿井复杂的内部结构对供电系统的工程量提出更高要求,配电供电服务系统以及变电所建设的主要目的是保障开挖采掘运输的过程是畅通的。但在实际井下挖掘作业时,由于井下复杂的地质条件,供电系统经常会出现故障,一旦失去电力服务,井下的挖掘工作就没有办法进行,这将严重影响施工进度,从而降低矿井开采的生产量。利用特种光纤技术能有效改善井下的供电现状,在矿山供电系统中应用复合电线可以为井下施工的机械设备提供源源不断的稳定电力,保证这些设备的正常操作和运行,利用光纤技术建立完整的网络系统,合理使用和分配电力资源,确保矿山施工区域供电的稳定性。同时,还可以在一定程度上节省建设供电系统的成本,在电力系统运行的过程中,也能有效缩减成本,从而有效提高矿山企业工程建设的整体经济效益。在完成网络系统的建设基础上,再采用以太网络技术,构建更加完善的网络监测系统。除此之外,光纤技术还可以结合多媒体显像技术,对井内的实际运行状况进行实时监控,在很大程度上提高了矿井开采的工作效率。工作人员通过监测系统可以充分掌握矿井内部的实际施工情况。如果井下有设备故障等问题,监测系统可以及时准确地反映故障的实际情况和具置,并第一时间切断故障发生的局部电源,同时发出警报,提示工作人员,以便在第一时间实施具体可行的解决措施,并在最快时间内恢复井内供电,将故障带来的影响和损失降到最低。

四、结束语

第6篇

教学团队实施研讨式教学改革的范围为山东大学威海机电与信息工程学院电子信息工程专业和通信工程专业选修《光纤通信》课程的学生。具体改革内容及实施方案如下:

1.常规教学为基础

教学团队探究讲课艺术,改进课堂教学方法,提高授课的互动性,启发学生以“科学研究”的思维思考课本中的知识。教学内容上,注重教学内容的科学性、先进性、新颖性与启发性,及时更新充实教学内容;同时制作较高质量的多媒体课件,通过文字、图片以及动画等多种形式丰富课堂教学。

2.实例研讨作穿插

课堂授课适时引入生活中常见实例,如光纤入户、高清视频点播技术等,由此展开研讨式教学。通过对生活中实例的分析,把抽象的理论变成具体的实际,以此切入并开展课堂讨论,激发学生兴趣。同时,针对实例为学生提供课后实践,使其对问题的理解更深入。

3.热点问题当点缀

结合当前的光纤通信的热点问题,如光纤通信网的安全性、全光网等问题,对热点问题进行深入剖析,形成与课程相配套的实例资料集,对热点问题开展课堂讨论调动学生积极性,以小组为单位鼓励学生进行问题分析总结、讲解,并鼓励学生撰写小论文,以此激发学生的学习兴趣,提高学生自主学习和独立思考的能力。通过研讨式教学,学生良好的思考习惯建立起来,学习态度由被动转为主动,实现了学习过程的立体化。

二、研讨式教学效果分析

相对于传统灌输式教学方式,研讨式教学建立了融洽的师生关系,激发了学生的创造欲望。研讨式教学为每一位学生发挥个性提供了良好的平台,学生的个性得到尊重,创新意识和能力得到解放,学生更加积极主动的观察思考。在师生关系上,实现了从主客关系到主主关系的转变;在教学目标上,实现从“授人以鱼”到“授人以渔”的转变;教学方式上,实现从“讲授式”到“研讨式”的转变;在教学形式上,实现从“一言堂”到“群言堂”的转变;在教学评价上,实现从“一张试卷定高下”到按学生的实际表现和能力来综合评定成绩的转变。

研讨式教学实现了对学生各方面能力的全面培养,其中包括学生的自学能力、思维能力、表达能力、创新能力等等,达到真正提高学生综合素质的目的。

第7篇

①光纤通信系统耗损较低,尤其是石英光纤的耗损更低,基本不会超过0.2dB/km,正是因为其耗损极低,因此其中继距离较长,拿石英光纤来说,其最远的中继距离能够超过200km,如果是非石英极低耗损光纤,那么中继距离会得到进一步的提高,利用损耗低的特点进行海底通信电缆的铺设,能够有效降低成本,并保证通信系统的安全可靠。②光纤通信系统不会受到串音和电磁干扰,光波在传输过程中都处于光缆当中,因而不会出现泄漏,就算在弯道出现泄漏,其泄出量也极低,对此可以以消光剂来保存光波,而且光缆中有很多的光纤,因此不会受到串音干扰,极大程度保障了数据的安全。而光纤自身的绝缘属性能够使其避免电磁干扰。③光纤通信系统的频带较宽,能够实现大容量的通信,就目前而言光纤能够使用的带宽值能够达到50000GHz,使用一对光纤能够完成近三万多的电话传输,同时对于宽频带信息的传输有重要的价值。④使用光纤能够减少对金属材料的过多使用,光纤主要的材料为石英,这种材料的储存量巨大,同电缆则主要使用资源量较小的铜。除此以外光纤还具有较高的抗腐蚀能力,但是也存在机械强度不高、质地脆的缺陷,连接时的技术要求高,对于弯曲的半径也有严格的控制。

2远方监控系统

沅陵远方集控计算机监控系统采用北京中水科技有限公司开发的全开放、分层分布式H9000V4.0系统由一(两)套数据采集服务器群、两台操作员站、一台工程师站、一台培训工作站、一台语音报警站、一台报表服务器、两台远动工作站、一台厂内通信工作站(用于基地内通信)和两台Ⅰ区核心交换机组成。集控侧监控系统同样采用双冗余配置并与电厂侧监控系统在功能上完全对等且互为备用,形成一套完整的监控系统。沅陵基地监控网通过PTN及光纤直连两个1000Mb不同的通信通道与凤滩厂区的监控计算机系统通信,预留1000MbSDH通道为应急冷备用通道,形成完整监控网,控制以沅陵基地的系统为主,前方的系统备用,实施远程监视与控制。根据电监会安全[2006]34号文《电监会关于主机加固的规定》,电厂监控系统等关键应用系统的主服务器,以及网络边界处的通信网关、WEB服务器等,应该使用安全加固的操作系统,采用专用软件强化操作系统访问控制能力。故本期共配置了5套操作系统加固软件以满足系统安全防护的要求。远方监控系统没有采用传统的规约打包式传输方式,而采取沅陵调度大楼控制终端直接与电厂侧现地控制单元通讯的“直采直送”方式,将远程控制、采集延时控制在5ms以内,满足国家电网公司对智能化电厂的数据及时性要求。同时采用双中心冗余配置对时系统,凤滩主站、沅陵从站,确保系统时钟一致性(如图1~2)。

3系统光纤通信案例分析

远方集控SDH建设采用NEC的U-NODE设备,建设内容如下:沅陵:沅陵基地配置1套NECU-NODEWBM设备,配置2块L-16.2光板分别对凉水井变和凤滩后方,1块L-1.2光板对凤滩前方,1块GBEM板和1块FEH板。凤滩:由于凤滩后方NECU-NODEBBM设备主框插槽已满,无法新上2.5Gb/s光板,因此本工程在凤滩后方NECU-NODEBBM设备上配置1个EXT16(2.5Gb/s)扩展(含2块PSW板的更换)子框和1块L-16.2光板,以及1块FEH板。凉水井变:凉水井220kV变现有NECU-NODEWBM设备。

4试验调试

调度软交换系统试验调试工作从2012年12月30日开始,完成了系统功能试验与网络可靠性试验。经过一段时间的试运行,系统各项性能稳定。PTN设备2013年1月22日由由湖南省电力公司信息通信公司信息通信运维中心组织,使用专业网络测试工具Smartbits600B网络性能分析仪对PTN传输通道性能进行测试(详见凤滩电厂沅陵基地至后方机房网络传输通道测试报告)。并与SDH设备的性能进行了比较,从数据上说明了PTN设备在以太网的传输效率高于SDH设备。整体试验达到前期方案要求,没有出现漏项缺项情况,试验数据可靠真实。通过联调试验,检验了SDH、PTN通道的可靠性,二次防护网、调度数据网的稳定性,检测了PTN及调度数据网等系统各项切换的延时及稳定性,试验数据满足要求,SDH、PTN、二次防护网、调度数据网已具备正式投运条件。

5结束语

第8篇

(1)在电力通信中,完成通信需要多个设备的参与,而这主要是由于设备的性质不同、功能不同,且所承担的任务也不同,因此,这就使得电力系统通信网络结构复杂,由于传统的通信已无法适应电力系统通信网络发展的要求,因此,把光纤通信作为介质,提高通信质量也就成为一种趋势。(2)电力通信与其它通信之间的区别在于,其不仅对传输信息质量要求高,而且在通信实时性方面有着较高要求。随着中国经济社会发展的转型升级,电网规模的扩大,通信信号的种类日渐繁杂,同样要求在电力系统通信领域应用光纤通信,不仅包括继电保护信号,也包括语音信号,通过应用光纤通信,可提高信号传输质量。(3)由于电力系统的覆盖范围广,在通信这一领域,对传输范围和抗冲击能力均有较高的要求,为了最大程度上降低通信的损耗,保证传输的质量,特别是长距离传输的质量,也要求应用光纤通信。

2电力系统中光纤通信的特点

光纤通信的特点,主要是相对于传统电力通信方式来说的,这些特点同时也可视为光纤通信的优点,主要包括以下几个方面:(1)电力系统中的光纤通信的通信容量相当大,一般情况下,一对光纤便足以满足上百路甚至上千路信息路径通过,同时在一根光缆中,含有几十根甚至上百根光纤纤芯。(2)众所周知,光纤的制作材料一般为硅或者玻璃,所以这也就意味着光纤制作的原料来源非常丰富,所以对于节约金属材料的使用量具有重要的意义。(3)在电力系统通信领域中,光纤通信的保密性良好,外界的电磁干扰不容易对其造成影响,同时光纤通信也不受雷击、潮湿等因素的影响。(4)电力系统用的光纤,主要是OPGW光缆,其敷设与地线一次性完成,比较简单。(5)由于光纤通信无感应性能,所以电力系统中的光纤通信不容易受到电位升高的影响,毫无疑问,光纤通信技术是电力通信系统最为理想的通信技术。

3光纤通信在电力系统中的应用领域

光纤通信在电力系统中主要在以下方面有应用:(1)电网监控与调度自动化。电网智能化和自动化程度提高,在电网中应用光纤通信技术成为一种常态,在监控与调度中的应用表现为:把监控传感器采集到的状态信息传输给上级系统,同时下达有关的指令。(2)在配网自动化中的应用。确保系统运行的安全性与可靠性,要求在电力系统通信领域应用光纤通信,在状态监测、调度管理与分层控制等方面具有重要的作用。此外,光纤通信在继电保护器中也有着应用,主要是用于保护电流纵差中的导引线、保护继电保护装置、智能变电站或控制室内的信号传输线等。

4光纤通信在电力系统中的发展前景

现阶段,光纤通信在快速发展的形势下,已经发展到第五代光纤通信阶段,在这一阶段的光纤通信技术,具有容量大、信号传输速率快等诸多的优点。随着技术的进度与经贸水平的提高,全球的信息化程度逐步提高,因此对光纤通信的通信距离、容量和速度等提出了更高的要求。电力系统中,光纤通信的发展前景包括下面几个方面:

4.1光纤传送网新技术

目前,传输40GE/100GE网络的技术中,主要包括两种技术:①40Gbit/s技术;②100Gbit/s技术。同时,这两种技术中又包含有编码调制技术、色散补偿技术与非线性抑制技术,以及OSNR保证对策等几个方面。在未来电力系统发展过程中,为有效保证长距离光纤通信的要求,应使用光纤传输网新技术,主要是FEC技术,也就是多种增强前向纠错技术,以及动态增益均衡技术、新型编码调制技术等,通过利用电均衡接收机、功率调整技术等,可实现增加容量的目的。而频分复用技术、偏振复用技术和波分复用技术等,在未来的电力系统通信中,毫无疑问将会有越来越广泛的应用。

4.2光纤通信接入网新技术

在现阶段,电力系统中光纤通信接入技术主要存在传输距离、分光比、业务支持能力等方面的差距。目前光纤接入技术包括EPON技术(即太无源光网络)、GPON技术(即基于I-TU-TG984标准的新宽带无源光网络),以及基于星型结构的以太网接入技术、基于树形拓扑的APON/BPON技术等。一般情况下,EPON技术的实现,相比于GPON技术来说要简单不少,但是对于多业务的支持能力不如GPON技术。而基于星型结构的光纤接入技术是在传统的以太网的基础上实现的电力系统光纤通信的接入技术,这种技术适宜在单用户对宽带的要求大的区域(此种光纤接入情况下只能对单个用户进行连接)或者具有丰富光纤资源的区域,因此,相对来说基于星型结构的光纤接入技术的范围比较窄,并不是主流光纤接入技术的发展方向。

4.3光纤通信光交换新技术

对于光网络来说,典型属性之一便是光交换。当前,基于实现特征与交换颗粒进行光交换技术的划分,可以分为OPS即光分组交换、OBS即光突发交换、OCS即光路/波长交换。OCS的交换单位是波长,具有易于实现,交换颗粒大的优势,然而宽带的利用率以及复用特性非常差;OPS的交换单位是分组,并且交换的颗粒较小,因此不易于实现,然而其宽带的利用率以及统计复用特性非常好。基于光路/波长光交换技术与光分组交换技术的OBS,相对来说较为容易实现,同时,宽带利用率和复用特性能较好,因此,在未来电力系统通信中光纤通信的应用中,OBS会处于主导位置。

5结语

第9篇

EDF能对光信号进行放大的根本原因是EDF中的铒离子存在于不同的能级中,当它存在于高能级同时有一个光子通过时,该光子可以刺激它释放掉一部分能量而回到更加稳定的低能级。被释放掉的那部分能量会以新光子的形式传递出去。而释放出来的光子与激发它的光子的波长、频率、相位、偏振态和传输方向等完全一致,从而实现了信号光的放大。EDF的增益与光纤中铒离子浓度、掺杂半径、光纤长度、泵浦波长及功率、信号波长及功率等因素有关[2]。铒离子吸收发射截面图参见图。

2遥泵系统中拉曼效应的基本原理

同纤遥泵同时还利用了光纤的拉曼效应对信号光进行放大。拉曼效应是在光纤中传输高功率信号时发生的非线性效应(受激拉曼散射),泵浦光子的能量产生了一个与信号光同频率的光子和一个声子,高功率信号的一部分能量经拉曼效应传递给信号光,实现对信号光的放大[3]。拉曼增益强度与泵浦光强和泵浦光与信号光的频率差有很大关系,差值为13THz时,这种增益达到极点。因此,要放大1530~1605nm的工作波长,最佳泵浦源波长在1420~1500nm波段,遥泵的泵浦光波长为1480nm,产生的拉曼效应能够对信号光进行放大[3]。光纤中的受激拉曼增益谱如图4。EDFA泵浦光的波长一般为980和1480nm,其中1480nm波长的泵浦光具有更高的泵浦效率。遥泵系统中的RGU距离泵浦源较远(一般在50~100km),考虑到980nm波长的光在光纤中衰减较大,而1480nm波长的泵浦光具有更高的效率,因此一般选用1480nm波长的泵浦光。在单波系统中,远端RGU一般采用同向泵浦的方式。同向泵浦示意图参见图3。

3遥泵系统在电力系统超长距离传输中的应用

在埃塞俄比亚复兴大坝输变电工程中,由Gerd水电站至Dedesa变电站的光缆长度约为363km,采用G.655D光纤(康宁的Leaf大有效面积光纤)。由于光缆长度过长,整个系统的衰耗很大,必须在系统中采用遥泵放大技术。整个系统由光放大器、预放大器、EFEC、CoRFA(前向拉曼放大器)和遥泵等放大器件组成。超长距离无中继传输遥泵放大方案配置如图5所示。全段光纤的参数如下:光纤衰减系数为0.20dB/km,光缆衰减为72.6dB,固定接头衰减系数为0.01dB/km,固定接头衰减为3.63dB,活动连接器衰耗为1dB,光通道代价为2dB,光缆衰减富余度为5dB,总衰减为84.23dB,光纤色散系数为4.5ps/(nm•km),总色散为1633.5ps/nm,光放大器发送功率为17dBm,SBS+前向喇曼等效增益为8dB,加预放后接收灵敏度为-38dBm,后向拉曼等效增益为6dB,EFEC功率增益为8dB,遥泵功率增益为9dB,功率电平富余度为1.77dBm。该遥泵系统采用同纤遥泵的工作方式。RPU发送的泵浦光功率为30.5dBm(波长为1480nm),RGU的有效输入泵浦功率为9~10dBm,考虑一定的余量,要求最终到达RGU的泵浦功率约为12dBm。波长为1480nm的泵浦光在G.655D光纤中的衰减系数约为0.24dB/km(含光纤熔接头损耗),因此RGU距RPU泵浦源的最佳距离L=(30.5-12)/0.24=77.08km。即需在距变电站约77km处,选择一个交通方便、便于维护的输电线路铁塔,将RGU安装在该铁塔上。我们将上述理论计算结果输入OTA(光传输系统分析)软件进行验算得知,当RGU距后端泵浦源的距离为77km时,前置放大器输出信号的OSNR(光信噪比)为13.85dB,符合系统设计要求。由OTA软件计算出的RGU距后端泵浦源的最优距离为89km,EDF的最佳长度约为27.8m,泵浦源功率为1000mW,前置放大器输出信号的理论OS-NR为15.97dB。

4结束语

第10篇

集成光电子器件近年来随着光纤通信技术的广泛利用而得到了极大的发展,由部分走向集成化已经成为其可预期的发展趋势。32x32、64x64的MEMS光开关现在已经逐步实现了商用化,而兼具组装光电子器件和直接集成光电子器件的PLC平面光波导线路也正处于投入试用阶段。各种家庭,办公用满足高清要求的显示终端也正在大规模推行中。以高清数字电视为例,我国国家广播电视总局在2000年公布了关于HDTV的行业标准,采用1125/50/2:1格式,通常表达为1920/1080/50i格式。而高清数字电视的水平清晰度可以分为绝对清晰度和相对清晰度两种。水平方向上实际显示的线条(黑白线条)数量便是绝对清晰度,通常由于电视画面宽度与高度尺寸的不同,会导致水平方向能容纳相对而言更多的像素数量,而为了两个方向上可以用相同方法来表示其清晰度,通常会将水平方向的显示线条数量用以乘上画面的宽高比,从而得到其“电视线”。等离子显示器的选择应该区分专业工程用和民用的产品,用于高清晰多媒体高清电视会议用的专业工程等离子显示器的优势在于接口类型非常丰富,插槽式的设计使得其适用的接口类型更加广泛,此外RGBHV、AVI接口通常只有专业工程等离子显示器才有,所以高清晰多媒体应用与电视会议办公通常会采用专业工程用等离子显示器。

而高清晰多媒体应用之一的电视会议的投影机选择则需要满足物理分辨率在1920×1080p,不通过转换可以实现画面比例16:9,亮度高于3000ANSI;RGBHV、VGA分量,HDMI、DVI分量,串行控制接口RS232等都应该具备。而工程类投影机长时间使用所显示出的稳定性极佳,因此一般会选择工程类投影机。

二、技术需求分析光交换技术

由于光纤通信将光作为载体,要将其用于高清晰多媒体领域,需要解决的首要问题便是传输与光交换。其传输损耗因为使用的介质的改变而大大降低,使得传输问题不再那么棘手。光交换技术主要包括了光分组的产生技术,光分组后再生技术,光分组缓存技术等。而其最主要的目的是为各个端口提供光通道或是无限传输方式,以支持各类型数据的传输。而如今已经实现的光突发交换技术将DWDM技术所扩展的带宽进行了充分利用,可以不经由光电相互转化而直接实现“T比特级别光路由器”,为实现高清晰多媒体数据的传输提供了可能性。

光纤接入技术正是由于高清晰多媒体领域对于高质量视频通信媒体业务和高速数据通信的需求,使得光纤接入技术得以被关注,进而得以实现。光纤接入技术的优势在于其极大程度地降低了故障发生的频率,进而降低了维护费用与使用成本,促进了新设备的不断研发与升级。人民生活水平的日益提高,使其无法再满足于以往传统接入方式的传输速度,高清晰多媒体成为其竞相追逐的对象,而其费用的低廉使其适用度逐步拓展,所以光纤接入技术必将是光纤通信技术在高清晰多媒体领域应用与发展的必然趋势。

波分复用技术光纤传输容量的爆炸式膨胀正是得益于波分复用技术。以光波的不同波长作为低损耗窗口信道划分的重要依据,在其划分完毕之后,再用波分复用器将光载波再一次合并,进而在光纤通道中完成传输,最后在到达接收端时用复用器再将光波进行分离,这样便实现了在一个光纤中多路光信号的传输过程。这样的一个过程使得传输信息容量得到了极大扩展,大量复杂数据的传输在极短的时间内就可以完成,正符合高清晰多媒体的需求。

三、光纤通信技术在高清晰多媒体领域的发展展望

第11篇

随着科学技术的日新月异,互联网的大数据、云计算、平台、移动互联网将人类带入了高速的信息时代,互联网和通信方式改变着人们的生活、工作方式,通信方式发生了质的飞跃。同时,人们对通信系统的传输性能,也提出了更高的要求。通信方式从电缆通信、微波通信、光纤通信,再到目前的研究热点高速光纤通信。光纤通信是三大支柱通信方式的主体。光纤通信系统,顾名思义,是利用光作为载波、以光纤作为传输媒介进行传输信息的通信系统,光纤实际上是一种极细的光导纤维,由纯度很高的玻璃拉制而成。普通光纤通信的传输速率一般是10Gb/s,高速光纤通信的传输速率可达到40Gb/s、160Gb/s甚至更高。事实上,在光纤通信的不同发展阶段,高速的含义是不同的。目前通常把STM-16等级以上的系统称为高速光纤通信系统,也有人称之为超高速光纤通信系统。光纤通信作为当前三大通信方式的主体,有着较为明显的优势:光纤通信的频带较宽,可用带宽约50000GHz,容量大可同时传输更多的路数;光纤通信比任何的传输都具有更小的损耗,损耗小带来的直接好处就是中继距离长,传输稳定可靠;另外抗电磁干扰性强、保密性好。

2高速光纤通信系统面临的挑战

高速光纤通信系统快速发展,并得到广泛应用的同时,也存在着一些问题。比如光信噪比(OSNR),OSNR是光纤信号与噪声的比值,OSNR的大小直接影响传输信号质量的优劣,OSNR过大,传输距离会相应减小。另外,色散、非线性效应等问题也是影响高速光纤通信传输的主要因素。色散会使脉冲展宽、强度降低,增大误码率,信号畸变失真,直接降低通信质量。色散一般分为两类:群速度色散和偏振模色散(PMD)。群速度色散和偏振模色散效应对系统的传输性能、传输速率和传输距离都会有明显的损害。PMD的问题在以往的光纤传输中就存在,传输速率越高,PMD的影响也越加明显。光纤传输的衰减、消耗和色散与光纤长度为线性关系,光纤的带宽与光纤长度为非线性关系,这一非线性关系即为非线性效应。非线性效应分为散射效应、与折射密切相关的自相位调制SPM、交叉相位调制XPM和四波混频效应FWM,其中XPM和FWM对系统影响较为严重。因此,研究OSNR、色散和非线性效应问题是解决高速光纤通信系统高质量传输的关键技术。

3高速光纤通信系统的关键技术

第12篇

1光纤通信技术的定义。

电力通信中光纤通信技术,就是采取光导纤维作为传输介质对各种不同信号进行传输的形式,光纤通信技术承载量相当大,且安全可靠,在人们生活与生产中的应用效益足已证明其使用价值不可限量。光纤通信技术通常采用电气绝缘体进行制作,在制造过程中均采取多芯组成光缆,这样既可使通信的质量得到有效保证,又缩小了信息传输过程中所占据的空间。

2光纤通信技术的优势。

光纤通信技术同传统的通信方式进行相比,在技术方面有很多闪光点,同时在应用中也发挥着它不可代替的作用,光线通信技术在当前的应用中包括有三大类。

(1)波分复用技术

该技术主要是选取异同信道光波的形式。在进行实际操作过程中,通常绝大多数采取单模光纤损耗低区,然后与宽带资源相互结合,最终让其分成多个不同信道,在一般情况之下进行耦合与分离不同的光波时需要采取分波器。

(2)光纤传感技术

该技术在进行传输相应的信息时需要采取传感器,能够理解为传感器扮演着一个中介的角色,该种方式的能量消耗与传统方式相比之下,消耗相对较小,通常其包含有功能型与非功能型。

(3)光纤接入技术

该技术是目前实际应用中相对较广的一种,它能够对各种与窄带业务的问题与事故加以有效处理,而且该技术还可以非常高效地对各种不同的多媒体图像及数据信息进行有效解决。

二、光纤通信技术在电力通信系统中的实际应用

电力通信系统中应用光纤通信网是一个纷繁复杂、难度相当大的工程。随着社会经济的不断发展,电力通信水平也面临着一轮全新的挑战,而当前极具发展潜力的光纤技术被普遍应用于其中,其发挥的作用不言而喻。

1光纤复合相线。

光纤复合相线主要是指在输电线路相线中光纤单元复合的一种电力光缆。它可以预防架空线路遭受限制或阻碍,以此避免遭到雷击破坏,并且运行的相线也可更好地保证地线以绝缘方式正常运行,更加节省电力电能。

2光纤复合地线。

电力系统的传输过程中,在地线里带有部分光纤单元。不但它们可以尽情发挥地线的功能,也具有光纤材料的各种优点,无需特别的保护和维修,方便、稳定且安全。但是该种线路依然存在一些不足之处,就是要投入较大的建设成本。所以该种类型的光纤广泛应用于改造旧线路与建设新线路上。其能预防外界力量的破坏,可以对电线系统加以保护;再者也能够充分地利用传播中的数据信息,进而可实现架空地线的各种不同标准与需求。

3自承式光缆。

该种类型的光缆拥有异同的分类,比如:全介质自承式与金属自承式。全介质自承式光缆的质量小,直径小,密度也相对小,其构造具有全绝缘性,并且它的光学特征和功能还相对比较稳定,能在控制停电中所出现的损失有一定的优势,是一种拥有功能特殊的光纤原料。金属自承式的光缆结构比较简明又单纯,且所投入的成本也比较低廉,也不用把热容量或短路电流等问题纳入到整个系统运行中进行考虑,正由于该种类型的光缆具备诸多优点,所以使得它们被广泛地应用到实际中。

4电力特种光缆。

该种通信光缆属于特征与性能相对特别的一类,其支架的建设主要依靠线路杆塔资源作为基础。其含有的种类主要有:MASS/ADSS/OPGWOPAC等,其中ADSS/OPGW从目前来看应用方面相当普遍,这是由于自身构造与安装形态相对复杂、特殊,该种光缆可有效避免遭到外界力量的破坏。该种光缆自身的材料成本相对昂贵,但由于该种光缆是在沿着电力系统自身的线路杆塔上展开施工的,所在也可以有利于对成本投入的节约。ADSS类型的光缆可以在强电场与长跨距中得到很好的应用,不会给铁塔造成负面影响,而且是一种质量相对较轻的绝缘介质,该种光缆的优点是维修和维护相当方便,安装过程中无需切断电源。而OPGW光缆其安全系数相对较高,很难盗取,它的具体的优势在于使用周期长、传输信号的损耗度低,重建频率与维修率较低,而其不足之处表现于难以经受雷击。

三、光纤通信技术在电力通信中的发展方向

1新型光纤的应用。

目前IP的业务量节节攀升,电信网络也需不断创新与发展,而光纤正是其发展的根本所在。当前都是远距离信号传输,传输质量有很高的要求,原来的单模光纤很难满足发展需求,因此研究与开发新型光纤是电力系统迅速发展的需要。随着现在干线网要求的逐步提高与城域网建设的不断发展,无水吸收峰光纤与非零色散光纤该两种新型的光纤已经在社会各界得到广泛应用。

2使用光接入网。

随着网络技术的进步与创新,网络的传输与交换也逐渐推陈出新。而智能化网络具有数字化、高度集成、主宰网络的优势,其将是网络发展的必然趋势。在现在网络的接入通常采用双绞线,双绞线即便其传输质量表现较为卓越,可还是稍逊色于光纤的传输效果。若运用光接入网的话,就会降低维护与管理网络的成本,乃至能够开发光透明网络,让真正的多媒体得以实现。

3光联网的未来。

若光联网得到应用与发展,光网络将拥有巨大的容量、网络节点很多、网络范围非常广,并且网络的透明度也随之有所增加,可将各种不同的信号加以连接,提高网络的灵活性。部分欧美发达国家已在光联网上投入了很大的资金、人力与物力,我国目前也在该方向进行探索与研究。光联网在将来的通信中光联网将会发挥其巨大的效用,促进电力通信的迅猛发展。

四、结语

第13篇

就目前的网络发现趋势来看,网络的综合化、集成化、智能化和高可靠性已成为必然的发展趋势。但是,目前基于电的时分复用方式技术已经到达瓶颈,但是光纤的可用带宽只利用可利用的不到1%,其潜力是很大的。单就基于光路的波分复用(WDM)来讲,目前的商业水平可达到270左右,研究实现的水平1000左右,理论可同时传播360亿路的电话。波分复用的在目前的研究水平上,理论极限大约是15000个波长。国外已有相关人员在一根光纤中传输了65536个光波,这充分说明了密集波分复用的无限可能性。我们有充分的理由相信,以后在光路方面的发展,将会使光纤通信技术更上一个台阶。

2光纤通信网络技术业务趋势

可以说IP技术改变了我们的生活,其依赖的光纤通信技术更可以实现我们更多的梦想。IP技术的核心是IP寻址,是基于TCP/IP协议,其中最主要的两个协议是IP协议和TCP协议,这两个协议保证了信息在网络中的可靠传输。未来的IP业务将承载的不只有文字,更有图像视频,构成未来网络的基础,实现一种基于光纤的智能化网络平台,以满足人们对网络的不同程度的需求。以IP技术为主流的数据业务,将会是当今世界信息化的发展方向。现在几乎已经把能否有效支持IP业务作为一项技术能否长久的标志。目前IP技术已经相当成熟,要拓展更多的IP业务,无疑需要网络开发商创造出性价比更高的低廉传输成本。光纤通信技术能很好的满足这方面的要求。因此,光纤网络技术将会是现代IP业务发展的基础和方向。

3光纤网络通信技术发展方向

从30多年前光纤的问世开始,光纤的传输速率就在不断的提高。有统计表明,在过去的10年中,光纤的传输速率提高了100倍左右。预计在未来的十年,还将再提高100倍左右。IP技术使得三网融合,包括通信网、有线电视网和计算机网络,成为可能。这就需要更高速可靠的信息传播途径,因此,必须让传递信息的介质能够支持这些业务。就目前来看,互联网的通信基本上可以分为三类:人与人,如IP电话;计算机与人,如网页服务;计算机与计算机,如邮件。这些通信对网络的要求也不尽相同。因此,建立一个全新透明的全光路网络就会是此类技术发展的必由之路,我们称之为光联网。这不但会使传统的互联网业务更加可靠便捷,而且会促进一些无法预料到的新业务产生。不难想到,基于光路的波分复用(WDM)技术,将会是未来光联网道路上的先驱。光联网将会将会实现以下几个基本功能:1)超高速的传输速率;2)灵活的网络重组;3)网络层的透明性,对下层网络传输机制透明;3)更易的扩展性,允许网络节点和数据量的不断增长;4)更快速的网络恢复速度;5)同时实现光路和应用层的联网,使其有更健壮的物理层恢复能力。鉴于光联网的巨大优势和潜力,目前一些发达国家已经投入了巨大的人力、财力和物力对其进行研究和实施。光联网将会是电联网以后又一个互联网的革命。这不光对我们国民经济发展有重要意义,而且对国家的信息安全有着重要的战略意义。我们能够预测到,在不久的将来,随着光纤通信网络技术的迅速发展,人们的通信能够朝着传输速率更高、信号更加稳定的方向发展,人们在各种复杂情况之下的通讯要求也能够不断地得以满足。

4结语

第14篇

电力通信对可靠性要求很高,就算是在极其恶劣的环境中,也要保证通信传输功能的良好,光纤通信技术能完全满足这些要去,它不会受自然环境条件的影响,其稳定性和传输质量都比较好,同时还具有良好的抗电磁干扰能力,很适合多级电力网的通信需求。光纤通信技术还具有自我调节能力,在没有人为干扰时,能快速自动恢复通信能力,从而保证信息传输的安全性。

2能够扩展且投资效益良好

随着经济的快速发展,电力企业也越来越重视投资的经济性要求,在构建电简论光纤通信技术在电力网中的运用问题孔洪云/国家电网随州供电公司摘要:随着经济的快速发展和和谐社会的构建,电力资源已经成为社会发展和人们生活必不可少的能源之一,我国的电网系统建设规模越来越大,与此同时,随着智能电网系统的逐步完善,计算机技术和通信技术在电网系统中的应用越来越广泛,这就对电力通信网络的传输提出了更高的要求,光纤通信技术具有容量大、稳定性强等特点,将会广泛应用在电力网通信中。文章对光纤通信技术在电力网的运用进行了分析。关键词:光纤通信;电网;运用力通信系统时,要对系统的复杂性、网络的扩展性、设备的承受能力等进行综合考虑,这就需要使用一种兼容性强的通信方式,从而避免电力企业的重复投入,降低维护成本,同时还能获得良好的操作性,极大的提高电力企业的投资效率。

3光纤通信技术在电力网中的应用

3.1光缆的应用。正常的光纤复合架空地线都是采用光纤的形式进行信息传输的,也就是OPGW形式,由于电力传输线路是采用可以通信的光纤单元,因此,OPGW在架空地线的基础上融合了输电线路和通信光缆,OPGW是光纤通信技术和输电技术的有效结合,具有地线和通信两种功能。OPGW安装很简单,可以和通信输电线路一起完成施工,目前,OPGW常用于35KV及以上的电力网通信系统中。

3.2用于工程设计及实施中。一个完整的通信网络包括传输、交换、接入等三部分,传输是综合通信网络的综合平台,是通信网络最重要的一部分,它对信息传输的安全和传输系统的稳定运行有十分重要的影响,因此,在构建通信网络时,要将传输网络放在首要位置。目前,光纤通信常采用环形、链形、或者环形链形相结合的构造,根据线路的间距,采用STM1、STM4、STM16的传输速度,设备能进行双线单向保护和传输设备一致的接入装置,从而实现2Mbit/s和语音连接的任务。光纤构建上,由于电力系统本身拥有大范围的输电线路,因此,在正常情况下,都是采用自承式光纤进行安装,这种光纤常采用6芯、8芯、12芯、24芯、48芯等形式用于220KV及以下的线路中,在资源分配中常采用华为、中兴的设备,该光纤的特点是价格便宜,不需要停电,能极大的提高电力企业的经济效益。

4光纤通信技术的发展趋势

近年来,随着科技的快速发展,加上电力行业管理体制不断优化,光纤通信技术得到了飞速的发展,光纤通信的速度将会进一步提高。从通信技术的发展状况来看,通信容量扩展和传递速度的提高一直存在矛盾,光纤通信技术能有效地解决这个问题,因此,光纤通信在电力网中将会进一步提高通信速度。过去采用的分复用法已经没有开发潜力,而光纤宽带还有很大的开发空间,因此,光纤通信的容量将会进一步提高,从而在电力网中发挥出更大的作用。

5电力通信系统光缆的日常维护

5.1电缆受到雷击的主要原因及维护。在建设电网系统时,光纤通信和输电线路是同时进行施工的,在输电电路的顶部经常会架设光纤通信,由于输电线路周围的地形地貌十分复杂,并且线路塔杆需要架设在一定的高度上,因此,光纤通信很容易受到雷击,对光纤通信的安全运行造成很大的影响。为保证光纤通信的安全,防止雷击影响光纤通信的稳定运行,在进行电网建设时,要不断优化设计的防雷击方法,根据实际情况选用合理的避雷方法,从而不断提高输电线路的防雷击能力。

5.2电腐蚀的原因及维护。引起光纤通信电腐蚀的主要原因是悬挂点误差和干带电弧,光纤通信方式中的光纤悬挂点如果高出设计的标准位置,就会导致光纤产生很大的电场强度,远远超过设计标准,从而引起光纤表面电腐蚀;当光纤产生干带电弧时,会产生大量热量,导致光纤外套表面温度升高,从而产生树枝化电痕,引起电缆燃烧事故。为防止光纤出现电腐蚀现象,在进行构建电力系统时,要严格的按照设计图纸进行施工,从而为光纤通信系统的稳定运行提供保障;当光纤通信系统投入使用后,电力企业要加强日常维护管理,避免电缆出现燃烧等事故。

5.3人为破坏。收利益的趋势,部分不法人士常常偷盗电缆,这对光纤通信系统的稳定运行造成很大的影响,因此,要电力企业要加大宣传力度,让广大人民群众明白光纤通信的重要性,积极主动的参与到电缆监护中,从根源上减少电缆偷盗事故的发生。电力企业要加强电缆巡检力度,发现问题后,要根据实际情况及时进行处理,从而为光纤通信系统的正常运行提供保障。

6结束语

第15篇

1现状中存在的问题

对于专用光纤保护方式,虽然接线简单,但在保护工作人员的维护上没有优势,而且反复进行尾纤的拔插极易造成设备损坏,重点在于该方式对于通信光缆的纤芯资源占用较大,通信光缆在承载各个传输网的光链路传输等业务后会出现没有足够的纤芯可以用于保护通道的情况。对于复用光纤保护方式,保护信息在传输的过程中需经历几次跳转,MUX光电转换设备、通信SDH传输设备的可靠性若出现问题,则对继电保护也带来了安全隐患。复用保护通道的中间节点不利于运行人员的巡检工作。

2发展前景

对于现行的复用光纤保护通道方式,保护装置发出的光信号转换为电信号的过程由MUX装置完成,MUX装置需要单独设立屏柜装置并摆放于通信机房内。这样的方式对于一个有很多出线的220kV及以上变电站并不利于通信设备的摆放及后期扩建,而且一列类的解码编码过程计较繁琐。在现在的实际运行中,MUX转换装置是一种第三方协议转换装置,它没有统一的接口标准,不能网管监控,并且故障频发,给继电保护带来了安全隐患。于是新的发展模式出现,南网提出新型的2M光接口板用于通信SDH传输设备。2M光接口板的使用取代了原有的2M电接口板及MUX转换装置,2M光接口板像2M电接口一样占用2-3个槽位置于SDH同步传输设备的核心子架内。当保护室的保护装置发送出标称速率为2Mb/s光信号后,通过两根尾纤接至光配线单元,经由联络光缆可直接连接到SDH同步传输设备上的2M光接口板,此时2Mb/s的光信号可直接进行光电转化,转变为2Mb/s的电信号,该电信号的时钟信息被提取,保证了两端站点传输设备所传输信息的同步性,后续过程则与传统模式一致。如下图3所示:这样的通道模式较传统模式省去了MUX转换装置,节省了机房的空间,简化了编解码的过程,减少了设备间的反复跳线,也解决了MUX转换装置不能网管监控的问题,不会因为MUX装置故障频发而影响继电保护业务。目前市场上了解到的新型2M光接口板加光接口模块组合后费用在4万元左右,原2M电接口板的费用为2万元左右,费用相差近一倍。但是一个2M光接口板上的光接口数量一般可达8个,即每个2M光接口可传输8个2Mb/s的保护通道,对于一个220kV变电站而言,通信机房内至少需要8台MUX转换装置,一台MUX装置的价格约2万元左右,无论从经济还是技术角度考虑,新型2M光接口都具有绝对的优势。若2M光接口板在电网内广泛使用而批量生产,相信2M光接口板的价格也将有所下降。

3结语