美章网 精品范文 数学文化论文范文

数学文化论文范文

前言:我们精心挑选了数篇优质数学文化论文文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。

数学文化论文

第1篇

文化结构由物质文化和精神文化组成。由于一定的社会制度是一定的物质基础上产生的,要受到一定的精神文化制约,因而可将文化结构分成三个层面:“这就是物质文化,制度文化和精神文化”①。数学在建立发展过程中,受到了物质文化、制度文化、精神文化的影响及制约。

东方中国的古代文化的经济基础基本上是农业经济。这种情况决定古代中国的物质文化是农业文化。中国古代数学也与农业经济有着密切的关系。《九章算术》是中国最古老的经典著作,书有九章,包含246个问题。都和农业生产有关,九章分别是方田(土地测量)、粟米(百分法和比例)、衰分(比例分配)、少广(减少宽度)、商功(工程审议)、均输(征税)、盈不足(过剩与不足)、方程(列表计算的方法)、勾股(直角三角形)。这些问题都是用来解决农田的测量、粟米的称量,农业水利工程的测算等。《五曹算经》是一部为地方行政人员所写的应用算术,全书五卷,有田曹、兵曹、集曹、仓曹、金曹五个部分。田曹卷的主题是田地面积的量法;兵曹算术大都是军队的给养问题;集曹问题和《九章算术》粟米章问题相仿;仓曹解决粮食的征收、运输和储藏问题;金曹问题以丝绢、钱币等物资为对象,是简单的比例问题。我国古代大数学家刘徽到祖冲之、祖冲之研究圆周率和圆面积的辉煌成就中,都深深地打着农业经济的印记。农业的交通工具主要是车,车轮是否圆,不仅和车辆行驶中的平稳状况有关,而且还和省力有关,因而农业经济的需要使得我国圆周率的研究在世界数学中占有相当的地位。过去,农业的显著特点是靠天吃饭,天文、节气的测算是农业生产的需要,在中国,古代天文测算的成果是相当辉煌的,“东汉末年天文学家刘洪造乾象历法(公元206年),创立了推算定朔、定望时刻的公式”。“隋朝天文学家刘焯在他的杰作《皇极历》(公元600年)中创立了一个推算日、月、五星行度的比以前更加精密的公式”②。天文学的发展推动了数学的发展。解一次同余式就是由天文测算开始的。天文数学的发展除了物质文化的需要,还受到制度文化的要求,中国数学的重要性在于它与历法有关,“在《畴人传》中很难找到一个数学家不受诏参与或帮助他那个时代的历法革新工作。”③除了中国,古代埃及数学的建立基础也是农业的需要。埃及几何学的起源被史学家们归因于泥罗河泛滥后土地的重新测量;巴比伦的数学起源也是如此,尤其是巴比伦数学的60进位制来自于天文学;印度数学和占星术有关,而占星术又和农业及宗教有关。

东方数学的建立比西方要早,但东方的数学在理论化的道路上行动迟缓。原因何在呢?自给自足的自然经济的生产力状况决定的生产力关系是以家族为中心、以血缘关系为纽带的宗法等级关系,社会制度是宗法等级制度。自给自足的自然经济中分散的家族和农民需要有高高在上、君临一切的中央集权的君主专制制度的统治。在这种社会制度的影响和作用下,形成中国古代稳定的上下尊卑等级秩序的文化心理。主要特点是静态的、和解的、自然的、消极的心理特点。造成安于现状的生活方式、工作方式、管理方式。思想僵化、调和持中,这种文化心理使得数学只停留在实用上。没有就数学而数学,使数学自身的规律没有得到完善。“在古代东方的全部数学中甚至找不到一个我们今天称之为‘证明’的例子,代替论证的只有程序的描述,所讲授的内容只是‘如此这般地做’,而且也不是以一般规则的形式提出来,只不过是在一系列特殊情况下的应用方法。”④这段话虽有失偏颇,但也道出中国古代数学的特征。在中国数学的发展史上曾出现了刘徽、墨子、惠施等天才的数学家,但他们的数学研究和成就不能和西方的阿基米得、欧几里德相比较。这主要是我国古代数学的理论研究不受重视所致。汉王朝建立以后的“重农抑商”政策使数学研究受不到贸易的诱惑。农业经济的财富有限和填饱肚子的生活状况,不允许人们的思想向实用以外的地方延伸;隋朝开始的科举制度也扼杀了大批在数学研究上具有不凡才华的人。在科举制度中数学不是要考的课程,为“学而优则仕”而奋斗的人们,自然不会将数学当作主修课程来学习。另外,农业经济的贫困使得没有多少人来学文化,学数学的人自然更少。在这种情况下,中国古代数学的许多成就只处在应用和描述过程阶段,没有提高到抽象的、系统的理论阶段,从而使数学的发展和升华受到限制,象“勾股定理”、“圆周率”这些值得中国人骄傲的数学成就,没有造成相应的数学的轰动效应。“勾股定理”在我国商高的时代就应用比西方的毕达哥拉斯发现早600年,但由于我们没有给出严格的数学证明,这个定理在现在还认为是毕氏的成果,称为“毕氏定理”。墨子的极限理论也没有引起足够的重视,后来西方数学传入我国时才知西方极限思想和黑子的思想是一致的。“重农抑商”的文化传统的价值观具有明显的伦理性。小农经济的自给自足的环境不需进行商品交换(至少不需要太多的货币介入)。生产中占支配地位的是使用价值,人们关心的是使用价值而不是价值,以不言利为荣,“重义轻利”的思想渗透到人们的思想深处。数学的应用只局限于分配环节中。而在复杂的流通和交换领域中数学没有机会“施展才华”。多农少商没有足够的财富供人们享受,财产的有限性限制了人们的探险精神和“想入非非”,从而限制了数学向理性的发展。

在西方,小亚西亚海岸新兴的商业城市、希腊本土、西西里岛和意大利海滨,由于海上贸易和战争的刺激使得人们的思想活跃,商品贸易发达,对计算要求的提高,财富的增加使人们有更多的时间从事“非实用”的理论研究。古代东方静态的观点和西方动态的观点不一样,表现在数学上唯理论的气氛浓厚起来。人们不但要知其“然”,而且要知其“所以然”。不但要问“什么”,而且要问“为什么”,要解决“所以然”和“为什么”。古代东方的以实践和经验为根据的方法就显得“无能为力”和“后劲不足”。为了知道“所以然”和“为什么”,就得在数学的证明方法上作一定的努力,在这样的文化氛围中现代意义上的数学产生了。东方的几何学只为测量提供方法,而证明的几何学是由公元6世纪前半期米利都的泰勒斯开创的。泰勒斯不是农业经济中的“耕夫”,而是一个商人,他在经商过程中积累了足够的财富后,在后半生从事研究和旅行。他在几何学中的主要成果有“圆被任一直径二等分”,“等腰三角形的两底角相等”、“两条直线相交对顶角相等”,“两个三角形,有两个角和一条边对应相等,则全等”、“内接与半圆的角必为直角”等⑤。这些成果的意义不在于断言的本身,而是提供了一些逻辑推理(象他的第五个问题巴比伦比他早知道近1400年,但没有形成严格的证明)。使得数学被推向抽象、系统化轨道的还有毕达哥拉斯、柏拉图以及他们的继承者形成的毕氏学派和柏氏学派。由于商业的发达、财富的增长,使得人们旅行的欲望越来越高,而旅行和游动的生活方式给数学的发展提供了机遇。前面提到的泰勒斯的后半生就是在旅行和数学研究中渡过的,“他有一段时间住在埃及”⑥。毕达哥拉斯也有旅行和流动生活的经历。“他曾在埃及居住了22年,从埃及神庙的祭司那里了解了古埃及有关数学、天文方面的知识……回国后,又前往希腊的移民地阿佩宁半岛的克罗托纳城定居”⑦。从这两位数学大师的经历看,不能不说旅游这种文化活动给数学的发展提供了条件。商业贸易的发展,可诱导战争的爆发,战争不仅给侵略者掠夺来物质财富,而且也带来了许多精神财富,其中就有数学成就。公元前334年,马其顿国王亚历山大领兵进入埃及,不久挥师东进,横扫了波斯帝国的军队,到了印度河西岸,建立起庞大的亚历山大帝国和亚历山大城,这个城市的建设主要着眼于文化科学设施的建设,吸引了大量的人才,不久就成为当时世界科学文化的名城,欧几里德就是在这个环境中熏陶和成熟起来的伟大的数学家。他对数学宝库的贡献是《几何原本》。他的几何和东方几何的不同之处是,不仅从应用的角度来谈,而是就几何而几何的角度加以研究,运用逻辑推理来证明命题的真伪。而且用几何的方法来解决代数方程。他的著作中的许多公理、定理和定义除了适应当时的经验外,还具有普遍的意义。阿基米得也是当时伟大的数学家,他采用穷竭法来求圆的周长和直径的比值,其指导思想和我国刘徽的计算圆周率的思想是一致的,但不同之点是“刘徽是从圆内接正多边形着手,而阿基米得不仅从圆内接正多边形着手、还从外切正多边形这个角度进行计算”⑧。这就体现出西方数学家多方位的思维方式。另外,阿基米得在研究圆的同时,还研究了球和圆柱的问题,他在《论锥形体和球形体》中使用了近似于现代数学的方法。他的工作不仅涉及到具有很大应用价值的数学问题,而且提出了许多明确的数学概念,在这一点上要比东方数学先进。商业贸易具有一定的风险性、尤其是远航贸易。这种背景下产生了保除业。而保险的兴起又促使了概率论的产生和发展。虽然刺激概率论的是赌博,但起源是商业文化。即使是赌博也是产生于发达的商业文化城。可见,东西方传统文化不仅影响到不同的数学分支和范围,而且在同一数学问题上所体现的解决问题的方法也不同,表述的形式、研究的动机也存在差异。再来看一个事实,《周易》及先天图二分法与菜布尼兹的二进制,两者一个讲对分,一个讲进位。但都“用两个符号表示无限的事物或数学其客观存在的排列法则,决定了先天图与二进制算术的一致”⑧。二进制和先天图没有关系,这是不同时代的东西方数学家,在完全不同的社会背景下的产物,其一致性是令人吃惊的,但思想方法却完全不同。二进制是在西方传统文化中欧洲科学发展的基础上产生的,是有意识地运用十进制知识而创造的一种计数方法。二分图是《周易》众多象数体系中的一个,其中有合理的因素。但其动机不免有些封建意识的糟粕,因为它不是依靠科学的依据推出来的。

总之,东西方传统文化的不同,造成了东西方数学上的差异。东方是数学原始的发祥地,但其发展和科学化、理性化的功劳基本上归于西方。

参考文献:

①张立文等《传统文化与现代化》,中国人民大学出版社。

②钱宝琮《中国数学史》,科学出版社。

③(英)李约瑟《中国科学技术史》,科学出版社。

④⑤⑥(美)H·伊夫斯《数学史概论》,山西人民出版社。

第2篇

如今生活中随处可见各种图形图表、数据分析、逻辑推理等与数学相关的信息,大到GDP、CPI,小到房贷车贷、投资收益、商城折扣、时间估算等,这就需要我们用数学知识对现实问题进行分析、推断并提出解决办法,也就是说需要我们具备一定的数学素养。我国研究者曾选取与人民日常生活紧密相连的十几份报刊杂志作为获取数据信息的基本来源,了解人们日常生活中的数学。研究表明:[1]大数和百分数以相当高的比例出现在经济、科技、政治、生活的新闻和广告中,这说明在以商品经济为主和科技日益发展的社会中,信息的传递和交流更多的是定量的。[2]图形图表,尤其是各种各样的统计图表、统计表(如直方图、扇形统计图以及一些形象的统计图)出现较多,它们以清楚、明了、信息量大、对比度强等特点出现在报刊中。[3]与生活相关的报道以及广告中的数学内容很多也很丰富。在广告中,这些内容多与保险、房地产、储蓄、旅游等行业有关,如,方位图、直方图、数学术语、公式等。在一些报纸甚至出现了比较复杂的数学表达式(主要是代数式)。以上事实说明,不管我们愿不愿意,数学已经渗透到我们生活中的各个角落,数学在社会生活中的广泛应用需要公民具有一定的数学素养。数学素养是指主体在已有数学经验的基础上,在数学活动中通过对数学的体验、感悟和反思,并在真实情境中表现出来的一种综合性特征。数学素养可以通过数学知识素养、数学应用素养、数学思维素养、数学思想方法素养和数学精神素养等来分析。数学文化素养是指个体具有数学文化各个层次的整体素养,包括数学的观念、知识、技能、能力、思维、方法、数学的眼光、数学的态度、数学的精神、数学的交流、数学的思维、数学的判断、数学的评价、数学的欣赏、数学价值取向、数学的认知领域与非认知领域、数学理解、数学悟性、数学应用等多方面的品质。从数学素养、数学文化素养的内涵可以看出在数学素养的各个组成部分中或多或少都有数学文化素养的表现特征,所以对数学文化素养的研究可以借鉴数学素养的研究,而对数学文化素养的研究又有助于对数学素养的理论研究。目前国内外对数学文化、数学素养的研究较为成熟,但对数学文化素养的研究较少。应用技术型大学是我国近几年才提出的一种办学理念,在2013年6月由35所地方本科院校发起的应用技术大学(学院)联盟,地方高校转型发展研究中心才成立。将应用技术大学在校生作为数学文化素养的研究对象是一项开创性的工作。

2数学文化素养的研究现状

2.1国内外对于数学文化的研究现状数学是一种文化现象,一直以来都受到人们的普遍重视,但数学文化这种特殊的文化形态却一直没有被人们所重视。一直到20世纪的下半叶,美国著名的数学史学家M.克莱因在他的三本著作《古今数学思想》《西方文化中的数学》《数学———确定性的丧失》中对数学文化进行了系统地,见解独到的阐述。1981年美国著名学者怀尔德在其代表作《数学是一个文化体系》中指出:数学文化的发展己经到达一定的高度,被认为可以构成一个独立的文化系统。数学文化,是数学作为人类认识世界和改造世界的一种工具和能力,是数学与人文的结合。随后引发了对数学文化内涵界定的广泛关注。国内最早使用“数学文化”一词的学者是北京大学的邓东皋、孙小礼等人,他们在1999年合作编写了《数学与文化》一书,书中汇集了一些数学名家的关于数学文化的论述,该书是从自然辩证法的角度对数学文化进行了研究和思考。在这十几年中许多著名的学者李大潜、张奠宙、张顺燕等都从不同的角度发表了自己对数学文化的界定与理解。张奠宙认为数学是一种文化现象,并从文学、语言学和美学方面解释了数学是一种文化。李大潜从数学的知识性、工具性、基础性、科学性、技术性以及数学的语言等方面论述了数学是一种先进的文化,进而讨论了通过数学的训练,可以获得的数学素养并对数学文化教学提出了一些有益的建议。张顺燕在文化背景下的数学教学提出了实现四结合:历史与逻辑想结合、数与形相结合、理论与应用相结合、科学理论与方法论相结合,培养四种本领:以简驭繁、审同辩异、判美析理、鉴赏力的数学教学建议;并从数学与教育、数学与文明、数学与艺术三个方面论述了数学文化进行了论述。还有蔺云、胡良华、陈晓坤、黄秦安等人也对数学文化进行了相关的讨论。

2.2国内外学者对数学素养的研究现状数学素养的提出最早源于1982年英国的“学校数学教学调查委员会”编写的《考克罗夫特报告》(原名((Mathematicalcounts))。《报告》指出数学教育的根本目的是为了满足学生今后的成人生活、就业以及学习的需要。《报告》阐述了为满足这三种需要,学校数学的课程内容和教学方法;论述了进行良好的数学教学所需的多种条件和支持。《考克罗夫特报告》报告以后,立即引起了全世界的关注:提高学生的数学素养以便满足学生成人生活的需要成为各国数学教育改革的趋势,进而引起各国关于数学素养的评价研究。随后对数学素养的研究多是从数学素养的内涵、数学素养的生成策略、数学素养的评价这几个方面展开。由国际经济合作与发展组织组织(简称OECD)进行的国际学生评估项目(PISA)旨在评估OECD成员国15岁学生在阅读、数学及自然科学方面的知识、能力和技巧,以及跨学科的基础技能,希望了解即将完成义务教育的各国初中学生,是否具备了未来生活所需的知识与技能,并为终身学习奠定良好基础。通过国际间的比较找出造成学生能力差异的经济、社会和教育因素,从而进一步为各国改善自身的教育体制提供必要的参考指标和数据。PISA每三年将进行一次评价。2000年PISA评价中,阅读素养是主要领域,2003年数学素养是主要领域,2006年科学素养是主要领域。PISA把数学素养定义为:个人能认识和理解数学在现实世界中的作用,作为一个富于推理与思考的公民,在当前与未来的个人生活中,能够作出有根据的数学判断和从事数学活动的能力。数学素养包括:数学思考与推理、数学论证、数学交流、建模、问题提出与解决、表征、符号化、工具与技术八个方面。国际成人素养调查(IALS)中,把数学素养的概念建立在工作需要、不断扩展的生活需要、教育的需要、研究的需要和一些评价项目(如成人评价和学生评价)等五个方面。另外各国都在自己的课程标准中对数学素养提出了一定的要求。我国学者对于数学素养具体内涵的认识具有以下几种代表性的观点:(1)数学素养是一个广泛的具有时代内涵的概念,它包括逻辑思维、常规方法(符号系统)和数学应用三方面的基本内涵(孔启平)。(2)数学素养是数学科学所固有的内蕴特性,是通过教育培养赋予的一种特殊的心理品质和数学知识、数学能力与数学素养的关系这两个前提出发,认为数学素养涵盖创新意识、数学思维、数学意识、用数学的意识、理解和欣赏数学的美学价值五个要素(王子兴)。(3)文化的角度认识数学,理解数学,认为数学素养应包括以下几个方面:基本的数学知识;基本的数学技能;数学思想方法;数学应用意识和数学美学价值的欣赏。这几个方面彼此联系,互相渗透(张亚静)。(4)数学素养是在数学价值、数学方法、数学思想、数学精神的交替作用下生成的。数学素养的生成是通过不断反省而改善的,是一个长期反复、螺旋上升的过程。数学素养具有内隐性、超越性、长效性和反省性四个特征。数学素养的构成要素是数学“思维块”、数学方法、数学思想以及数学人文精神(全)。在数学素养的培养策略问题上,主要是一些一线数学教师通过了其具体的教学归纳总结。全对小学生数学素养的培养策略从联系生活实际、关注学习过程、重视实践应用三个方面阐述了具体的培养策略。王荣和罗铁山在教学中认为培养和提高学生的数学素养关键要提高教师素质,树立正确的数学观、教育观;在数学教学中要突出基本的数学思想和数学方法,重视数学语言的运用,从而达到用好数学的目的。潘小明分别从数学活动的视角和全球教育的视角对数学素养的培养进行了分析。目前我国还没有对数学素养进行专门的评价,不过已经有很多学者关注并提出建议。如黄华对比了上海数学中考对学生数学的测试和PISA对数学的测试,认为中考不仅可以对学生学习数学的成绩认定,而且可以诊断数学教学的问题,改善数学课程的教学。上海的数学中考应该参照PISA的测试,对其稳定性、一致性进行分析和研究,进而反馈、诊断和改进,从而较为准确的判断中学数学学业水平的发展趋势,并从中找寻原因、总结经验教训、改进实际教学。马云鹏认为数学素养评价最终还是为了提高学生的数学学习,改善其学习方式。从课程目标、学生学习的角度,提出数学素养的评价要有利于促进数学教学全面落实课程标准所给出的课程目标,通过评价的反馈和诊断可以使学生改善自己的数学学习方式,从而提高他们学习数学的效果,通过有效地评价可以全面了解学生的数学素养的整体水平。

2.3国内学者对数学文化素养的研究现状数学文化素养是伴随着数学文化的发展而产生的一个新的词语,目前对数学文化素养的界定学者间的看法不尽相同,因此对数学文化素养的研究还不够深入,对数学文化素养的研究成果还比较少。周家全等在《论数学建模教学活动与素质培养》中提到“数学文化素质是指树立正确的数学观和数学信念,掌握数学的思想和方法。懂得数学这门科学的语言,会使用数学软件和计算机这一工具。”张明明在其硕士学位论文《高师院校数学与应用数学专业学生数学文化素养的现状调查与分析》中,指出数学文化素养数学文化素养是数学素养的一个分支,是指个体具有数学诸多方面的品质,包括数学文化各个层次,以及对人类文明进步具有深远影响的数学科学知识的方方面面。杨海艳在《数学专业大学生数学文化素养的调查研究》中认为:数学文化素养是指人们对数学文化的认识,从而使人们具有数学的思想、精神、方法、观点、语言和能力等数学文化多方面的品质。还在文中对培养大学数学文化素养的途径进行了阐述。

第3篇

可以肯定地说,数学是一种为人们所承认的文化现象。数学文化的传播载体首推数学文化史料。研析数学文化史料,就可以直接获取数学知识的基本概念,直观认识获取数学的思维、理论和研究方法。一个典型的实例就是大学数学教学中开始涉及的“极限”概念,对于这个大学生首遇的抽象概念,教师们通用的施教方法一般始于数学文化史料的介绍,在渐进的过程中定义出“极限”概念。大学的数学教育实践要领,首先应该推崇和学习数学逻辑原理的产生缘由,还原基本数学原理的历史背景,以此为背景,在潜移默化中激发大学生对数学学习爱好,增强大学生学习数学的原发力量,启迪大学生数学思维和创新智慧。诚然,数学自然是一门兼具抽象与具体、逻辑与计算、演绎与推导、想象与实现的学科,数学发展的历史渊源曾经极具挑战性。而现代大学的数学教育教学内容一般都涉及到微积分、线性代数、概率论与数理统计等基础数学学科,其特点之一是数学知识体系传承涵盖面较为广泛,其特点之二是传统数学课程实质性内容基本保持恒定。这对于研究能力正在成长中的大学生来讲,如果采取抽象经典数学理论引入为主的“速食数学”教学方法,可能会导致大学生初入高校后,产生对数学的困惑和厌学心理。而重视数学教学的文化理解,对数学概念、方法等的历史演进,以此为基础的数学定理和公式的推理教学,才能教授给大学生数学的系统化、完备化的知识结构体系,引导其逐渐倾向于关注抽象经典的理论结果,建立起演绎严密、推导细致的数学课程自我学习的思维范式,完成抽象理解的升华。如此明理于数学危机及其成长过程,理性看待数学分支的由来与曲折,从而智炼出深厚的数学底蕴、精髓思想、理性思维等学生个体成长科学思维方式。我国数学家王浩也认为:数学的本质是它的抽象性、精确性、确定性、广泛的应用性以及丰富的文化美。因此,可以将大学数学教学设计为以直观、形象地掌握基本数学概念为起点,通过增强大学生数学学习的积极性,提高大学生数学学习效率。按照这样的数学教学变革,彰显出强大的大学数学教学文化教育意义。

二、数学文化融入大学数学教学的必要性

数学文化具有普遍的区域性和人文性双重特征。自从20世纪70年代末我国恢复高考制度以来,全国逐渐形成了教材、教学形式基本统一的数学教学格局,造就了数学教学的繁荣。但如果审视数学教学的文化属性,就会发现我国幅员辽阔的国土上,教育发展不均衡,加之国内各民族聚居区域有别、人口不一造成了全国各地人文文化的巨大差异。以数学文化的视角,显而易见,上述的两个统一是不满足协调关系的,基于此,数学教学组织的顶层设计是不合理的,故需倡导大学数学教学的层次性,满足数学教学的基本文化属性。通过数学教学的文化属性组织教学,通过区域性融入民族文化的教学,通过协调区域差异和文化差异的多模式存在,实现匹配的针对性数学文化教学实践。同时,也要注意数学文化作为文化范畴需要匹配东部地区、西部地区以及发达地区和欠发达地区的社会文化背景,不能盲目追求数学文化的文化属性,必须要将数学文化作为教学实践工具应用形式紧密结合抽象理性思维模式,必须清楚地认识到数学文化思想具有广泛的应用实践性和纯粹理论的抽象逻辑性的双重特征。

三、数学文化融入大学数学教学的策略