美章网 精品范文 广播电视艺术论文范文

广播电视艺术论文范文

前言:我们精心挑选了数篇优质广播电视艺术论文文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。

广播电视艺术论文

第1篇

【论文摘要】:网络技术迅猛发展,广播电视朝着移动接收方向发展。现阶段,广播的移动接收算是在一定程度上解决了,但是电视的移动接收问题要比广播的移动接收困难得多,移动接收所遇到的问题之一就是衰落。移动接收中的关键技术是OFDM,OFDM的特点是各子载波相互正交,扩频调制后的频谱可相互重叠,不但减少了子载波间的相互干扰,还大大提高了频谱利用率。还有地面数字电视广播系统的多种制式问题,各种制式都有它的优点和缺点。解决了这些问题,应该就解决了移动电视的接收问题。

随着数字网络技术的迅猛发展,无线传播领域正在引发一场深刻的技术革命,就在这一两年间,无线数字媒体的类型骤然丰富,除传统媒体之外,手机电视、车载移动电视,楼宇分类电视,多媒体信息亭、地铁多媒体信息系统等新兴媒体纷纷涌现,移动接收是个热点,尤其是广播电视的移动接收,成为发展方向之一。现阶段,广播的移动接收算是在一定程度上解决了。但是电视的移动接收问题要比广播的移动接收困难得多,所以至今还没有得到很好解决。但我觉得,已经快接近目标。

一、数字电视地面广播(DTTB)

在现代通信中,通信传输手段主要是光纤、卫星、数字微波等,加上地面无线电视广播电视发射构成信息主体。目前在我国数字电视按信号传输方式可以分为地面无线传输数字电视、卫星传输数字电视、有线传输数字电视三类。而移动电视是数字电视地面广播的重要应用。数字电视地面广播在应用需求上要求实现移动和便携接收的功能,使整个技术系统的要求最高。它具备无线数字系统所共有的优点,较之卫星接收,有实现容易、价格低廉的特点;较之有线接收不易受城市施工建设、自然灾害战争等因素造成的断网影响;数字电视地面广播通过电视台制高点天线发射无线电波,覆盖电视用户,用户通过接收天线和电视机收看电视节目,主要的受众也是针对本地区的。完善的数字电视地面广播系统所具备的蜂窝单频网功能,不仅提高了频谱的利用率,而且可应用与宽带无线接入市场;而移动和便携的独特优势使该系统能满足现代信息社会"信息到人"的要求,也就是无论何人何时在何地均能任意获取他想得到的信息。

二、移动接收所遇到的主要问题

移动接收采用的方式是无线数字信号发射、地面接收。因此,移动接收所遇到的问题之一就是衰落,这是所有无线通信系统都会遇到的问题。对于固定接收可以采用分集接收等方法予以克服,但对于移动接收而言分集接收的方法显然不实用,因此衰落问题尤为突出。电波在沿地表传播中会受到各种阻碍物的反射、散射和吸收,实际到达收信天线处的电波除了来自发射天线的直接波外,还存在来自各种物体(包括地面)的反射波和散射波。反射波和散射波在收信天线处形成干涉场,此外,在移动通信中,还存在因移动台(天线)的快速移动而划过颠簸的波节和波幅的驻播现象及由于多普勒效应而造成的相移,凡此种种原因,就使得实际移动台接收到的场强在振幅和相位上均随时随地在急骤变化,使信号很不稳定,这就是无线电波的衰落现象。衰落的严重程度通常随频率或路径长度的增加而增大。目前还无法对衰落进行精确的预测,但区分绕射衰落和多径衰落两种不同类型的衰落是十分重要的。前者为慢衰落,短期信号中值电平在长期中的起伏;后者为快衰落,即瞬时信号电平在短期中的起伏。这两种衰落的表现和影响是不同的。另外,与其他无线通信系统不同的是,移动接收的关键点是移动。因此,移动接收还存在一个其他无线通信不会遇到的问题,这就是多普勒效应。

在日常生活中,我们会注意到远处迎面驶来发出警报声的警车在离你越近时,汽笛声的音调越高。从警车到达你所在位置开始,音调开始降低,而当警车离开你后,听到的音调会越来越低,这种现象就称为多普勒效应。奥地利物理学家多普勒是这样解释这种现象的:朝你驶来的警车发出的声波对你而言稍微压缩从而相对集中,这时你听到的声音波长短于该声源静止时的波,而短波音调是高的。相反,离你而去的声源的声波稍微扩散,这时你听到的波长比该声源静止时的波长长,长波音调是低的,这样的效应对电磁波同样适用。比如一个趋近我们的天线发出的信号,它的频率高于该天线相对于我们静止时的频率,波长相对变短;相反,一个离我们远去的天线发出的信号,其频率则会低于该天线在相对我们静止时相对于我们的频率,波长相对变长。同时波长的位移量与天线的运动速度存在正比关系,即速度越快,则波长移动越大。以上现象就是多普勒效应(Doppler)。系统方面,移动接收还要考虑覆盖网的建设,接收机(特别是便携机)的耗电,接收天线的安装等问题。从基本原理考虑,模拟广播电视信号是不宜实现移动接收的。为了解决移动接收中遇到的问题,广播电视信号必须首先实现数字化。利用数字技术无线接收,可有效解决以上问题。只要在信号有效覆盖范围内,所有移动交通工具,只要配有接收设备,都可以接收数字移动电视信号。中国三、移动接收中的关键技术--OFDM

OFDM是正交频分复用(OrthogonalFrequencyDivisionMultiplexing)的缩写,是在严重电磁干扰的通信环境下保证数据稳定完整传输的技术措施。OFDM的基本原理是:高速信息数据流通过串/并变换,分配到速率相对较低的若干子信道中传输,每个子信道中的符号周期相对增加,这样可减少因无线信道多径时延扩展所产生的时间弥散性对系统造成的码间干扰。另外,由于引入保护间隔,在保护间隔大于最大多径时延扩展的情况下,可以最大限度地消除多径带来的符号间干扰。如果用循环前缀作为保护间隔,还可避免多径带来的信道间干扰。OFDM的特点是各子载波相互正交,扩频调制后的频谱可相互重叠,不但减少了子载波间的相互干扰,还大大提高了频谱利用率。主要技术特点如下:1)可有效对抗信号波形间的干扰,适用于多径环境和衰落信道中的高速数据传输;2)通过各子载波的联合编码,具有很强的抗衰落能力;3)各子信道的正交调制和解调可通过离散傅利叶反变换和离散傅利叶变换实现;OFDM能够有效地对抗衰落和多普勒现象带来的负面影响,使受到干扰的信号能够可靠地接收。OFDM码率低,又加入了时间保护间隔,具有极强的抗干扰能力。其多径时延小于保护间隔,所以系统不受码间干扰的困扰。在有关移动接收的几种标准的制定过程中,都采用OFDM作为其核心技术。

四、移动接收制式

第2篇

关键词数字电视地面广播移动接收DABDVB-TDVB-H

〖正文〗

随着数字技术、信息技术和网络技术的迅猛发展,无线传播领域正在引发一场深刻的技术革命,就在这一两年间,无线数字媒体的类型骤然丰富,除传统媒体之外,手机电视、车载移动电视,楼宇分类电视,多媒体信息亭、地铁多媒体信息系统等新兴媒体纷纷涌现,移动接收是个热点,尤其是广播电视的移动接收,成为发展方向之一。在早期,这种移动性主要受电源供电、设备尺寸的限制,基本上没有办法实现,移动接收带来的技术问题也没有提到议事日程上。在电子管时代,器件的尺寸比较大,耗电也多,真正的“移动”只在军事方面,便携式的收音机也有,但一直不能普及。到了晶体管时代,收音机小到可以放在口袋里,广播的移动接收算是在一定程度上解决了。但是电视的移动接收问题要比广播的移动接收困难得多,所以至今还没有得到解决。

一、数字电视地面广播(DTTB:DigitalTelevisionTerrestrialBroadcdsting)

在现代通信中,通信传输手段主要是光纤、卫星、数字微波等,加上地面无线电视广播电视发射构成信息主体。目前在我国数字电视按信号传输方式可以分为地面无线传输数字电视、卫星传输数字电视、有线传输数字电视三类。而移动电视是数字电视地面广播的重要应用。数字电视地面广播在应用需求上要求实现移动和便携接收的功能,使整个技术系统的要求最高。它具备无线数字系统所共有的优点,较之卫星接收,有实现容易、价格低廉的特点;较之有线接收不易受城市施工建设、自然灾害战争等因素造成的断网影响;数字电视地面广播通过电视台制高点天线发射无线电波,覆盖电视用户,用户通过接收天线和电视机收看电视节目,主要的受众也是针对本地区的。完善的数字电视地面广播系统所具备的蜂窝单频网功能,不仅提高了频谱的利用率,而且可应用与宽带无线接入市场;而移动和便携的独特优势使该系统能满足现代信息社会“信息到人”的要求,也就是无论何人何时在何地均能任意获取他想得到的信息。

二、移动接收所遇到的主要问题

移动接收采用的方式是无线数字信号发射、地面接收。因此,移动接收所遇到的问题之一就是衰落,这是所有无线通信系统都会遇到的问题。对于固定接收可以采用分集接收等方法予以克服,但对于移动接收而言分集接收的方法显然不实用,因此衰落问题尤为突出。

电波在沿地表传播中会受到各种阻碍物的反射、散射和吸收,实际到达收信天线处的电波除了来自发射天线的直接波外,还存在来自各种物体(包括地面)的反射波和散射波。反射波和散射波在收信天线处形成干涉场,此外,在移动通信中,还存在因移动台(天线)的快速移动而划过颠簸的波节和波幅的驻播现象及由于多普勒效应而造成的相移,凡此种种原因,就使得实际移动台接收到的场强在振幅和相位上均随时随地在急骤变化,使信号很不稳定,这就是无线电波的衰落现象。衰落的严重程度通常随频率或路径长度的增加而增大。目前还无法对衰落进行精确的预测,但区分绕射衰落和多径衰落两种不同类型的衰落是十分重要的。前者为慢衰落,短期信号中值电平在长期中的起伏;后者为快衰落,即瞬时信号电平在短期中的起伏。这两种衰落的表现和影响是不同的。

另外,与其他无线通信系统不同的是,移动接收的关键点是移动。因此,移动接收还存在一个其他无线通信不会遇到的问题,这就是多普勒效应。

在日常生活中,我们会注意到远处迎面驶来发出警报声的警车在离你越近时,汽笛声的音调越高。从警车到达你所在位置开始,音调开始降低,而当警车离开你后,听到的音调会越来越低,这种现象就称为多普勒效应。奥地利物理学家多普勒是这样解释这种现象的:朝你驶来的警车发出的声波对你而言稍微压缩从而相对集中,这时你听到的声音波长短于该声源静止时的波,而短波音调是高的。相反,离你而去的声源的声波稍微扩散,这时你听到的波长比该声源静止时的波长长,长波音调是低的,这样的效应对电磁波同样适用。比如一个趋近我们的天线发出的信号,它的频率高于该天线相对于我们静止时的频率,波长相对变短;相反,一个离我们远去的天线发出的信号,其频率则会低于该天线在相对我们静止时相对于我们的频率,波长相对变长。同时波长的位移量与天线的运动速度存在正比关系,即速度越快,则波长移动越大。以上现象就是多普勒效应(Doppler)。

系统方面,移动接收还要考虑覆盖网的建设,接收机(特别是便携机)的耗电,接收天线的安装等问题。

从基本原理考虑,模拟广播电视信号是不宜实现移动接收的。为了解决移动接收中遇到的问题,广播电视信号必须首先实现数字化。利用数字技术无线接收,可有效解决以上问题。只要在信号有效覆盖范围内,所有移动交通工具,只要配有接收设备,都可以接收数字移动电视信号。

三、移动接收中的关键技术——OFDM

OFDM是正交频分复用(OrthogonalFrequencyDivisionMultiplexing)的缩写,是在严重电磁干扰的通信环境下保证数据稳定完整传输的技术措施.

OFDM的基本原理是:高速信息数据流通过串/并变换,分配到速率相对较低的若干子信道中传输,每个子信道中的符号周期相对增加,这样可减少因无线信道多径时延扩展所产生的时间弥散性对系统造成的码间干扰。另外,由于引入保护间隔,在保护间隔大于最大多径时延扩展的情况下,可以最大限度地消除多径带来的符号间干扰。如果用循环前缀作为保护间隔,还可避免多径带来的信道间干扰。

在过去的频分复用系统中,整个带宽分成N个子频带,子频带之间不重叠,为了避免子频带间相互干扰,频带间通常加保护带宽,但这会使频谱利用率下降。为了克服这个缺点,OFDM采用N个重叠的子频带,子频带间正交,因而在接收端无需分离频谱就可将信号接收下来。

OFDM的特点是各子载波相互正交,扩频调制后的频谱可相互重叠,不但减少了子载波间的相互干扰,还大大提高了频谱利用率。主要技术特点如下:

1)可有效对抗信号波形间的干扰,适用于多径环境和衰落信道中的高速数据传输;

2)通过各子载波的联合编码,具有很强的抗衰落能力;

3)各子信道的正交调制和解调可通过离散傅利叶反变换和离散傅利叶变换实现;

OFDM能够有效地对抗衰落和多普勒现象带来的负面影响,使受到干扰的信号能够可靠地接收。OFDM码率低,又加入了时间保护间隔,具有极强的抗干扰能力。其多径时延小于保护间隔,所以系统不受码间干扰的困扰。

在有关移动接收的几种标准的制定过程中,都采用OFDM作为其核心技术。

四、移动接收制式

众所周知,地面数字电视广播系统目前有多种制式,这些制式总体上可以分为单载波方式和多载波方式两类,美国用的ATSC是单载波的,欧洲的DVB-T是多载波的。英国是实施DVB-T标准最成功的一个国家,并成功地开通了地面数字电视广播。法国、瑞典、西班牙在实施地面数字广播方面也获得了成功。除我国自己提出的若干种制式,我国DTTB的制定原理是:(1)传输信息要大,支持包括高清电视的多媒体广播服务;(2)抗干扰能力强,在一般室内环境下可接收;(3)与现有模拟广播电视频道兼容,并有利于频道规划和摸拟向数字过渡;(4)具有灵活性;支持标准高清晰度和高清晰度兼容的是视广播,支持移动接收设备,支持便携接收设备;(5)具有可扩展性;支持包括互联网的交互数据综合业务,支持广播网络化的发展需要。整体性能指标应优于或相当于相应的国外现有标准的性能。

在欧洲,针对DVB-T(DigitalvideobroadcastingTerrestrial)在移动接收中的不足,人们提出了一种DVB-H的制式专门用于移动接收,而原有的数字音频广播(DAB)也发展到播出多媒体,下文将重点比较DVB-H和DAB的差别。

DAB是在1988到1992年间开发的。系统当初主要打算作为音频广播,但对传送数据和多媒体业务也有准备。尽管到目前为止在许多国家没有达到普及的程度,但DAB业务已经在多个国家开始。DAB系统,尤其是它的传输网络,是以1.5m的天线高度作为户外的接收而设计的。因此,DAB为汽车接收提供良好的覆盖。

DVB-H(Digitalvideobroadcastinghandheld),通过地面数字广播网络向便携/手持终端提供多媒体业务所制定的传输标准。该标准是欧洲的数字电视标准DVB-T的扩展应用。和DVB-T相比,DVB-H终端具有功耗更低、移动接收和抗干扰性更强的特点,因此该标准适用于移动电话、手持计算机等小型便携设备通过地面数字电视广播网络接收信号。也可以说DVB-H标准依托DVB-T传输系统,通过增加一定的附加功能和改进技术使手机等手持便携设备能够在固定和移动状态下稳定地接收广播电视信号。如图1

DVB-H采用时分数字多媒体广播带宽、以脉冲方式发送各频道的数据。一般情况下,除接收所需频道的数据外,调谐器电路在其它时间均处于关闭状态,因此可有效减少耗电。图2是DVB-H传输系统框图。

图2

DAB(DigitalAudioBroadcasting)适合于多媒体的分发,而DVB-H则是来自DVB的最新标准,它们有不同的历史:

DVB-T接收机的普及是令人鼓舞的。在德国的柏林,2003年从模拟转换到数字电视之后,卖出的DVB-T接收机达到250,000台。不同的欧盟赞助项目,如ACTS-MOTIVATE(1998-99),MCP(2000-2001)和CONFLUENT(2002-2003),对DVB-T用作移动和手提式接收进行过考察,也对接收机进行了优化。结论是,使用(双天线)分集接收机技术可以使DVB-T实现高速移动接收。

在对DVB-T的移动性进行测试的时候,也提出了DVB-T在移动环境下是否适合其他多媒体应用的问题。移动电话制造商,对通过DVB-T的高数据率的应用提供移动的多媒体服务特别感兴趣。其动机是,在移动电话商业价值链中,电视是最后一个不在手上的链路。由于用DVB-T向移动电话广播有缺点,所以有了制定以DVB-T为基础的,专用于手持接收机的标准的主意。这方案叫做DVB-H。

DVB-H的基本商业要求是用电池供电的小的屏幕移动终端。它应该能够在手提式的,移动的和室内的环境中,使用单一天线接收多媒体业务。

五、DAB和DVB-H在技术上的异同

从总体上看,DAB和DVB-T/H传输系统是以相同的调制和编码技术为基础的,这就是编码正交频分频复用(COFDM)。它们之间的差别主要是在特定的区域,如载波间隔,载波调制,FFT的大小(也就是副载波的数量)等等。

FFT大小:DAB在一个1.5MHz的信道里,可以应用256,512,1k和2k的FFT;DVB-H可以在5,6,7或8MHz带宽的信道中应用2k,4k和8k的FFT。

时间分片:DVB-H的时间分片是一种在接收机上节省功率的新机制。如果在没有业务传输的那些时间段,接收机可以断开,那么就可以节省电池的电力。DVB-H的时间分片意味着数据是以突发脉冲串的方式传输的,这些脉冲串从几毫秒到几秒之间。这项技术以下列二个与业务有关的问题的折衷为基础:业务需要什么数据率?而在接收机这边应当节省多少电池的电力?

DAB也是用串的形式传输数据的。这种“数据脉冲串”是DAB帧的一部份,帧跟随在一个无效符号后,持续24ms。

时间交织:DVB-H没有采用时间交织,因为DVB-T标准不提供时间交织:DVB-T原先不是作为高速移动接收而设计的。DAB从一开始就是为移动接收而设计的。时间交织解决了在单天线的移动接收条件下的衰落问题。时间交织把突发误码分配在一个较大的时段上,使得FEC能够校改正这些误码。在移动接收中,更有可能出现的是突发误码而不是单个误码。在DAB中,时间交织工作在16个“数据串”上。一个数据串持续24ms,使得时间交织工作在384ms上。

不相等的误码保护(UEP):不相等的误码保护意味着在解码过程中,较重要的比特的保护优于较低重要性的比特。DAB支持UEP。这意味着对解码过程,比特是依照它们的重要性进行保护的。这对移动和便携接收是非常重要的,因为一般来说,恶劣的接收条件是无可避免的,在恶劣的接收条件下的服务性能是关键问题。借助UEP,通过设计相对于主业务保护的不同的误码保护类型,就可以把失效特性对客观或主观的服务品质实现最佳化。DVB-T/H没有准备UEP。这意味着,那些损害某些重要信息(例如控制信息)的误码只能像那些不明显的比特那样来保护。对于用户,不明显的比特是否被破坏是不要紧的,他们最关心的是,重要的同步是否丢失。

多协议封包-前向误码纠错(MPE-FEC):在DVB-H中,多协议封包结合附加的前向纠错(FEC),是用来改善单天线的移动接收的。但是这种误码保护只在一个时间片工作。但传输的误码通常不是单个的误码而是作为突发误码串出现的,如果时间片被扰乱太多,业务就丢失,不仅在时间片的期间,也延伸直到下个时间片被传输的期间。MPE-FEC是一个在较高的协议层的附加FEC,能够校正在较低层上的剩余误码,但只能在某个范围内。因此,DVB-H对它的有效比特没有独立的保护。现在计划进行进一步的实验室测试和现场试验,以研究带和不带MPE-FEC两种情况下,只用一个天线的DVB-H的接收性能。DAB不使用MPE-FEC,因为这只是在一个较高的传输层上的一个附加的误码保护机制。不过在DAB中使用MPE-FEC或类似的误码保护系统也不是问题。WorldDAB协会现在正在考虑DAB标准的扩展,它会包括像DVB-H那样基于MPE-FEC的误码保护方案,或者如DVB-T和DVB-S标准所用的,MPEG-2传输流的基于R-S码。

可扩缩性:DAB的复接是以864个容量单元为基础的,它们可以组合起来以适合业务需要的任何数据率。因此业务数据率的最小值受容量单元的限制。根据所选择的误码保护,这在1.3kbit/s的数量级:作为数据业务,通常用8kbit/s的倍数。DVB-H提供的业务可以从0-10Mbit/s。它只取决于时间片的大小。

因为各种不同的理由,如果每个业务用的数据率为300kbit/s或更少,DAB更适合移动终端的技术需求。举例来说,它在多工方面比较简单。经由DAB可以传输四到六套节目,然而在DVB-H有30套或更多的节目需要复接。这么多节目的处理是更困难的。利用差分相移键控(DQPSK),DAB的解调技术比较简单。藉由这种解调技术,接收机的复杂性减少了。在接收机方面,DAB只需要DVB-T的5-20%的功率,而DVB-H消耗DVB-T的大约33%的功率。功率的减少取决于业务的数据率。

相对DVB-H,DAB的带宽较低,DAB发射网络比DVB-H发射网络的功率小得多。DVB-H网络的发射功率至少与DVB-T相同。通过利用大的SFN,DAB可以提供高的网络频谱效率。此外,通过为每个业务运行者进行频谱规划,频率资源可以非常有效地利用。今天,DAB音频业务在L波段上用得不多,这波段仍然有DAB多工可用的频谱。

六、DVB-H和DAB的其他方面

全国性的单频网:大体而言,DVB-H和DAB都可能建立全国性的单频网,但是,因为减少自扰的灵敏度,DAB允许大的SFN。这是非常有频谱效率的。与此相比,用16QAM模式的DVB-T/H,最大的SFN大约是200km。

在欧洲,DVB-H和DAB之间开始合作,目标是回答下列问题:是否有一个以DAB为基础的,类似DVB-H的,有用的或可能的标准一种迎合两个标准的最终用户器件是否容易实现?DAB向移动用户提供DVB-H业务需要什么?人们正在协调DAB和DVB-H。例如让DAB能使用DVB-H的MPE-FEC。另外,另一种可能性可能在比较高层,例如视频编码(MPEG-4,H.264)和传输层(IP的使用)。真正需要的是在IP-Datacast/DVB-H业务和DAB物理层之间有一个公共接口定义。

有人提出,移动接收应当用DAB,他的理由是:从标准化进程的最开始,DAB就是为用单天线作移动接收而设计的;数据率从小显示到1.2Mbit/s(在较低的误码保护为1.5Mbit/s)是可扩展的;DAB发射网络的建立比DVB-H网络便宜;由于它的时间交织特征,DAB对脉冲噪声是稳健的;DAB需要的发射机功率比DVB-H低;不管音频还是多媒体业务,DAB都是由广播界推动的。

小结

广播电视的移动接收作为当前的技术热点,尽管它的市场前景和受众分析还有待进一步的研究,但它的技术还在发展中。要说哪一种制式最适合移动接收还为时尚早,因为每种制式都会根据市场的需要及时改进其技术,从而改善其移动接收的性能。

参考文献:

《新一代多媒体移动标准DVB-H》北京邮电大学移动多媒体实验室

第3篇

论文摘要:广播电视信号传输和播出手段主要有微波、卫星、光缆3种,本文简述了的广播电视移动接收的制式及技术。

科学技术的飞速发展给各行各业带来了挑战和机遇,随着广播事业的不断发展和进步,移动接收成为发展方向之一。广播电视虽然有很长的历史,但移动接收的进展却不尽人意。即使是调频广播,在汽车高速行驶中的接收也往往遇到困难。电视的移动接收问题要比广播的移动接收困难得多,所以至今还没有得到解决,所以广播电视的移动接收引起广电界的重视。

一、移动电视

移动电视是数字电视地面广播的重要应用。数字电视地面广播在应用需求上要求实现移动和便携接收的功能,使整个技术系统的要求最高。它具备无线数字系统所共有的优点,较之卫星接收,有实现容易、价格低廉的特点;较之有线接收不易受城市施工建设、自然灾害战争等因素造成的断网影响。移动和便携的独特优势使该系统能满足现代信息社会“信息到人”的要求,也就是无论何人何时在何地均能任意获取他想得到的信息。

二、移动接收制式

众所周知,地面数字电视广播系统目前有多种制式,除了国外正在使用的几种标准外,还有我国自己提出的若干种制式。这些制式总体上可以分为单载波方式和多载波方式两类,美国用的ATSC是单载波的,欧洲的DVB-T是多载波的。国外主要有三种数字电视地面广播标准:欧洲的DVB-T(DigitalVideoBroadcasting-Terrestrial)、美国的ATSC(AdvancedTelevisionSystemsCommittee)和日本的ISDB-T(IntegratedServicesDigitalBroadcastingTerrestrial)(综合业务数字广播)。

ATSC采用的是单载波调制方式(VSB),抗多径干扰和抗多谱勒效应能力差,难以建立单频网和进行移动接收。ISDB-T虽然支持单频网和移动接收的应用要求,但是该技术应用较少。从世界各地对数字电视地面广播标准的采用情况来看,DVB-T标准较ATSC和ISDB-T更具优势。DVB-T是欧洲DVB系列标准中较新的一个标准(此外还有有线数字电视标准DVB-C,以及卫星数字电视标准DVB-S),也是最复杂的DVB传输系统。此标准是1998年2月批准通过的。DVB-T标准的核心是MPEG-2数字视音频压缩编码,采用编码正交频分复用COFDM(CodedOrthogonalFrequencyDivisionMultiplexing)调制方式,适用于大范围多发射机的8k载波方式。为高清晰度电视(HDTV)信号传输提供大于20Mbps的净荷码率,支持简单天线室内固定接收。为标准清晰度电视(SDTV)信号传输提供大于5Mbps的净荷码率,并能在车速移动条件下支持移动接收。具有单频组网能力。目前采用DVB-T标准的国家和地区有德国、西班牙、挪威等欧洲国家及澳大利亚、新加坡等其它国家。其中新加坡和德国等国将移动接收和手持设备作为主要方向。欧洲的DVB-T标准最初是为便携和固定接收而设计,它采用的是COFDM(编码正交频分复用)多载波调制方式,其调制参数(如星座图、编码率、保护间隔等)可调,可提供120种常规模式和1200种分级模式。随后,针对DVB-T(DigitalvideobroadcastingTerrestrial)在移动接收中的不足,人们提出了一种DVB-H的制式专门用于移动接收,而原有的数字音频广播(DAB)也发展到播出多媒体。DVB-H(Digitalvideobroadcastinghandheld),通过地面数字广播网络向便携/手持终端提供多媒体业务所制定的传输标准。该标准是欧洲的数字电视标准DVB-T的扩展应用。和DVB-T相比,DVB-H终端具有功耗更低、移动接收和抗干扰性更强的特点,因此该标准适用于移动电话、手持计算机等小型便携设备通过地面数字电视广播网络接收信号。也可以说DVB-H标准依托DVB-T传输系统,通过增加一定的附加功能和改进技术使手机等手持便携设备能够在固定和移动状态下稳定地接收广播电视信号。DVB-H采用时分数字多媒体广播带宽、以脉冲方式发送各频道的数据。一般情况下,除接收所需频道的数据外,调谐器电路在其它时间均处于关闭状态,因此可有效减少耗电。DVB-H的基本商业要求是用电池供电的小的屏幕移动终端。它应该能够在手提式的,移动的和室内的环境中,使用单一天线接收多媒体业务。目前看来,数字移动电视非数字电视地面广播莫属。中国我国地面数字电视传输标准于2006年8月18日颁布(GB20600-2006),并自2007年8月1日起正式实施(国标地面数字电视标准简称为DTMB-DigitalTerrestrialMultimediaBroadcasting。较早时也称为DMBTH)。DMB-TH采用了PN序列填充的时域同步正交频分复用(TDS-OFDM)多载波调制技术,这种独特的先进技术有机地将信号在时域和频域的传输结合起来,在频域传送有效载荷,在时域通过扩频技术传送控制信号以便进行同步、信道估计,实现快速码字捕获和稳健的同步跟踪性能。DMB-TH具有自主知识产权,能较好地支持移动接收,高清数字电视广播,单频组网。

三、小结

广播电视的移动接收作为当前的技术热点,尽管它的市场前景和受众分析还有待进一步的研究,但它的技术还在发展中。它还有着信号衰落、多普勒效应、覆盖网的建设,接收机(特别是便携机)的耗电,接收天线的安装等问题,所以要说哪一种制式最适合移动接收还为时尚早,因为每种制式都会根据市场的需要及时改进其技术,从而改善其移动接收的性能。

参考文献:

[1]都研美,刘峰.浅谈数字电视地面广播技术[J].广西轻工业,2007(05).