美章网 精品范文 电阻测量论文范文

电阻测量论文范文

前言:我们精心挑选了数篇优质电阻测量论文文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。

电阻测量论文

第1篇

论文关键词:初中测量电阻的几种常用方法

 

测量电阻是初中物理教学的最重要的实验之一,也是考察学生能力的重要命题热点之一。通过近几年中考试题我们就会发现,测量电阻方法多种多样,其应用的原理和计算方法也不尽相同,而电路图的设计更是灵活多变,如果学生对该部分知识不加以总结、消化的话,就会在做题时容易出错、造成不必要的丢分现象,因此电阻的测量看似简单,实则在教学中常常是学生的弱点,在各种考试中通过对电阻的测量的考察也可以反映出学生对电学基本知识掌握的情况,另外命题者还在不断的推陈出新,用不同的形式对学生进行考察。下面我们就对初中测量电阻的几种常用方法进行一个简单的总结,希望对同学们能有所帮助。

一、初中最基本的测电阻的方法

(1)伏安法测电阻

伏安法测电阻就是用一个电压表和一个电流表来测待测电阻,因为电压表也叫伏特表物理论文,电流表也叫安培表,因此,用电压表和电流表测电阻的方法就叫伏安法测电阻。它的具体方法是:用电流表测量出通过待测电阻Rx的电流I,用电压表测出待测电阻Rx两端的电压U,则可以根据欧姆定律的变形公式R=U/I求出待测电阻的阻值RX。最简单的伏安法测电阻电路设计如图1所示,

用图1的方法虽然简单,也能测出电阻,但是由于只能测一次,因此实验误差较大,为了使测量更准确,实验时我们可以把图1进行改进,在电路中加入滑动变阻器,增加滑动变阻器的目的是用滑动变阻器来调节待测电阻两端的电压,这样我们就可以进行多次测量求出平均值以减小实验误差,改进后的电路设计如图2所示杂志网。伏安法测电阻所遵循的测量原理是欧姆定律,在试验中,滑动变阻器每改变一次位置,就要记一次对应的电压表和电流表的示数,计算一次待测电阻Rx的值。多次测量取平均值,一般测三次。

(2)伏阻法测电阻

伏阻法测电阻是指用电压表和已知电阻R0测未知电阻Rx的方法。其原理是欧姆定律和串联电路中的电流关系,如图3就是伏欧法测电阻的电路图,在图3中,先把电压表并联接在已知电阻R0的两端,记下此时电压表的示数U1;然后再把电压表并联接在未知电阻Rx的两端,记下此时电压表的示数U2。根据串联电路中电流处处相等以及欧姆定律的知识有:

I1=I2

即:U1/R0=U2/RX

所以:

另外,如果将单刀双掷开关引入试题,伏阻法测电阻的电路还有图4、图5的接法,和图3比较,图4、图5的电路设计操作简单物理论文,比如,我们可以采用如图5的电路图。当开关掷向1时,电压表测量的是R0两端的电压U0;当开关掷向2时,电压表测量的是RX两端的电压Ux。故有:。同学们可以试一试按图4计算出Rx的值。

(3)安阻法测电阻

安阻法测电阻是指用电流表和已知电阻R0测未知电阻Rx的方法。其原理是欧姆定律和并联电路中的电压关系,如图6是安阻法测电阻的电路图,在图6中,我们先把电流表跟已知电阻R0串联,测出通过R0的电流I1;然后再把电流表跟未知电阻Rx串联,测出通过Rx的电流I2。然后根据并联电路中各支路两端的电压相等以及欧姆定律的知识有:

U0=UX

即:I1R0=I2RX

所以:

显然,如果按图6的方法试验,我们就需要采用两次接线,可能有的同学怕多次拆连麻烦的话,那我们还可以将单刀双掷开关引入电路图,这时我们可以采用如图7的电路设计。当开关掷向1时,电压表测量的是R0两端的电流I0;当开关掷向2时,电压表测量的是RX两端的电流Ix杂志网。通过计算就有:。

以上三种测电阻的方法是最简单的测电阻方法,也是必须掌握的方法,大家会吗,除此以外,还有常用的易于学生理解的测电阻的常用方法吗?当然还有:

二、特殊方法测电阻

(1)用电压表和滑动变阻器测量待测电阻的阻值

或者

用电压表和滑动变阻器测量待测电阻的阻值,我们也可以采取以下方法:

1.如图8所示,当滑动变阻器的滑片滑至b端时,用电压表测量出Rx两端的电压Ux,当滑动变阻器的滑片滑至a端时,用电压表测量出电源的电压U,根据串联电路的电流关系以及分压原理我们可以得到:。

2.如图9所示,当滑动变阻器的滑片滑至b端时,用电压表测量出电源的电压U,当滑动变阻器的滑片滑至a端时物理论文,用电压表测量出Rx两端的电压Ux,根据串联电路的电流关系以及分压原理我们可以得到:

(2)用电流表和滑动变阻器测量待测电阻的阻值

如图10所示,当滑动变阻器的滑片滑至b端时,用电流表测量出Rx和R滑串联时的电流I1,当滑动变阻器的滑片滑至a端时,用电流表测量出Rx单独接入电路时的电流I2,因为电源电压不变,可以得到:,故有:。

(3)用等效法测量电阻

如图11所示电路就是用等效法测量电阻的一种实验电路。其中Rx是待测电阻,R是电阻箱(其最大电阻值大于Rx)。其实验步骤简单操作如下:

把开关S闭向2,读出电流表的数值I,再把S闭向1,调节电阻箱,使电流表的读数仍为I不变,则读出电阻箱的数值,即为待测电阻Rx的值。

以上就是初中常见的测电阻的方法,大家会吗,希望以上总结对大家的学习有所帮助。

第2篇

关键词:变压器线圈直流电阻测量结果分析

1直流电阻测量

1.1测量方法

测量直流电阻是变压器试验中的一个重要项目。通过测量,可以检查出设备的导电回路有无接触不良、焊接不良、线圈故障及接线错误等缺陷。在中、小型变压器的实际测量中,大多采用直流电桥法,当被试线圈的电阻值在1欧以上的一般用单臂电桥测量,1欧以下的则用双臂电桥测量。在使用双臂电桥接线时,电桥的电位桩头要靠近被测电阻,电流桩头要接在电位桩头的上面。测量前,应先估计被测线圈的电阻值,将电桥倍率选钮置于适当位置,将非被测线圈短路并接地,然后打开电源开关充电,待充足电后按下检流计开关,迅速调节测量臂,使检流计指针向检流计刻度中间的零位线方向移动,进行微调,待指针平稳停在零位上时记录电阻值,此时,被测线圈电阻值=倍率数×测量臂电阻值。测量完毕,先开放检流计按钮,再放开电源开关。

1.2注意事项

在测量过程中,除要严格遵守电气安全规程和设备试验规程外,还要特别注意:

1)在线圈温度稳定的情况下进行测量,要求变压器油箱上、下部的温度之差不超过3℃;

2)由于变压器线圈存有电感,测量时的充电电流不太稳定,一定要在电流稳定后再计数,必要时需采取缩短充电时间的措施;

3)尽量减少试验回路中的导线接触电阻,运行中的变压器分接头常受油膜等污物的影响使其接触不良,一般需切换数次后再测量,以免造成判别错误。

2测量结果分析

2.1规范要求

根据规范要求,三相变压器应测出线间电阻,有中性点引出的变压器,要测出相电阻;带有分接头的线圈,在大修和交接试验时,要测出所有分接头位置的线圈电阻,在小修和预试时,只需测出使用位置上的线圈电阻。由于变压器制造质量、运行单位维修水平、试验人员使用的仪器精度及测量接线方式的不同,测出的三相电阻值也不相同,通常引入如下误差公式进行判别

R%=[(Rmax-Rmin)/RP]×100%

RP=(Rab+Rbc+Rac)/3

式中R%――――误差百分数

Rmax――――实测中的最大值(Ω)

Rmin――――实测中的最小值(Ω)

RP――――三相中实测的平均值(Ω)

规范要求,1600KVA以上的变压器,各相线圈的直流电阻值相互间的差别不应大于三相平均值的2%,1600KVA以下的变压器,各相线圈的直流电阻值相互间的差别不应大于三相平均值的4%,线间差别不应大于三相平均值的2%;本次测量值与上次测量值相比较,其变化也不应大于上次测量值的2%。

2.2有关换算

在进行比较分析时,一定要在相同温度下进行,如果温度不同,则要按下式换算至20℃时的电阻值

R20℃=RtK,K=(T+20))/(T+t)

式中R20℃――――20℃时的直流电阻值(Ω)

Rt――――t℃时的直流电阻值(Ω)

T――――常数(铜导线为234.5,铝导线为225)

t――――测量时的温度

为了确定缺陷所在的相别,对于无中性点引出的三相变压器,还需将测得的线间电阻换算成每相电阻。设三相变压器的可测线间电阻为Rab、Rbc、Rac,每相电阻为Ra、Rb、Rc,当变压器线圈为Y型联接时,相电阻为

Ra=(Rab+Rac-Rbc)/2

Rb=(Rab+Rbc-Rac)/2

Rc=(Rac+Rbc-Rab)/2,如果三相平衡,相电阻等

于0.5倍线电阻;当变压器线圈为型联接,且a连y、b连z、c连x时,Ra=(Rac-RP)-RabRbc/(Rac-RP)

Rb=(Rab-RP)-RacRbc/(Rab-RP)

Rc=(Rbc-RP)-RabRac/(Rbc-RP)

当变压器线圈为型联接,且a连z、b连x、c连y时,

Ra=(Rab-RP)-RacRbc/(Rab-RP)

Rb=(Rbc-RP)-RabRac/(Rbc-RP)

第3篇

关键词: CPR1000核电站 岭澳二期 汽轮机高压缸 热控测量孔 蒸汽泄漏

1. 事件描述

2010年2月16日,在CPR1000核电站首台机组岭澳核二期3号首次进行机组热态功能试验(3HFT)期间,高压缸进气温度测量元件( 3GME581YT /591YT)与汽缸的连接部位发生较大面积蒸汽泄漏,现场立刻采取了加强紧固的方式临时处理,保证热态功能试验的继续进行。在热态功能试验结束之后,施工现场对泄漏的温度测点进行拆卸检查,发现高压缸本体及高压主汽门的大部分热控测量孔密封面存在较严重的加工不平整、管座与测量套管不同心等问题,致使高温压蒸汽进入后产生较大面积蒸汽泄漏。

2. 原因分析

通过图纸核对和外方专家的技术确认,我们了解到,CPR10

00核电站首台机组的高压缸属于我国首次引进的核电百万千瓦级半速汽轮机组(原型机为法国阿尔斯通半速机),汽轮机的进气压力约是6.8MP。高压缸本体的热控测量孔是圆锥形的孔,采用六面形垫片密封,六面形垫片的A /B密封面分别和锥形面和热控测量接座密封面接触,密封线较窄(约2毫米),六面形垫片的材质为Q235材质,较一般的铜垫片硬,不易变形,且对加工面配合要求较高。(图1)

在针对高压缸热控测量孔的生产过程的加工处理上,工厂直接参考了外方的设计图纸,但忽视了图纸上对加工精度和密封面的较高配合的要求。导致发货到现场的热控测量接座、六面形垫片、锥形密封面三者之间的配合效果不佳 。

施工现场在安装前进行了简单检查,发现部分热控测量孔的锥形密封面在工厂内加工不平整、有划痕及点坑,各密封面间的配合不佳。虽然联系工厂进行确认,但未得到各方足够的重视,而工厂提供的相关的安装程序文件中也没有对安装前后检查做具体的要求。

在泄漏事件发生后,现场各方对锥形密封面进行了蓝油检查,发现较多数量的接触面存在断续,未接触、加工不平整、划痕及点坑等缺陷(图2),这是是产生蒸汽泄漏的主要原因。

3. 采取措施

针对上述的原因,经过现场各方讨论,采取如下措施:

(1)采取紧急修复措施

生产厂家派出技术人员携带专用工具对现场岭澳二期核电站3号机高压缸及主汽阀门的热控测量孔密封面进行精研磨加工,保证密封面的平整性和有效接触。

(2)完善安装程序中对热控测量孔安装和检查具体要求如下:

1) 安装前对应密封面进行目视检查,并使用蓝油对密封面的平整性和垫片接触有效性进行核查。

2) 对目视和蓝油检查不合格的测量孔,使用专用工具进行研磨处理,研磨直至蓝油检查合格;

3) 安装时使用力矩扳手将螺纹拧紧,采用高温螺纹密封脂(牌号GRN50),拧紧力矩值460NM。

通过以上的措施,对岭澳二期3号高压缸及主气门热控测量孔的蒸汽泄漏问题进行了修复,修复之后,在岭澳核电站3号机的汽轮机多次冲转和商运中都没有再次出现类似泄漏问题,说明这次泄漏处理方案是成功的。

4. 经验反馈

CPR1000核电站首台机组岭澳二期核电站3号机作为国内首台核电半速汽轮机组,在消化和吸收国外成熟技术中的过程中,第一次使用锥形密封面和六面形垫片密封的形式,对制造和安装过程有较高的工艺要求,通过在制造和安装过程中对热控测量点漏气问题的处理,我们得到如下经验总结和反馈:

1)锥形密封面和六面形垫片密封的形式是一种国内较为少见的高压蒸汽密封方式,对密封面的加工和零件间的配合都有相当高的制造和安装要求。工厂需在后续CPR1000项目核电半速汽轮机产品的生产制造过程中,应对高压缸和主汽阀门上热控测量孔密封面加工过程加大质量控制,提高整套产品的制造精度;

第4篇

    实则在教学中常常是学生的弱点,在各种考试中通过对电阻的测量的考察也可以反映出学生对电学基本知识掌握的情况,另外命题者还在不断的推陈出新,用不同的形式对学生进行考察。下面我们就对初中测量电阻的几种常用方法进行一个简单的总结,希望对同学们能有所帮助。

    一、初中最基本的测电阻的方法

    (1)伏安法测电阻

    伏安法测电阻就是用一个电压表和一个电流表来测待测电阻,因为电压表也叫伏特表物理论文,电流表也叫安培表,因此,用电压表和电流表测电阻的方法就叫伏安法测电阻。它的具体方法是:用电流表测量出通过待测电阻Rx的电流I,用电压表测出待测电阻Rx两端的电压U,则可以根据欧姆定律的变形公式R=U/I求出待测电阻的阻值RX。最简单的伏安法测电阻电路设计如图1所示,

    用图1的方法虽然简单,也能测出电阻,但是由于只能测一次,因此实验误差较大,为了使测量更准确,实验时我们可以把图1进行改进,在电路中加入滑动变阻器,增加滑动变阻器的目的是用滑动变阻器来调节待测电阻两端的电压,这样我们就可以进行多次测量求出平均值以减小实验误差,改进后的电路设计如图2所示。伏安法测电阻所遵循的测量原理是欧姆定律,在试验中,滑动变阻器每改变一次位置,就要记一次对应的电压表和电流表的示数,计算一次待测电阻Rx的值。多次测量取平均值,一般测三次。

    (2)伏阻法测电阻

    伏阻法测电阻是指用电压表和已知电阻R0测未知电阻Rx的方法。其原理是欧姆定律和串联电路中的电流关系,如图3就是伏欧法测电阻的电路图,在图3中,先把电压表并联接在已知电阻R0的两端,记下此时电压表的示数U1;然后再把电压表并联接在未知电阻Rx的两端,记下此时电压表的示数U2。根据串联电路中电流处处相等以及欧姆定律的知识有:

    I1=I2

    即:U1/R0=U2/RX

    所以:

    另外,如果将单刀双掷开关引入试题,伏阻法测电阻的电路还有图4、图5的接法,和图3比较,图4、图5的电路设计操作简单物理论文,比如,我们可以采用如图5的电路图。当开关掷向1时,电压表测量的是R0两端的电压U0;当开关掷向2时,电压表测量的是RX两端的电压Ux。故有:。同学们可以试一试按图4计算出Rx的值。

    (3)安阻法测电阻

    安阻法测电阻是指用电流表和已知电阻R0测未知电阻Rx的方法。其原理是欧姆定律和并联电路中的电压关系,如图6是安阻法测电阻的电路图,在图6中,我们先把电流表跟已知电阻R0串联,测出通过R0的电流I1;然后再把电流表跟未知电阻Rx串联,测出通过Rx的电流I2。然后根据并联电路中各支路两端的电压相等以及欧姆定律的知识有:

    U0=UX

    即:I1R0=I2RX

    所以:

    显然,如果按图6的方法试验,我们就需要采用两次接线,可能有的同学怕多次拆连麻烦的话,那我们还可以将单刀双掷开关引入电路图,这时我们可以采用如图7的电路设计。当开关掷向1时,电压表测量的是R0两端的电流I0;当开关掷向2时,电压表测量的是RX两端的电流Ix。通过计算就有:。

    以上三种测电阻的方法是最简单的测电阻方法,也是必须掌握的方法,大家会吗,除此以外,还有常用的易于学生理解的测电阻的常用方法吗?当然还有:

    二、特殊方法测电阻

    (1)用电压表和滑动变阻器测量待测电阻的阻值

    或者

    用电压表和滑动变阻器测量待测电阻的阻值,我们也可以采取以下方法:

    1.如图8所示,当滑动变阻器的滑片滑至b端时,用电压表测量出Rx两端的电压Ux,当滑动变阻器的滑片滑至a端时,用电压表测量出电源的电压U,根据串联电路的电流关系以及分压原理我们可以得到:。

    2.如图9所示,当滑动变阻器的滑片滑至b端时,用电压表测量出电源的电压U,当滑动变阻器的滑片滑至a端时物理论文,用电压表测量出Rx两端的电压Ux,根据串联电路的电流关系以及分压原理我们可以得到:

    (2)用电流表和滑动变阻器测量待测电阻的阻值

    如图10所示,当滑动变阻器的滑片滑至b端时,用电流表测量出Rx和R滑串联时的电流I1,当滑动变阻器的滑片滑至a端时,用电流表测量出Rx单独接入电路时的电流I2,因为电源电压不变,可以得到:,故有:。

    (3)用等效法测量电阻

    如图11所示电路就是用等效法测量电阻的一种实验电路。其中Rx是待测电阻,R是电阻箱(其最大电阻值大于Rx)。其实验步骤简单操作如下:

第5篇

实则在教学中常常是学生的弱点,在各种考试中通过对电阻的测量的考察也可以反映出学生对电学基本知识掌握的情况,另外命题者还在不断的推陈出新,用不同的形式对学生进行考察。下面我们就对初中测量电阻的几种常用方法进行一个简单的总结,希望对同学们能有所帮助。

一、初中最基本的测电阻的方法

(1)伏安法测电阻

伏安法测电阻就是用一个电压表和一个电流表来测待测电阻,因为电压表也叫伏特表物理论文,电流表也叫安培表,因此,用电压表和电流表测电阻的方法就叫伏安法测电阻。它的具体方法是:用电流表测量出通过待测电阻Rx的电流I,用电压表测出待测电阻Rx两端的电压U,则可以根据欧姆定律的变形公式R=U/I求出待测电阻的阻值RX。最简单的伏安法测电阻电路设计如图1所示,

用图1的方法虽然简单,也能测出电阻,但是由于只能测一次,因此实验误差较大,为了使测量更准确,实验时我们可以把图1进行改进,在电路中加入滑动变阻器,增加滑动变阻器的目的是用滑动变阻器来调节待测电阻两端的电压,这样我们就可以进行多次测量求出平均值以减小实验误差,改进后的电路设计如图2所示。伏安法测电阻所遵循的测量原理是欧姆定律,在试验中,滑动变阻器每改变一次位置,就要记一次对应的电压表和电流表的示数,计算一次待测电阻Rx的值。多次测量取平均值,一般测三次。

(2)伏阻法测电阻

伏阻法测电阻是指用电压表和已知电阻R0测未知电阻Rx的方法。其原理是欧姆定律和串联电路中的电流关系,如图3就是伏欧法测电阻的电路图,在图3中,先把电压表并联接在已知电阻R0的两端,记下此时电压表的示数U1;然后再把电压表并联接在未知电阻Rx的两端,记下此时电压表的示数U2。根据串联电路中电流处处相等以及欧姆定律的知识有:

I1=I2

即:U1/R0=U2/RX

所以:

另外,如果将单刀双掷开关引入试题,伏阻法测电阻的电路还有图4、图5的接法,和图3比较,图4、图5的电路设计操作简单物理论文,比如,我们可以采用如图5的电路图。当开关掷向1时,电压表测量的是R0两端的电压U0;当开关掷向2时,电压表测量的是RX两端的电压Ux。故有:。同学们可以试一试按图4计算出Rx的值。

(3)安阻法测电阻

安阻法测电阻是指用电流表和已知电阻R0测未知电阻Rx的方法。其原理是欧姆定律和并联电路中的电压关系,如图6是安阻法测电阻的电路图,在图6中,我们先把电流表跟已知电阻R0串联,测出通过R0的电流I1;然后再把电流表跟未知电阻Rx串联,测出通过Rx的电流I2。然后根据并联电路中各支路两端的电压相等以及欧姆定律的知识有:

U0=UX

即:I1R0=I2RX

所以:

显然,如果按图6的方法试验,我们就需要采用两次接线,可能有的同学怕多次拆连麻烦的话,那我们还可以将单刀双掷开关引入电路图,这时我们可以采用如图7的电路设计。当开关掷向1时,电压表测量的是R0两端的电流I0;当开关掷向2时,电压表测量的是RX两端的电流Ix。通过计算就有:。

以上三种测电阻的方法是最简单的测电阻方法,也是必须掌握的方法,大家会吗,除此以外,还有常用的易于学生理解的测电阻的常用方法吗?当然还有:

二、特殊方法测电阻

(1)用电压表和滑动变阻器测量待测电阻的阻值

或者

用电压表和滑动变阻器测量待测电阻的阻值,我们也可以采取以下方法:

1.如图8所示,当滑动变阻器的滑片滑至b端时,用电压表测量出Rx两端的电压Ux,当滑动变阻器的滑片滑至a端时,用电压表测量出电源的电压U,根据串联电路的电流关系以及分压原理我们可以得到:。

2.如图9所示,当滑动变阻器的滑片滑至b端时,用电压表测量出电源的电压U,当滑动变阻器的滑片滑至a端时物理论文,用电压表测量出Rx两端的电压Ux,根据串联电路的电流关系以及分压原理我们可以得到:

(2)用电流表和滑动变阻器测量待测电阻的阻值

如图10所示,当滑动变阻器的滑片滑至b端时,用电流表测量出Rx和R滑串联时的电流I1,当滑动变阻器的滑片滑至a端时,用电流表测量出Rx单独接入电路时的电流I2,因为电源电压不变,可以得到:,故有:。

(3)用等效法测量电阻

如图11所示电路就是用等效法测量电阻的一种实验电路。其中Rx是待测电阻,R是电阻箱(其最大电阻值大于Rx)。其实验步骤简单操作如下:

第6篇

石英晶体元件是现代电子技术领域中一种应用最广泛的基础元件之一。与其他频率元件相比,压电石英晶体有着很高的频率稳定度和极高的品质因素。频率高度稳定的石英晶体已被广泛应用于通信技术、测量技术、计算机技术等领域,它可为各种应用提供精确定时或时钟基准信号[1]。

石英晶体生  本文由wWW. DyLw.NeT提供,第一 论 文 网专业写作教育教学论文和毕业论文以及服务,欢迎光临DyLW.neT产中,要进行石英晶体微调、石英晶体分选等多个重要的生产加工环节。在不同的生产加工环境中,用到的石英晶体测试环境是不一样的。石英晶体微调环境要使用带两个金属夹片的测试夹具,该测试夹具间存在着杂散电容,其必然会对精确测量石英晶体元件的参数造成影响。

目前,我国作为石英晶体生产元器件生产大国,虽然总体产量很高,但与发达国家相比,产品质量、技术水平和科研能力等存在较大的差距,特别是石英晶体电参数测试技术和设备的水平较低[2]。目前国内石英晶体电参数测试设备大多依赖进口,这些设备价格昂贵,严重限制了我国石英晶体制造行业的发展。目前国内研制的石英晶体测试仪器,对于测量夹具电容采用的是单点校准方法,每测量一个频率的晶体元件都要进行一次附加相移补偿,制约着测试系统的应用普遍性。因此,测量夹具电容对石英晶体频率测量的影响与补偿方法的研究,对于提高石英晶体串联谐振频率测量水平具有十分重要的意义。

1 基本测量原理

1.1 石英晶体的等效电路模型

石英晶体具有压电效应,当给石英晶体加一交变电场时,石英晶体将产生机械振动,机械振动通过压电效应与系统相耦合,其效果相当于在电路中串一个由电阻、电容和电感组成的回路,等效电路模型如图1所示。

图1中:C0为石英晶体两极间的电容,称为石英晶体的静电容,值为几个pF;C1为石英晶体的动电容,其范围10-1~10-4 fF;L1称为石英晶体的动电感,其范围10-5~10-3 H;R1表示晶体在振动时的损耗,称为石英晶体的串联谐振电阻,其范围在101~103 Ω之间。

1.2 π网络法的测量原理

石英晶体具有压电效应,当其施加于交变电场中时,它就可以等效于由电阻、电容和电感组成的LC回路。该回路有一固有串联谐振频率,当电路谐振时,石英晶体对外呈纯电阻状态,且阻抗最小。本研究采用IEC推荐的π网络[3],如图2所示,π网络由对称的双π型回路组成,R1,R2和R3构成输入衰减器,R4,R5和R6构成输出衰减器,它们的作用是使π网络的阻抗与测量仪表的阻抗相匹配,衰减来自测量系统的反射信号。Y1为被测石英晶体,Va为π网络输入矢量电压信号,Vb为输出矢量电压信号。

在测量时,通过不断改变Va的频率,并检测Vb的幅值以及Va和Vb的相位差,当Vb幅值达到最大或者相位差为零(理论上,两者对应的频率相等)时,π网络处于谐振状态,此时Vb信号的频率就为石英晶体的串联谐振频率,这就是π网络法的测量原理。

1.3 串联谐振电阻的测量原理

在图2所示理想状态下的π网络模型中,Va,Vb分别为π网络输入端和输出端电压,利用节点电压法可得石英晶体等效阻抗Ze为:

[Ze=2KVaVb-1?Zs]

式中:Zs为π网络等效阻抗,当π网络为纯电阻网络时其值约为25 Ω,K为常数,是在初始校准,把25 Ω基准电阻器插入π网络时,输出通道与输入通道电压读数的比值。石英晶体处于串联谐振状态时,Zs即为石英晶体串联谐振电阻[4]。故用π型网络零相位法测量石英晶体元件谐振电阻的基本步骤如下:

(1) 把25 Ω基准电阻器插入π网络,分别记下A道和B道的电压读数Va0和Vb0,计算:[K0=Vb0Va0];

(2) 用被测晶体元件替换基准电阻器插入π网络,读出相位差为零时的频率值,并分别记下A道和B道电压读数Va和Vb;

(3) 用式(1)计算谐振电阻:

[R1=2K0VaVb-1·t×25 Ω] (1)

2 测试夹具电容对串联谐振频率测量的影响及

补偿

2.1 误差分析

理论上,石英晶体处在串联谐振状态时,它对外呈纯电阻特性,阻抗最小,输入信号Va经过π网络时压降就最小,也即Vb达到最大。 在实际测量中,由于测量夹具电容、引线对地电容以及引线电感的存在,π网络并不是纯电阻网络,它会产生附加的相移,根据π网络零相位法的测量原理,当待测石英晶体处于串联谐振状态时,π网络两端信号的相位差为零。但由于π网络本身附加相移的存在,此时石英晶体没有处于串联谐振状态。根据课题前期研究成果可知π网络实际等效电参数模型如图3所示。

在石英晶体微调测试环境下,使用的测量夹具是两块相对的金属片,这时测试夹具间引入的电容会较大,会对测试结果有很大影响。而IEC标准中所提出的测量方法中规定接触片之间的杂散电容应小于0.05 pF,但是在实际成品测试环境下,金属片之间的电容达到了4.65 pF。因此,在这种测试条件下,需要考虑这种并电容的影响。在假设其他影响因素不存在的情况下,单独分析研究测量夹具电容CX的影响。

通过不断改变输入信号的频率,测试输入信号和输出信号的相位差是否为零,来判断待测石英晶体是否处于谐振状态,当石英晶体两端相位差为零时表示石英晶体已处于谐振状态,即:

[tanφ= 2L1ω2C0′C1+L1ω2C21-R21ω2C0′C21-ω4C0′C21L21-C0′-C1R1ωC21=0] (2)

由式(2)得:

式中:[C0′=C0+CX]。

在实际测量中,由于引入金属片之间的电容CX,也就是使并电容C0的值变大。显然在这种测试条件下,用π网络零相位法测得的串联谐振频率的值与理想电路模型下的理论值有误差。

2.2 硬件补偿

根据石英晶体串联谐振频率测量原理,在金属测量夹片引入电容,使并电容C0变大,而其他参数不变的情况下,需通过适应改变串联谐振电阻R1的值对串联谐振频率的测量进行补偿。

如图4所示,采用并联电阻的方法,对CX进行补偿。并联电阻RP之后,会使输出电压Vb变大。根据石英晶体谐振电阻R1的测量方法,计算出的谐振电阻R1值会变小。通过这种对CX的补偿,可以使之能够在串联支路的频率的零相位处直接测量串 联谐振频率。石英晶体元件理想电路模型两端间的阻抗:

[ZAB=1jωC0R1+jωL1-1ωC1R1+jωL1-1ωC1-1ωC0=Re+jXe] (4)

由式(4)可得:

[tanφ=2L1ω2C0C1+L1ω2C21-R21ω2C0C21-ω4C0C21L21-C0-C1R1ωC21] (5)

并联电阻RP对CX进行补偿后,在串联谐振频率附近,整个被测电路(晶体元件和调谐到晶体频率的并联补偿电路)的相位由下式给出:串联谐振频率是在规定条件下晶体元件本身的电纳等于零的一对频率中较低的一个。根据π网络零相位法测量串联谐振频率的测量原理可知,当理想电路模型的相位差为零时输入的频率就是需要测量的串联谐振频率。比较两式的分子项可知,要想使串联谐振频率得到补偿,即[ω=ωP],需相应调整谐振电阻[R1′]的值,来抵消引入电容CX的影响,使之能够在串联之路的频率的零相位处直接测量。

2.3 测量数据建模

要消除π网络测量夹具间引入电容CX带来的影响,根据π网络零相位法测量石英晶体串联谐振频率的测量原理公式可知,需在谐振电阻的数值上进行相应的改变来补偿静电容对串联谐振频率测量值的影响。实验过程中,采用Multisim电路仿真软件对电路进行仿真分析,输入端使用1 V输入电压,在电路输出端放置一个“测量探针”,运用“AC Analysis”法进行仿真分析,即可得到输出电压值,从而计算出谐振电阻的值。以51.2 MHz石英晶体为例具体说明。250B测量系统对石英晶体测量结果为:Fr=51.30 825 083 MHz,L1=5.66 mH,C0=4.4 pF,C1=1.7 fF。

(1) 把25 Ω基准电阻器插入π网络,输入电压Va0使用1 V,记下输出电压度数:Vb0=0.033 V,计算K0:K0=Vb0/Va0=0.033;

(2) 将晶体元件插入π网络中,读出相位差为零时输出电压值Vb:Vb=0.032 V,此时读出串联谐振频率:Fr=51 308 240.82 Hz; (3) 计算理想状态谐振电阻:

R1=[2K0(Va/Vb)-1]×25=25.628 Ω;

(4) 引入电容CX为4.65 pF,电路中并联可变电阻进行补偿,改变补偿电阻的值,使测量出相位差为零时的串联谐振频率值为51 308 240.82 Hz,分别记录此时的补偿电阻RP和输出电压Vb:RP=70 Ω,Vb=0.038 V;

(5) 计算补偿电路中谐振电阻的值:

[R1′=2K0VaVb-1×25=18.716 Ω]

RP即为所需的补偿电阻。为了提高测量精度,可对不同频段的晶体分别求得补偿电阻,然后取平均值作为最终补偿电阻。

3 实验结果

用带有补偿电阻的测试π头对6只不同频段的石英晶体的串联谐振频率进行测试,并与美国S&A公司的250B型π网络石英晶体测试仪的测试结果进行比对,测试结果如表1所示。

表1 比对测量实验结果

从实验结果可以看出,采用硬件补偿后石英晶体串联谐振频率的测量精度可以达到±2×10-6,补偿效果较好。

4 结 论

由以上分析可知,π网络中测量夹具间引入的电容对石英晶体串联谐振频率的测量是有影响的,如不对其进行适当的补偿,测量结果会有很大的误差,尤其是对高频率的石英晶体的测量。采用以上补偿方法可以很好的补偿夹具间电容对测量结果的影响。

参考文献

[1] 杨军.晶体的杂散阻抗对晶体测量参数的影响[J].测试技术学报,2008,22(6):499?504.

[2] 李璟.石英晶体负载谐振电阻测试技术研究[D].北京:北京信息科技大学,2009.

: IEC, 1989.

[4] IEC. IEC 60444?4, Method for the measurement of the load resonance frequency FL, load resonance resistance RL and the calculation of other derived values of quartz crystal units, up to 30 MHz [S]. [S.l.]: IEC, 1998.

[5] 王艳林,李东,刘桂礼.石英晶体测试中的π网络零相位检测技术[J].航天制造技术,2004(2):16?20.   本文由wWW. DyLw.NeT提供,第一 论 文 网专业写作教育教学论文和毕业论文以及服务,欢迎光临DyLW.neT

[6] 刘解华,张其善,杨军.石英晶体元件串联谐振频率快速测量技术的研究[J].中国测试技术,2006,32(2):58?61.

[7] 王艳林,王中宇,李东,等.石英晶体动态电容的测试方法研究[J].计算机测量与控制,2011,19(1):39?43.

第7篇

关键词:变压器,铁芯多点接地

 

变压器的绕组和铁芯是传递、变换电磁能量的主要部件。硕士论文,铁芯多点接地。保证它们的安全是变压器可靠运行的关键。统计资料表明因铁芯问题造成故障,占变压器总事故中的第三位。电力变压器正常运行时,铁芯必须有一点可靠接地。若没有接地,则铁芯对地的悬浮电压,会造成铁芯对地断续性击穿放电,铁芯一点接地后消除了形成铁芯悬浮电位的可能。但当铁芯出现两点以上接地时,铁芯间的不均匀电位就会在接地点形成闭合回路,形成环流,引起铁芯局部过热导致绝缘油分解,还可能使接地片熔断或烧坏铁芯,导致铁芯电位悬浮,产生放电。严重时,铁芯局部温升增加,轻瓦斯动作,甚至将会造成重瓦斯动作而跳闸的事故。烧熔的局部铁芯形成铁芯片间的短路故障,使铁损变大,严重影响变压器的性能和正常工作,甚至损坏变压器。因此准确、及时地诊断与处理变压器铁芯多点接地故障,对保证变压器的安全运行具有重要意义。硕士论文,铁芯多点接地。

一、变压器铁芯多点接地故障的类型和成因

变压器铁芯多点接地故障按接地性质可分两大类:不稳定接地和稳定接地。

1.不稳定接地是指接地点接地不牢靠,接地电阻变化较大,多是由于异物在电磁场作用下形成导电小桥造成的接地故障,如变压器油泥、金属粉末等。

2.稳定接地(也称死接地现象)是指接地点接地牢靠,接地电阻稳定无变化,多是由于变压器内部绝缘缺陷或厂家设计安装不当造成的接地散障,如铁芯穿芯螺栓、压环压钉等的绝缘破坏等。

运行中的变压器发生多点接地的原因一般有以下几种情况:

1.金属物件掉落在铁芯与接地体间(变压器吊罩时容易发生);

2.铁芯组件紧固时个别尖角外露,触碰接地体;

3.穿芯螺杆处的铁垫圈在紧固时由于受力过大,其边缘翘起而触碰接地体;

4.铁扼硅钢片个别部位紧固不实,在强弱不同磁场力作用下,时而碰触接地体,时而离开接地体,造成无规则的不稳定接地;

5.铁芯对地绝缘物几处不同程度受潮,造成铁芯通过低电阻接地;

6.铁芯与接地体间隙中形成不稳定桥路接地;

7.绝缘油中的油垢以及一些不洁净而有潮气的纤维等物,沾附在铁芯对地的绝缘物表面,导致铁芯通过低电阻不稳定接地等。

二、变压器铁芯多点接地故障的分析处理程序

变压器铁芯多点接地故障的分析处理分如下四个步骤。

1.试验数据分析,判断是否存在铁芯多点接地故障。

试验数据分析包括变压器油色谱数据分析和电气测量数据分析。

(1)色谱数据分析。目前,用油中溶解气体色谱分析方法是监测变压器铁芯多点接地故障最简便、最为有效的方法。硕士论文,铁芯多点接地。常用的是“三比值法”和德国“四比值法”。由于三比值法只能在变压器油中溶解气体各组分含量超过注意值或产气速率超过限值方可进行判断,不便于在故障初期进行判别,因此建议使用“四比值法”进行判断。硕士论文,铁芯多点接地。利用五种特征气体的四对比值来判断故障,在四比值法中,以“铁件或油箱中出现不平衡电流”一项来判断变压器铁芯多点接地故障,其准确度相当高。

(2)电气测量数据分析。变压器正常运行时,可在变压器铁芯外引接地套管的接地引下线上用钳型电流表测量引线上是否有电流,正常情况下此电流很小,为mA级(一般小于0.3A),当存在多点接地故障时,环流上升到“A”级,最大电流可达数百安培,通过测量环流便能对铁芯接地故障进行判断。

当设备停止运行时,断开铁芯引出接地线,用2500V兆欧表对铁芯接地套管测量绝缘电阻,如电阻值为零或与历年数据相比较其值降低很多,则表明变压器内部可能存在铁芯多点接地,此时应正确测量各级绕组的直流电阻,若各组数据未超标,且各相之间与历次测试数据之间相比较无明显偏差,变化规律基本一致,则可排除故障部位在电气回路内,从而确认主变铁芯多点接地故障。

2.设备运行状况分析,判断铁芯多点接地故障类型。

在确认了变压器铁芯确实存在多点接地故障,则应对变压器的运行状况进行分析,判断铁芯多点接地故障的类型,以便于确认应急措施及处理方案。

首先应查询变压器投运的时间、负荷情况、有无突发故障或冲击等。其次是变压器历史运行情况,安装试验记录等。硕士论文,铁芯多点接地。综合以上因素再结合色谱分析、电气试验数据进行判断,确认铁芯接地故障的类型。如变压器铁芯电阻突然降低,色谱分析数据无异样,而变压器长时间没有运行,则可能是由于油泥沉淀导致铁芯多点接地,属于不稳定接地故障,对应采取措施消除即可。

3.采取应急措施,排除不稳定接地故障,限制铁芯多点接地故障发展。

在确认了变压器铁芯多点接地故障的类型后,应根据现场情况及故障类型采取应急措施,从而排除不稳定接地或限制故障的发展。对于不稳定接地故障,在设备停运的情况下,可采用电容放电冲击法排除故障。对于变压器出现多点接地故障,但不能退出运行者,则应加强监视,并采取临时措施,限制接地故障的发展。

4.停电检修,彻底排除铁芯多点接地故障。

如故障很严重,且有不断发展的趋势,严重威胁设备安全,在条件允许下,可对变压器进行吊罩检修,彻底排除故障。

在吊置检修查找故障时,应遵循以下几个步骤:(1)外观检查。检查铁芯与夹件支板是否相碰,硅钢片是否有波浪鼓起,上下夹件与铁芯之间、铁芯牲与拉板之间有无异物,夹件与油箱壁是否相碰,下铁轭与箱底是否有异物桥接短路等,如未发展异常,则进行下一步试验。(2)直流法。硕士论文,铁芯多点接地。将铁心与夹件的连接片打开,在铁轭两侧的硅钢片上通入6V的直流,然后用直流电压表依次测量各级硅钢片间的电压,当电压等于零或者表针指示反向时,则可认为该处是故障接地点。(3)交流法。将变压器低压绕组接入220-380V交流电压,高压侧与中压侧短路接地,此时铁心中有磁通存在。如果有多点接地故障时,用毫安表测量会出现电流(铁心和夹件的连接片应打开)。用毫安表沿铁轭各级逐点测量,当毫安表中电流为零时,则该处为故障点。这种测电流法比测电压法准确、直观。若用(2)(3)两种方法,仍查不出故障点,最后可确定为铁心下夹件与铁轭阶梯间的木块受潮或表面有油泥。将油泥清理干净后,进行干燥处理,故障可排除。一般对变压器油进行微水分析可发现是否受潮。(4)铁心加压法。就是将铁心的正常接地点断开,用交流试验装置给铁心加电压,若故障点接触不牢固,在升压过程中会听到放电声,根据放电火花可观察到故障点。当试验装置电流增大时,电压升不上去,没有放电现场,说明接地故障点很稳固,此时可采用下述的电流法。(5)铁心加大电流法。也是将铁心的正常接地点断开,用电焊机装置给铁心加电流。当电流逐渐增大,且铁心故障接地点电阻大时,故障点温度升高很快,变压器油将分解而冒烟,从而可以观察到故障点部位。故障点是否消除可用铁心加压法验证。

出现变压器铁芯多点接地故障应及时、准确地诊断故障类型,确定相应的处理方法,对于油泥等不稳定接地故障,不宜盲目采取吊罩检修方法,可用电容冲击法排除,以免造成人力资源的浪费和停电损失。

第8篇

关键词:发电机;定子单相接地保护;注入电源;故障仿真

中图分类号:TB857+.3文献标识码:A

引言

定子绕组的单相接地,即定子绕组与铁芯之间的绝缘破坏是发电机最常见的一种故障。

发电机机组容量越大,三相定子绕组对地的电容就越大,当定子绕组单相接地故障发生时,故障电流就越大,易将已损坏的绝缘击穿,使接地电阻迅速减小,增加了发展成匝间短路、两点接地或相间短路的速度。因此,对于100MW及以上的发电机组,不仅要求装设100%的定子接地保护,还要求在定子绕组任意一点出现绝缘损坏时,保护能够灵敏识别过渡电阻,切除故障[1]。

发电机定子单相接地保护根据原理不同可分为非注入式和注入式两大类,目前应用最多的是非注入式保护[2]。此类保护一般由零序电流保护和三次谐波电压保护共同构成双频式保护,其最大的一个不足之处是只能在发电机正常运行时工作,在启停机阶段如果定子绕组存在接地故障,保护无法起到作用;另外水轮发电机的三次谐波电压分布无规律,使用三次谐波电压保护难度很大且灵敏度不高。而注入式保护可以弥补非注入式保护的不足,它不论发电机正常运行还是启停机都能检测定子对地绝缘情况,且不会受到三次谐波电压影响,适宜用作水轮发电机的保护[3][4][5]。本文针对注入式的定子接地保护的注入电源内阻对保护判据的影响,提出了合适的消除影响的判据,并使用Simulink进行了故障仿真,验证了注入电源内阻的影响和判据的正确性。

注入式定子单相接地保护原理

注入式定子单相接地保护是根据发电机正常运行时整个三相定子回路对地是绝缘的,而发生单相接地故障时这种对地绝缘就被破坏这个最直接区分正常运行和故障的特征,在发电机定子回路与大地之间外加了一个信号电源。正常运行时,信号电源不产生电流或产生的电流很小。发生接地故障时,该电源产生相应频率的较大接地电流,使保护动作。因为信号是外加的,不受接地位置的限制,能完成100%定子接地保护的目的。现有的外加电源型保护包括外加直流电源型,外加二次谐波分量型,外加12.5Hz或15Hz交流电源型及外加20Hz电源型。其中国内比较常用的是外加12.5Hz和外加20Hz电源型[6][7]。

注入式定子接地保护判据仿真研究

1.仿真目标

传统的注入式定子接地保护认为正常时注入电流很小,而故障发生时注入电流增大[8],并随着过渡电阻的减小而增大,实际上由于注入电源内阻的存在,注入电流和过渡电阻的对应关系并非线性的[9],只采用电流判据的传统注入式保护的灵敏度不会很高[10],因为注入源的内阻会同时影响测量电压和测量电流的变化,因此通过测量电压和电流的比值求得测量阻抗,可以消除注入源内阻的影响。下面通过仿真计算验证了此判据。

2.仿真模型

大型水轮发电机组采用非注入式保护的灵敏度很难得到保证,因此本文以20Hz注入式定子接地保护为基础,对水轮机组中出现的定子单相接地故障进行了仿真。

本文利用Simulink仿真,采用了三峡右岸电站发电机参数[11],架构了仿真模型,此发电机模型的中性点采用接地变压器接地,发电机定子每相绕组有5个分支, 设定子每相绕组的电阻和电感为和, 则每一分支电阻和电感为和。定子绕组分布电容简化为型等效电路后, 电路两端对地等效电容分别为和,即型等效电路一端的等效电容,而包括型等效电路一端等效电容以及接地变压器的等效电容。

模型中采用20Hz、幅值25V的交流电源作为注入源。注入源内阻为0.015Ω,采用一个断路器闭合模拟定子一点接地故障,在仿真中可更改故障点到中性点的距离以研究其对测量结果的影响,过渡电阻值亦可设定为不同值进行研究。

3.判据介绍

本文所用的判据同时利用了测量电压和测量电流两个量。

对模型中的电路进行等效变换,忽略定子绕组的电阻和电感,则故障前定子绕组可等效成为一个电容,而故障支路可看作当故障后在等效电容上并联一个电阻。同时接地变压器副边电路可由戴维南定理等效成电源和电阻串联形式,定子绕组等效电容归算到接地变压器二次侧的电容与故障电阻的归算电阻并联在接地变压器的副边。

下面推导求过渡电阻的公式。

首先戴维南等效电源和电阻分别为

(1)

(2)

当发电机正常运行时,测量电流为:

(3)

因为理论的定子绕组电容值与实际值肯定存在偏差,因此在可能的情况下应使用测量值[10],本例中可以由式(3)计算等效电容:

(4)

故障后测量电流为:

(5)

计算故障前后电流差值,设接地电阻支路电流为

(6)

则由(6)可计算得:

(7)

由测量电压得到两端电压

(8)

则接地电阻的阻值(等效到二次侧)为:

(9)

归算到一次侧为:

(10)

4.仿真研究

(1)测量电压的变化

设故障点在处,故障发生在0.5s时,仿真时间总共2s,故障电阻为2000,对内阻分别为和两种情况分别进行仿真。时(即内阻约为0时)幅值在故障前后基本不变;而时,幅值在故障前后有明显的变化,同样通过仿真可以看到对有明显的影响。因此只使用测量电流识别故障过渡电阻的判据肯定会受到注入电源内阻的影响,而使用同样受注入电源内阻影响的测量电压就可以消除内阻的影响。

(2)引入测量电压电流计算过渡电阻

为了证明使用可以消除注入电源内阻的影响,设,并对之间的多个值进行了仿真,并使用式(9)(10)计算过渡电阻,对和的情况都进行了仿真计算,结果发现,虽然随着过渡电阻的减小,测量电流不断增大,但是同时测量电压也在不断减小,而过渡电阻的计算值十分准确,相对误差很小,虽然在金属性故障(故障电阻等于0)时根据公式无法计算相对误差,但是也能看出计算电阻的绝对值是很接近0的。由此可见同时使用测量电压和测量电流能够消除注入电源内阻的影响,也证明了上述通过判据计算得到的判据是很准确的,过渡电阻计算值的相对误差应该主要来自于对于定子绕组电阻和电感的忽略。

结论

本文指出了传统的注入式保护通过判断测量电流变化判断故障的原理会受到注入电源内阻的影响而降低灵敏度的缺点,并同时指出采用测量电压和测量电流两个量的判据灵敏度更高。之后以三峡某水轮机组的模型及其数据为基础,利用Simulink进行了仿真,验证了注入电源内阻对测量电流的影响,同时也验证了同时采用测量电压和电流的判据的准确性。

参考文献

[1]张琦雪, 陈佳胜, 陈俊, 严伟, 沈全荣.大型发电机注入式定子接地保护判据的改进.电力系统自动化,2008,32(3):66~69.

[2]江华东.中小型汽轮发电机定子接地保护.电气应用,2009,28(18):80~82.

[3]赵斌, 陈海龙, 郭宝甫, 毕大强, 张学深.20Hz定子接地保护在三峡右岸水电机组上的应用.中国水力发电工程学会继电保护专业委员会2008年年会暨学术研讨会学术论文集,2008:51~54.

[4]任岩,兰晓梅,李鸥.大型水力发电机微机保护装置硬件及定子接地保护的研究.中国水力发电工程学会继电保护专业委员会2008年年会暨学术研讨会学术论文集,2008:45~50.

[5]陈俊,严伟,沈全荣.大型水电机组定子和转子接地保护方案.中国水力发电工程学会继电保护专业委员会2008年年会暨学术研讨会学术论文集,2008:29~33.

[6]邵宇.同步发电机定子单相接地故障暂态仿真及其保护的研究:[硕士学位论文].北京:华北电力大学(北京)电力工程系,2004.

[7]黄.同步发电机定子单相接地故障暂态仿真及保护的研究:[硕士学位论文].北京:华北电力大学(北京)电力工程系,2005.

[8]王维俭.电气主设备继电保护原理与应用(第二版).北京:中国电力出版社,2001.

[9]邰能灵,尹项根,胡玉峰,陈浩,陈德树.注入式定子单相接地保护的应用分析.继电器,2000,28(6):15~18.

[10]张琦雪,席康庆,陈佳胜,王翔,沈全荣.大型发电机注入式定子接地保护的现场应用及分析.电力系统自动化,2007,31(11):103~107.

[11]姚晴林,赵斌,郭宝甫,陈海龙,张鹏远,唐云龙.自适应20Hz电源注入式定子接地保护.电力系统自动化,2008,32(18):71~73.

第9篇

论文关键词:利用歌诀复习物理实验

 

物理学是一门实验科学。物理实验为理性认识提供了发现物理规律所需的感性材料、检验物理理论和假说的正确依据、开拓了物理学应用的新领域。在新课标高考中实验考查占有的比例逐年增加,与传统考查相比有下列趋势:①从机械记忆实验转向分析理解实验、理解物理实验原理转变。②从既定的学生分组实验转向变化的创新实验。既定的学生分组实验已经从高考试题中逐渐退出,取而代之的是学生尚未接触过的实验,而与学生做过的实验有着联系的实用性、创新性实验。从考查内容上看呈现如下特点:①实验的基本原理和思想方法是考查的核心内容。②实验数据处理是实验的重要环节,也是高考的重要方面。③基本仪器的使用是高考的热点。④实验的实际操作是考查的重点。⑤设计性实验是考查的难点。面对这些方面,学生感到慌乱,没有行之有效的复习方法cssci期刊目录。结合实际我采取了利用歌诀复习物理实验,收到了较好的效果。

在复习《验证牛顿第二定律》时,利用了这样的歌诀:控制变量法,验证牛二律;实验第一步,平衡摩擦力;合力等于盘码重,必须满足关系式(m?M); 验证a­M成反比,注意选好坐标系。这一歌诀的第一句“控制变量法”,说明了本实验的实验思想方法,即“控制变量法”;第二句“验证牛二律”,说明了本实验的实验目的,即“验证牛顿第二定律”;第三四两句“实验第一步,平衡摩擦力”,强调了本实验的注意事项之一,即消除摩擦力对实验结果的影响;第五六两句“合力等于盘码重,必须满足关系式(m?M)”,说明本实验中小盘及砝码的总重力视为小车受到的拉力,必须满足关系式(m?M);第七八两句“验证a­M成反比,注意选好坐标系”,说明本实验中在处理数据时,a­M图像是曲线,寻找关系不够明显,为了解决这一问题,纵轴选a,横轴选,这样就可化曲为直,很直观地发现a和M的反比关系。利用了这一歌诀,不仅本实验的实验目的思想方法、注意事项、数据处理技巧等都进行了复习,而且提高了学生学习兴趣,从而使学生在轻松的情况下掌握了本实验的知识,提高了学习效率。

在复习《测定金属的电阻率》时,利用了这样的歌诀:两个定律把ρ测,测U测I测直径;测D(直径)要用测微器,读数规则要注意;L测量莫松动初中物理论文,为减误差A外接;通过电流要适宜,变阻器使用记心中。第一句“两个定律把ρ测”,两个定律说明了本实验的实验原理,即电阻定律和欧姆定律,把“ρ测”说明了本实验的目的,即测定金属的电阻率;第二句“测U测I测直径”,说明了本实验需要测量的物理量,即导体两端的电压、通过导体的电流以及导体的直径;第三四两句“测D(直径)要用测微器,读数规则莫忘记”,强调了本实验应用的一个重要仪器―螺旋测微器以及螺旋测微器的读数规则;第五句“L测量莫松动” 强调测量长度时一要注意是接入电路中的有效长度,二要注意测量时导体不能松动;第六句“为减误差A外接”,伏安法测电阻,测量电路中电流表有外接法和内接法,本实验中为了减小误差测量电路中的电流表要用外接法;第七句“通过电流要适宜”,在用伏安法测量电阻时,通过待测导线的电流不宜过大,通电时间不宜过长,以免金属导线的温度明显升高,造成其电阻率在实验过程中明显增大;第八句“变阻器使用记心中”,变阻器接入电路中有分压式和限流式,在本实验中,由于待测导线的电阻不大,变阻器接入电路时用限流式。利用了这一歌诀,使学生快速掌握实验原理、思想、注意事项,提高了学习效率。

除了上述实验外,其它一些实验也可以采取这一方法复习。如《验证力的平行四边形定则》歌诀:白纸钉在木板处,两秤同拉有角度,读数画线选标度,再用一秤拉同处,作出力的矢量图。如《研究匀变速直线运动》歌诀:测a要用计时器(打点计时器),速度等于位移时间比,使用刻度尺量位移,打点周期0.02秒,交流电压4—6伏,利用推论(?s=aT2)求加速度。

利用歌诀复习物理实验,可以提高学生学习实验的兴趣,提高学生学习效率,但是教师要对学生做好引导,要掌握的是实验思想、实验原理、实验方法及实验数据处理技巧,结合实验操作,必能获得好的效果。

第10篇

关键词:虚拟仪器,力传感器,标定

 

1 引言

力传感器是目前广泛使用的传感器,在长期使用过程中,由于使用环境、本身结构的变化,需要对其进行标定,以此保证测量的精度。近年来,随着虚拟仪器技术的出现和发展,越来越多的技术人员开始基于该技术来开发自动化测量设备。博士论文,标定。虚拟仪器是基于计算机的仪器。计算机和仪器的密切结合是目前仪器发展的一个重要方向[1]。而在众多的虚拟仪器开发平台中,美国国家仪器公司(NI)的LabVIEW应用最为广泛。本文主要介绍了基于LabVIEW的力传感器标定程序的设计。

2 标定的原理

所谓标定(或现场校准)[2]就是指用相对标准的量来确定测试系统电输出量与物理输入量之间的函数关系的过程。标定是测试中极其重要的一环。标定除了能够确定输入量和输出量之间的函数关系之外,还可以最大限度地消除测量系统中的系统误差。

传感器的校准采用静态的方法,即在静态标准条件下,采用一定标准等级(其精度等级为被较传感器的3~5倍)的校准设备,对传感器重复(不少于3次)进行全量程逐级加载和卸载测试,获得各次校准数据,以确定传感器的静态基本性能指标和精度的过程。为简化系统的设计,此处标准量采用砝码加载的方式获得。

3 系统组成

3.1硬件组成

系统的硬件组成如图1所示:

图1 系统硬件组成

由图可以看出,系统主要包括计算机、力传感器,数据采集卡、接线盒等。本系统中,力传感器采用电阻应变式压力传感器,四个应变片采用全桥的工作方式。数据采集卡采用NI公司的PCI-6221,该采集卡的主要参数如下:它具有16个模拟输入端口,2个模拟输出端口,24个数字输入输出端口,采样速率最高可达到250kS/s。接线盒采用NI公司的SC-2345,此接线盒直接与数据采集卡相连,接线盒上有SCC信号调理模块插座。SCC模块是NI公司提供的信号调理模块,其上面包含信号调理电路,可以将传感器处采集的信号转换成适合数据采集卡读取的信号。本系统所用的SCC模块为SCC-SG04,此模块适用于连接采用全桥工作方式的电阻应变式压力传感器。

3.2软件组成

本系统软件基于LabVIEW 8.2来开发。LabVIEW是一种图形化的编程语言。博士论文,标定。博士论文,标定。与其他开发工具不同,用LabVIEW编程的过程不是写代码,而是画“流程图”。这样可以使用户从烦琐的程序设计中解放出来,而将注意力集中在测量等物理问题本身。它主要针对各个领域的工程技术人员而设计,非计算机专业人员[1]。博士论文,标定。

因为所用的力传感器属于应变式电阻传感器,其电阻变化率与应变可以保持很好的线性关系,即输入与输出量之间呈线性关系,所以可以用一条直线对校准数据进行拟合。此直线就称为拟合直线,所求得的方程为拟合方程。图2所示为传感器标定程序的采样页面。

此程序采用LabVIEW的事件驱动编程技术进行编制的。事件[3]是对活动发生的异步通知。事件可以来自于用户界面、外部I/O或程序的其它部分。在LabVIEW中使用用户界面事件可使前面板用户操作与程序框图执行保持同步。事件允许用户每当执行某个特定操作时执行特定的事件处理分支。

图2 标定程序采样页面

图3 采样程序

直线拟合的方法[2]有很多种,比如最小二乘法、平均选点法、断点法等等。其中,最小二乘法精度比较高,此处利用它进行直线拟合。根据最小二乘法,假定是一组测量值,是相应的拟合值,mse为均方差,则拟合目标可以表达为,期望mse最小。

LabVIEW中的分析软件库提供了多种线性和非线性的曲线拟合算法,例如线性拟合、指数拟合、通用多项式拟合等等。本程序选择Linear Fit.Vi 来实现最小二乘法线性拟合。

标定子程序的工作流程如下:用户先通过多次采样,获得各个输入量对应的输出量,通过While循环的移位寄存器保存这些值。博士论文,标定。采样完成后,把这些值输入Linear Fit.Vi进行拟合,拟合的曲线在Graph控件中显示出来,同时该Vi自动求出方程y=ax+b中的斜率a和截距b,这样,输入输出量之间的函数关系就可以确定下来了,如图4所示。

图4 标定程序拟合前面板

4 小结

基于虚拟仪器的力传感器标定程序能够方便地对力传感器进行标定。博士论文,标定。该系统具有人机界面友好,灵活方便,自动化程度高等特点。

参考文献:

【1】.候国屏;王珅;叶齐鑫.LabVIEW7.1编程与虚拟仪器设计[M].清华大学出版社.2005

【2】.张迎新等.非电量测量技术基础[M].北京航空航天大学出版社,2001

【3】.NationalInstrumentsCorporation.LabVIEWHelp[CD].ni.com/china,2008

第11篇

论文关键词:Ru掺杂,磁电阻,锰氧化物,磁性

 

1. 引言

稀土锰氧化物Re1-xAxMnO3(Re= trivalent rare earth element , A=divalent alkalineearth element)作为一种电子强关联体系,从上个世纪五十年代开始,人们对它的结构、输运特性等进行大量的研究,发现了十分有趣的物理现象如磁有序,轨道有序,相分离、巨磁电阻效应等。近年来由于锰氧化物的CMR效应在自旋电子学领域有广阔的应用前景使稀土锰氧化物的巨磁阻效应吸引了广泛的关注[1-4]。锰氧化物的巨磁阻效应可利用双交换作用模型、Jahn-Teller效应、相分离(phaseseparation, PS)、形成金属和绝缘体的纳米团簇、多相间竞争机理等理论模型来解释[5-10]。由于Mn离子在双交换作用中起着非常重要的作用,对Mn位的替代可以直接调节锰氧化物中Mn3+、Mn4+的比例,改变体系中Mn3+-O-Mn4+双交换网络,从而改变体系的磁电性质,因此Mn位的替代研究一直以来是一个研究热点。我们发现大多数元素替代Mn位结果都抑制了居里温度Tc以及绝缘体-金属转变温度,而且,由于双交换作用的破坏使得体系的铁磁性也急剧的降低。然而,和大多数其它的掺杂离子不一样,Ru替代Mn位有特殊的效果,并且引起了人们广泛的关注怎么写论文。根据J.S.Kim[11]的相关报道,在Pr0.5Sr0.5MnO3的Mn位掺微量Ru时,随着Ru的含量逐渐增大,当掺杂量达到10%时,体系的铁磁性以及居里温度都有所提高锰氧化物,在Pr0.5Sr0.5Mn1-xRuxO3里,Ru主要以四价形式出现,同时也伴有少量的五价Ru离子;在Brajendra Singh[12]的文章中,当Ru掺杂量达到20%时,晶格常数单调增加,这是因为Ru是以四价,五价形式存在于La0.7Ca0.3Mn1-xRuxO3当中的,当掺杂量达到20%时,Ru4+尤其是Ru5+的存在增加了混合物中Mn3+的含量,因此导致晶胞膨胀。当Ru含量多余20%时,晶格常数又逐渐减小,因为此时,Ru主要以五价形式存在,以及Mn4+的存在,因此引起晶胞的收缩,同时Ru的掺入也引起Mn的价态的改变,从而增强双交换作用而表现出铁磁性和大的CMR效应;Yue Ying等人将微量的Ru掺入到La0.5Sr0.5Mn1-xRuxO3中,发现当Ru低量掺杂时,系统的铁磁性得以增强,并且居里温度也随着Ru含量的逐渐增多而得到提高,但是当Ru高掺杂时,系统的铁磁性没有得到增强反而被抑制。这些结果表明Mn3+,Ru4+(Ru5+)之间存在着铁磁相互作用,而且当Ru高掺杂时,体系存在着Ru-Ru之间的反铁磁相互作用[13]。基于此,本文选用居里温度在室温附近的La0.7Ca0.2Ba0.1MnO3作为母体化合物[14],来进一步研究高价态离子Ru微量替代Mn位,对系统的晶体结构、磁电输运性质和磁电阻效应的影响。

2实验

在本次试验中,采用固相反应法制备了多晶样品La0.7Ca0.2Ba0.1Mn1-xRuxO3(x=0~0.06)。将高纯度(至少是99.9%)的粉体材料La2O3,CaCO3,BaCO3,MnO2锰氧化物,放入真空烘箱内烘干,按名义组分配料,放在研砵中研磨4小时后使样品原料充分混合,然后放入烧结炉,在1000℃下预烧12h,自然均匀冷却到室温,取出样品再次研磨4个小时,然后再在1000℃下预烧12h,取出样品之后再对样品进行研磨4小时,然后在13MPa下压片,压成直径约12mm,厚度约1mm的圆片,最后在1200℃~1300℃下大气环境中烧结24h后得到良好的多晶样品,此处预烧两次,是为了使样品混合更均匀,得到成像质量更高的样品。

为了确定样品的结构和性质,采用X射线衍射仪(Brooker Model D8-superspeed,Cu靶,波长λ为0.154056nm,步长为0.01~0.02°,2θ在10o到80o的范围内扫描)上测试,对样品的结构进行测试分析。为了确定样品的磁性,采用MPMS-XL SQUID(Quantum Design) 磁强计测量磁化强度温度关系()曲线。采用PPMS(Quantum Design)物性测量系统在5-310K温度范围下分别测量样品零场(H=0T)和加场(H=1T)的电阻率,外加磁场方向与电流方向垂直。磁电阻采用公式MR=[(ρ(0)-ρ(H))]/ρ(0)×100%,其中,ρ(0)和ρ(H)分别为零场下的和外加磁场下样品的电阻率值。

3 结果与讨论

3.1 多晶X射线衍射分析

图1给出了La0.7Ca0.2Ba0.1Mn1-xRuxO3(x=0~0.06)的XRD图谱,由衍射图谱,可以看出,样品呈现良好的单相结构,在实验允许的精度范围内,没有杂相出现。比照标准的PDF卡片并对其指标化,样品呈现标准的立方(cubic)钙钛矿结构,另外,从XRD衍射图谱中可以发现,随着掺杂量的增加锰氧化物,总体上衍射峰向小角度偏移,说明样品的晶格常数变大。

图1 La0.7Ca0.2Ba0.1Mn1-xRuxO3的XRD衍射图谱

根据立方晶系的晶格常数公式 以及布拉格衍射公式(n取一级衍射)选取几个较强峰的晶面指数代入公式,计算出系统的晶格常数怎么写论文。如表1所示:

 

x

a

0.00

5.4661

0.01

5.4668

0.02

5.4571

0.03

5.4582

0.04

5.4670

第12篇

论文关键词:实习,兆欧表,选择,使用

 

兆欧表俗称摇表,是电工常用的一种测量仪表。兆欧表主要用来检查电气设备、电气线路对地及相间的绝缘电阻,以保证这些电气设备、线路工作在正常状态,避免发生电气设备损坏及人身触电伤亡等事故。本文根据电工实习课绝缘电阻测量方法的教学大纲要求,详细分析兆欧表的选择方法及使用操作步骤。

一、兆欧表的选择

根据被测对象的额定工作电压来选择相对应的兆欧表。兆欧表按其输出电压分类,常用的规格有250V、500V、1000V、2500V、5000V等多种。当被测对象工作电压较低时,可选择250V兆欧表。我国交流供电大多为三相380V(单相220V),因此一般选用500V兆欧表,这是广大电工及电气设备维修人员必备的测量仪表。而1000V、2500V、5000V主要用于工作电压较高的电气线路上,供专业电气测试人员使用。

电阻量程范围的选择。摇表的表盘刻度线上有两个小黑点,小黑点之间的区域为准确测量区域。所以在选表时应使被测设备的绝缘电阻值在准确测量区域内。

有些兆欧表的起始读数不为零而为1MΩ或2MΩ。如使用该类兆欧表测量在潮湿环境下的电气设备、线路就有可能造成误读为零兆欧的误判。因此一般电工和维修人员在选择兆欧表时,都选择测量范围为0~200MΩ或0~500MΩ的兆欧表。

国产兆欧表型号、主要参数及适用范围如附表所示。

型号

额定电压

测量范围

准确度等级

ZC251

100V

0~100MΩ

1.0

ZC252

250V

0~250MΩ

1.0

ZC253

500V

0~500MΩ

1.0

ZC254

1000V

0~1000MΩ

1.0

ZC263

500V

0~200MΩ

1.0(0~600V交流)

ZC283

500V

0~200MΩ

1.0

DY30

500V、1000V、2500V

第13篇

关键词:接地电阻影响因素测量值电压极电流极土壤电阻率

Abstract: this article through to the guangdong foshan building grounding resistance measurements. Because of the road, adjacent buildings hindrance, current and voltage of the position of the extremely extremely difficult to press the requirements of the layout, if the voltage extremely and measured the grounding electrodes distance is small, the measurement of the grounding resistance than the actual is small. And combined with daily inspection work out these influence factors of the method is also discussed.

Keywords: grounding resistance influence factors measured value extremely extremely voltage current soil resistivity

中图分类号:TU74文献标识码:A 文章编号:

引言:顺德位于广东省的南部,珠江三角洲平原中部,正北方是广州市,西北方为佛山市中心,东连番禺,北接南海,西邻新会,南界中山市,顺德地处北回归线以南。属亚热带海洋性季风气候,日照时间长,雨量充沛,常年温暖湿润,四季如春,景色怡人,随着佛山市的发展,城市建筑物越来越多,对建筑物的防雷装置的接地电阻也非常重要的。本文对防雷装置内接地电阻测量的方法写了几点要求,供大家参考。

1影响接地电阻测量值的因素

1.1土壤电阻率的影响

土壤含水量为15%时,电阻率显著低。当土壤含水量增加时,电阻率急剧下降;当土壤含水量增加到20%-25%时,土壤电阻率将保持稳定;当土壤温度升高时,其电阻率下降。土壤电阻率这些特性在实际检测工作中有重要的实用意义。一年之中,在同一地点,由于气温和天气的变化,土壤中含水量和温度都不相同,土壤电阻率也不断的变化,其中以地表层最为显著。所以接地装置埋得深一些(湿度和温度变化小),对稳定接地电阻有利,通常最少埋深0.5-1.0m。至于是否应埋更深,那就要看更深得土壤电阻率是否突变,在均匀土壤电阻率的情况下,根据有些防雷专家的计算,埋得太深对降低接地电阻值不显著;在很多地方深层土壤电阻率很高,埋得太深反而会使接地电阻值增加,同时也增加接地工程成本。

1.2仪器自身的因素

在检测大型地网时,依据其工作原理,理论计算和实践证明:电压表内阻大于或等于电压辅助地极散流电阻的50倍时,误差则会小于2%,测量所用的电压表、电流表、电流互感器等的准确级,不应低于0.5级。测量时电压级引线的截面不应小于1.0-1.5mm2;电流极引线的截面积,以每平方毫米5A为宜,并要求接地体的引线需除锈处理,接触良好,以免测量误差。

1.3测量方法因素

一般情况下,三极法测试接地电阻中被测接地极、仪表的电压极和电流极三者间的相互位置和距离,对于接地电阻结果有很大影响。在施工现场,往往是哪里能打下电压极、电流极就往哪里打,这样就不能保证测量数据的准确性[1]

1.4环境因素的影响

早期建筑物结构比较混乱,接线零乱,有时零地电压差甚至在100V以上,被测试接地装置带有漏电流和杂散电流。由于地阻仪测量时回路一般为小电流,当测量回路中有干扰电流时,就会在测试线路上叠加交流信号,直接影响到接地电阻的测量误差。

检测接地电阻时的电压、电流极的放置方向和距离对测量值影响很大,通常表现为随着方向和距离不同,数值也不一样。在检测加油站及高层建筑物接地电阻及静电接地电阻时,埋入地下的金属(油、气)管道和接地装置以及金属器件的布置不是很正确的在建筑图纸上标出。由于地下金属管道的存在,实际上改变了测量仪各极的电流方向,如果同一场地存在不同的土壤电阻率,甚至会引起测量值出现负值的现象。

1.5 人为操作因素的影响

在检测高层建(构)筑物天面接闪器、电气设备或金属物体的接地电阻时,测试导线(接地线)从大楼顶接到地面的地阻仪上,测试线很长。除了要考虑增长的测试线所增加阻抗、感抗和线阻外,还应该考虑在很长的导线所包围面积里由于干扰信号电流引起的磁通量变化所产生的干扰电动势。接地导线接触不良也会影响接地电阻测量值。

1.6季节因素

接地电阻的测试应在土壤电阻率最大时期进行,即在夏季土壤最干燥时期和冬季土壤冰冻时期进行,且每次检查测试都要将情况逐点记录在册,不宜在雨天或雨后进行(土壤含水量增高),以免产生误差,接地电阻值在一年四季时,要用公式进行季节修订。

2排除方法

2.1由于接地电阻测试仪是通过铁钎发射和接收电流来测试地体的地电阻,所以两铁钎之间及两钎与接地体之间距离太近将产生相互干扰,并由此产生误差。因此,在测量时,接地体、电压极、电流极应顺序布置,三点成直线,彼此相距5-10m,尽量减小误差[2]。

2.2红黄铁钎插地深度应大于铁钎长度的1/4,否则,将产生测量误差。因此,在测量时应尽量将铁钎打深。

2.3被测接地极在“公用地”情况下,因设备绝缘不好或短路,引起接地装置对地产生一定的地电压。测量时可引起指针左右摆动,使读数不稳定。此时应断电进行检测,或有断接卡的地方断开进行检测,避免地电压对检测的影响。

2.4接触不良。被测物体生锈或者检测线折断时,检测时会发现时断时通或者电阻较大的现象。此时应首先除锈,如果仍不能排除,用万用表的电阻档检查检测线的导通性。

2.5检测高层建筑时,使用线过长、过粗,使线阻和感应电压增大而引起测量误差。此时应使用线阻比较低的导线,尽量减小测量误差。

2.6当所测的地方有垫土或沙石等材料时,因上下两层土壤电阻率不同而引起测量误差。此时应打深铁钎,使它和垫层下的土壤充分接触或避开垫土层,使测量误差减小。

2.7当所检测的接地装置和金属管道等金属物体埋地比较复杂时,可能会改变测量仪器各极的电流方向而引起测量不良或不稳。此时应首先了解接地体和金属管道的布局图,选择影响相对较小的地方进行测量。

2.8因地表存在电位差或强大电磁场而引起测量不准确。此时应尽量远离电位差大的地方或强大磁场的地方,如不可避免,应相对缩短检测线,减小测量误差。

2.9未按说明书操作,仪器有故障没有及时维修,仪器不准确或长期没有鉴定等因素,也会引起测量误差。

参考文献:

[1]董小丰.接地电阻值测试的影响因素.第六界中国国际防雷论坛论文摘编.2007:667.

[2]中国建筑东北设计研究院.民用建筑电气设计规范[M].北京.中华人民共和国建设部.2002:220.

[3] 王慧娟. 浅谈建筑物弱电系统防雷技术[J]. 民营科技,2010(5).

第14篇

关键词: 电连接器;电阻;镀锡;微动

DOI:10.16640/ki.37-1222/t.2015.21.205

1 引言

就目前而言通过深入的研究,人们普遍的了解到在航空航天领域,微动腐蚀是造成连接器连接效果逐渐降低并最终完全失效的主要因素之一。但在智能化中高压输电和低压配电领域,特别是智能化低压配电开关柜局部领域还没有引起人们的足够重视。

智能化低压开关柜的定义

第一类:采用智能化元器件的低压开关柜。他是一智能化开关器件,智能化电力仪表,电机综合保护装置,馈电测控装置为基础,通过现场总线将各种信息汇总到柜内的通信管理中心后,再通过工业以太网于电力监控系统实现交互控制和交换信息。

第二类:具有全面信息化测控管理功能的低压开关柜。此类开关柜内信息采集摒弃了传统的电流互感器,利用各类传感器和控制器,实现三相电流,电压及其相位差的采集,还可以采集柜内各主回路一次搭接点的实时温度数据。这些数据经过柜内的工业以太网传输到测控中心。

综上通过智能化低压开关柜的定义,可以看出智能化低压开关柜内大量的数据传输要求,而这些数据的传输离不开连接器。电连接器是智能化低压开关柜接口配套部件,从带测控功能的元器件到各种个测控传感器,都对电连接器接触良好性,工作可靠性,维护方便性提出了特别高的要求。其在物流运输和正常工作中要受到多种环境外力的影响,其中振动和环境温度是影响其连接可靠性的两大因素。各种因素作用于连接器内的公母插件,导致接触部位摩擦和发生相对位移,所引发的接触微动现象将造成电接触性能逐渐退化甚至完全失效。

2 电连接器的主要性能

电连接器基本性能包括机械性能、电气性能和环境性能,电接触失效是其主要失效形式,表现为接触电阻增加以及连接瞬断等。为了保证电连接器的可靠连接,接触件材料一般选用摩擦损耗小,导电性能好、且不易产生应力松弛的铍青铜或铜合金材料;另外对连接器表面覆盖电阻率较低、较耐腐蚀的镀层的工艺处理也越来越被工厂所广泛采用。

3 镀层材料的选择

电连接器是通过电接触实现导体之间的电流导通和电信号传输的,所以,要使接触件触点的接触电阻小、使用寿命长、具有一定的硬度和耐磨性以及良好的电气性能等,就成为连接器电镀中必须要考虑到的问题。

基底金属上的镀层材料不同,对连接的影响也不尽相同。通常采用的镀层材料包括:金、银和锡。

(1)金和银的电阻率很低,抗被腐蚀氧化能力高,且材料表面不易产生绝缘的氧化膜层而影响接触性能,但由于金和银的价格相对昂贵,会带来制造和加工成本的相应提高。故镀金和镀银工艺并未被企业广泛地采用。

(2)相对于金和银的高昂成本,锡的价格则便宜了许多。锡是银白色的金属,密度7.28g/cm3,熔点232℃,具有耐腐蚀、抗变色、无毒、焊接性能好等优点。

镀锡具有下列特点和用途:

1)化学稳定性高,空气中暴露抗氧化,耐变色,与硫化物不发生化学反应,与其他强酸如稀硫酸、稀盐酸、硝酸几乎不反应,具有较强的防腐特性。

2)锡为良导电金属材料,易钎焊,所以常用以电子元器件引线、印刷电路板及低压器件的电镀;

3)随着科学技术的发展和人类的进步,人类对于环保意识的不断强化,锡因其无不无害的性质而受到人们的广泛使用。

4 镀锡表面处理电连接器问题反馈

某型智能低压开关柜在实际工程应用中频繁的接收到客户的投诉:该开关智能控制测量系统经常性的信息瞬断,导致数据无法正常传输,甚至造成大面积的停电等严重事故。通过技术支持部门分析最终发现导致这些严重事故的原因是因为在该型智能低压开关柜内大量应用了用镀锡做表面处理的电气连接器。

5 镀锡对电接触的影响失效模式分析

本实验室对该型开关柜所用电连接器直插式电连接器进行测试试验。电连接器的样品如图1 所示。

在进行连接器机械工作试验时,选择8对接触件作为试验样本,测量其接触电阻的初始值。每隔一月做40次插拔试验,每40次插拔试验后分别测对应的接触电阻值,共做360次插拔试验,得到的接触电阻的测量值分别如表1所示。

当接触点运动时,氧化膜在新位置中断和更新鲜的锡流入接触点。然而新暴露在最初的接触点锡会氧化。当接触返回到其原始位置的周期重复和内表面更新鲜的锡不断暴露并氧化。氧化层厚度的增加,电阻会随之增加。当这种情况发生时,电接触正变得不那么有效导致增加的接触温度,最终导致接触失效。

6 分析与结论

该型电连接器,刚开始的200次机械插拔试验中,其接触电阻的测量值变化比较大,而200 次机械插拔试验之后,其接触电阻的测量值都开始趋向稳定,没有单调上升或单调下降的变化,也没有忽升、忽降的变化。对于同类连接器制定产品标准时,机械工作试验的次数可以定为200 次,在200 次以后,测得的接触电阻可以反映此类产品稳定工作时的接触状态或接触可靠性。

通过对此型号产品的研究、试验和分析,确定了在本连接器表面镀锡对该产品接触电阻的影响,接触电阻也是电连接器接通负载后产生接点温升、自身发热的主要原因。接触件表面一般均涂覆有一定厚度的镀锡层,镀锡层虽具有一定的防腐蚀特性,但随着触点间相对微动而产生磨损,使锡的氧化膜在新位置中断和更新鲜的锡流入接触点,循环往复后会不断有更新鲜的锡暴露于空气中发生新的氧化。氧化层的不断增厚会导致接触电阻的逐渐增大,增大了电连接器接触电阻值的分散程度,不利于提高固有可靠性、延长产品的使用寿命。

以此试验分析在低压开关柜制造过程中,凡是在滑动连接处用到的电连接器禁止使用镀锡表面处理工艺。

参考文献:

[1]Liu Hongyang.The Characteristic Research of Contact Insertion and Separation Force in Connectors.Proc of 37th Holm Conf on Electrical Contacts,1992.

[2]杨奋为.航天电连接器失效预防[J].上海航天,2003(01):56―59.

[3]李玉山,来新泉.电子系统集成设技术[M].北京电子工业出版社,2002(10).

[4]李荣正.接触电阻微机采集装置的研制及电连接器可靠性试验方法研寒[J].西安交大硕士论文,1988.

[5]苏竣,王其平.电连接器接触压力的测量和磨损蜕变模型[J].低压电器,1993(05):15-19.

第15篇

【关键词】过套管测井;刻度系统;漏电流;地层电阻率;采集系统

引言

过套管电阻率测井技术是我国正在研究的高新技术之一。其中俄罗斯的CHFR与斯伦贝谢过套管电阻率测井系统是国内外开发比较成熟的技术,是通过测量套管上的电压降从而达到测量地层电阻率。但是测量的有用采集信号在纳伏级容易受到各种干扰,因此建立了刻度系统间接测量漏电流,从而减少误差。过套管电阻率测井刻度系统提供仪器标定与检测的试验平台,在分析过套管电阻率测井方法的基础上,提供仪器性能测试、测量精度标准;实现仪器准确度的检验;优化性能指标参数。关键技为漏电流的精确测量,极微弱信号的采集和处理和刻度池实现不同地层介质的模拟

1.过套管电阻率测井技术的测井原理

简单的来说,过套管电阻率测井原理就是在套管内通过测量套管上的电压降从而达到测量地层电阻率目的。如图1所示,如果有电流被注入套管,大部分电流会沿套管向上或向下流动,只有一小部分的电流泄露到周围地层.如果能测量出在Z长度范围内泄露电流的大小以及中点出的电压V,这样就可以计算出可视电阻率,公式如下:

2.过套管电阻率测井刻度系统

应用TMS320F2812DSP作为主控芯片设计出刻度系统如图1所示,该系统应实现对套管微弱电压信号的采集与处理,并将处理后的数据传输到数据传输总控制模块,数据传输控制模块再将数据传输到上位机。

图1 刻度系统的总体设计

构建过套管电阻率测井刻度系统仿真过套管电阻率测井仪的测井过程,就是在模拟真实套管的环境中,模拟不同地层介质漏电流的条件,模拟不同介质的测试环境,模拟过套管测井仪的数据采集与数据处理的能力。

过套管电阻率测井刻度系统主要由信号调理、信号采集、信号处理、地面控制、信号传输、地层介质模拟器以及精密电阻阵列或刻度池等构成。

3.地层漏电流I用精密电阻阵列来计算

考虑到地层视电阻的测量准确度主要取决于地层漏电流I的测量准确度,因此对漏电流和由漏电流计算得到的电阻率进行双重标定,以确定最终的刻度系数。这是与一般测井仪不同之处。

图2 测量地层漏电流的模型

且:

从而得到:

式中Rw为围岩电阻,Rt为地层视电阻,R为套管电阻,I为地面激励电流,I为地层漏电流;

实际工程操作中我们应用集中参数代替分布参数,将各电极之间的套管的电阻作为一个整体进行计算,从而建立上图漏电流刻度模型,上图式为理论标定标准,利用节点法推算出漏电流与大电流激励源提供的电流的对应方程;因为I为纳伏级别,容易受到干扰所以在选定标准电阻Rt上加一个精确电压表从而间接实现漏电流的测量,再与理论值进行标定,得到刻度系数K1=Rw/(Rw+Rt)。此方法的优点在于去掉了上围岩电阻,从而减少了电流的消耗,从而降低了功率。

4.采集

研究微弱信号(套管测井过程中位微弱信号)采集技术,以及信号特性和采集要求,选取合适的器件,构建图6流程图完成模拟和数字电路设计和调试工作,包括24位的-∑ADC模数转换,DSP控制.

微弱信号经过前置放大、单端转差分调理后,首先要对其进行模数转换,且要求高精度.传统模数转换有并行、逐次逼近型、积分型也有近年发展起来的-∑和流水线型.24位的-∑ADC1274采用了极低位的量化器,从而避免了制造高位转换器和高精度电阻网络的困难;另一方面,因为采用了-∑调制技术和数字抽取滤波,可以获得极高的分辨率,并且不会对抽样值幅度变化敏感.内部具有自校准、系统校准等其它校准来减少误差;因此我们选用了TI推出的多通道24位工业模数转换器.

5.验证试验

采用TMS320F2812DSP为核心芯片开发制造的过套管电阻率测井刻度系统,实现了对仪器的精确刻度,完成了对微弱信号的采集处理;根据所测的电压值得到的漏电流来计算地层电阻率的值,最后进行了系统试验,实验结果表明,地层电阻率测量可达到100Ω,整个系统测量精度满足设计要求且工作稳定.

6.结论

为了保证石油测井仪器测量参数的准确性与维护量值体系的统一,就必须对测井仪器进行刻度,未经刻度标定的测井装置是不可信的。刻度装置是指用于刻度测井仪的、具有已知准确性而稳定的量值的标准物质、装置或物理模型,不同类型的测井仪器具有各自的刻度装置。井下仪器可以通过刻度检测出工作是否正常。对于每种井下仪器的刻度高值和低值,都要求有一定的精度范围.超出这个范围内,则认为出现故障。

参考文献

[1]Realization of foreign fiber detecting algorithm based on ADSP-BF533 [J].IEEE Computer Society,2009,16(8).

精品推荐